
Numerical integration + 
Estimating DSGE models via 
filtering to recover states:

Part 2
Tom Holden

http://www.tholden.org/
PhD Macroeconomics, Semester 2

http://www.tholden.org/


Outline of today’s talk

• Gaussian Quadrature/cubature
• Gauss-Hermite
• (Non-product) Monomial Quadrature
• Quadrature/Cubature Kalman Filter
• Unscented Kalman Filter

• Monte Carlo
• Quasi-Monte Carlo
• Markov Chain Monte Carlo (MCMC)

• The Metropolis-Hastings Algorithm
• Bayesian Estimation via MCMC

• Importance sampling
• Sequential Monte Carlo (SMC) = The Particle Filter
• Estimating nonlinear models via the Particle Filter
• Bayesian Estimation via SMC



Reading for today

• Canova: “Methods for applied macroeconomic research”.
• Section 9.5 covers MCMC.
• Section 11.4.4 covers the Particle Filter.

• Judd: “Numerical Methods in Economics”
• Chapter 7 covers quadrature.
• Chapter 8 covers Monte Carlo methods.
• Chapter 9 covers Quasi-Monte Carlo.

• Stroud: “Approximate Computation of Multiple Integrals”
• The classic work on monomial quadrature.
• Cools & Rabinowitz (1993) contains an update.
• And this website summarizes the key results of both works: 

http://nines.cs.kuleuven.be/research/ecf/mtables.html
• Username: encyclop Password: stroud71

http://nines.cs.kuleuven.be/research/ecf/mtables.html


Numerical Integration: General Problem

• Suppose we want to evaluate:
�
𝑥𝑥∈𝕊𝕊

𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 ,

• where 𝕊𝕊 is some set, 𝑔𝑔:𝕊𝕊 → ℝ is some function, and 𝐹𝐹:𝕊𝕊 → 0,1 is the C.D.F. of some probability 
distribution.

• Note that if 𝐹𝐹 𝑥𝑥 is differentiable with 𝐹𝐹′ 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 , this integral is ∫𝑔𝑔 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥.

• In the multivariate case in which 𝕊𝕊 ⊆ ℝ𝑑𝑑, we need to abuse notation slightly and take 𝑓𝑓 𝑥𝑥 ≔ 𝐹𝐹′ 𝑥𝑥 ≔
𝜕𝜕𝑑𝑑𝐹𝐹 𝑥𝑥
𝜕𝜕𝑥𝑥1…𝜕𝜕𝑥𝑥𝑑𝑑

.

• Throughout, lower case 𝑓𝑓 will be this multiple partial derivative of 𝐹𝐹. (I.e. the p.d.f. of 𝐹𝐹.)

• With particular 𝑔𝑔 and 𝐹𝐹 we might be able to evaluate this integral analytically, but often in 
macroeconomics we won’t.

• Examples include:
• Evaluating expectations when solving a macro model globally.
• Integrating over the current value of the state in order to get the distribution of tomorrow’s state, when 

deriving the likelihood for a non-linear model.
• Integrating the product of the likelihood and the prior in order to get the posterior, when performing 

Bayesian estimation.



Quadrature via series expansion: Idea

• Suppose that we have a countable basis for the set of all integrable functions on 𝕊𝕊. Call the basis 
functions 𝑒𝑒0, 𝑒𝑒1, ….

• I.e., there exists 𝑎𝑎0, 𝑎𝑎1, … such that ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 → 𝑔𝑔 as 𝐾𝐾 → ∞ (where the left hand limit is 
convergence under some norm on the space of functions on 𝕊𝕊).

• For example, we have seen that when 𝕊𝕊 = 0,1 , we can take 𝑒𝑒𝑘𝑘 = 𝑒𝑒−2𝜋𝜋𝜋𝜋𝑥𝑥𝜋𝜋 𝑘𝑘 , where 𝑛𝑛 𝑘𝑘 is the sequence 
0,1,−1,2,−2, ….

• Then, since ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 → 𝑔𝑔 as 𝐾𝐾 → ∞, for large 𝐾𝐾, ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 ≈ 𝑔𝑔, and hence:

�
𝑥𝑥∈𝕊𝕊

𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 ≈ �
𝑥𝑥∈𝕊𝕊

�
𝑘𝑘=0

𝐾𝐾

𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 = �
𝑘𝑘=0

𝐾𝐾

𝑎𝑎𝑘𝑘𝑤𝑤𝑘𝑘 ,

• where 𝑤𝑤𝑘𝑘 ≔ ∫𝑥𝑥∈𝕊𝕊 𝑒𝑒𝑘𝑘 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 .

• If we have chosen our basis functions sensibly, ∫𝑥𝑥∈𝕊𝕊 𝑒𝑒𝑘𝑘 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 will be easy to evaluate 
analytically.

• So, once we know the 𝑎𝑎s, the integral is just a simple linear combination of known quantities.



Quadrature via series expansion:
Finding the 𝑎𝑎s

• Recall that the way we found the 𝑎𝑎s with the Fourier basis functions was by 
taking the integral of the product of 𝑔𝑔 with each 𝑒𝑒𝑘𝑘.

• If we have to evaluate these integrals numerically, we are no better off than we were to start 
with. (In fact, we’re much worse off, as we now have 𝐾𝐾 + 1 integrals, not 1.)

• So it is essential that we can efficiently find the 𝑎𝑎s.

