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Outline of today’s talk

• SVARs.

• Identification methods.

• Continuous time stochastic processes.



Reading on SVARs and identification

• Canova: “Methods for applied macroeconomic research”.
• Section 4.5 & 4.6 covers Identification and SVARs.
• Section 10.3 covers this in a Bayesian context.

• Wikipedia, as needed for basic results in linear algebra.
• Reading all of the pages in this category would be a good start: 

https://en.wikipedia.org/wiki/Category:Matrix_decompositions

• Christiano, Eichenbaum and Evans (2005):
• A classic paper which you ought to be familiar with.
• www.tau.ac.il/~yashiv/cee.pdf

https://en.wikipedia.org/wiki/Category:Matrix_decompositions
http://www.tau.ac.il/%7Eyashiv/cee.pdf


Readings on continuous time processes etc.

• Cochrane (2012):
• Nice review of continuous time stochastic processes, with a macro slant.
• http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous

_time_linear_models.pdf

• Any finance textbook for details (shouldn’t really be needed).
• E.g. Chapter 3 of Merton’s “Continuous Time Finance”.

• Wikipedia as needed…

http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous_time_linear_models.pdf


Structural VARs: Motivation (1/2)

• We would like to know what the effects of (say) an unexpected 
increase in monetary policy is.

• But a change in monetary policy will produce changes in other 
variables within the same time period.

• Conversely, exogenous shocks to other variables will produce 
automatic reactions from monetary policy.

• E.g. a Taylor Rule.

• Thus, if we see that interest rates were (say) tighter than was 
expected yesterday, we do not know if this was due to a change in 
policy or if it was an endogenous reaction to other changes in the 
economy.

• A standard VAR tells us nothing about the effects of changes in policy!



Structural VARs: Motivation (2/2)

• Furthermore, even after contemporaneous responses of one variable to 
another have been taken into account, there may still be correlations in the 
shocks.

• For example, an exogenous increase in rainfall may both decrease labour supply 
holding fixed the wage, and increase labour demand holding fixed the wage.

• Thus in a VAR in which rainfall is omitted, it would show up as both a labour 
supply and a labour demand shock.

• No way of knowing how much of this variance component due to rainfall should 
be assigned to supply, and how much should be assigned to demand.

• However, this really reflects a failure of the model (omitting an observable 
variable).

• Alternatively, some variables may respond directly to structural shocks to other 
variables.

• In macroeconomic terms this is rather implausible, as shocks are generally not 
observed directly, and if they are observed, they’re generally only observed by 
the agent that experiences the shock.

• Nonetheless, in a few rare cases this may be justified.



Structural VARs: Definition

• This suggests the following structural representation:
𝑥𝑥𝑡𝑡 = 𝑐𝑐 + 𝑎𝑎0𝑥𝑥𝑡𝑡 + 𝑎𝑎1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝑎𝑎𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑢𝑢𝑡𝑡 + 𝑏𝑏0𝑢𝑢𝑡𝑡

• where both 𝑎𝑎0 and 𝑏𝑏0 have a zero diagonal and where 𝑢𝑢𝑡𝑡 ∼ WNIID 0, Σ𝑢𝑢 , with 
Σ𝑢𝑢 diagonal.

• Then:
𝐼𝐼 − 𝑎𝑎0 𝑥𝑥𝑡𝑡 = 𝑐𝑐 + 𝑎𝑎1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝑎𝑎𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝐼𝐼 + 𝑏𝑏0 𝑢𝑢𝑡𝑡

• Then if we define 𝐴𝐴 ≔ 𝐼𝐼 − 𝑎𝑎0 and 𝐵𝐵 ≔ 𝐼𝐼 + 𝑏𝑏0:
𝑥𝑥𝑡𝑡 = 𝐴𝐴−1𝑐𝑐 + 𝐴𝐴−1𝑎𝑎1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝐴𝐴−1𝑎𝑎𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝐴𝐴−1𝐵𝐵𝑢𝑢𝑡𝑡.

