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Outline of today’s talk

e Continuous time optimisation problems.
e Euler-Lagrange Equations.
* Necessary conditions for general continuous time optimal control.

e The standard infinite horizon case, and the current and present value
Hamiltonians.

e Assorted examples.
 Hamilton-Jacobi-Bellman (HJB) equations.
 Stochastic HIB equations.



Reading for today

* Relevant sections/appendices of any growth textbook. E.g.:

e “Economic Growth”: Barro and Sala-i-Martin (Appendix A.1, A.3)

. ;I)ntroduction to Modern Economic Growth”: Acemoglu (Chapter 7 and Appendix

e “The Economics of Growth”: Aghion and Howitt

* “The Economics of Inaction: Stochastic Control Models with Fixed Costs”:
Stokey (2008)

* For the stochastic HJB material.

* “Solving the New Keynesian Model in Continuous Time”: Fernandez-
Villaverde, Posch and Rubio-Ramirez (2012)

e Great, readable example of what is possible in continuous time.



Example continuous time optimisation
problem

* In continuous time macro, we are often interested in finding the paths for
control variables ¢ and state variables x that maximise objectives of the

form: .
j e Ptu(t, x(t), c(t)) dt
0

e given the initial value of the state, x(0) = x,, where the state evolves

according to:
x(t) = f(t,x(8), c(®)),

e and where p is the discount rate.

* Note: throughout this lecture dots above variables will denote derivatives with
respect to time.

* For example, in a simple asset eating model, we might have, u(t,x,c) =
logc, and f(t,x,c) = rx — c, where r is the real interest rate.



The Euler-Lagrange Equation

Suppose we seek to find the stationary points of the functional S: (R - R") — R given by:

T
S(2) =f L(t,z(t),z(t)) dt.
0

* where L has continuous first partial derivatives.

Note:
A functional is a scalar valued function of a function, in this case the function in question z: R - R".

* Any maximum or minimum of S must also be a stationary point of it.

The Euler-Lagrange equation states that if z is a stationary point of S, then foralli € 1, ...,n, and
allt € (0,T):

0L(t,z(t),z(t))  d 0L(t,z(t),z(t))
9z;(t) Tdt a1

Or in more compact notation: £, (t,z(t),z'(t)) = %Lg (t,z(t),z'(t)),

» where, for a column vector valued function f(x,y), and e.g. y € R", f,(x, y) is the matrix
[af xy) . 9fxy)
0y, oyn I’



Transversality constraints

* Unless the terminal value of the state is specified in advance, then an additional condition is
needed in order to pin down the path of the state and costate.

* An example of a situation in which the terminal state is specified would be seeking the optimal rate at
which to collect a given stock of assets.

* The necessary condition for optimality is that:
L3(T,z(T),z(T)) = 0.

* Intuitively, this states that an extra unit of the state is worthless at the end of time.

e This result is often combined with the Euler-Lagrange equation result under the banner of “Pontryagin’s
Maximum Principle”.

* We view infinite horizon models as the limit of finite horizon ones as T — oo, thus in the infinite
horizon case you might think that a necessary condition would be lim L, (T, z(T),z(T)) = 0.1n

fact, this is not necessary.

e Kamihigashi (2001) shows that under weak assumptions the necessary transversality condition is:
lim L5(T,z(T),2(T))z(T) = 0



General continuous time optimal control

(1/2)

e Suppose we seek to maximise:

T
[(x,c) =¥(T,x(T)) + f Y(t, x(t), c(6), x(t)) dt,
0
e subjectto: 0 = Cb(t,x(t),c(t),fc(t)) and x(0) = x,.

* First note that:
%‘P(t,x(t)) =W, (& x(t)) + W (&, x(2)) % (2).
* So:
fo T[‘Pl(t,x(t)) + W, (¢, x(£))x(t)] dt = ¥ (T, x(T)) — (0, xo).
* Hence:
I'(x,c) = ¥(0,x,) + fOT[Y(t,x(t), c(t),%(t)) + W1 (¢, x(8)) + ¥, (¢, x(©))x(©)] dt .

* We proceed by applying the previous result to the Lagrangian:
L(t,z,z) =Y(t,x,c,x) +WP,(t,x) + P,(t, x)x + u'&(t, x,c, %),

o wherez = [x',c",u'].



