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Outline of today’s talk

• Continuous time optimisation problems.
• Euler-Lagrange Equations.
• Necessary conditions for general continuous time optimal control.
• The standard infinite horizon case, and the current and present value 

Hamiltonians.
• Assorted examples.
• Hamilton-Jacobi-Bellman (HJB) equations.
• Stochastic HJB equations.



Reading for today

• Relevant sections/appendices of any growth textbook. E.g.:

• “Economic Growth”: Barro and Sala-i-Martin (Appendix A.1, A.3)

• “Introduction to Modern Economic Growth”: Acemoglu (Chapter 7 and Appendix 
B)

• “The Economics of Growth”: Aghion and Howitt

• “The Economics of Inaction: Stochastic Control Models with Fixed Costs”: 
Stokey (2008)

• For the stochastic HJB material.

• “Solving the New Keynesian Model in Continuous Time”: Fernandez-
Villaverde, Posch and Rubio-Ramirez (2012)

• Great, readable example of what is possible in continuous time.



Example continuous time optimisation 
problem

• In continuous time macro, we are often interested in finding the paths for 
control variables 𝑐𝑐 and state variables 𝑥𝑥 that maximise objectives of the 
form:

�
0

∞
𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡

• given the initial value of the state, 𝑥𝑥 0 = 𝑥𝑥0, where the state evolves 
according to:

𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 ,
• and where 𝜌𝜌 is the discount rate.

• Note: throughout this lecture dots above variables will denote derivatives with 
respect to time.

• For example, in a simple asset eating model, we might have, 𝑢𝑢 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 =
log 𝑐𝑐, and 𝑓𝑓 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 = 𝑟𝑟𝑟𝑟 − 𝑐𝑐, where 𝑟𝑟 is the real interest rate.



The Euler-Lagrange Equation

• Suppose we seek to find the stationary points of the functional 𝑆𝑆: ℝ → ℝ𝑛𝑛 → ℝ given by:

𝑆𝑆 𝑧𝑧 = �
0

𝑇𝑇
ℒ 𝑡𝑡, 𝑧𝑧 𝑡𝑡 , 𝑧̇𝑧 𝑡𝑡 𝑑𝑑𝑡𝑡 .

• where ℒ has continuous first partial derivatives.

• Note:
• A functional is a scalar valued function of a function, in this case the function in question 𝑧𝑧:ℝ → ℝ𝑛𝑛.
• Any maximum or minimum of 𝑆𝑆 must also be a stationary point of it.

• The Euler-Lagrange equation states that if 𝑧𝑧 is a stationary point of 𝑆𝑆, then for all 𝑖𝑖 ∈ 1, … ,𝑛𝑛, and 
all 𝑡𝑡 ∈ 0,𝑇𝑇 :

𝜕𝜕𝜕 𝑡𝑡, 𝑧𝑧 𝑡𝑡 , 𝑧̇𝑧 𝑡𝑡
𝜕𝜕𝑧𝑧𝑖𝑖 𝑡𝑡

=
𝑑𝑑
𝑑𝑑𝑡𝑡
𝜕𝜕𝜕 𝑡𝑡, 𝑧𝑧 𝑡𝑡 , 𝑧̇𝑧 𝑡𝑡

𝜕𝜕𝑧̇𝑧𝑖𝑖 𝑡𝑡
.

• Or in more compact notation: ℒ2 𝑡𝑡, 𝑧𝑧 𝑡𝑡 , 𝑧̇𝑧 𝑡𝑡 = 𝑑𝑑
𝑑𝑑𝑡𝑡
ℒ3 𝑡𝑡, 𝑧𝑧 𝑡𝑡 , 𝑧̇𝑧 𝑡𝑡 ,

• where, for a column vector valued function 𝑓𝑓 𝑥𝑥,𝑦𝑦 , and e.g. 𝑦𝑦 ∈ ℝ𝑛𝑛, 𝑓𝑓2 𝑥𝑥,𝑦𝑦 is the matrix 
𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦1

⋯ 𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦𝑛𝑛

.



Transversality constraints

• Unless the terminal value of the state is specified in advance, then an additional condition is 
needed in order to pin down the path of the state and costate.

• An example of a situation in which the terminal state is specified would be seeking the optimal rate at 
which to collect a given stock of assets.

• The necessary condition for optimality is that:
ℒ3 𝑇𝑇, 𝑧𝑧 𝑇𝑇 , 𝑧̇𝑧 𝑇𝑇 = 0.

• Intuitively, this states that an extra unit of the state is worthless at the end of time.
• This result is often combined with the Euler-Lagrange equation result under the banner of “Pontryagin’s

Maximum Principle”.

• We view infinite horizon models as the limit of finite horizon ones as 𝑇𝑇 → ∞, thus in the infinite 
horizon case you might think that a necessary condition would be lim

𝑇𝑇→∞
ℒ3 𝑇𝑇, 𝑧𝑧 𝑇𝑇 , 𝑧̇𝑧 𝑇𝑇 = 0. In 

fact, this is not necessary.

• Kamihigashi (2001) shows that under weak assumptions the necessary transversality condition is:

lim
𝑇𝑇→∞

ℒ3 𝑇𝑇, 𝑧𝑧 𝑇𝑇 , 𝑧̇𝑧 𝑇𝑇 𝑧𝑧 𝑇𝑇 = 0



General continuous time optimal control 
(1/2)

• Suppose we seek to maximise:

Γ 𝑥𝑥, 𝑐𝑐 = Ψ 𝑇𝑇, 𝑥𝑥 𝑇𝑇 + �
0

𝑇𝑇
Υ 𝑡𝑡,𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 , 𝑥̇𝑥 𝑡𝑡 𝑑𝑑𝑡𝑡 ,

• subject to: 0 = Φ 𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 , 𝑥̇𝑥 𝑡𝑡 and 𝑥𝑥 0 = 𝑥𝑥0.

• First note that:
𝑑𝑑
𝑑𝑑𝑡𝑡
Ψ 𝑡𝑡,𝑥𝑥 𝑡𝑡 = Ψ1 𝑡𝑡, 𝑥𝑥 𝑡𝑡 + Ψ2 𝑡𝑡, 𝑥𝑥 𝑡𝑡 𝑥̇𝑥 𝑡𝑡 .

• So:

�
0

𝑇𝑇
Ψ1 𝑡𝑡, 𝑥𝑥 𝑡𝑡 + Ψ2 𝑡𝑡, 𝑥𝑥 𝑡𝑡 𝑥̇𝑥 𝑡𝑡 𝑑𝑑𝑡𝑡 = Ψ 𝑇𝑇, 𝑥𝑥 𝑇𝑇 − Ψ 0, 𝑥𝑥0 .

