PhD Macro 2 Topic 5 Questions

1) Suppose we observe $x_1, ..., x_T$, where:

 $x_t = \rho x_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{NIID}(0, \sigma^2)$, $x_0 = m_0$,

where m_0 is an **known** parameter representing the point at which the process was started. Derive closed-form expressions for the maximum likelihood estimates of ρ and σ . Show that the maximum likelihood estimate of ρ is identical to the results of an OLS regression of $x_2, ..., x_T$ on $x_1, ..., x_{T-1}$.

2) Suppose we observe $x_1, ..., x_T$, where:

$$x_t = \rho x_{t-1} + \varepsilon_t$$
, $\varepsilon_t \sim \text{NIID}(0, \sigma^2)$, $x_0 = m_0$,

where m_0 is an **unknown** parameter representing the point at which the process was started. Derive closed-form expressions for the maximum likelihood estimates of ρ , σ and m_0 . Show that the maximum likelihood estimate of ρ is asymptotically equivalent to the results of an OLS regression of $x_2, ..., x_T$ on $x_1, ..., x_{T-1}$. Is the maximum likelihood estimator of m_0 consistent?

3) Prove the "useful property of the Normal distribution" from the slides in the case when U and V are scalars.

4) [Part of a 2016 exam question.] Suppose that:

$$z_t = z_{t-1} + \sigma_z \varepsilon_{z,t}$$
$$a_t = z_t + \sigma_a \varepsilon_{a,t}$$

where $\varepsilon_{z,t}$, $\varepsilon_{a,t} \sim \text{NIID}(0,1)$ (i.e. they are independent, identically distributed standard normals), and where $\sigma_z > 0$ and $\sigma_a > 0$. Let $\mathcal{F}_t := [a_t, a_{t-1}, ...]$ be all the available information in period t. I.e. a_t is observable, but z_t is not.

Suppose that $z_t | \mathcal{F}_t \sim N(m_t, v_t)$.

(a) Prove that $z_{t+1} | \mathcal{F}_{t+1} \sim N(m_{t+1}, v_{t+1})$, fully explaining your steps, and giving simple expressions for m_{t+1} and v_{t+1} in terms of m_t , v_t , a_{t+1} , σ_z and σ_a . You may assume that if $\begin{bmatrix} U \\ V \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_U \\ \mu_V \end{bmatrix}, \begin{bmatrix} \Sigma_{UU} & \Sigma_{UV} \\ \Sigma_{VU} & \Sigma_{VV} \end{bmatrix}\right)$, then $U|V \sim N(\mu_U + \Sigma_{UV}\Sigma_{VV}^{-1}(V - \mu_V), \Sigma_{UU} - \Sigma_{UV}\Sigma_{VV}^{-1}\Sigma_{VU})$.

(b) Prove that there exists κ such that for all $t \in \mathbb{Z}$, $0 < \frac{dv_{t+1}}{dv_t} \le \kappa < 1$, and use this to show that as $t \to \infty$, $v_t \to v^*$, where v^* is the unique value such that if $v_t = v^*$, then $v_{t+1} = v^*$.

(c) Find the values of λ and v^* such that if $z_t | \mathcal{F}_t \sim \mathrm{N}(m_t, v^*)$, then

$$|z_{t+1}|\mathcal{F}_{t+1} \sim \mathrm{N}\big((1-\lambda)m_t + \lambda a_{t+1}, v^*\big).$$

5) Use the properties of the Kronecker product to convert the Kim et al. (2008) representation into a VAR in $[x'_{1,t} \quad x'_{1,t} \otimes x'_{1,t} \quad x'_{2,t}]'$ as in the Kollmann (2013) estimation method. For "bonus points", derive the covariance matrix of the shock.

6) Complete the following exercises from "Methods for applied macroeconomic research" (Canova):

a)

Exercise 6.3 (Nonlinear state space model) Consider the model $y_t = \alpha_t + v_{1t}$, $\alpha_{t+1} = \alpha_t \theta + v_{2t}$ and suppose one is interested in θ , which is unobservable, as is α_t . (In a trend-cycle decomposition, θ represents, e.g., the persistence of the trend). Cast the problem in a state space format; show the state vector and display the matrices of the model.

b)

Exercise 6.4 Consider a vector MA process $y_t = e_t + e_{t-1}$ where $e_t \sim \mathbb{N}(0, I)$. Show that the optimal one-step ahead predictor for y_{t+1} is $y_{t+1|t} = \frac{t+1}{t+2}[y_t - y_{t|t-1}]$. Conclude that as $T \to \infty$, the optimal one-step ahead predictor is just last period's forecast error. (Hint: Cast the process into a state space format and apply the Kalman filter).

c)

Exercise 6.16 Consider an AR(2) process $y_t = A_0 + A_1y_{t-1} + A_2y_{t-2} + e_t$ where $e_t \sim iid \mathbb{N}(0, \sigma_e^2)$. Show that the exact log likelihood function is $\mathcal{L}(\phi) \propto -T \log(\sigma_e) + 0.5 \log((1 + A_2)^2 [(1 - A_2)^2 - A_1^2]) - \frac{1 + A_2}{2\sigma^2} [(1 - A_2)(y_1 - \bar{y})^2 - 2A_1(y_1 - \bar{y})(y_2 - \bar{y}) + (1 - A_2)(y_2 - \bar{y})^2] - \sum_{t=3}^T \frac{(y_t - A_0 - A_1y_{t-1} + A_2y_{t-2})^2}{2\sigma^2}$ where $\bar{y} = \frac{A_0}{1 - A_1 - A_2}$. Which terms disappear if a conditional likelihood approach is used? Show that $\sigma_{ML}^2 = \frac{1}{T-2} \sum_{t=3}^T (y_t - A_{0,ML} - A_{1,ML}y_{t-1} - A_{2,ML}y_{t-2})^2$.