• Newton-Cotes uses the following trick:
• If we are truncating the sum after 𝐾𝐾 terms, then we must believe ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥 ≈ 𝑔𝑔 𝑥𝑥 for 

all 𝑥𝑥.
• If we pick 𝐾𝐾 + 1 points 𝑥𝑥0, … , 𝑥𝑥𝐾𝐾, then for 𝑗𝑗 ∈ 0, … ,𝐾𝐾 we have ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥𝑗𝑗 ≈ 𝑔𝑔 𝑥𝑥𝑗𝑗 .
• This is a linear system of 𝐾𝐾 + 1 equations in 𝐾𝐾 + 1 unknowns (𝑎𝑎0, … , 𝑎𝑎𝐾𝐾), which may be 

solved via matrix inversion.
• Both the matrix inversion and the evaluation of 𝑤𝑤𝑘𝑘 may be performed “off-line”, i.e. before 

we know 𝑔𝑔.

• Gaussian quadrature improves upon this by optimally choosing the points in 
order to ensure as high accuracy as possible.



Gaussian Quadrature: The trick

• Assume:
1. That our basis is made up of polynomials, where 𝑒𝑒𝑘𝑘 is a polynomial of degree 𝑘𝑘.
2. That 𝑒𝑒𝑘𝑘 has 𝑘𝑘 roots in 𝕊𝕊.
3. That the basis is orthogonal with respect to 𝐹𝐹 𝑥𝑥 , in the sense that ∫𝑥𝑥∈𝕊𝕊 𝑒𝑒𝑗𝑗 𝑥𝑥 𝑒𝑒𝑘𝑘 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 = 0 if 𝑗𝑗 ≠ 𝑘𝑘.

4. That 𝐾𝐾 = 2𝑛𝑛 − 1, for some 𝑛𝑛 ∈ ℕ+.

• Now, recall, ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥 ≈ 𝑔𝑔 𝑥𝑥 . The LHS is a polynomial of degree 2𝑛𝑛 − 1, by assumption.
• Then, by the polynomial long division algorithm we have ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 = ∑𝑘𝑘=0𝜋𝜋−1 𝑞𝑞𝑘𝑘𝑒𝑒𝑘𝑘 𝑒𝑒𝜋𝜋 + ∑𝑘𝑘=0𝜋𝜋−1 𝑟𝑟𝑘𝑘𝑒𝑒𝑘𝑘 , for 

some 𝑞𝑞0, … , 𝑞𝑞𝜋𝜋−1 and 𝑟𝑟0, … , 𝑟𝑟𝜋𝜋−1.

• Hence: ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 ≈ ∑𝑘𝑘=0𝜋𝜋−1 𝑞𝑞𝑘𝑘 ∫𝑥𝑥∈𝕊𝕊 𝑒𝑒𝑘𝑘 𝑥𝑥 𝑒𝑒𝜋𝜋 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 + ∑𝑘𝑘=0𝜋𝜋−1 𝑟𝑟𝑘𝑘 ∫𝑥𝑥∈𝕊𝕊 𝑒𝑒𝑘𝑘 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 =
∑𝑘𝑘=0𝜋𝜋−1 𝑟𝑟𝑘𝑘 ∫𝑥𝑥∈𝕊𝕊 𝑒𝑒𝑘𝑘 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 , by orthogonality.

• Also, if 𝑥𝑥1, … ,𝑥𝑥𝜋𝜋 are the roots of 𝑒𝑒𝜋𝜋, for all 𝑗𝑗 ∈ 1, … ,𝑛𝑛 : 𝑔𝑔 𝑥𝑥𝑗𝑗 ≈ ∑𝑘𝑘=0𝐾𝐾 𝑎𝑎𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥𝑗𝑗 =
∑𝑘𝑘=0𝜋𝜋−1 𝑞𝑞𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥𝑗𝑗 𝑒𝑒𝜋𝜋 𝑥𝑥𝑗𝑗 + ∑𝑘𝑘=0𝜋𝜋−1 𝑟𝑟𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥𝑗𝑗 = ∑𝑘𝑘=0𝜋𝜋−1 𝑟𝑟𝑘𝑘𝑒𝑒𝑘𝑘 𝑥𝑥𝑗𝑗 .

• Thus we have 𝑛𝑛 equations in 𝑛𝑛 unknowns (𝑟𝑟0, … , 𝑟𝑟𝜋𝜋−1), despite the fact our approximation is degree 𝐾𝐾.
• Many fewer function evaluations are required for the same accuracy, as given we are integrating, we don’t 

need to know the 𝑞𝑞s!



Gaussian Quadrature: Forms

• The set of basis polynomials satisfying the orthogonality restriction will depend on 𝐹𝐹.
• If 𝐹𝐹 is uniform, the Legendre polynomials work.
• If 𝐹𝐹 is beta-distributed, the Jacobi polynomials work.
• If 𝐹𝐹 is exponential, then the Laguerre polynomials work.
• If 𝐹𝐹 is gamma distributed, then the Generalized-Laguerre polynomials work.
• If 𝐹𝐹 is normally distributed, then the Hermite polynomials work.

• If 𝐹𝐹 has the p.d.f. 1
𝜋𝜋 1−𝑥𝑥2

, then the Chebyshev polynomials work.

• Of course, we can always convert from one rule to another if the p.d.f.s exist.

• For example: ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹1 𝑥𝑥 = ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑓𝑓1 𝑥𝑥 𝑑𝑑𝑥𝑥 = ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑓𝑓1 𝑥𝑥
𝑓𝑓2 𝑥𝑥

𝑓𝑓2 𝑥𝑥 𝑑𝑑𝑥𝑥 =

∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑓𝑓1 𝑥𝑥
𝑓𝑓2 𝑥𝑥

𝑑𝑑𝐹𝐹2 𝑥𝑥 .