• Hence:

Γ 𝑥𝑥, 𝑐𝑐 = Ψ 0, 𝑥𝑥0 + �
0

𝑇𝑇
Υ 𝑡𝑡,𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 , 𝑥̇𝑥 𝑡𝑡 + Ψ1 𝑡𝑡, 𝑥𝑥 𝑡𝑡 + Ψ2 𝑡𝑡, 𝑥𝑥 𝑡𝑡 𝑥̇𝑥 𝑡𝑡 𝑑𝑑𝑡𝑡 .

• We proceed by applying the previous result to the Lagrangian:
ℒ 𝑡𝑡, 𝑧𝑧, 𝑧̇𝑧 = Υ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 + Ψ1 𝑡𝑡,𝑥𝑥 + Ψ2 𝑡𝑡, 𝑥𝑥 𝑥̇𝑥 + 𝜇𝜇′Φ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 ,

• where 𝑧𝑧 = 𝑥𝑥′, 𝑐𝑐′,𝜇𝜇′ ′.



General continuous time optimal control 
(2/2)

• From the previous result, the stationary points of 𝑆𝑆 𝑧𝑧 = ∫0
𝑇𝑇 ℒ 𝑡𝑡, 𝑧𝑧 𝑡𝑡 , 𝑧̇𝑧 𝑡𝑡 𝑑𝑑𝑡𝑡 satisfy:

Υ2 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 + Ψ12 𝑡𝑡, 𝑥𝑥 + Ψ22 𝑡𝑡, 𝑥𝑥 𝑥̇𝑥 + 𝜇𝜇′Φ2 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥

=
𝑑𝑑
𝑑𝑑𝑡𝑡

Υ4 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 + Ψ2 𝑡𝑡, 𝑥𝑥 + 𝜇𝜇′Φ4 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 ,

Υ3 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 + 𝜇𝜇′Φ3 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 = 0,
Φ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 = 0,

Υ4 𝑇𝑇, 𝑥𝑥 𝑇𝑇 , 𝑐𝑐 𝑇𝑇 , 𝑥̇𝑥 𝑇𝑇 + Ψ2 𝑇𝑇, 𝑥𝑥 𝑇𝑇 + 𝜇𝜇′ 𝑇𝑇 Φ4 𝑇𝑇, 𝑥𝑥 𝑇𝑇 , 𝑐𝑐 𝑇𝑇 , 𝑥̇𝑥 𝑇𝑇 = 0.

• Note that the penultimate equation implies that at a stationary point of 𝑆𝑆, the constraint is 
satisfied, as required.

• Also, note that the first equation simplifies to:

Υ2 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 + 𝜇𝜇′Φ2 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 =
𝑑𝑑
𝑑𝑑𝑡𝑡

Υ4 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 + 𝜇𝜇′Φ4 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 ,

• as Ψ21 𝑡𝑡, 𝑥𝑥 = Ψ12 𝑡𝑡, 𝑥𝑥 .



A standard infinite horizon special case +
Current and present value Hamiltonians

• Our original problem was the maximisation of:

�
0

∞
𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡

• subject to 𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑡𝑡,𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 .

• This is a special case of the previous general result, with: Ψ 𝑡𝑡, 𝑥𝑥 = 0, Υ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 =
𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 , Φ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝑥̇𝑥 = 𝑓𝑓 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 − 𝑥̇𝑥.

• In order to help remember the necessary conditions, it is helpful to define the current and 
present value “Hamiltonians” ℋ𝑐𝑐 and ℋ𝑝𝑝.

• Note: the present value Hamiltonian is sometimes just called the Hamiltonian, and denoted ℋ.
• In macro, the current value one is usually easier to work with.

• These are given by:
ℋ𝑝𝑝 𝑥𝑥, 𝑐𝑐, 𝜇𝜇 𝑡𝑡 = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 + 𝜇𝜇′𝑓𝑓 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 ,

ℋ𝑐𝑐 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 𝑡𝑡 = 𝑒𝑒𝜌𝜌𝜌𝜌ℋ𝑝𝑝 𝑡𝑡, 𝑥𝑥, 𝑐𝑐, 𝜇𝜇 = 𝑢𝑢 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 + 𝜆𝜆′𝑓𝑓 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 ,
• where 𝜆𝜆 𝑡𝑡 = 𝑒𝑒𝜌𝜌𝜌𝜌𝜇𝜇 𝑡𝑡 .



Necessary conditions for a maxima in the 
standard infinite horizon special case

Plain FOCs FOCs in terms of the 
present value 
Hamiltonian

FOCs in terms of the 
current value Hamiltonian

𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢2 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 + 𝜇𝜇′𝑓𝑓2 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 = −𝜇̇𝜇′ ℋ𝑝𝑝,1 𝑥𝑥, 𝑐𝑐, 𝜇𝜇 = −𝜇̇𝜇′ ℋ𝑐𝑐,1 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 𝜌𝜌𝜆𝜆′ − 𝜆̇𝜆′

𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢3 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 + 𝜇𝜇′𝑓𝑓3 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 = 0 ℋ𝑝𝑝,2 𝑥𝑥, 𝑐𝑐, 𝜇𝜇 = 0 ℋ𝑐𝑐,2 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 0

𝑥̇𝑥 = 𝑓𝑓 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 ℋ𝑝𝑝,3 𝑥𝑥, 𝑐𝑐, 𝜇𝜇 = 𝑥̇𝑥′ ℋ𝑐𝑐,3 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 𝑥̇𝑥′

lim
𝑡𝑡→∞

𝜇𝜇 𝑡𝑡 ′𝑥𝑥 𝑡𝑡 = 0 lim
𝑡𝑡→∞

𝜇𝜇 𝑡𝑡 ′𝑥𝑥 𝑡𝑡 = 0 lim
𝑡𝑡→∞

𝑒𝑒−𝜌𝜌𝑡𝑡𝜆𝜆 𝑡𝑡 ′𝑥𝑥 𝑡𝑡 = 0

where we have used the fact that 𝜆̇𝜆 = 𝑑𝑑
𝑑𝑑𝑡𝑡

𝑒𝑒𝜌𝜌𝜌𝜌𝜇𝜇 = 𝜌𝜌𝜌𝜌 + 𝑒𝑒𝜌𝜌𝜌𝜌𝜇̇𝜇, so −𝑒𝑒𝜌𝜌𝜌𝜌𝜇̇𝜇 = 𝜌𝜌𝜆𝜆 − 𝜆̇𝜆.