General continuous time optimal control

(2/2)

* From the previous result, the stationary points of S(z) = fOTL(t, z(t), Z'(t)) dt satisfy:
Y,(t,x,c,x) + Wi (t,x) + Woo(t,x)x + u'®,(t, x,c,x)
d . , .
= E (Y4(tt X, C, x) + qJZ(tr X) + 2 (:I)zl.(t, X, C, X)),

Y5(t, x,c,x) + u'd53(t,x,¢c,x) =0,
d(t,x,c,x) =0,
Y, (T, x(T), c(T), %(T)) + ¥,(T,x(T)) + u' (T)P,(T, x(T), c(T), x(T)) = 0.

e Note that the penultimate equation implies that at a stationary point of S, the constraint is
satisfied, as required.

* Also, note that the first equation simplifies to:

d
Y,(t,x,c,x) + u'®,(t,x,¢c,x) = ’r (Y4(t, x,¢,x)+ u d,(t, x, c, a'c)),

® as lpzj_(t, x) - Lplz (t, x)



A standard infinite horizon special case +
Current and present value Hamiltonians

Our original problem was the maximisation of:

jwe_ptu(t,x(t), c(t))dt
0

* subjectto x(t) = f(t, x(t), c(t)).

This is a special case of the previous general result, with: ¥(t,x) = 0, Y(¢t, x,c,x) =
e Ptu(t,x,c), ®(t,x,c,x) = f(t,x,c) — x.

In order to help remember the necessary conditions, it is helpful to define the current and
present value “Hamiltonians” H, and J{,,.

* Note: the present value Hamiltonian is sometimes just called the Hamiltonian, and denoted .

* In macro, the current value one is usually easier to work with.

These are given by:
Hy(x, ¢, (@) = e Pru(t,x, ) + p'f(t, x, 0),
H(x,c,)(t) = ePtH,(t,x,c, 1) = ult,x,c) + X' f(t,x,¢),
« where A(t) = ePtu(t).



Necessary conditions for a maxima in the
standard infinite horizon special case

Plain FOCs FOCs in terms of the FOCs in terms of the
present value current value Hamiltonian
Hamiltonian

e Pluy(t,x,0) + W h(tx,c) =—p'  Hp (o c,0)=—"  Hey(x,¢c,1) =pt — A

e Ptus(t,x,c) + u' f5(t,x,c) =0 Hpo(x,c,1) =0 Heo(x,c,) =0
x = f(t x,c) Hps(x,c,p) = X’ Hesz(x,c, 1) =%
tll_)rg u) x(t) =0 tll_)rg) u)'x() =0 tlim e PLA(t) x(t) = 0

where we have used the fact that A = % (ePtu) = pA + ePtj, so —ePti = pd — A.



A brief reminder on solving simple differential
equations of one variable

* Suppose:

t
$(6) = $(0) + j w(s) ds,
0

e Then ¢(t) = (t). So when we have an equation of the form ¢(t) = Y (t), we know the
solution is given by ¢(t) = ¢(0) + f(flp(s) ds.

e Now suppose: ef ) dsyy(¢) = = fo b(s) ds)((t)]

* Where: — [efo b(s) ds)((t)] = qb(t)efo P dsy (1) + efo P ds 5 (1)
* So: () = p(O)x (@) + x(0).
 Thus if we have an equation of this form, efot‘p(s) a5 v(t) = x(0) + ft elo 9() (1) dr.

e E.g.,if Y(t) + dx(t) =, then e®ty(t) = x(0) + l,bf et dr = y(0)+ = kd (ed’t 1), s0

x(©) = e~ (x(0) - 2) + .



Example: Asset eating

Specialise further with: u(x,c) = logc, and f(x,c) = rx — ¢, so:

At an optimum we have:

A - 1 (- : 1 (=
Hence:—=p—r,s04 = NoePt ¢ = A—e(r Pt and x = rx — A_e(r Pt <o

0 0
ot _ _ 1 _ _ 1 _
e "y —re "tx =retx ——e Pl —reTlx = ——e Pt
Ao Ao
1t 1 1 1
Thuse tx =xg—— [ e Pldt=xy +— (e Pt —1),ie.x =e™ (x + —) — —eplt,
0 A0 -0 0 /100( )' 0 Aop Aop
: . : L . 1 1 _
The transversality constraint requires: 0 = lim e " PtA(t)x(t) = lim A, [xo +———ct pt].
t—>o0 t—>oo Aop  Aop
: : : 1 _ _
Thus assuming a borrowing constraint, 1, = ——, so x = x,e """t and ¢ = px,eT~Pt = px.

