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Outline of today’s talk

• The frequency domain.

• Filters.



Readings on continuous time processes etc.

• Canova: “Methods for applied macroeconomic research”.
• Section 1.6 covers the frequency domain.
• Section 3.2 covers filters.

• Christiano-Fitzgerald (2003)
• Introduces a common filter.
• Working paper version here: 

http://www.clevelandfed.org/Research/workpaper/1999/Wp9906.pdf

• Wikipedia as needed…

http://www.clevelandfed.org/Research/workpaper/1999/Wp9906.pdf


The frequency domain

• We are interested in business “cycles”.

• This suggests that we ought to be concerned with the characteristics 
of the data in the frequency domain.

• I.e. we want to know at what frequencies (equivalently: period lengths) is the 
variance of the data?

• Low frequency variation (normally defined as cycles of over 50 years) 
captures very persistent components of the data, such as structural change.

• Medium frequency variation (normally defined as cycles of 8-50 years) 
captures growth dynamics.

• High frequency variation (normally defined as cycles of below 2 years) is 
driven by seasonal patterns, and noise.

• Business cycles are what’s left (so normally cycles of 2-8 years).



Frequency and phase

Phase
shift

Amplitude

Period length (inversely related to frequency)
Source: https://en.wikipedia.org/wiki/File:Phase_shift.svg

https://en.wikipedia.org/wiki/File:Phase_shift.svg


The Fourier transform on an interval: 
Introduction (1/2)

• Suppose you have a vector 𝑢𝑢 ∈ ℝ𝑛𝑛, and you wish to know the length 
of that vector in a particular direction 𝑣𝑣 ∈ ℝ𝑛𝑛 (with 𝑣𝑣 = 1), what 
do you do?

• You take the inner (“dot”) product of 𝑢𝑢 and 𝑣𝑣, i.e. 𝑢𝑢, 𝑣𝑣 = 𝑣𝑣′𝑢𝑢 = ∑𝑖𝑖=1𝑛𝑛 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖.

• Recall also that any element of ℝ𝑛𝑛 may be expressed as a linear 
combination of 𝑛𝑛 basis vectors.

• How do we find the coefficients? We just take the inner product with 
each basis vector in turn.

• These ideas extend to other vector spaces.



The Fourier transform on an interval: 
Introduction (2/2)

• Consider the space of all (possibly complex) square integrable functions on 
the interval 0,1 .

• The natural inner product here is 𝑓𝑓,𝑔𝑔 = ∫0
1 𝑓𝑓 𝑥𝑥 𝑔𝑔 𝑥𝑥 𝑑𝑑𝑥𝑥, where 

denotes the complex conjugate.
• The remarkable thing is that this space also has a countably infinite basis, 

despite the interval 0,1 being uncountable.

• This basis is made up of the functions 𝑥𝑥 ↦ 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 for all 𝑛𝑛 ∈ ℤ, where 𝑖𝑖 =
−1.
• Recall that 𝑒𝑒𝑖𝑖𝑖𝑖 = cos𝜙𝜙 + 𝑖𝑖 sin𝜙𝜙, so this basis is expressing the function as sums 

of sines and cosines at different integer frequencies.

• The Fourier transform recovers the coefficients on these basis functions.
• As you would expect, it takes the form of an inner product of the function of 

interest with the basis functions.



The Fourier transform on an interval: Details

• Define 𝑒𝑒𝑛𝑛: 0, 1 → ℂ by 𝑒𝑒𝑛𝑛 𝑥𝑥 = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 for all 𝑥𝑥 ∈ 0,1 .
• Carleson's theorem states that for any square integrable function 𝑓𝑓: 0,1 → ℂ, and almost 

all 𝑥𝑥 ∈ 0,1 :

𝑓𝑓 𝑥𝑥 = �
𝑛𝑛=−∞

∞

𝑓𝑓, 𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛 𝑥𝑥 .