• Compare this to our previous reduced form:
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑡𝑡 ∼ WNIID 0,Σ𝜀𝜀

• Matching terms gives:
𝐴𝐴𝜇𝜇 = 𝑐𝑐, 𝐴𝐴𝜙𝜙1 = 𝑎𝑎1, … , 𝐴𝐴𝜙𝜙𝑝𝑝 = 𝑎𝑎𝑝𝑝, 𝐴𝐴𝜀𝜀𝑡𝑡 = 𝐵𝐵𝑢𝑢𝑡𝑡,

𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐵𝐵Σ𝑢𝑢𝐵𝐵′



Structural VARs: Basic identification (1/2)

• Our hope is to be able to use some prior restrictions on 𝐴𝐴 and 𝐵𝐵 (or equivalently 
𝑎𝑎0 and 𝑏𝑏0), in order to solve for Σ𝑢𝑢 in the equation 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐵𝐵Σ𝑢𝑢𝐵𝐵′.

• We know 𝐴𝐴 and 𝐵𝐵 have a unit diagonal, and that Σ𝑢𝑢 is zero everywhere except 
the diagonal.

• If we knew 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ could we at least work out 𝐵𝐵 and Σ𝑢𝑢?
• No, not uniquely, without additional information.
• By the Cholesky decomposition, there exists a lower triangular matrix 𝐿𝐿 such that
𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐿𝐿𝐿𝐿′. So one candidate solution is 𝐵𝐵 ≔ 𝐿𝐿 diag diag 𝐿𝐿 −1, and Σ𝑢𝑢 ≔ diag diag 𝐿𝐿 2.

• But let 𝑈𝑈 be any real orthogonal matrix. Then 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐿𝐿𝑈𝑈 𝐿𝐿𝑈𝑈 ′ too. Thus 𝐵𝐵 ≔
𝐿𝐿𝑈𝑈 diag diag 𝐿𝐿𝑈𝑈 −1, and Σ𝑢𝑢 ≔ diag diag 𝐿𝐿𝑈𝑈 2 is another solution.

• The space of all 𝑛𝑛 × 𝑛𝑛 orthogonal matrices is 𝑛𝑛 𝑛𝑛−1
2

dimensional, so this is the number of 
restriction we need on 𝐵𝐵 if we already know 𝐴𝐴Σ𝜀𝜀𝐴𝐴′.

• This may be seen directly from noting that in the equation 𝑅𝑅𝑅𝑅′ = 𝑆𝑆, with 𝑆𝑆 symmetric, the 
equations above the diagonal are identical to those below.



Structural VARs: Basic identification (2/2)

• In practice 𝐵𝐵 is almost always assumed to be equal to the identity matrix, for 
the reasons I gave previously.

• If it’s not, it reflects either strange informational assumptions, or omitted 
variables.

• So with 𝐵𝐵 known, can we pin down 𝐴𝐴 without additional assumptions?
• No. Much as before, the equation 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐵𝐵Σ𝑢𝑢𝐵𝐵′ has 𝑛𝑛 𝑛𝑛−1

2
free parameters 

with 𝐵𝐵 known.
• So this is the number of assumptions we need to make on 𝐴𝐴.

• A common assumption is that 𝐴𝐴 is lower triangular, which gives the required 
𝑛𝑛 𝑛𝑛−1

2
restrictions.

• This means 𝑎𝑎0 is strictly lower triangular, implying a “causal ordering” on the 
variables.

• The variable ordered first is assumed to have no contemporaneous response to 
later variables.

• The one ordered second just responds to the first contemporaneously, but no 
others. Etc. etc. till…

• The one ordered last  responds contemporaneously to all variables.



Reporting SVAR results: Impulse responses

• Normally, we are primarily interested in the response of the economy to some 
shock.

• So, suppose there’s a shock of one standard deviation to variable 𝑖𝑖 in period 0, and then 
from then on, no further shocks hit the economy.

• I.e., suppose that 𝑢𝑢0,𝑖𝑖 = 1 for some 𝑖𝑖 ∈ 1, … ,𝑛𝑛 , but that 𝑢𝑢𝑡𝑡,𝑗𝑗 = 0 for all 𝑡𝑡 ∈ ℕ and all 𝑗𝑗 ∈
1, … ,𝑛𝑛 , unless 𝑡𝑡 = 0 and 𝑗𝑗 = 𝑖𝑖.

• Given these assumptions on the shocks, we can simulate the SVAR model and plot the 
responses of the variables of interest.

• The result of this is an “impulse response”. Often plotted relative to the variable’s mean.

• In non-linear models, there are various possible definitions of an impulse 
response.