• However, if 𝐹𝐹 is given by one of the distributions above, it normally delivers higher accuracy to use 
the corresponding rule, as the ratio of p.d.f.s is unlikely to be well approximated by a polynomial.

• One possible reason for deviation from this maxim is that the Chebyshev polynomials come close 
to the minimax approximation, so in some cases using Chebyshev polynomials may provide higher 
accuracy.



Gauss-Hermite Quadrature 

• Gaussian Quadrature with Hermite polynomials is 
called Gauss-Hermite Quadrature.

• Given the prevalence of Normal shocks in macro, it’s 
by far the most common.

• The first few Hermite polynomials are:
𝑒𝑒0 𝑥𝑥 = 1, 𝑒𝑒1 𝑥𝑥 = 𝑥𝑥,

𝑒𝑒2 𝑥𝑥 = 𝑥𝑥2 − 1, 𝑒𝑒3 𝑥𝑥 = 𝑥𝑥3 − 3𝑥𝑥,
𝑒𝑒4 𝑥𝑥 = 𝑥𝑥4 − 6𝑥𝑥2 + 3

• The approximation is:

1
2𝜋𝜋

�
−∞

∞
𝑔𝑔 𝑥𝑥 𝑒𝑒−

𝑥𝑥2
2 𝑑𝑑𝑥𝑥 ≈�

𝜋𝜋=1

𝜋𝜋

𝑤𝑤𝜋𝜋𝑔𝑔 𝑥𝑥𝜋𝜋 ,

• where the weights and nodes are as given on the 
right (for small 𝑛𝑛).

𝒏𝒏 𝒙𝒙 𝒘𝒘

2 ±1 1
2

3 0 2
3

± 3 1
6

4
± 3 − 6

1
4 3 − 6

± 3 + 6
1

4 3 + 6



Cubature

• Quadrature in multiple dimensions is usually called “cubature”.
• One algorithm for cubature is to perform nested Quadrature.

• So, if we want to evaluate ∫𝑥𝑥1∈𝕊𝕊1 ∫𝑥𝑥2∈𝕊𝕊2 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 𝑑𝑑𝐹𝐹2 𝑥𝑥2 𝑑𝑑𝐹𝐹1 𝑥𝑥1 , for each 

outer node 𝑥𝑥1,𝜋𝜋, we evaluate∫𝑥𝑥2∈𝕊𝕊2 𝑔𝑔 𝑥𝑥1,𝜋𝜋 , 𝑥𝑥2 𝑑𝑑𝐹𝐹2 𝑥𝑥2 by quadrature.
• If we use 𝑛𝑛 nodes for 𝑥𝑥1 and 𝑛𝑛 for 𝑥𝑥2, this gives 𝑛𝑛2 evaluations of 𝑔𝑔.

• Macro-models often have many shocks, so a curse of dimensionality soon 
kicks in when using this to evaluate expectations.

• When using this to evaluate the predictive density of tomorrow’s state (in 
estimation), we are integrating over the distribution of each state, which 
again results in a curse of dimensionality in largish models.

• However, we can do better by being smart about where we “place” accuracy.
• Rather than using many univariate polynomial approximations, we use one 

multivariate one.



Non-product monomial cubature

• A monomial is a term like 𝑥𝑥4𝑦𝑦2𝑧𝑧3, so multivariate polynomials are linear combinations of 
monomials.

• The degree of a monomial is the sum of its powers, e.g. 9 in this case.

• Monomial cubature aims to be accurate for all monomials below a certain degree.

• The integral is again approximated by an expression of the form ∑𝜋𝜋=1𝜋𝜋 𝑤𝑤𝜋𝜋𝑔𝑔 𝑥𝑥𝜋𝜋 , but where now 𝑥𝑥
is a vector.

• Accuracy can be remarkably high even with very few nodes.

• The next slide presents the most relevant approximations for the integral 
1
2𝜋𝜋 𝑑𝑑 ∫𝑥𝑥∈ℝ𝑑𝑑 𝑔𝑔 𝑥𝑥 𝑒𝑒−

𝑥𝑥′𝑥𝑥
2 𝑑𝑑𝑥𝑥, derived from Stroud (1971), for your future use.

• Throughout, subscript 𝐹𝐹𝐹𝐹 on a vector of length 𝑛𝑛 means the set of all vectors formed by taking arbitrary 
permutations of the set of all vectors formed from the original vector by multiplying pointwise by 
elements of 𝑓𝑓: 1, … ,𝑑𝑑 → −1,1 .



Useful non-product monomial quadrature 
rules

Degree Points 𝒙𝒙 𝒘𝒘

3 2𝑑𝑑 𝑑𝑑, 0, … , 0 𝐹𝐹𝐹𝐹
1
2𝑑𝑑

5 2𝑑𝑑2 + 1 0, … , 0 2
𝑑𝑑 + 2

𝑑𝑑 + 2, 0, … , 0 𝐹𝐹𝐹𝐹
4 − 𝑑𝑑

2 𝑑𝑑 + 2 2

𝑑𝑑 + 2
2

,
𝑑𝑑 + 2

2
, 0, … , 0

𝐹𝐹𝐹𝐹

1
𝑑𝑑 + 2 2

7 4𝑑𝑑3 + 8𝑑𝑑 + 3
3

𝑢𝑢 = 0.23344142183390
𝑣𝑣 = 0.74196378430273

0, … , 0 See Stroud (1971)

𝑢𝑢, 0, … , 0 𝐹𝐹𝐹𝐹 See Stroud (1971)

𝑣𝑣, 0, … , 0 𝐹𝐹𝐹𝐹 See Stroud (1971)

𝑢𝑢,𝑢𝑢, 0, … , 0 𝐹𝐹𝐹𝐹 See Stroud (1971)

𝑣𝑣, 𝑣𝑣, 0, … , 0 𝐹𝐹𝐹𝐹 See Stroud (1971)

𝑢𝑢,𝑢𝑢,𝑢𝑢, 0, … , 0 𝐹𝐹𝐹𝐹 See Stroud (1971)



Application: The Cubature/Quadrature 
Kalman Filter

• In a series of papers Arasaratnam, Bhaumik, Haykin, and Swati introduce what they various 
call the Cubature Kalman Filter, the Quadrature Kalman Filter or the Cubature Quadrature 
Kalman Filter, along with Square Root variants, and smoothers.