A brief reminder on solving simple differential 
equations of one variable

• Suppose:

𝜙𝜙 𝑡𝑡 = 𝜙𝜙 0 + �
0

𝑡𝑡
𝜓𝜓 𝑠𝑠 𝑑𝑑𝑠𝑠 ,

• Then 𝜙̇𝜙 𝑡𝑡 = 𝜓𝜓 𝑡𝑡 . So when we have an equation of the form 𝜙̇𝜙 𝑡𝑡 = 𝜓𝜓 𝑡𝑡 , we know the 
solution is given by 𝜙𝜙 𝑡𝑡 = 𝜙𝜙 0 + ∫0

𝑡𝑡 𝜓𝜓 𝑠𝑠 𝑑𝑑𝑠𝑠.

• Now suppose: 𝑒𝑒∫0
𝑡𝑡 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜓𝜓 𝑡𝑡 = 𝑑𝑑

𝑑𝑑𝑡𝑡
𝑒𝑒∫0

𝑡𝑡 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜒𝜒 𝑡𝑡 ,

• Where: 𝑑𝑑
𝑑𝑑𝑡𝑡

𝑒𝑒∫0
𝑡𝑡 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜒𝜒 𝑡𝑡 = 𝜙𝜙 𝑡𝑡 𝑒𝑒∫0

𝑡𝑡 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜒𝜒 𝑡𝑡 + 𝑒𝑒∫0
𝑡𝑡 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜒̇𝜒 𝑡𝑡

• So: 𝜓𝜓 𝑡𝑡 = 𝜙𝜙 𝑡𝑡 𝜒𝜒 𝑡𝑡 + 𝜒̇𝜒 𝑡𝑡 .

• Thus if we have an equation of this form, 𝑒𝑒∫0
𝑡𝑡 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜒𝜒 𝑡𝑡 = 𝜒𝜒 0 + ∫0

𝑡𝑡 𝑒𝑒∫0
𝜏𝜏 𝜙𝜙 𝑠𝑠 𝑑𝑑𝑠𝑠𝜓𝜓 𝜏𝜏 𝑑𝑑𝜏𝜏.

• E.g., if 𝜒̇𝜒 𝑡𝑡 + 𝜙𝜙𝜙𝜙 𝑡𝑡 = 𝜓𝜓, then 𝑒𝑒𝜙𝜙𝜙𝜙𝜒𝜒 𝑡𝑡 = 𝜒𝜒 0 + 𝜓𝜓∫0
𝑡𝑡 𝑒𝑒𝜙𝜙𝜏𝜏 𝑑𝑑𝜏𝜏 = 𝜒𝜒 0 + 𝜓𝜓

𝜙𝜙
𝑒𝑒𝜙𝜙𝑡𝑡 − 1 , so 

𝜒𝜒 𝑡𝑡 = 𝑒𝑒−𝜙𝜙𝜙𝜙 𝜒𝜒 0 − 𝜓𝜓
𝜙𝜙

+ 𝜓𝜓
𝜙𝜙

.



Example: Asset eating

• Specialise further with: 𝑢𝑢 𝑥𝑥, 𝑐𝑐 = log 𝑐𝑐, and 𝑓𝑓 𝑥𝑥, 𝑐𝑐 = 𝑟𝑟𝑟𝑟 − 𝑐𝑐, so:
ℋ𝑐𝑐 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = log 𝑐𝑐 + 𝜆𝜆 𝑟𝑟𝑟𝑟 − 𝑐𝑐 .

• At an optimum we have:
ℋ𝑐𝑐,1 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 𝜆𝜆𝜆𝜆 = 𝜌𝜌𝜌𝜌 − 𝜆̇𝜆,

ℋ𝑐𝑐,2 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 =
1
𝑐𝑐
− 𝜆𝜆 = 0,

ℋ𝑐𝑐,3 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 𝑟𝑟𝑟𝑟 − 𝑐𝑐 = 𝑥̇𝑥.

• Hence: 𝜆̇𝜆
𝜆𝜆

= 𝜌𝜌 − 𝑟𝑟, so 𝜆𝜆 = 𝜆𝜆0𝑒𝑒 𝜌𝜌−𝑟𝑟 𝑡𝑡, 𝑐𝑐 = 1
𝜆𝜆0
𝑒𝑒 𝑟𝑟−𝜌𝜌 𝑡𝑡 and 𝑥̇𝑥 = 𝑟𝑟𝑟𝑟 − 1

𝜆𝜆0
𝑒𝑒 𝑟𝑟−𝜌𝜌 𝑡𝑡, so 𝑑𝑑

𝑑𝑑𝑡𝑡
𝑒𝑒−𝑟𝑟𝑟𝑟𝑥𝑥 =

𝑒𝑒−𝑟𝑟𝑟𝑟𝑥̇𝑥 − 𝑟𝑟𝑒𝑒−𝑟𝑟𝑟𝑟𝑥𝑥 = 𝑟𝑟𝑒𝑒−𝑟𝑟𝑟𝑟𝑥𝑥 − 1
𝜆𝜆0
𝑒𝑒−𝜌𝜌𝜌𝜌 − 𝑟𝑟𝑒𝑒−𝑟𝑟𝑟𝑟𝑥𝑥 = − 1

𝜆𝜆0
𝑒𝑒−𝜌𝜌𝜌𝜌.

• Thus 𝑒𝑒−𝑟𝑟𝑟𝑟𝑥𝑥 = 𝑥𝑥0 −
1
𝜆𝜆0
∫0
𝑡𝑡 𝑒𝑒−𝜌𝜌𝜌𝜌 𝑑𝑑𝜏𝜏 = 𝑥𝑥0 + 1

𝜆𝜆0𝜌𝜌
𝑒𝑒−𝜌𝜌𝜌𝜌 − 1 , i.e. 𝑥𝑥 = 𝑒𝑒𝑟𝑟𝑟𝑟 𝑥𝑥0 + 1

𝜆𝜆0𝜌𝜌
− 1

𝜆𝜆0𝜌𝜌
𝑒𝑒 𝑟𝑟−𝜌𝜌 𝑡𝑡.

• The transversality constraint requires: 0 = lim
𝑡𝑡→∞

𝑒𝑒−𝜌𝜌𝜌𝜌𝜆𝜆 𝑡𝑡 𝑥𝑥 𝑡𝑡 = lim
𝑡𝑡→∞

𝜆𝜆0 𝑥𝑥0 + 1
𝜆𝜆0𝜌𝜌

− 1
𝜆𝜆0𝜌𝜌

𝑒𝑒−𝜌𝜌𝜌𝜌 .