• One is 𝔼𝔼 𝑥𝑥𝑡𝑡 𝑢𝑢0,𝑖𝑖 = 1 .

• Another is 𝔼𝔼 𝑥𝑥𝑡𝑡 𝑢𝑢0,𝑖𝑖 = �𝑢𝑢0,𝑖𝑖 + 1 , where �𝑢𝑢0,𝑖𝑖 has the same distribution as that of 𝑢𝑢𝑡𝑡,𝑖𝑖.
• Some authors also condition on the initial state in these expectations. (Dynare does not.)



Other identification methods: AB restrictions

• Causal orderings are deeply implausible. Most variables have some 
contemporaneous effect on most other variables.

• Indeed, many variables have strong anticipatory effects on other variables.
• If a shock to another variable is expected in future (and the econometricians data-

set is insufficient to pick this up) then shocks (observed) tomorrow might have an 
effect on variables today.

• Other restrictions on the 𝐴𝐴 and 𝐵𝐵 matrices based on theory are often as bad, 
for basically the same reason.

• The Blanchard and Perotti (2002) approach uses micro data to estimate 
some parameters of the 𝐴𝐴 matrix in a fiscal policy context. 

• Their argument is based upon government taking more than quarter to respond, 
so is little better than the causal ordering approach.



Other identification methods: Sign 
restrictions

• The sign restriction approach (Uhlig 2005) effectively places a flat prior over the space of all 
orthogonal rotation matrices, then truncates this prior to zero in areas where the model 
generates “the wrong results” in some sense.

• “Flat” may not be as intuitive as it seems, see e.g. Baumeister & Hamilton (2017).

• “Wrong” is usually defined in terms of the sign of the impulse response to a certain shock 
at a certain point in time.

• May end up assuming what it wants to prove. E.g. causal ordering identification of monetary policy 
shocks often produces “price puzzles”, with increasing interest rates increasing inflation.

• Assuming away price puzzles begs the question of whether these are real features or not.

• If interpreted classically, sign restrictions only produce set identification, not point 
identification. (see Moon, Schorfheide and Granziera 2013).

• Following identification via sign restrictions, there is no such thing as “the” estimated impulse 
response.

• Rather, the estimator provides a band of impulse responses, even with infinite data.
• Finite sample parameter uncertainty produces even larger bands.



Other identification methods: Narrative 
evidence

• Pioneered by Romer and Romer (1989), who use the text of FOMC 
meetings to identify times when policy makers intended to use 
contractionary policy to bring down inflation.

• Later work has tightened the definition of a monetary shock.

• In fiscal contexts, Ramey and Shapiro (1998) performed a similar 
analysis using military build-ups.

• One difficulty with this approach is that hand selected shocks will 
always “smell funny”.

• Some recent researchers have ameliorated this via using automated textual 
analysis.

• Another problem is that it’s not always clear that the narrative 
analysis procedure really succeeds in purging all endogeneity.



Other identification methods: Long-run 
restrictions

• While there’s a lot of debate about how the economy evolves in the 
short-run, there’s a lot more consensus about the long-run effects of 
various shocks.

• E.g. only a technology shock increases GDP per capita in the long-run. 
Monetary shocks are neutral for all variables in the long-run. Etc.

• Blanchard and Quah (1989) exploit this for identification.
• It is a bit like a sign restriction at 𝑡𝑡 = ∞, but since they are imposing exact 

coefficients for the long-run response they get point, not set, identification.
• Can be imposed without simulation, either:

• by deriving the limit of the IRF by diagonalization (see exercises), or,
• by using the following Beveridge-Nelson type decomposition: Δ𝑥𝑥𝑡𝑡 = Θ 𝐿𝐿 𝜀𝜀𝑡𝑡 = Θ 1 𝜀𝜀𝑡𝑡 +
Θ 𝐿𝐿 −Θ 1

𝐼𝐼−𝐿𝐿
Δ𝜀𝜀𝑡𝑡, so the permanent impact of a structural shock is Θ 1 𝐴𝐴−1𝐵𝐵𝑢𝑢𝑡𝑡.



SVARs and identification in practice

• There is a huge literature looking at the responses of monetary and fiscal 
shocks.

• Results vary wildly depending on which identification method is used, 
though there is more consensus about monetary shocks than fiscal ones.