• I.e. if we define:

𝑎𝑎𝑛𝑛 ≔ 𝑓𝑓, 𝑒𝑒𝑛𝑛 = �
0

1
𝑓𝑓 𝑥𝑥 𝑒𝑒𝑛𝑛 𝑥𝑥 𝑑𝑑𝑥𝑥 = �

0

1
𝑓𝑓 𝑥𝑥 𝑒𝑒−2𝜋𝜋𝑖𝑖𝑖𝑖𝑥𝑥 𝑑𝑑𝑥𝑥 ,

• Then for almost all 𝑥𝑥 ∈ 0,1 :

𝑓𝑓 𝑥𝑥 = �
𝑛𝑛=−∞

∞

𝑎𝑎𝑛𝑛𝑒𝑒2𝜋𝜋𝑖𝑖𝑖𝑖𝑥𝑥

• The Fourier transform ℱ: 0,1 → ℂ → ℤ → ℂ is then given by ℱ𝑓𝑓 = 𝑎𝑎 = 𝑎𝑎𝑛𝑛 𝑛𝑛∈ℤ, 
where 𝑎𝑎𝑛𝑛 is given as above.

• The Fourier transform is invertible, with ℱ−1𝑎𝑎 = ∑𝑛𝑛=−∞∞ 𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛.



The Fourier transform on an interval: 
Example

Source: https://en.wikipedia.org/wiki/File:Sawtooth_Fourier_Analysys.svg

https://en.wikipedia.org/wiki/File:Sawtooth_Fourier_Analysys.svg


The Fourier transform in discrete time

• To complete our suite of definitions, we need to define the Fourier transform for 
discrete time processes.

• Recall that the Fourier transform of a function on the unit interval was a 
sequence. It shouldn’t be surprising then that the Fourier transform of a 
sequence is a function on the unit interval.

• In this case, we define ℱ: ℤ → ℂ → 0,1 → ℂ by:

ℱ 𝑎𝑎 𝜉𝜉 = �
𝑛𝑛=−∞

∞

𝑎𝑎𝑛𝑛𝑒𝑒−2𝜋𝜋𝑖𝑖𝑖𝑖𝜉𝜉 .

• The only difference to the inverse transform given previously is the negative sign, really just a 
matter of convention!

• As before, ℱ is invertible, in the sense that ℱ−1 ℱ 𝑎𝑎
𝑛𝑛

= 𝑎𝑎𝑛𝑛 for all 𝑛𝑛, where:

ℱ−1 𝑔𝑔 𝑥𝑥 = �
0

1
𝑔𝑔 𝜉𝜉 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝜉𝜉 .



The Fourier transform in continuous time

• The Fourier transform may also be defined for functions on the real line (e.g. 
in continuous time).

• In this case, we define ℱ: ℝ → ℂ → ℝ → ℂ by:

ℱ 𝑓𝑓 𝜉𝜉 = �
−∞

∞
𝑓𝑓 𝑥𝑥 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜉𝜉𝑥𝑥 𝑑𝑑𝑥𝑥 .

• If 𝑓𝑓 and ℱ 𝑓𝑓 are absolutely integrable, then ℱ is invertible, in the sense 
that ℱ−1 ℱ 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 for almost all 𝑥𝑥, where:

ℱ−1 𝑔𝑔 𝑥𝑥 = �
−∞

∞
𝑔𝑔 𝜉𝜉 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉 𝑑𝑑𝜉𝜉 .

• Often the Fourier transforms of processes are much simpler than the original 
one, so it can be much easier to prove results if the Fourier transform of 
both sides is taken first.