• Base reference is: 
http://125.235.3.98/dspace/bitstream/123456789/8865/1/Cubature%20Kalman%20Filters.pdf

• The idea is simple. They suppose that at the start of period 𝑡𝑡, the state has a Gaussian 
density.

• Then the predicted next period mean and covariance may be found via an integral of the form 
∫𝑥𝑥∈ℝ𝑑𝑑 𝑔𝑔 𝑥𝑥 𝜙𝜙 𝑥𝑥 𝑑𝑑𝑥𝑥 where 𝜙𝜙 is the Gaussian PDF, which they evaluate using the degree 3 cubature 
rule on the previous slide.

• Given this, they can evaluate further integrals of the same form using the same cubature rule, in 
order to get a Gaussian approximation to the joint density of the future state and measurement.

• A Gaussian approximation to next period’s state then follows by the usual Kalman Filter 
conditioning trick.

• Binning and Maih (2015) use this in macro. It has also been implemented in Dynare (at 
second order) and in DynareOBC (at third order).

http://125.235.3.98/dspace/bitstream/123456789/8865/1/Cubature%20Kalman%20Filters.pdf


Application: The Unscented Kalman Filter

• The Unscented Kalman Filter has been around longer than the 
Cubature one, despite being more complicated.

• A point set is chosen so as to exactly recover some number of 
moments of the prior density of the state. (At least the mean and 
covariance, and up to the 5th moment in the univariate case, given 
certain assumptions.)

• This is effectively used as the set of points for integration, much as in 
the CKF algorithm. (Though there are some subtleties.)

• One main difference between the CKF and the UKF is that the former 
(with the standard integration rule) uses 2𝑑𝑑 points, whereas the 
latter has 2𝑑𝑑 + 1, with weight placed in the centre.

• However, in large dimensions, the weight placed on the central node 
is negative in the UKF, which can lead to numerical instability.



Monte Carlo Integration

• Suppose we can sample from the distribution given by 𝐹𝐹 𝑥𝑥 .
• If we can invert 𝐹𝐹, we can do this, since if 𝑈𝑈 is a draw from a uniform on 0,1 , 𝐹𝐹−1 𝑈𝑈 has the desired 

distribution.

• Then we can evaluate∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 by drawing 𝑛𝑛 samples from the distribution given by 𝐹𝐹 𝑥𝑥 , 
𝑥𝑥1, … , 𝑥𝑥𝜋𝜋, and then using the approximation:

�
𝑥𝑥∈𝕊𝕊

𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 ≈
1
𝑛𝑛�
𝜋𝜋=1

𝜋𝜋

𝑔𝑔 𝑥𝑥𝜋𝜋 .

• The nice thing about Monte Carlo integration, is that no matter how many dimensions we have, 
by the central limit theorem, our error will be on the order of 1

𝜋𝜋
.

• The error of multivariate Gauss-Hermite quadrature when 𝑔𝑔 𝑥𝑥 = 𝑒𝑒𝑥𝑥 is on the order of 𝑒𝑒

8𝜋𝜋 �1 𝑑𝑑

𝜋𝜋 ⁄1 𝑑𝑑

.

• To illustrate the difference, consider increasing 𝑛𝑛 from 100 to 400.
• This roughly halves the error under Monte Carlo integration.
• With Gauss-Hermite the new error is roughly 3.45 × 10−982 times the old one when 𝑑𝑑 = 1.
• But when 𝑑𝑑 = 10 it is roughly 0.54 times the old one (worse than Monte Carlo).
• And when 𝑑𝑑 = 20, it is roughly 0.81 times the old error.



Quasi-Monte Carlo

• Although it dominates in high dimensional environments, Monte Carlo suffers in low 
dimensions in comparison to quadrature.

• The improvement of Monte Carlo in low dimensions may be improved by removing the 
randomness.

• Rather than drawing from (say) a uniform distribution, we instead take the elements of a 
sequence which jumps around in the unit interval in a way which ensures it covers the 
interval progressively better over time.

• A so called “low discrepancy sequence”.
• One simple example of such a sequence (the van der Corput sequence) is constructed by taking 

each positive integer in turn, reversing its digits, then placing these digits after the decimal point. 
E.g. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31,0.41,0.51 ….

• My recommended sequence is the Sobol sequence, which works well in multiple dimensions, and is 
built into Matlab.

• The error with QMC is on the order of log 𝜋𝜋
𝑑𝑑

𝜋𝜋
. For small 𝑑𝑑, this will be much better than 1

𝜋𝜋
, 

and its much easier to implement than Gaussian quadrature.



Markov Chain Monte Carlo: The problem

• In many situations of interest, we cannot sample directly from the distribution we’re interested 
in.

• For an example of the problem, suppose we have some model for which we can evaluate the likelihood i.e. 
𝑝𝑝 ℱ𝑇𝑇 𝜃𝜃

• Maybe it’s a linearised DSGE model, so we can use the Kalman filter.