• For example, in a cross country study Iletzki, Mendoza and Vegh (2013) find 
basically zero fiscal multipliers in developed, open economies, and Ramey’s 
narrative based work finds at most moderate multipliers, around one.

• On the other hand Perotti continues to find large multipliers.

• The correct response is broad distrust of most VAR identification methods.
• In any case, it is unclear why we should care about fiscal multipliers.

• The fact that government expenditure increases GDP more than one for one tells 
us nothing about whether this is good for welfare.

• In fact, in most modern macro models that generate large multipliers, 
expansionary fiscal policy is unambiguously bad for welfare.



Continuous time stochastic processes

• The stochastic processes we looked at in the first lecture were 
random variables taking their value from the vector space of 
sequences (i.e. functions ℤ → ℝ).

• In some circumstances, it is easier to work in continuous time, i.e. 
with random variables taking their value from the vector space of 
functions ℝ → ℝ.

• This is the standard in finance.
• It’s also increasingly more common in macro, and we’ll look at some 

continuous time DSGE models later in the course.



The Wiener process

• The Wiener process (aka “standard Brownian motion”) is the building 
blocks of most continuous time stochastic processes.

• You might find it helpful to think of the Wiener process as the 
continuous time analogue of a random walk.

• The process, 𝑊𝑊𝑡𝑡 is characterised by the following properties:
1. 𝑊𝑊0 = 0.
2. 𝑊𝑊𝑡𝑡 is almost surely everywhere continuous.
3. If 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛+1, 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 ∈ ℝ+ satisfy 0 < 𝑠𝑠𝑖𝑖 < 𝑡𝑡𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1 for all 𝑖𝑖 ∈

1, … ,𝑛𝑛 , then 𝑊𝑊𝑡𝑡𝑖𝑖 −𝑊𝑊𝑠𝑠𝑖𝑖 is independent of 𝑊𝑊𝑡𝑡𝑗𝑗 −𝑊𝑊𝑠𝑠𝑗𝑗 for all 𝑖𝑖 ≠ 𝑗𝑗.
4. If 0 ≤ 𝑠𝑠 < 𝑡𝑡, then 𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠 ∼ N 0, 𝑡𝑡 − 𝑠𝑠 .

• The process 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑊𝑊𝑡𝑡 is called a Wiener process with drift 𝜇𝜇 and 
infinitesimal variance 𝜎𝜎2.



The Itō integral

• We would often like to work with processes with time varying drift and time varying 
infinitesimal variance.

• Scaling the Wiener process by a time varying amount will not work, as this will change both the 
level of the process and its future infinitesimal variance.

• In some loose sense then, we need to “differentiate” the process, scale it, and then integrate back.
• However, the Wiener process is not differentiable.

• Itō defined a new integral (with different integration laws) in order to tackle this.
• It allows us to integrate a function times a kind of “derivative” of the Wiener process.

• In particular, if:
• for all 𝑛𝑛 ∈ ℕ, 𝜋𝜋𝑛𝑛 is an increasing sequence of length 𝑛𝑛 + 1, with 𝜋𝜋𝑛𝑛,0 = 𝑆𝑆 and 𝜋𝜋𝑛𝑛,𝑛𝑛 = 𝑇𝑇, and 

lim
𝑛𝑛→∞

max
𝑖𝑖∈ 1,…,𝑛𝑛

𝜋𝜋𝑛𝑛,𝑖𝑖 − 𝜋𝜋𝑛𝑛,𝑖𝑖−1 = 0,

• 𝑊𝑊𝑡𝑡 is a Wiener process, and 𝑋𝑋𝑡𝑡 is another continuous time stochastic process that is left-continuous 
and locally bounded,

• then we define:

�
𝑆𝑆

𝑇𝑇
𝑋𝑋𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 ≔ plim

𝑛𝑛→∞
�

𝑖𝑖∈ 1,…,𝑛𝑛

𝑋𝑋𝜋𝜋𝑛𝑛,𝑖𝑖−1 𝑊𝑊𝜋𝜋𝑛𝑛,𝑖𝑖 − 𝑊𝑊𝜋𝜋𝑛𝑛,𝑖𝑖−1 .