The Dirac Delta “function” and its Fourier 
transform

• Define the “function” (actually a measure) 𝛿𝛿 𝑥𝑥 by the property:
• For any function 𝑓𝑓 𝑥𝑥 , ∫−∞

∞ 𝑓𝑓 𝑥𝑥 𝛿𝛿 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑓𝑓 0 .
• You can think of 𝛿𝛿 as the p.d.f. of a normal distribution with mean 0 and 

infinitesimal standard deviation. Thus 𝛿𝛿 0 = ∞, and 𝛿𝛿 𝑥𝑥 = 0 for 𝑥𝑥 ≠ 0.

• This is useful for looking at various degenerate cases, as often, 𝛿𝛿 can 
be treated as if it were really a function.

• The Fourier transform can be extended to such measures.

• In particular, it turns out that:
• ℱ 1 𝜉𝜉 = 𝛿𝛿 𝜉𝜉 .
• ℱ 𝛿𝛿 𝜉𝜉 = 1.



The spectral density

• Provides an answer to the question: “at what frequencies is the variance of 
the data?”

• Two equivalent definitions, for a weakly stationary process 𝑋𝑋𝑡𝑡 (either in 
continuous or discrete time!):

1. 𝑆𝑆𝑋𝑋𝑋𝑋 𝜔𝜔 = 𝔼𝔼 ℱ 𝑋𝑋 − 𝔼𝔼𝔼𝔼 𝜔𝜔
2𝜋𝜋

2
. (The expectation of the squared modulus of 

the Fourier transform of the demeaned process.)
2. 𝑆𝑆𝑋𝑋𝑋𝑋 𝜔𝜔 = ℱ 𝛾𝛾𝑋𝑋

𝜔𝜔
2𝜋𝜋

, where 𝛾𝛾𝑋𝑋 is the ACF of 𝑋𝑋𝑡𝑡. (The Fourier transform of the 
ACF.)

• Since it is based on the squared Fourier transform of the process, all 
information about the phase of the signal is lost in the spectral density.

• ∫𝜔𝜔
𝜔𝜔 𝑆𝑆𝑋𝑋𝑋𝑋 𝜔𝜔 𝑑𝑑𝜔𝜔 is proportional to variance at frequencies between 𝜔𝜔 and 𝜔𝜔.



White noise

• Three definitions:

1. White noise is a hypothetical process with an auto-covariance 
function given by the Dirac Delta function.

2. White noise is a hypothetical process with constant spectral 
density 1.

• By analogue to white light, which is a mix of all frequencies.

3. White noise is the hypothetical derivative of the undifferentiable 
Wiener process, 𝑊𝑊𝑡𝑡.

• The properties of the Fourier transform of the Dirac Delta function 
imply that the first two definitions are equivalent.



The spectral density of an Ornstein-
Uhlenbeck process: Direct approach

• Take the Ornstein-Uhlenbeck process: 𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎 ∫0
∞ 𝑒𝑒−𝜃𝜃𝜃𝜃 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 .

• Let 𝛾𝛾 be its ACF. I.e., assuming 𝜏𝜏 > 0:
𝛾𝛾𝑍𝑍 𝜏𝜏 = 𝔼𝔼 𝑍𝑍𝑡𝑡 − 𝔼𝔼𝑍𝑍𝑡𝑡 𝑍𝑍𝑡𝑡−𝜏𝜏 − 𝔼𝔼𝑍𝑍𝑡𝑡−𝜏𝜏

= 𝜎𝜎2𝔼𝔼 �
𝑠𝑠=0

∞
𝑒𝑒−𝜃𝜃𝜃𝜃 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 �

𝑠𝑠=0

∞
𝑒𝑒−𝜃𝜃𝜃𝜃 𝑑𝑑𝑊𝑊𝑡𝑡−𝜏𝜏−𝑠𝑠

= 𝜎𝜎2𝔼𝔼 �
−∞

𝑡𝑡
𝑒𝑒−𝜃𝜃 𝑡𝑡−𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 �

−∞

𝑡𝑡−𝜏𝜏
𝑒𝑒−𝜃𝜃 𝑡𝑡−𝜏𝜏−𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

= 𝜎𝜎2 �
−∞

𝑡𝑡−𝜏𝜏
𝑒𝑒𝜃𝜃𝜃𝜃−2𝜃𝜃 𝑡𝑡−𝑢𝑢 𝑑𝑑𝑢𝑢 [By the Ito Isometry] =

𝜎𝜎2𝑒𝑒−𝜃𝜃𝜃𝜃

2𝜃𝜃
.