• Thus assuming a borrowing constraint, 𝜆𝜆0 = − 1
𝜌𝜌𝑥𝑥0

, so 𝑥𝑥 = 𝑥𝑥0𝑒𝑒 𝑟𝑟−𝜌𝜌 𝑡𝑡, and 𝑐𝑐 = 𝜌𝜌𝑥𝑥0𝑒𝑒 𝑟𝑟−𝜌𝜌 𝑡𝑡 = 𝜌𝜌𝜌𝜌.



Example: Non-renewable resource extraction 
by a monopolist (Hotelling 1931)

• A monopolist controls the stock of some non-renewable resource. 
• Let 𝑥𝑥 𝑡𝑡 be the amount of the resource they have remaining at 𝑡𝑡.
• Assume that the unit cost of resource extraction is given by 𝑐𝑐 𝑡𝑡 .
• Assume demand at a price 𝑝𝑝 is given by 𝑞𝑞 𝑡𝑡,𝑝𝑝 = 𝑎𝑎 𝑡𝑡 𝑝𝑝−𝜅𝜅.

• The monopolist maximises the present value of profits, given a constant real interest rate 𝑟𝑟, namely:

Π 𝑥𝑥,𝑝𝑝 = �
0

∞
𝑒𝑒−𝑟𝑟𝑟𝑟𝑞𝑞 𝑡𝑡,𝑝𝑝 𝑡𝑡 𝑝𝑝 𝑡𝑡 − 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 ,

• subject to the resource constraint: 𝑥̇𝑥 𝑡𝑡 = −𝑞𝑞 𝑡𝑡,𝑝𝑝 𝑡𝑡 .

• The current value Hamiltonian is:
ℋ𝑐𝑐 𝑥𝑥,𝑝𝑝, 𝜆𝜆 = 𝑎𝑎𝑝𝑝−𝜅𝜅 𝑝𝑝 − 𝑐𝑐 − 𝜆𝜆𝑎𝑎𝑝𝑝−𝜅𝜅

• At an optimum, we have:
ℋ𝑐𝑐,1 𝑥𝑥,𝑝𝑝, 𝜆𝜆 = 0 = 𝑟𝑟𝜆𝜆 − 𝜆̇𝜆,

ℋ𝑐𝑐,2 𝑥𝑥,𝑝𝑝, 𝜆𝜆 = −𝜅𝜅𝜅𝜅𝑝𝑝−𝜅𝜅−1 𝑝𝑝 − 𝑐𝑐 + 𝑎𝑎𝑝𝑝−𝜅𝜅 + 𝜆𝜆𝜅𝜅𝜅𝜅𝑝𝑝−𝜅𝜅−1 = 0,
ℋ𝑐𝑐,3 𝑥𝑥,𝑝𝑝, 𝜆𝜆 = −𝑎𝑎𝑝𝑝−𝜅𝜅 = 𝑥̇𝑥.

• From the first equation, 𝜆𝜆 𝑡𝑡 = 𝜆𝜆0𝑒𝑒𝑟𝑟𝑟𝑟, so from the second: 𝑝𝑝 𝑡𝑡 = 𝜅𝜅
𝜅𝜅−1

𝑐𝑐 𝑡𝑡 + 𝜆𝜆0𝑒𝑒𝑟𝑟𝑟𝑟 .



Example: Ramsey-Cass-Koopmans model of 
exogenous growth (1/3)

• The production function in an economy is given by: 𝑌𝑌 = 𝐾𝐾𝛼𝛼 𝐴𝐴𝐴𝐴 1−𝛼𝛼,
• where 𝐿𝐿 = 𝐿𝐿0𝑒𝑒𝑛𝑛𝑛𝑛 is population, 𝐴𝐴 = 𝐴𝐴0𝑒𝑒𝑔𝑔𝑔𝑔 is productivity and capital 𝐾𝐾 evolves according to 𝐾̇𝐾 =
𝑌𝑌 − 𝐶𝐶 − 𝛿𝛿𝛿𝛿, where 𝐶𝐶 is consumption.

• Let lower case variables be per efficiency unit equivalents (i.e. the original divided by 𝐴𝐴𝐴𝐴).

• Then 𝑦𝑦 = 𝑘𝑘𝛼𝛼, and 𝑘̇𝑘 = d
d𝑡𝑡

𝐾𝐾
𝐴𝐴𝐴𝐴

= 𝐾̇𝐾𝐴𝐴𝐴𝐴−𝐾𝐾 𝐴̇𝐴𝐿𝐿+𝐴𝐴𝐿̇𝐿
𝐴𝐴𝐴𝐴 2 = 𝑌𝑌−𝐶𝐶−𝛿𝛿𝛿𝛿

𝐴𝐴𝐴𝐴
− 𝐾𝐾

𝐴𝐴𝐴𝐴
𝐴̇𝐴
𝐴𝐴

+ 𝐿̇𝐿
𝐿𝐿

= 𝑦𝑦 − 𝑐𝑐 −
𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 𝑘𝑘.

• Note consumption per head is 𝐶𝐶
𝐿𝐿

= 𝑐𝑐𝐴𝐴0𝑒𝑒𝑔𝑔𝑔𝑔. So, the social planner chooses 𝑘𝑘 and 𝑐𝑐 to 
maximise:

𝑉𝑉 𝑘𝑘, 𝑐𝑐 = �
0

∞
𝑒𝑒−𝜌𝜌𝜌𝜌

𝑐𝑐𝐴𝐴0𝑒𝑒𝑔𝑔𝑔𝑔 1−𝜎𝜎 − 1
1 − 𝜎𝜎

𝑑𝑑𝑡𝑡 = −
1

𝜌𝜌 1 − 𝜎𝜎
+ 𝐴𝐴01−𝜎𝜎 �

0

∞
𝑒𝑒−𝜈𝜈𝜈𝜈

𝑐𝑐1−𝜎𝜎

1 − 𝜎𝜎
𝑑𝑑𝑡𝑡 ,

• where 𝜈𝜈 ≔ 𝜌𝜌 − 𝑔𝑔 1 − 𝜎𝜎 ,
• subject to 𝑘̇𝑘 = 𝑘𝑘𝛼𝛼 − 𝑐𝑐 − 𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 𝑘𝑘.



Example: Ramsey-Cass-Koopmans model of 
exogenous growth (2/3)

• The current value Hamiltonian for the problem is:

ℋ𝑐𝑐 𝑘𝑘, 𝑐𝑐, 𝜆𝜆 =
𝑐𝑐1−𝜎𝜎

1 − 𝜎𝜎
+ 𝜆𝜆 𝑘𝑘𝛼𝛼 − 𝑐𝑐 − 𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 𝑘𝑘 .