H.(x,c,A) =logc + A(rx — c).

Ho1(x,c,4) = r = pd — A,

1
Heo(x,c, 1) = i A=0,

Hes(x,c,A) =rx —c=x.

PXo

i -1t —
” (e7x) =



Example: Non-renewable resource extraction
by a monopolist (Hotelling 1931)

A monopolist controls the stock of some non-renewable resource.
* Let x(t) be the amount of the resource they have remaining at t.
* Assume that the unit cost of resource extraction is given by c(t).

* Assume demand at a price p is given by q(t,p) = a(t)p~*.

The monopolist maximises the present value of profits, given a constant real interest rate r, namely:

(x,p) = f (6, p(0)[p(6) — c(O)] dt,

0
» subject to the resource constraint: x(t) = —q(t,p(t)).

The current value Hamiltonian is:

H(x,p,A) =ap™[p—c] —Adap™"

At an optimum, we have:
Hea(o,p, ) =0=1r1— 4,
Hep(x,p,1) = —kap™ H(p —c) + ap™ + Akap™ 7 =0,
Hes(x,p,A) = —ap™ = x.

From the first equation, A(t) = Aye™, so from the second: p(t) = ﬁ (c(t) + Ape™).



Example: Ramsey-Cass-Koopmans model of
exogenous growth (1/3)

* The production function in an economy is given by: Y = K%(AL)1~¢,

» where L = Lye™ is population, A = Aye9t is productivity and capital K evolves according to K=
Y — C — 6K, where C is consumption.

* Let lower case variables be per efficiency unit equivalents (i.e. the original divided by AL).

. _ ra . _ d (K\ _ KAL-K(AL+AL) _ Y-C-86K K (A L\ _
Theny = k%, and k = ()_ (AL)2 AL AL(A+L)_y ¢

dt \AL
(6 +g+n)k.

. . C .
* Note consumption per head is .= cAye9t. So, the social planner chooses k and ¢ to

maximise:

o AsedtO)l-0 1 1 o) 1-o0
V(k, C) = j e Pt (C Oel ) 5 dt = —m'i-/l(l)_o_j e vt ¢

0 o — 0

* wherev:=p—g(1—-o0),

e subjecttok = k% —c — (6 + g + n)k.

dt,
1—0o0



Example: Ramsey-Cass-Koopmans model of
exogenous growth (2/3)

* The current value Hamiltonian for the problem is:

1-0

+ A(k% —c — (8 + g + nk).

}[C(k) C;A) — 1 — 0

e At an optimum we have:
He1(k,c, 1) = A[ak® = (§+g+n)]=vi—],
Heo(k,c,1)=c"?7—-21=0,
Hoq(k,c,)) =k*—c—(6+g+nk=k.

* From the second equation, Al=—0 c~?~1¢, hence, from the first, we have

the “Euler” equation:

c 1 1
zzg[ak“‘l—(6+g+n)—v] =E[ak“‘1—(5+ag+n)—p]



Example: Ramsey-Cass-Koopmans model of
exogenous growth (3/3)

* In “steady-state” ¢ = k = 0. Note:
1

a 1-«
é=0:>k=< ) ,
d+og+n+p

k=0>c=k"— (5§ +g+n)k.

* Transversality implies:
tlim e Vic(t)"k(t) = 0.

* This rules out all paths except the blue one on the phase diagram below:

Q 9(c)=0 <_1

SN

k
Source: https://en.wikipedia.org/wiki/File:Ramseypic.svg

A
C



https://en.wikipedia.org/wiki/File:Ramseypic.svg

Techniques for solving systems of nonlinear
ordinary differential equations (ODEs)

* Suppose x = f(x), where x € R",
* The steady-state x* solves 0 = f(x).

* To a first order approximation: f(x) = f;(x*)(x — x*), where f; (x*) is the Jacobian of f
evaluated at x”.

o If f,(x*) is diagonalizable, it is then very easy to get an approximate solution.
e Write f;(x*) = VDV !, anddefiney =V-1(x —x*).Theny =V 1x = V71f(x) =
VIO (x —x*) =V-vDV—1(x — x*) = Dy.

* Hence, y;(t) = y; oe”iit, which gives x from x = Vy + x*.

* However, unlike with discrete time models, it’s also quite easy to solve the system fully
nonlinearly.

* A crude algorithm (the Euler method) discretises time and treats the model as Ax; = hf (x;_p),
where h is the time step. This is based on a first order approximation to the derivative.