• Then:

𝑆𝑆𝑍𝑍𝑍𝑍 𝜔𝜔 = ℱ 𝛾𝛾𝑍𝑍
𝜔𝜔
2𝜋𝜋

= �
−∞

0 𝜎𝜎2𝑒𝑒𝜃𝜃𝜃𝜃

2𝜃𝜃
𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏 𝑑𝑑𝜏𝜏 + �

0

∞𝜎𝜎2𝑒𝑒−𝜃𝜃𝜃𝜃

2𝜃𝜃
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝜏𝜏

=
𝜎𝜎2

2𝜃𝜃
1

𝜃𝜃 − 𝑖𝑖𝑖𝑖
+

1
𝜃𝜃 + 𝑖𝑖𝑖𝑖

=
𝜎𝜎2

2𝜃𝜃
𝜃𝜃 + 𝑖𝑖𝑖𝑖 + 𝜃𝜃 − 𝑖𝑖𝑖𝑖
𝜃𝜃 − 𝑖𝑖𝑖𝑖 𝜃𝜃 + 𝑖𝑖𝑖𝑖

=
𝜎𝜎2

𝜃𝜃2 + 𝜔𝜔2



The convolution theorem

• This theorem captures one of the nicest properties of the Fourier transform.
• The convolution of two functions 𝑓𝑓 and 𝑔𝑔 is denoted 𝑓𝑓 ∗ 𝑔𝑔 and is defined by:

𝑓𝑓 ∗ 𝑔𝑔 𝑥𝑥 = �
−∞

∞
𝑓𝑓 𝑦𝑦 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑑𝑑𝑦𝑦

• The convolution theorem states that for almost all 𝜉𝜉:
ℱ 𝑓𝑓 ∗ 𝑔𝑔 𝜉𝜉 = ℱ 𝑓𝑓 𝜉𝜉 ℱ 𝑔𝑔 𝜉𝜉 .

• Simple proof: http://mathworld.wolfram.com/ConvolutionTheorem.html
• The convolution theorem also holds in discrete time (with convolution 

defined by a sum rather than an integral).

Source: https://en.wikipedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

http://mathworld.wolfram.com/ConvolutionTheorem.html
https://en.wikipedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif


The spectral density of an Ornstein-
Uhlenbeck process: Lazy approach

• We may define an operator 𝐷𝐷 which takes the time derivative of a differentiable process, so 
𝐷𝐷𝐷𝐷 𝑡𝑡 = 𝑑𝑑𝑓𝑓 𝑡𝑡

𝑑𝑑𝑡𝑡
.

• If we are careful, we may extend this operator to continuous time stochastic processes, even 
though they may not be differentiable.

• 𝑔𝑔 𝑡𝑡,𝑋𝑋𝑡𝑡 𝐷𝐷𝑋𝑋𝑡𝑡 on its own will not make sense, but we can define ∫𝑎𝑎
𝑏𝑏 𝑔𝑔 𝑡𝑡,𝑋𝑋𝑡𝑡 𝐷𝐷𝑋𝑋𝑡𝑡 𝑑𝑑𝑡𝑡 = ∫𝑎𝑎

𝑏𝑏 𝑔𝑔 𝑡𝑡,𝑋𝑋𝑡𝑡 𝑑𝑑𝑋𝑋𝑡𝑡.