• At an optimum we have:
ℋ𝑐𝑐,1 𝑘𝑘, 𝑐𝑐, 𝜆𝜆 = 𝜆𝜆 𝛼𝛼𝑘𝑘𝛼𝛼−1 − 𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 = 𝜈𝜈𝜆𝜆 − 𝜆̇𝜆,

ℋ𝑐𝑐,2 𝑘𝑘, 𝑐𝑐, 𝜆𝜆 = 𝑐𝑐−𝜎𝜎 − 𝜆𝜆 = 0,
ℋ𝑐𝑐,3 𝑘𝑘, 𝑐𝑐, 𝜆𝜆 = 𝑘𝑘𝛼𝛼 − 𝑐𝑐 − 𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 𝑘𝑘 = 𝑘̇𝑘.

• From the second equation, 𝜆̇𝜆 = −𝜎𝜎 𝑐𝑐−𝜎𝜎−1𝑐̇𝑐, hence, from the first, we have 
the “Euler” equation:

𝑐̇𝑐
𝑐𝑐

=
1
𝜎𝜎
𝛼𝛼𝑘𝑘𝛼𝛼−1 − 𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 − 𝜈𝜈 =

1
𝜎𝜎
𝛼𝛼𝑘𝑘𝛼𝛼−1 − 𝛿𝛿 + 𝜎𝜎𝑔𝑔 + 𝑛𝑛 − 𝜌𝜌



Example: Ramsey-Cass-Koopmans model of 
exogenous growth (3/3)

• In “steady-state” 𝑐̇𝑐 = 𝑘̇𝑘 = 0. Note:

𝑐̇𝑐 = 0 ⇒ 𝑘𝑘 =
𝛼𝛼

𝛿𝛿 + 𝜎𝜎𝑔𝑔 + 𝑛𝑛 + 𝜌𝜌

1
1−𝛼𝛼

,

𝑘̇𝑘 = 0 ⇒ 𝑐𝑐 = 𝑘𝑘𝛼𝛼 − 𝛿𝛿 + 𝑔𝑔 + 𝑛𝑛 𝑘𝑘.
• Transversality implies:

lim
𝑡𝑡→∞

𝑒𝑒−𝜈𝜈𝑡𝑡𝑐𝑐 𝑡𝑡 −𝜎𝜎𝑘𝑘 𝑡𝑡 = 0.

• This rules out all paths except the blue one on the phase diagram below:

Source: https://en.wikipedia.org/wiki/File:Ramseypic.svg

https://en.wikipedia.org/wiki/File:Ramseypic.svg


Techniques for solving systems of nonlinear 
ordinary differential equations (ODEs)

• Suppose 𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥 , where 𝑥𝑥 ∈ ℝ𝑛𝑛.

• The steady-state 𝑥𝑥∗ solves 0 = 𝑓𝑓 𝑥𝑥 .

• To a first order approximation: 𝑓𝑓 𝑥𝑥 ≈ 𝑓𝑓1 𝑥𝑥∗ 𝑥𝑥 − 𝑥𝑥∗ , where 𝑓𝑓1 𝑥𝑥∗ is the Jacobian of 𝑓𝑓
evaluated at 𝑥𝑥∗.

• If 𝑓𝑓1 𝑥𝑥∗ is diagonalizable, it is then very easy to get an approximate solution.
• Write 𝑓𝑓1 𝑥𝑥∗ = 𝑉𝑉𝑉𝑉𝑉𝑉−1, and define 𝑦𝑦 = 𝑉𝑉−1 𝑥𝑥 − 𝑥𝑥∗ . Then 𝑦̇𝑦 = 𝑉𝑉−1𝑥̇𝑥 = 𝑉𝑉−1𝑓𝑓 𝑥𝑥 ≈
𝑉𝑉−1𝑓𝑓1 𝑥𝑥∗ 𝑥𝑥 − 𝑥𝑥∗ = 𝑉𝑉−1𝑉𝑉𝐷𝐷𝑉𝑉−1 𝑥𝑥 − 𝑥𝑥∗ = 𝐷𝐷𝐷𝐷.

• Hence, 𝑦𝑦𝑖𝑖 𝑡𝑡 = 𝑦𝑦𝑖𝑖,0𝑒𝑒𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡, which gives 𝑥𝑥 from 𝑥𝑥 = 𝑉𝑉𝑉𝑉 + 𝑥𝑥∗.

• However, unlike with discrete time models, it’s also quite easy to solve the system fully 
nonlinearly.

• A crude algorithm (the Euler method) discretises time and treats the model as Δ𝑥𝑥𝑡𝑡 = ℎ𝑓𝑓 𝑥𝑥𝑡𝑡−ℎ , 
where ℎ is the time step. This is based on a first order approximation to the derivative.

• More accurate approximations to the derivative deliver more accurate measures.
• MATLAB contains many different ODE solvers. ode45 is a good starting point.



Hamilton-Jacobi-Bellman (HJB) equations: 
Finite horizon case
• Just as in discrete time, we can also tackle optimal control problems via a Bellman equation approach.

• Suppose:

𝒱𝒱 𝑡𝑡, 𝑥𝑥 𝑡𝑡 = max
𝑐𝑐

�
𝑡𝑡

𝑇𝑇
Υ 𝜏𝜏, 𝑥𝑥 𝜏𝜏 , 𝑐𝑐 𝜏𝜏 𝑑𝑑𝜏𝜏 + Ψ 𝑥𝑥 𝑇𝑇

• subject to the constraint that 𝑥̇𝑥 𝑡𝑡 = Φ 𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 .

• Then, for small (infinitesimal) 𝑑𝑑𝑡𝑡:
𝒱𝒱 𝑡𝑡, 𝑥𝑥 = max

𝑐𝑐
Υ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 𝑑𝑑𝑡𝑡 + 𝒱𝒱 𝑡𝑡 + 𝑑𝑑𝑡𝑡, 𝑥𝑥 + Φ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 𝑑𝑑𝑡𝑡

• I.e.:

0 = max
𝑐𝑐

Υ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 +
𝒱𝒱 𝑡𝑡 + 𝑑𝑑𝑡𝑡, 𝑥𝑥 + Φ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 𝑑𝑑𝑡𝑡 − 𝒱𝒱 𝑡𝑡, 𝑥𝑥

𝑑𝑑𝑡𝑡

• Hence (or at least by this intuition), the HJB partial differential equation (PDE) is:
−𝒱𝒱1 𝑡𝑡, 𝑥𝑥 = max

𝑐𝑐
Υ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 + 𝒱𝒱2 𝑡𝑡, 𝑥𝑥 Φ 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 ,

• which must be solved subject to the terminal condition 𝒱𝒱 𝑇𝑇, 𝑥𝑥 = Ψ 𝑥𝑥 𝑇𝑇 .
• 𝑐𝑐 will satisfy the standard FOC: Υ3 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 + 𝒱𝒱2 𝑡𝑡, 𝑥𝑥 Φ3 𝑡𝑡, 𝑥𝑥, 𝑐𝑐 = 0.