* More accurate approximations to the derivative deliver more accurate measures.
* MATLAB contains many different ODE solvers. ode45 is a good starting point.



Hamilton-Jacobi-Bellman (HJB) equations:
Finite horizon case

* Just as in discrete time, we can also tackle optimal control problems via a Bellman equation approach.

* Suppose:

T
V(t,x(t)) = max U; Y(T,X(T), c(r)) dt + ‘P(x(T))]
* subject to the constraint that x(t) = d>(t,x(t),c(t)).
e Then, for small (infinitesimal) dt:

V(t,x) = max[Y(t,x,c)dt + V(t + dt,x + ®(t,x,c) dt)]
c

e |e.:
V(t+dt,x + ®(t,x,c)dt) —V(t, x)
dt

0 = max [Y(t, x,c)+
c
e Hence (or at least by this intuition), the HIB partial differential equation (PDE) is:
_vl (t! x) = maX[Y(t, X, C) + VZ (t, x)q)(tl X, C)] )
c

* which must be solved subject to the terminal condition V(T,x) = lP(x(T)).
» ¢ will satisfy the standard FOC: Y5(t, x, c) + V,(t, x)®5(t,x,c) = 0.

e Whereas the previous method, based on Euler-Lagrange equations, gave necessary conditions for optimality,
the HIB equation gives necessary and sufficient conditions, when solved globally.



HJB equations: Infinite horizon case

* Suppose:

V(¢t, x(t)) = max Uooe‘pfu(x(r),c(r)) dt
¢ t

* subject to the constraint that x(t) = f(x(t), c(t)).
* By the same steps as before, this gives an HIB equation of the form:
—V1(t,x) = max[e P*u(x, c) + V,(t, x)f (x, c)]
Cc

e We then make the informed guess that V(¢t, x) = e PtV (x).
* This implies that V;(t,x) = —pV(t, x), and that V, (t,x) = e PV, (x).

* Hence:
pV (x) = max[u(x, ¢) + V1 (0f (x, ),

e where V(¢t, x) = e PtV (x).
* ¢ will satisfy the standard FOC: u,(x,c) + V;(x)f,(x,c) = 0.



Link to Hamiltonians

e Recall that H.(x,c,A) = u(x,c) + A'f(x, c).

e The FOC for c is connected to our previous current-value Hamiltonian method
through the substitution A" = V; (x), since:

0=%Hc,0x, ¢, 1) =uy(x,c) + A'fo(x, ¢) = up(x, ) + Vi(x) f2 (x, ).
* Thus the HJB equation is just:
pV(x) = maxH,.(x,c,Vi(x)").
c

 Differentiating with respect to x gives (using the envelope theorem):
pVi(x) = Heq1(x, ¢, Vi(x)") + Hez(x, ¢, Vi (x) Vi (x)
= Hpy (x, ¢, V(0 + £ (x, €)' Viry ()
dvy (x)'

e Now: 1 = pra Vi ()x =V (x)f(x,c).

e Thus: pA' — A" = H1(x, ¢, V1 (x)").




Solving HJB equations

* Global numerical techniques proceed (as in discrete time) by approximating the
value function over a grid.

* For some very simple models, analytic solutions may be derived by solving the
PDE.

* For moderately simple models, analytic solutions may be derived via a “guess
and verify” approach.

* For example, consider again the asset eating problem with u(x, c¢) = logc, and
flx,c) =rx —c.
e Then the HJB equation is: pV (x) = mglx[logc + Vi (x)(rx — ¢)].
* Informed guess: V(x) = alog(bx). (Implicitly imposing borrowing constraint.)
* Then the FOC for ¢ gives% = %, soc = g
* Substituting in, we have palogb + palogx =logx —loga + ar — 1, soclearlya = %(so

¢ = px as before) and: b = p exp (g — 1).



Multivariate Ito’s lemma

* Suppose:
dXt — I.lt dt + O-t th

e where X;, u; € R™, o, € R™™ and W, is an m dimensional vector of
independent Brownian motions.

e Then, if f: R X R" - R:

df(t,X¢)
1
= <f1 (t, X)) + fo(&, X )ue + itr((ft’fz’z(t» Xt)(ft)> dt + f,(t, X¢)oy AW,

« where f,7,(t, X¢) is the Hessian of f with respect to its second argument.