• With Bayesian estimation, we are interested in evaluating 

𝔼𝔼 𝑔𝑔 𝜃𝜃 ℱ𝑇𝑇 = �𝑔𝑔 𝜃𝜃 𝑝𝑝 𝜃𝜃 ℱ𝑇𝑇 𝑑𝑑𝜃𝜃

• One way to do this would be to draw from the posterior density 𝑝𝑝 𝜃𝜃 ℱ𝑇𝑇 , which is proportional to 
𝑝𝑝 ℱ𝑇𝑇 𝜃𝜃 𝑝𝑝 𝜃𝜃 .

• However, even with a linearised model, 𝑝𝑝 ℱ𝑇𝑇 𝜃𝜃 will be a complicated nonlinear function of 𝜃𝜃, so drawing 
from 𝑝𝑝 ℱ𝑇𝑇 𝜃𝜃 𝑝𝑝 𝜃𝜃 will be difficult.

• In the remainder of this lecture we will be looking at solutions to this problem, the first of which 
are Markov Chain Monte Carlo (MCMC) methods.

• All Markov Chain Monte Carlo methods seek to find a Markov chain that we can simulate, for which the 
stationary distribution is the distribution of interest.

• The most popular MCMC method is the Metropolis Hastings Algorithm, which is what we shall examine.



The Metropolis Hastings Algorithm: Set-up

• As ever, we seek to evaluate ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 , but we assume that 𝐹𝐹 is 
differentiable.

• Before starting the algorithm, we choose an initial point 𝑥𝑥0 ∈ 𝕊𝕊, and a 
transition density 𝑞𝑞 𝑥𝑥′ 𝑥𝑥 which is a p.d.f. in 𝑥𝑥′ ∈ 𝕊𝕊 for all 𝑥𝑥 ∈ 𝕊𝕊.

• A common choice is to take 𝑞𝑞 as the density of N 𝑥𝑥, Σ .
• Note that in this case, 𝑞𝑞 𝑥𝑥′ 𝑥𝑥 = 𝑞𝑞 𝑥𝑥 𝑥𝑥′ which will simplify things below.

• We also have to choose an acceptance rule 𝐴𝐴 𝑥𝑥𝑥 𝑥𝑥 which gives the 
probability of accepting a move from 𝑥𝑥 to 𝑥𝑥′.

• For the algorithm to work, we just require that for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝕊𝕊:
𝐴𝐴 𝑥𝑥′ 𝑥𝑥
𝐴𝐴 𝑥𝑥 𝑥𝑥′

=
𝑓𝑓 𝑥𝑥′

𝑓𝑓 𝑥𝑥
𝑞𝑞 𝑥𝑥 𝑥𝑥′

𝑞𝑞 𝑥𝑥′ 𝑥𝑥
.

• A common choice satisfying this condition is:

𝐴𝐴 𝑥𝑥′ 𝑥𝑥 = min 1,
𝑓𝑓 𝑥𝑥′

𝑓𝑓 𝑥𝑥
𝑞𝑞 𝑥𝑥 𝑥𝑥′

𝑞𝑞 𝑥𝑥′ 𝑥𝑥
.



The Metropolis Hastings Algorithm: 
Algorithm (1/2)

• In step 𝑘𝑘 ∈ ℕ of the algorithm we perform the following steps:

1. Generate �𝑥𝑥𝑘𝑘+1 by drawing from 𝑞𝑞 �𝑥𝑥𝑘𝑘+1 𝑥𝑥𝑘𝑘 .

2. Accept �𝑥𝑥𝑘𝑘+1 with probability 𝐴𝐴 �𝑥𝑥𝑘𝑘+1 𝑥𝑥𝑘𝑘 .
• If �𝑥𝑥𝑘𝑘+1 is accepted we set 𝑥𝑥𝑘𝑘+1 ≔ �𝑥𝑥𝑘𝑘+1.
• Otherwise, we set 𝑥𝑥𝑘𝑘+1 ≔ 𝑥𝑥𝑘𝑘.

• Clearly, 𝑥𝑥𝑡𝑡 follows a Markov-process.



The Metropolis Hastings Algorithm: 
Algorithm (2/2)

• A sufficient condition for 𝑥𝑥𝑡𝑡 to have the stationary distribution 𝜋𝜋 is the 
“detailed balance” condition that for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝕊𝕊:

𝜋𝜋 𝑥𝑥 𝑝𝑝 𝑥𝑥′ 𝑥𝑥 = 𝜋𝜋 𝑥𝑥′ 𝑝𝑝 𝑥𝑥 𝑥𝑥′ .

• For us, 𝑝𝑝 𝑥𝑥′ 𝑥𝑥 = 𝑞𝑞 𝑥𝑥′ 𝑥𝑥 𝐴𝐴 𝑥𝑥′ 𝑥𝑥 , hence:
𝜋𝜋 𝑥𝑥 𝑞𝑞 𝑥𝑥′ 𝑥𝑥
𝜋𝜋 𝑥𝑥′ 𝑞𝑞 𝑥𝑥 𝑥𝑥′

𝐴𝐴 𝑥𝑥′ 𝑥𝑥
𝐴𝐴 𝑥𝑥 𝑥𝑥′

= 1.

• So, by our condition on 𝐴𝐴:
𝜋𝜋 𝑥𝑥 𝑞𝑞 𝑥𝑥′ 𝑥𝑥
𝜋𝜋 𝑥𝑥′ 𝑞𝑞 𝑥𝑥 𝑥𝑥′

𝑓𝑓 𝑥𝑥′

𝑓𝑓 𝑥𝑥
𝑞𝑞 𝑥𝑥 𝑥𝑥′

𝑞𝑞 𝑥𝑥′ 𝑥𝑥
= 1.