• Whereas the previous method, based on Euler-Lagrange equations, gave necessary conditions for optimality, 
the HJB equation gives necessary and sufficient conditions, when solved globally.



HJB equations: Infinite horizon case

• Suppose:

𝒱𝒱 𝑡𝑡, 𝑥𝑥 𝑡𝑡 = max
𝑐𝑐

�
𝑡𝑡

∞
𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑥𝑥 𝜏𝜏 , 𝑐𝑐 𝜏𝜏 𝑑𝑑𝜏𝜏

• subject to the constraint that 𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 .

• By the same steps as before, this gives an HJB equation of the form:
−𝒱𝒱1 𝑡𝑡, 𝑥𝑥 = max

𝑐𝑐
𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑥𝑥, 𝑐𝑐 + 𝒱𝒱2 𝑡𝑡, 𝑥𝑥 𝑓𝑓 𝑥𝑥, 𝑐𝑐

• We then make the informed guess that 𝒱𝒱 𝑡𝑡, 𝑥𝑥 = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑉𝑉 𝑥𝑥 .
• This implies that 𝒱𝒱1 𝑡𝑡, 𝑥𝑥 = −𝜌𝜌𝒱𝒱 𝑡𝑡, 𝑥𝑥 , and that 𝒱𝒱2 𝑡𝑡, 𝑥𝑥 = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑉𝑉1 𝑥𝑥 .

• Hence:
𝜌𝜌𝜌𝜌 𝑥𝑥 = max

𝑐𝑐
𝑢𝑢 𝑥𝑥, 𝑐𝑐 + 𝑉𝑉1 𝑥𝑥 𝑓𝑓 𝑥𝑥, 𝑐𝑐 ,

• where 𝒱𝒱 𝑡𝑡, 𝑥𝑥 = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑉𝑉 𝑥𝑥 .
• 𝑐𝑐 will satisfy the standard FOC: 𝑢𝑢2 𝑥𝑥, 𝑐𝑐 + 𝑉𝑉1 𝑥𝑥 𝑓𝑓2 𝑥𝑥, 𝑐𝑐 = 0.



Link to Hamiltonians

• Recall that ℋ𝑐𝑐 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 𝑢𝑢 𝑥𝑥, 𝑐𝑐 + 𝜆𝜆′𝑓𝑓 𝑥𝑥, 𝑐𝑐 .
• The FOC for 𝑐𝑐 is connected to our previous current-value Hamiltonian method 

through the substitution 𝜆𝜆′ = 𝑉𝑉1 𝑥𝑥 , since:
0 = ℋ𝑐𝑐,2 𝑥𝑥, 𝑐𝑐, 𝜆𝜆 = 𝑢𝑢2 𝑥𝑥, 𝑐𝑐 + 𝜆𝜆′𝑓𝑓2 𝑥𝑥, 𝑐𝑐 = 𝑢𝑢2 𝑥𝑥, 𝑐𝑐 + 𝑉𝑉1 𝑥𝑥 𝑓𝑓2 𝑥𝑥, 𝑐𝑐 .

• Thus the HJB equation is just:
𝜌𝜌𝜌𝜌 𝑥𝑥 = max

𝑐𝑐
ℋ𝑐𝑐 𝑥𝑥, 𝑐𝑐,𝑉𝑉1 𝑥𝑥 ′ .

• Differentiating with respect to 𝑥𝑥 gives (using the envelope theorem):
𝜌𝜌𝑉𝑉1 𝑥𝑥 = ℋ𝑐𝑐,1 𝑥𝑥, 𝑐𝑐,𝑉𝑉1 𝑥𝑥 ′ + ℋ𝑐𝑐,3 𝑥𝑥, 𝑐𝑐,𝑉𝑉1 𝑥𝑥 ′ 𝑉𝑉1′1 𝑥𝑥

= ℋ𝑐𝑐,1 𝑥𝑥, 𝑐𝑐,𝑉𝑉1 𝑥𝑥 ′ + 𝑓𝑓 𝑥𝑥, 𝑐𝑐 ′𝑉𝑉1′1 𝑥𝑥

• Now: 𝜆̇𝜆 = 𝑑𝑑𝑉𝑉1 𝑥𝑥 ′

𝑑𝑑𝑡𝑡
= 𝑉𝑉1′1 𝑥𝑥 𝑥̇𝑥 = 𝑉𝑉1′1 𝑥𝑥 𝑓𝑓 𝑥𝑥, 𝑐𝑐 .

• Thus: 𝜌𝜌𝜆𝜆′ − 𝜆̇𝜆′ = ℋ𝑐𝑐,1 𝑥𝑥, 𝑐𝑐,𝑉𝑉1 𝑥𝑥 ′ .



Solving HJB equations

• Global numerical techniques proceed (as in discrete time) by approximating the 
value function over a grid.

• For some very simple models, analytic solutions may be derived by solving the 
PDE.

• For moderately simple models, analytic solutions may be derived via a “guess 
and verify” approach.

• For example, consider again the asset eating problem with 𝑢𝑢 𝑥𝑥, 𝑐𝑐 = log 𝑐𝑐, and 
𝑓𝑓 𝑥𝑥, 𝑐𝑐 = 𝑟𝑟𝑟𝑟 − 𝑐𝑐.

• Then the HJB equation is: 𝜌𝜌𝜌𝜌 𝑥𝑥 = max
𝑐𝑐

log 𝑐𝑐 + 𝑉𝑉1 𝑥𝑥 𝑟𝑟𝑟𝑟 − 𝑐𝑐 .

• Informed guess: 𝑉𝑉 𝑥𝑥 = 𝑎𝑎 log 𝑏𝑏𝑏𝑏 . (Implicitly imposing borrowing constraint.)

• Then the FOC for 𝑐𝑐 gives 1
𝑐𝑐

= 𝑎𝑎
𝑥𝑥

, so 𝑐𝑐 = 𝑥𝑥
𝑎𝑎

.

• Substituting in, we have 𝜌𝜌𝑎𝑎 log 𝑏𝑏 + 𝜌𝜌𝜌𝜌 log 𝑥𝑥 = log 𝑥𝑥 − log 𝑎𝑎 + 𝑎𝑎𝑎𝑎 − 1, so clearly 𝑎𝑎 = 1
𝜌𝜌

(so 

𝑐𝑐 = 𝜌𝜌𝜌𝜌 as before) and: 𝑏𝑏 = 𝜌𝜌 exp 𝑟𝑟
𝜌𝜌
− 1 .