• Given this definition, if 𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎 ∫𝑠𝑠=0
∞ 𝑒𝑒−𝜃𝜃𝜃𝜃 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠, and ℎ 𝑠𝑠 = 𝟙𝟙 𝑠𝑠 > 0 𝑒𝑒−𝜃𝜃𝜃𝜃 then

𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎 ℎ ∗ 𝐷𝐷𝐷𝐷 𝑡𝑡 .

• Hence, by the convolution theorem and the properties of white noise:

𝔼𝔼 ℱ 𝑍𝑍⋅ − 𝔼𝔼𝑍𝑍�
𝜔𝜔
2𝜋𝜋

2
= 𝜎𝜎2 ℱ ℎ

𝜔𝜔
2𝜋𝜋

2
𝔼𝔼 ℱ 𝐷𝐷𝑊𝑊⋅

𝜔𝜔
2𝜋𝜋

2
= 𝜎𝜎2 ℱ ℎ

𝜔𝜔
2𝜋𝜋

2
.

= 𝜎𝜎2 �
−∞

∞
𝟙𝟙 𝑠𝑠 > 0 𝑒𝑒−𝜃𝜃𝜃𝜃𝑒𝑒−𝑖𝑖𝜔𝜔𝜔𝜔 𝑑𝑑𝑠𝑠

2

= 𝜎𝜎2
1

𝜃𝜃 + 𝑖𝑖𝑖𝑖

2
=

𝜎𝜎2

𝜃𝜃2 + 𝜔𝜔2 .



The spectral density of an Ornstein-
Uhlenbeck process: Interpretation

• The convolution theorem allowed us to write the spectral density as 
the product of the spectral density of white noise, and the squared 
Fourier transform of some deterministic function.

• In effect then, we are filtering out the frequencies we don’t like from 
the original white noise.

• When we look at frequency domain filters later, this is exactly how 
they will be defined. To filter the data, we will transform it into the 
frequency domain, and then multiply it pointwise by some function.

• As a result of their filtering behaviour, processes with an MA ∞
representation are often termed linear filters.



The spectral density of an arbitrary linear 
filter in discrete time

• Suppose 𝑥𝑥𝑡𝑡 is a weakly stationary process, 𝑐𝑐 is the polynomial
𝑐𝑐 𝜆𝜆 = ∑𝑠𝑠=0∞ 𝑐𝑐𝑠𝑠𝜆𝜆𝑠𝑠 , where ∑𝑠𝑠=0∞ 𝑐𝑐𝑠𝑠2 < ∞ and 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝑐𝑐 𝐿𝐿 𝑥𝑥𝑡𝑡.

• Then, if we define ℎ 𝑠𝑠 = 𝟙𝟙 𝑠𝑠 ≥ 0 𝑐𝑐𝑠𝑠:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝔼𝔼 ℱ 𝑡𝑡 ↦�
𝑠𝑠=0

∞

𝑐𝑐𝑠𝑠𝑥𝑥𝑡𝑡−𝑠𝑠
𝜔𝜔
2𝜋𝜋

2

= 𝔼𝔼 ℱ ℎ ∗ 𝑥𝑥�
𝜔𝜔
2𝜋𝜋

2

= ℱ ℎ
𝜔𝜔
2𝜋𝜋

2
𝔼𝔼 ℱ 𝑥𝑥�

𝜔𝜔
2𝜋𝜋

2

= �
𝑠𝑠=0

∞

𝑐𝑐𝑠𝑠𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔
2

𝑆𝑆𝑥𝑥𝑥𝑥 𝜔𝜔

= 𝑐𝑐 𝑒𝑒−𝑖𝑖𝑖𝑖 2𝑆𝑆𝑥𝑥𝑥𝑥 𝜔𝜔 = 𝑐𝑐 𝑒𝑒−𝑖𝑖𝑖𝑖 𝑐𝑐 𝑒𝑒𝑖𝑖𝑖𝑖 𝑆𝑆𝑥𝑥𝑥𝑥 𝜔𝜔



The spectral density of an ARMA 𝑝𝑝, 𝑞𝑞
process.