• I.e. 𝜋𝜋 𝑥𝑥
𝑓𝑓 𝑥𝑥

= 𝜋𝜋 𝑥𝑥′

𝑓𝑓 𝑥𝑥′
. Since 𝜋𝜋 and 𝑓𝑓 are p.d.f.s, this can only hold if 𝜋𝜋 = 𝑓𝑓.

• Thus the stationary distribution of the Markov chain we constructed is 
precisely the distribution of interest!



MCMC: Choice of proposal distribution

• The performance of MCMC is highly dependent on the proposal distribution, and 
there is little guidance on how to choose this.

• Even if we take the normal density, we still have to choose the covariance matrix.
• 𝜎𝜎2𝐼𝐼 is a common choice, but this will perform poorly if the posterior distribution has higher 

variance in some directions than others, as it inevitably will.
• Hence, a matrix of the form 𝜎𝜎2Ω where Ω is the covariance of the prior is usually preferable.
• 𝜎𝜎2Σ, where Σ is the covariance of the Maximum A Posterior (MAP) estimate is another 

common choice.

• This still leaves 𝜎𝜎 to be chosen.
• If 𝜎𝜎 is too low, the chain will converge very slowly, and may never explore some areas of the 

density.
• If 𝜎𝜎 is too high, the acceptance rate will be very low, and so we will be performing a lot of 

unnecessary likelihood evaluations.
• One common strategy is to run initial experiments with different values of 𝜎𝜎 until the desired 

acceptance rate is achieved.
• The optimal acceptance rates are reported in Roberts, Gelman and Gilks (1997). When 𝑑𝑑 =

1, the optimal acceptance rate is 50%, but for large 𝑑𝑑 it decreases to around 23%.



MCMC: Further practical considerations

• Optimally, we would start our MCMC algorithm from a draw from 𝐹𝐹, however 
this is impossible by assumption.

• Instead, we have to wait some large number of steps for the Markov Chain to 
forget its initial value, and converge to its stationary distribution, discarding all 
draws before this point.

• There are many convergence diagnostics for testing this, e.g. Geweke’s.
• However, convergence diagnostics can indicate false convergence if some area of the density 

was never explored by the Markov Chain.
• This happens often with multi-modal densities, which are rife in DSGE models, so MCMC 

results should always be taken with substantial scepticism.

• Additionally, by construction, there is a high degree of persistence in the samples 
drawn from the chain.

• One should always make sure that the number of samples drawn from the chain is much 
larger than the “forgetting time” of the chain, so the results are not affected by the chains 
value at the time we started taking draws.

• Indeed, the original MH algorithm suggested only taking every 𝐾𝐾 draws from the chain, 
where 𝐾𝐾 is a measure of this forgetting time.



Importance Sampling

• Importance sampling is another solution to the problem of evaluating 
∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 when you cannot sample from 𝐹𝐹.

• Suppose that although we cannot sample from 𝐹𝐹, we can sample 
from 𝐻𝐻, where both 𝐹𝐹 and 𝐻𝐻 are differentiable.

• Then ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 = ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑓𝑓 𝑥𝑥
ℎ 𝑥𝑥

𝑑𝑑𝐻𝐻 𝑥𝑥 (as we saw before).

• So if 𝑥𝑥1, … , 𝑥𝑥𝜋𝜋 are a sample drawn from 𝐻𝐻, ∫𝑥𝑥∈𝕊𝕊 𝑔𝑔 𝑥𝑥 𝑑𝑑𝐹𝐹 𝑥𝑥 ≈
1
𝜋𝜋
∑𝜋𝜋=1𝜋𝜋 𝑔𝑔 𝑥𝑥𝜋𝜋

𝑓𝑓 𝑥𝑥𝑖𝑖
ℎ 𝑥𝑥𝑖𝑖

.

• The optimal 𝐻𝐻 satisfies ℎ 𝑥𝑥𝜋𝜋 ∝ 𝑔𝑔 𝑥𝑥𝜋𝜋 𝑓𝑓 𝑥𝑥𝜋𝜋 , in which case the variance of the 
estimator is zero. In practice, this is impossible, but it nonetheless remains 
the target when choosing 𝐻𝐻.

• It is often a good idea to choose 𝐻𝐻 by approximating the rate of convergence 
of the tails of 𝑔𝑔 𝑥𝑥𝜋𝜋 𝑓𝑓 𝑥𝑥𝜋𝜋 .

• It is also crucial to ensure that ℎ 𝑥𝑥 > 0 whenever 𝑔𝑔 𝑥𝑥 𝑓𝑓 𝑥𝑥 ≠ 0.



Sequential Monte Carlo: Set-up (1/2)

• Sequential Monte Carlo (aka the Particle Filter) is an iterative version 
of importance sampling, designed for nonlinear filtering problems.

• As before 𝑥𝑥𝑡𝑡 will be the period 𝑡𝑡 state, a Markov process, and 𝑦𝑦𝑡𝑡 will be what 
we observe.

• At the end of period 𝑡𝑡, suppose we have 𝑛𝑛 “particles” at locations 
𝑥𝑥1,𝑡𝑡, … , 𝑥𝑥𝜋𝜋,𝑡𝑡, with importance weights 𝑤𝑤1,𝑡𝑡, … ,𝑤𝑤𝜋𝜋,𝑡𝑡, which give an 
approximation to the current distribution of the state, 𝑝𝑝 𝑥𝑥𝑡𝑡 ℱ𝑡𝑡 .