Multivariate Ito’s lemma

• Suppose:
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡

• where 𝑋𝑋𝑡𝑡, 𝜇𝜇𝑡𝑡 ∈ ℝ𝑛𝑛, 𝜎𝜎𝑡𝑡 ∈ ℝ𝑛𝑛×𝑚𝑚 and 𝑊𝑊𝑡𝑡 is an 𝑚𝑚 dimensional vector of 
independent Brownian motions.

• Then, if 𝑓𝑓:ℝ × ℝ𝑛𝑛 → ℝ:

𝑑𝑑𝑓𝑓 𝑡𝑡,𝑋𝑋𝑡𝑡

= 𝑓𝑓1 𝑡𝑡,𝑋𝑋𝑡𝑡 + 𝑓𝑓2 𝑡𝑡,𝑋𝑋𝑡𝑡 𝜇𝜇𝑡𝑡 +
1
2

tr 𝜎𝜎𝑡𝑡′𝑓𝑓2′2 𝑡𝑡,𝑋𝑋𝑡𝑡 𝜎𝜎𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝑓𝑓2 𝑡𝑡,𝑋𝑋𝑡𝑡 𝜎𝜎𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡,

• where 𝑓𝑓2′2 𝑡𝑡,𝑋𝑋𝑡𝑡 is the Hessian of 𝑓𝑓 with respect to its second argument.



Stochastic HJB equations

• We just show the infinite horizon case here. Suppose:

𝒱𝒱 𝑡𝑡, 𝑥𝑥 𝑡𝑡 = max
𝑐𝑐

𝔼𝔼𝑡𝑡 �
𝑡𝑡

∞
𝑒𝑒−𝜌𝜌𝜌𝜌𝑢𝑢 𝑥𝑥 𝜏𝜏 , 𝑐𝑐 𝜏𝜏 𝑑𝑑𝜏𝜏

• subject to the constraint that 𝑑𝑑𝑥𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑥𝑥 𝑡𝑡 , 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑊𝑊 𝑡𝑡 .

• Then the (non-stochastic!) HJB equation is:

𝜌𝜌𝜌𝜌 𝑥𝑥 = max
𝑐𝑐

𝑢𝑢 𝑥𝑥, 𝑐𝑐 + 𝑉𝑉1 𝑥𝑥 𝑓𝑓 𝑥𝑥, 𝑐𝑐 +
1
2

tr 𝜎𝜎 𝑥𝑥, 𝑐𝑐 ′𝑉𝑉1′1 𝑥𝑥 𝜎𝜎 𝑥𝑥, 𝑐𝑐 ,

• where 𝒱𝒱 𝑡𝑡, 𝑥𝑥 = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑉𝑉 𝑥𝑥 , where 𝑉𝑉1′1 𝑥𝑥 is the Hessian of 𝑉𝑉.
• You will recognise the final term from Ito’s lemma.
• 𝑐𝑐 will satisfy the standard FOC:

𝑢𝑢2 𝑥𝑥, 𝑐𝑐 + 𝑉𝑉1 𝑥𝑥 𝑓𝑓2 𝑥𝑥, 𝑐𝑐 + vec 𝑉𝑉1′1 𝑥𝑥
1
2𝜎𝜎 𝑥𝑥, 𝑐𝑐

′

𝐼𝐼 ⊗ 𝑉𝑉1′1 𝑥𝑥
1
2
𝜕𝜕 vec𝜎𝜎 𝑥𝑥, 𝑐𝑐

𝜕𝜕𝜕𝜕 = 0,

• where we have used the fact that:

tr 𝜎𝜎 𝑥𝑥, 𝑐𝑐 ′𝑉𝑉1′1 𝑥𝑥 𝜎𝜎 𝑥𝑥, 𝑐𝑐 = tr 𝑉𝑉1′1 𝑥𝑥
1
2𝜎𝜎 𝑥𝑥, 𝑐𝑐

′

𝑉𝑉1′1 𝑥𝑥
1
2𝜎𝜎 𝑥𝑥, 𝑐𝑐 = vec 𝑉𝑉1′1 𝑥𝑥

1
2𝜎𝜎 𝑥𝑥, 𝑐𝑐

′

vec 𝑉𝑉1′1 𝑥𝑥
1
2𝜎𝜎 𝑥𝑥, 𝑐𝑐 .

• The remarkable thing is that the stochastic system has been converted to a non-stochastic set of PDEs.



Applications in macroeconomics of the 
stochastic HJB

• Olaf Posch has pioneered the recent application of the stochastic HJB 
in macroeconomics, building on earlier work by Merton.

• Richer models may be solved analytically in continuous time.

• Non-linearities are far easier to handle in continuous time.
• See e.g. Fernandez-Villaverde, Posch and Rubio-Ramirez (2012) who solve an 

NK model with the ZLB in continuous time, getting analytic results for a 
special case, and accurate numerical results more generally.

• Or Posch (2010) which derives analytic expression for general equilibrium risk 
premia, based on an extension of the Merton (1975) model.



Example: Stochastic asset eating without 
short selling constraints (1/2)

• Suppose a household maximises the Lagrangian:

𝒱𝒱 𝑡𝑡, 𝑥𝑥 𝑡𝑡 = max
𝑐𝑐,𝑧𝑧,𝜇𝜇

𝔼𝔼𝑡𝑡 �
𝑡𝑡

∞
𝑒𝑒−𝜌𝜌𝜌𝜌

𝑐𝑐 𝜏𝜏 1−𝜎𝜎 − 1
1 − 𝜎𝜎

− 𝜇𝜇 𝜏𝜏 1𝑛𝑛′ 𝑧𝑧 𝜏𝜏 − 1 𝑑𝑑𝜏𝜏

• subject to the constraints that 𝑑𝑑𝑥𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 𝑧𝑧 𝑡𝑡 ′𝑟𝑟 − 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝑥𝑥 𝑡𝑡 𝑧𝑧 𝑡𝑡 ′Λ 𝑑𝑑𝑊𝑊 𝑡𝑡 .

• 𝑥𝑥 𝑡𝑡 𝑧𝑧 𝑡𝑡 gives the vector of asset holdings at 𝑡𝑡, 𝑥𝑥 𝑡𝑡 is total net worth.