• Suppose Φ𝑝𝑝 𝐿𝐿 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + Θ𝑞𝑞 𝐿𝐿 𝜎𝜎𝜀𝜀𝑡𝑡, where Φ𝑝𝑝 and Θ𝑞𝑞 are polynomials of degree 𝑝𝑝 and 𝑞𝑞
respectively, and 𝜀𝜀𝑡𝑡 ∼ NIID 0,1 .

• Then: 𝑦𝑦𝑡𝑡 = 𝜇𝜇
Φ𝑝𝑝 𝐿𝐿

+ Θ𝑞𝑞 𝐿𝐿
Φ𝑝𝑝 𝐿𝐿

𝜎𝜎𝜀𝜀𝑡𝑡.

• Applying the previous result we have:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝜎𝜎2
Θ𝑞𝑞 𝑒𝑒−𝑖𝑖𝑖𝑖 Θ𝑞𝑞 𝑒𝑒𝑖𝑖𝑖𝑖

Φ𝑝𝑝 𝑒𝑒−𝑖𝑖𝑖𝑖 Φ𝑝𝑝 𝑒𝑒𝑖𝑖𝑖𝑖
𝑆𝑆𝜀𝜀𝜀𝜀 𝜔𝜔 .

• Just as in the continuous time case, 𝑆𝑆𝜀𝜀𝜀𝜀 𝜔𝜔 = 1.

• Hence:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝜎𝜎2
Θ𝑞𝑞 𝑒𝑒−𝑖𝑖𝑖𝑖 Θ𝑞𝑞 𝑒𝑒𝑖𝑖𝑖𝑖

Φ𝑝𝑝 𝑒𝑒−𝑖𝑖𝑖𝑖 Φ𝑝𝑝 𝑒𝑒𝑖𝑖𝑖𝑖
.

• For example, if 𝑝𝑝 = 𝑞𝑞 = 1, and Φ1 𝜆𝜆 = 1 − 𝜙𝜙𝜙𝜙 and Θ1 𝜆𝜆 = 1 + 𝜃𝜃𝜃𝜃:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝜎𝜎2
1 + 𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖 1 + 𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖

1 − 𝜙𝜙𝑒𝑒−𝑖𝑖𝑖𝑖 1 − 𝜙𝜙𝑒𝑒𝑖𝑖𝑖𝑖
= 𝜎𝜎2

1 + 2𝜃𝜃 cos𝜔𝜔 + 𝜃𝜃2

1 − 2𝜙𝜙 cos𝜔𝜔 + 𝜙𝜙2
.



Estimating spectral densities

• One (parametric) method is to fit an ARMA 𝑝𝑝, 𝑞𝑞 then use the 
previous formula to get an estimate of the spectrum.

• Most non-parametric estimates are based around the sample auto-
covariance function.

• The “periodogram” is the Fourier transform of the sample auto-covariance 
function. This is asymptotically unbiased, but unfortunately it is inconsistent, 
intuitively because you would need an infinite amount of data to get the 
variance at frequency 0.

• As is standard in non-parametric econometrics, to derive a consistent 
estimator you must smooth the data via some kernel. In spectral density 
estimation, this smoothing may be applied either to the ACF, or to its Fourier 
transform.

• Quite difficult in practice, and getting reasonable standard errors is even 
harder. (I spent a long time a few years ago trying to get a reasonable 
spectral density estimate for US real GDP per capita.)



Spectral density of US GDP

The horizontal axis gives the period length in years here, not the frequency.
(This is non-standard, but makes things clearer.)



Business cycle filters

• As may be seen by the previous plot, macro time series have a lot of 
variance at frequencies well below business cycle frequencies.

• Thus, if we are going to assess the performance of a model designed 
to match just the business cycle, we might like to filter out other 
frequencies prior to comparing the model to the data.