Stochastic HIB equations

* We just show the infinite horizon case here. Suppose:

fooe_pfu(x(r), c(r)) dT]
t

« subject to the constraint that dx(t) = f(x(t), c(t)) dt + a(x(¢), c()) dW (t).

V(t, x(t)) = max E;

e Then the (non-stochastic!) HIB equation is:

pV(x) = max [u(x, c)+ Vi) f(x,c)+ %tr(a(x, c)'Vy (x)a(x, c))] ,

« where V(t,x) = e PV (x), where V;r, (x) is the Hessian of V.
* You will recognise the final term from Ito’s lemma.
e ¢ will satisfy the standard FOC:

( 1 )' 1\ dveco(x,c)
uy(x, ) + Vi (x) fo(x,c) + vec\Vyr, ()20 (x, c) (1 X Vlfl(x)Z)T =0,

¢ where we have used the fact that:

tr(a(x, c)'Vy (x)o(x, c)) =tr [(Vlrl(x)%a(x, c)), (Vlrl(x)%a(x, c))] = vec (Vlrl(x)%a(x, c)), vec (Vlrl(x)%a(x, c)).

* The remarkable thing is that the stochastic system has been converted to a non-stochastic set of PDEs.



Applications in macroeconomics of the
stochastic HJB

e Olaf Posch has pioneered the recent application of the stochastic HJB
in macroeconomics, building on earlier work by Merton.

e Richer models may be solved analytically in continuous time.

* Non-linearities are far easier to handle in continuous time.

* See e.g. Fernandez-Villaverde, Posch and Rubio-Ramirez (2012) who solve an
NK model with the ZLB in continuous time, getting analytic results for a
special case, and accurate numerical results more generally.

e Or Posch (2010) which derives analytic expression for general equilibrium risk
premia, based on an extension of the Merton (1975) model.



Example: Stochastic asset eating without
short selling constraints (1/2)

* Suppose a household maximises the Lagrangian:

V(t,x(t)) = rana;)f E, U'w e~ PT —u(t)(1z(1) — 1)] dTl

* subject to the constraints that dx(t) = (x(t)z(t)’r - c(t)) dt + x(t)z(t)' AdW (t).
* x(t)z(t) gives the vector of asset holdings at t, x(t) is total net worth.

c(n)-9 -1
=

* Stochastic HIB equation is:
1-o0

c
pV(x) = maxl
czu|l 1—

1
P u(lyz— 1) + V3 (x)(xz'r — ¢) + Etr(A’szn(x)xz’A)l

cl=7 -1

1
= maxl —u(lyz—1) +Vi(x)(xz'r —c) + EVll(x)xzz’AA’zl .

c,z,U —
e FOCs:
1

c™7 =V, (x), =>c=V,(x) o,

AN) " (ul,, — Vi(x)xr
Vl(x)X'T', + Vll(X)XZZ,AA’ = ‘u]_;l’ — ( ) ('u' n 1( ) )

Vi1 (x)x?
oyl oy Vi () x1,(AN) 1r + V1 (x)x? o, Vi) x1,(AN) 1r + Vi, (0)x?\ (AN) 11, _ Vi () x(AN)
T LT 1,(AN) 11, / 1,(AN) 11, Vi1 (%2 Vi1 (%2



Example: Stochastic asset eating without
short selling constraints (2/2)

Define (u, v) := u'(AA") ~1v then plugging in and simplifying gives:

1-0
Vi(x) o -1 L 1 ()x(Ly, 1) + Vi (0)x2)? = (V (0)x)* (1, 1M1, 1)
e =T T 7y V0¥ (L 1) '
e Guess V(x) = a(bxil_%, so Vi (x) = ab(bx)~% and V;;(x) = —oab?(bx)~?~1, so after simplifying we have:

o 1-0 1 (1n: 1n)(r: T') - ((1n'r)

pa _1-0
(ab) o + Za (11

— 0

1—o0 1—0

o 1 —0)? o
(bx)?! —pal_a—[ ](bx)l -

1, . .
e Thusa = P (as in the non-stochastic case) and

o

1 1-0(1y1)r7) = (1) — 0)?] =0
s o 20p(Tn, 1) ] |

>

_ _1)\2
1)) =(1gr)=1? 1]_

(1n,
* Asc—>1,b—p exp[ - 2p(1n,1p)

(Lnn)(rir)=(Lnr)=0)? _ T=304
20p(1p, 1)
risk averse they are, and the more risky is the asset.

* Inthe scalar (n = 1) case, , Which implies the agent values assets less the more
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