• Stochastic HJB equation is:

𝜌𝜌𝜌𝜌 𝑥𝑥 = max
𝑐𝑐,𝑧𝑧,𝜇𝜇

𝑐𝑐1−𝜎𝜎 − 1
1 − 𝜎𝜎

− 𝜇𝜇 1𝑛𝑛′ 𝑧𝑧 − 1 + 𝑉𝑉1 𝑥𝑥 𝑥𝑥𝑧𝑧′𝑟𝑟 − 𝑐𝑐 +
1
2

tr Λ′𝑧𝑧𝑧𝑧𝑉𝑉11 𝑥𝑥 𝑥𝑥𝑧𝑧′Λ

= max
𝑐𝑐,𝑧𝑧,𝜇𝜇

𝑐𝑐1−𝜎𝜎 − 1
1 − 𝜎𝜎

− 𝜇𝜇 1𝑛𝑛′ 𝑧𝑧 − 1 + 𝑉𝑉1 𝑥𝑥 𝑥𝑥𝑧𝑧′𝑟𝑟 − 𝑐𝑐 +
1
2
𝑉𝑉11 𝑥𝑥 𝑥𝑥2𝑧𝑧′ΛΛ′𝑧𝑧 .

• FOCs:

𝑐𝑐−𝜎𝜎 = 𝑉𝑉1 𝑥𝑥 , ⇒ 𝑐𝑐 = 𝑉𝑉1 𝑥𝑥
−1𝜎𝜎 ,

𝑉𝑉1 𝑥𝑥 𝑥𝑥𝑟𝑟′ + 𝑉𝑉11 𝑥𝑥 𝑥𝑥2𝑧𝑧′ΛΛ′ = 𝜇𝜇1𝑛𝑛′ , ⇒ 𝑧𝑧 =
ΛΛ′ −1 𝜇𝜇1𝑛𝑛 − 𝑉𝑉1 𝑥𝑥 𝑥𝑥𝑥𝑥

𝑉𝑉11 𝑥𝑥 𝑥𝑥2
,

1𝑛𝑛′ 𝑧𝑧 = 1,⇒ 𝜇𝜇 =
𝑉𝑉1 𝑥𝑥 𝑥𝑥1𝑛𝑛′ ΛΛ′ −1𝑟𝑟 + 𝑉𝑉11 𝑥𝑥 𝑥𝑥2

1𝑛𝑛′ ΛΛ′ −11𝑛𝑛
,⇒ 𝑧𝑧 =

𝑉𝑉1 𝑥𝑥 𝑥𝑥1𝑛𝑛′ ΛΛ′ −1𝑟𝑟 + 𝑉𝑉11 𝑥𝑥 𝑥𝑥2

1𝑛𝑛′ ΛΛ′ −11𝑛𝑛
ΛΛ′ −11𝑛𝑛
𝑉𝑉11 𝑥𝑥 𝑥𝑥2

−
𝑉𝑉1 𝑥𝑥 𝑥𝑥 ΛΛ′ −1𝑟𝑟

𝑉𝑉11 𝑥𝑥 𝑥𝑥2
,



Example: Stochastic asset eating without 
short selling constraints (2/2)

• Define 𝑢𝑢, 𝑣𝑣 ≔ 𝑢𝑢′ ΛΛ′ −1𝑣𝑣 then plugging in and simplifying gives:

𝜌𝜌𝜌𝜌 𝑥𝑥 =
𝑉𝑉1 𝑥𝑥

−1−𝜎𝜎𝜎𝜎 − 1
1 − 𝜎𝜎

− 𝑉𝑉1 𝑥𝑥 𝑉𝑉1 𝑥𝑥
−1𝜎𝜎 +

1
2
𝑉𝑉1 𝑥𝑥 𝑥𝑥 1𝑛𝑛, 𝑟𝑟 + 𝑉𝑉11 𝑥𝑥 𝑥𝑥2 2 − 𝑉𝑉1 𝑥𝑥 𝑥𝑥 2 1𝑛𝑛, 1𝑛𝑛 𝑟𝑟, 𝑟𝑟

𝑉𝑉11 𝑥𝑥 𝑥𝑥2 1𝑛𝑛, 1𝑛𝑛
.

• Guess 𝑉𝑉 𝑥𝑥 = 𝑎𝑎 𝑏𝑏𝑏𝑏 1−𝜎𝜎−1
1−𝜎𝜎

, so 𝑉𝑉1 𝑥𝑥 = 𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 −𝜎𝜎 and 𝑉𝑉11 𝑥𝑥 = −𝜎𝜎𝜎𝜎𝑏𝑏2 𝑏𝑏𝑏𝑏 −𝜎𝜎−1, so after simplifying we have:

𝜌𝜌𝜌𝜌
1 − 𝜎𝜎

𝑏𝑏𝑏𝑏 1−𝜎𝜎 − 𝜌𝜌𝜌𝜌
1

1 − 𝜎𝜎
=

𝜎𝜎
1 − 𝜎𝜎

𝑎𝑎𝑎𝑎 −1−𝜎𝜎𝜎𝜎 +
1
2
𝑎𝑎

1𝑛𝑛, 1𝑛𝑛 𝑟𝑟, 𝑟𝑟 − 1𝑛𝑛, 𝑟𝑟 − 𝜎𝜎 2

𝜎𝜎 1𝑛𝑛, 1𝑛𝑛
𝑏𝑏𝑏𝑏 1−𝜎𝜎 −

1
1 − 𝜎𝜎

.

• Thus 𝑎𝑎 = 1
𝜌𝜌

(as in the non-stochastic case) and

𝑏𝑏 = 𝜌𝜌
1
𝜎𝜎
−

1 − 𝜎𝜎
𝜎𝜎

1𝑛𝑛, 1𝑛𝑛 𝑟𝑟, 𝑟𝑟 − 1𝑛𝑛, 𝑟𝑟 − 𝜎𝜎 2

2𝜎𝜎𝜌𝜌 1𝑛𝑛, 1𝑛𝑛

− 𝜎𝜎
1−𝜎𝜎

.

• As 𝜎𝜎 → 1, 𝑏𝑏 → 𝜌𝜌 exp 1𝑛𝑛,1𝑛𝑛 𝑟𝑟,𝑟𝑟 − 1𝑛𝑛,𝑟𝑟 −1 2

2𝜌𝜌 1𝑛𝑛,1𝑛𝑛
− 1 .

• In the scalar (𝑛𝑛 = 1) case, 1𝑛𝑛,1𝑛𝑛 𝑟𝑟,𝑟𝑟 − 1𝑛𝑛,𝑟𝑟 −𝜎𝜎 2

2𝜎𝜎𝜌𝜌 1𝑛𝑛,1𝑛𝑛
=

𝑟𝑟−12𝜎𝜎Λ
2

𝜌𝜌
, which implies the agent values assets less the more 

risk averse they are, and the more risky is the asset.
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