• In the early literature, this was done using the Hodrick-Prescott 
(1997) filter, which is in the time domain.

• The modern literature uses the Christiano-Fitzgerald (2003) filter, or 
some other frequency domain one instead.



The Hodrick-Prescott (HP) filter

• Suppose 𝑥𝑥𝑡𝑡 is some time series of length 𝑇𝑇.
• The HP filtered version of 𝑥𝑥𝑡𝑡 is the sequence 𝑥𝑥𝑡𝑡 − 𝜏𝜏𝑡𝑡, where 𝜏𝜏𝑡𝑡 is the “HP-

trend”, which is the solution to the following problem:

min
𝜏𝜏1,…,𝜏𝜏𝑇𝑇

�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡 − 𝜏𝜏𝑡𝑡 2 + 𝜆𝜆�
𝑡𝑡=2

𝑇𝑇−1

Δ𝜏𝜏𝑡𝑡+1 − Δ𝜏𝜏𝑡𝑡 2 .

• where 𝜆𝜆 is some constant, usually, 𝜆𝜆 = 1600 for quarterly data.

• Problems:
• Since this is a time domain filter, there’s no guarantee it’s going to recover the 

frequencies we’re interested in.
• The filter is non-causal, i.e. the filtered observation at 𝑡𝑡 depends on the source 

data at 𝑡𝑡 + 1, 𝑡𝑡 + 2, etc.
• The filter suffers from “end-point bias”, with the first and last observations having 

large impacts on the estimated trend.



Frequency domain filters

• An ideal filter would attenuate frequencies by some desired amount.
• For example, if we’re interested in the business cycle, we might like a “band-

pass filter” which completely cut out all frequencies with periods below two 
years or above eight years, while leaving frequencies in between unaffected.

• More generally, a filter is defined by its frequency response function.
• This gives the attenuation at a specified frequency, where a value of 0 means 

full attenuation, and a value of 1 means none.
• King and Rebelo (1993) showed that the

frequency response of the HP-filter at
frequency 𝜔𝜔 is given by:

4𝜆𝜆 1 − cos𝜔𝜔 2

1 + 4𝜆𝜆 1 − cos𝜔𝜔 2

• This is plotted on the right, with period
length in years on the horizontal axis.



The Christiano-Fitzgerald (CF) band-pass filter

• One algorithm for band-pass filtering the data is to take its Fourier 
transform, then take the pointwise product of this with the desired 
frequency response function.

• If you have infinite data, this works perfectly.
• Unfortunately, in finite samples it performs poorly, as the temporal truncation is 

like multiplying the series by a box function. Since the box function has a Fourier 
transform of the form sin 𝜔𝜔

𝜔𝜔
, applying the Fourier transform to a finite sample is 

like convolving the data in the frequency domain with sin 𝜔𝜔
𝜔𝜔

.

• Thus, in order to produce a well performing filter, we need a way of 
extending a finite sample forwards and backwards in time.

• The idea of the CF filter is to approximate the series by a random walk 
outside of the observed window.

• For many macro time series, this will be a good approximation.
• See the paper for details.



Behaviour of the Christiano-Fitzgerald filter

• The standard version of the CF filter is asymmetric (i.e. its frequency 
response is not an even function), so it may introduce phase shifts.

• Phase shifts are highly undesirable in macro contexts, as they will disrupt 
inference about which variables lead which other variables.

• However, CF also provide a symmetric version.
• Matlab code for all versions is here: 

http://www.clevelandfed.org/research/models/bandpass/bpassm.txt
• Lee and Steehouwer (2012) show that the CF filter also tends to perform 

poorly towards the ends of the interval, as shown by the figure below from 
their paper:

http://www.clevelandfed.org/research/models/bandpass/bpassm.txt


Conclusion and recap

• Linear processes can be thought of as filters on white noise.

• The convolution theorem is great!

• Care must be taken when filtering the data.
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