• These particles may be initialized in period 0 by drawing from 𝑛𝑛 draws from 
the prior on 𝑥𝑥0, and setting the weights to ⁄1 𝜋𝜋.



Sequential Monte Carlo: Set-up (2/2)

• Recall from the last topic that for some normalisation constant 𝐾𝐾𝑡𝑡+1: 
𝑝𝑝 𝑥𝑥𝑡𝑡+1 ℱ𝑡𝑡+1 = 𝐾𝐾𝑡𝑡+1𝑝𝑝 𝑦𝑦𝑡𝑡+1 𝑥𝑥𝑡𝑡+1 ∫ 𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡 𝑝𝑝 𝑥𝑥𝑡𝑡 ℱ𝑡𝑡 𝑑𝑑𝑥𝑥𝑡𝑡 .

• So, using the particle approximation to 𝑝𝑝 𝑥𝑥𝑡𝑡 ℱ𝑡𝑡 : 𝑝𝑝 𝑥𝑥𝑡𝑡+1 ℱ𝑡𝑡+1 ≈
𝐾𝐾𝑡𝑡+1𝑝𝑝 𝑦𝑦𝑡𝑡+1 𝑥𝑥𝑡𝑡+1 ∑𝜋𝜋=1𝜋𝜋 𝑤𝑤𝜋𝜋,𝑡𝑡𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝜋𝜋,𝑡𝑡 .

• We wish to sample from this distribution, to form the new particle locations, 
but in general this will be impossible.

• Instead, suppose we have some “proposal distribution” 𝜋𝜋 𝑥𝑥𝑡𝑡+1 ℱ𝑡𝑡+1, 𝑥𝑥𝑡𝑡 , 
from which we can sample.

• This will play the role of 𝐻𝐻 before.
• The optimal 𝜋𝜋 is given by: 𝜋𝜋 𝑥𝑥𝑡𝑡+1 ℱ𝑡𝑡+1, 𝑥𝑥𝑡𝑡 = 𝑝𝑝 𝑥𝑥𝑡𝑡+1 ℱ𝑡𝑡+1, 𝑥𝑥𝑡𝑡 =
𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑦𝑦𝑡𝑡+1, 𝑥𝑥𝑡𝑡 , but this will not in general be feasible.

• A common choice is 𝜋𝜋 𝑥𝑥𝑡𝑡+1 ℱ𝑡𝑡+1, 𝑥𝑥𝑡𝑡 = 𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡 (the “transition prior”).
• A more sophisticated approach to constructing proposal distributions is to take 

your favourite fast approximate non-linear Kalman filter variant (EKF, CKF, UKF 
etc.) and to use this as a proposal.



Sequential Monte Carlo: Basic Algorithm

• For each particle, 𝑖𝑖 ∈ 1, … ,𝑛𝑛 :
• First draw 𝑥𝑥𝜋𝜋,𝑡𝑡+1 from the proposal distribution 𝜋𝜋 𝑥𝑥𝜋𝜋,𝑡𝑡+1 ℱ𝑡𝑡+1, 𝑥𝑥𝜋𝜋,𝑡𝑡 .
• Then calculate the particle’s candidate new weight setting:

�𝑤𝑤𝜋𝜋,𝑡𝑡+1 = 𝑤𝑤𝜋𝜋,𝑡𝑡
𝑝𝑝 𝑦𝑦𝑡𝑡+1 𝑥𝑥𝜋𝜋,𝑡𝑡+1 𝑝𝑝 𝑥𝑥𝜋𝜋,𝑡𝑡+1 𝑥𝑥𝜋𝜋,𝑡𝑡

𝜋𝜋 𝑥𝑥𝜋𝜋,𝑡𝑡+1 ℱ𝑡𝑡+1, 𝑥𝑥𝜋𝜋,𝑡𝑡
.

• So when we are using the transition prior, 𝑥𝑥𝜋𝜋,𝑡𝑡+1 will be a draw from 𝑝𝑝 𝑥𝑥𝜋𝜋,𝑡𝑡+1 𝑥𝑥𝜋𝜋,𝑡𝑡 , which is easy to 
perform, since it is just one simulation step, and �𝑤𝑤𝜋𝜋,𝑡𝑡+1 will equal 𝑤𝑤𝜋𝜋,𝑡𝑡𝑝𝑝 𝑦𝑦𝑡𝑡+1 𝑥𝑥𝜋𝜋,𝑡𝑡+1 , meaning we 
do not have to be able to evaluate 𝑝𝑝 𝑥𝑥𝜋𝜋,𝑡𝑡+1 𝑥𝑥𝜋𝜋,𝑡𝑡 .

• Then, for each particle, 𝑖𝑖 ∈ 1, … ,𝑛𝑛 , set 𝑤𝑤𝜋𝜋,𝑡𝑡+1 = �𝑤𝑤𝑖𝑖,𝑡𝑡+1
∑𝑗𝑗=1
𝑛𝑛 �𝑤𝑤𝑗𝑗,𝑡𝑡+1

.

• If some condition is satisfied (e.g. ∑𝑗𝑗=1𝜋𝜋 𝑤𝑤𝑗𝑗,𝑡𝑡+1
2 > 𝜅𝜅

𝜋𝜋
, or just 1 = 1!), “resample” the particles 

to ensure they remain concentrated in regions of high mass. I.e.:
• For 𝑖𝑖 ∈ 1, … ,𝑛𝑛 , draw �𝑥𝑥𝜋𝜋,𝑡𝑡+1 from 𝑥𝑥𝑗𝑗,𝑡𝑡+1 𝑗𝑗 ∈ 1, … ,𝑛𝑛 , with Pr �𝑥𝑥𝜋𝜋,𝑡𝑡+1 = 𝑥𝑥𝑗𝑗,𝑡𝑡+1 = 𝑤𝑤𝑗𝑗,𝑡𝑡+1. Then 

replace the old particle set with �𝑥𝑥𝑗𝑗,𝑡𝑡+1 𝑗𝑗 ∈ 1, … ,𝑛𝑛 , and replace all the old weights with ⁄1 𝜋𝜋.



Application: Estimating the likelihood of DSGE 
models via the particle filter (1/2)

• Fernandez-Villaverde and Rubio-Ramirez have been responsible for 
popularising this technique in macro.

• Since with the transition prior, we only need to be able to simulate the 
model, this makes it very easy to implement for DSGE models.

• Additionally, in a seminal paper Andrieu, Doucet, and Holenstein 
(2007) proved both that the particle filter gave an unbiased estimate 
of the likelihood, and that unbiasedness is sufficient for correct 
Bayesian inferrence, when the posterior is evaluated via the 
Metropolis-Hastings algorithm.

• Nonetheless, performance may be less than ideal.



Application: Estimating the likelihood of DSGE 
models via the particle filter (2/2)

• Although when calculating an integral via Monte Carlo the error is on the order of 1
𝜋𝜋

, in 
the particle filter, the particles are playing two distinct roles, which means the error scaling 
may be much worse.

• Of course they are the set of points we use to calculate the integral ∫𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡 𝑝𝑝 𝑥𝑥𝑡𝑡 ℱ𝑡𝑡 𝑑𝑑𝑥𝑥𝑡𝑡, but 
they are also the points we use to approximate the distribution of 𝑝𝑝 𝑥𝑥𝑡𝑡 ℱ𝑡𝑡 .

• It is easy to see that to match 𝑘𝑘 moments of a 𝑑𝑑 dimensional distribution we need on the order of 
𝑑𝑑𝑘𝑘 particles. So to do better than e.g. the CKF with its 2𝑑𝑑 nodes, we will need at least on the order 
of 𝑑𝑑3 particles. For a standard medium scale model this could easily mean 10000 + particles.

• Furthermore, many of these particles will be “lost” each period, as they could not possibly explain 
the observed 𝑦𝑦𝑡𝑡+1, so the required number may be orders of magnitude higher.

• Kollman (2013) found that his approximate algorithm (for second order pruned systems) 
outperformed the particle filter for computationally feasible numbers of particles.



Application: Using SMC to evaluate the 
posterior density of a DSGE model

• Recall that with Bayesian estimation, we are interested in drawing from the posterior density, which is 
proportional to 𝑝𝑝 𝑦𝑦𝑇𝑇 , … ,𝑦𝑦1 𝜃𝜃 𝑝𝑝 𝜃𝜃 , where, as in our discussion of MCMC, we suppose that we can evaluate 
𝑝𝑝 𝑦𝑦𝑇𝑇 , … ,𝑦𝑦1 𝜃𝜃 somehow.

• Herbst and Schorfheide (2012) propose using SMC to evaluate from the posterior density.
• Note, this is not using SMC to evaluate the likelihood!

• They do this by constructing a series of approximations to the posterior.
• The approximation in step 𝐾𝐾 is some weighted combination of the prior and posterior densities, where the weight on the prior 

gradually decreases from 100% to 0%.
• The technical details are a little complicated, but one may think of it as repeated importance sampling where the distribution 

from the previous step is used as the importance weight for the next step.

• Since they start with mass evenly distributed over the prior, their method readily handles multi-modal 
distributions. (As more weight is placed on the posterior, humps gradually emerge, and particles cluster in these 
humps.)

• As a result, they show that its performance comfortably exceeds that of MCMC.

• Their algorithm is also readily parallelizable, unlike MCMC.
• However, it appears large numbers of likelihood evaluations are required, so it may be prohibitively expensive for large 

models.



Conclusions

• Gaussian quadrature is incredibly efficient for univariate integration.

• Monomial cubature rules give fast but low accuracy approximations 
to high-dimensional integrals.

• MCMC and Importance Sampling are very generally applicable, and 
are essential to macro estimation.


	Numerical integration + Estimating DSGE models via filtering to recover states:�Part 2
	Outline of today’s talk
	Reading for today
	Numerical Integration: General Problem
	Quadrature via series expansion: Idea
	Quadrature via series expansion:�Finding the 𝑎s
	Gaussian Quadrature: The trick
	Gaussian Quadrature: Forms
	Gauss-Hermite Quadrature 
	Cubature
	Non-product monomial cubature
	Useful non-product monomial quadrature rules
	Application: The Cubature/Quadrature Kalman Filter
	Application: The Unscented Kalman Filter
	Monte Carlo Integration
	Quasi-Monte Carlo
	Markov Chain Monte Carlo: The problem
	The Metropolis Hastings Algorithm: Set-up
	The Metropolis Hastings Algorithm: Algorithm (1/2)
	The Metropolis Hastings Algorithm: Algorithm (2/2)
	MCMC: Choice of proposal distribution
	MCMC: Further practical considerations
	Importance Sampling
	Sequential Monte Carlo: Set-up (1/2)
	Sequential Monte Carlo: Set-up (2/2)
	Sequential Monte Carlo: Basic Algorithm
	Application: Estimating the likelihood of DSGE models via the particle filter (1/2)
	Application: Estimating the likelihood of DSGE models via the particle filter (2/2)
	Application: Using SMC to evaluate the posterior density of a DSGE model
	Conclusions