Useful property: The Itō isometry

• Given 𝑆𝑆𝑋𝑋 < 𝑇𝑇𝑋𝑋, 𝑆𝑆𝑌𝑌 < 𝑇𝑇𝑌𝑌, with max 𝑆𝑆𝑋𝑋, 𝑆𝑆𝑌𝑌 < min 𝑇𝑇𝑋𝑋,𝑇𝑇𝑌𝑌 and given 
continuous stochastic processes 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡:

𝔼𝔼 �
𝑆𝑆𝑋𝑋

𝑇𝑇𝑋𝑋
𝑋𝑋𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 �

𝑆𝑆𝑌𝑌

𝑇𝑇𝑌𝑌
𝑌𝑌𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 = 𝔼𝔼 �

max 𝑆𝑆𝑋𝑋,𝑆𝑆𝑌𝑌

min 𝑇𝑇𝑋𝑋,𝑇𝑇𝑌𝑌
𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡 𝑑𝑑𝑡𝑡

• Informal “proof”:
• Note:

𝔼𝔼 �
𝑆𝑆𝑋𝑋

𝑇𝑇𝑋𝑋
𝑋𝑋𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 �

𝑆𝑆𝑌𝑌

𝑇𝑇𝑌𝑌
𝑌𝑌𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 = 𝔼𝔼 �

𝑆𝑆𝑋𝑋

𝑇𝑇𝑋𝑋
�
𝑆𝑆𝑌𝑌

𝑇𝑇𝑌𝑌
𝑋𝑋𝑠𝑠𝑌𝑌𝑡𝑡 𝑑𝑑𝑊𝑊𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡

• 𝔼𝔼𝑑𝑑𝑊𝑊𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡 “equals” 0𝑑𝑑𝑡𝑡 if 𝑠𝑠 ≠ 𝑡𝑡 and “equals” 1𝑑𝑑𝑡𝑡 if 𝑠𝑠 = 𝑡𝑡.



Drift diffusion processes

• Processes used in finance (and continuous time macro) often take 
the form:

𝑋𝑋𝑡𝑡 = 𝑋𝑋0 + �
0

𝑡𝑡
𝜇𝜇 𝑋𝑋𝑢𝑢,𝑢𝑢 𝑑𝑑𝑢𝑢 + �

0

𝑡𝑡
𝜎𝜎 𝑋𝑋𝑢𝑢,𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 .

• The first integral here is a standard integral, the second is an Itō one!
• The function 𝜇𝜇 𝑋𝑋𝑡𝑡, 𝑡𝑡 controls the drift of the process at 𝑡𝑡.
• The function 𝜎𝜎 𝑋𝑋𝑡𝑡, 𝑡𝑡 controls the infinitesimal variance at 𝑡𝑡.

• In practice, this expression is usually written in the more compact 
“stochastic differential equation” form:

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇 𝑋𝑋𝑡𝑡, 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑋𝑋𝑡𝑡, 𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 .
• However, it is important to remember that the latter expression is 

just a shorthand for the former.



Itō’s lemma

• Itō’s lemma is an equivalent of the chain rule for continuous time 
stochastic processes.

• Suppose:
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 .

• Then for any twice differentiable function 𝑓𝑓:ℝ2 → ℝ, Itō’s lemma 
states:

𝑑𝑑𝑓𝑓 𝑡𝑡,𝑋𝑋𝑡𝑡 = 𝑓𝑓1 + 𝜇𝜇𝑡𝑡𝑓𝑓2 +
1
2
𝜎𝜎𝑡𝑡2𝑓𝑓22 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑓𝑓2 𝑑𝑑𝑊𝑊𝑡𝑡

• For example, let 𝑌𝑌𝑡𝑡 = exp𝑋𝑋𝑡𝑡, then:

𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑑𝑑 exp𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑡𝑡𝑌𝑌𝑡𝑡 +
1
2
𝜎𝜎𝑡𝑡2𝑌𝑌𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑌𝑌𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡.



Ornstein-Uhlenbeck processes

• Ornstein-Uhlenbeck processes are the continuous time equivalent of AR 1 processes.
• Recall for later that the AR 1 process 𝑥𝑥𝑡𝑡 = 1 − 𝜌𝜌 𝜇𝜇 + 𝜌𝜌𝑥𝑥𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡 has an MA ∞ representation
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎∑𝑠𝑠=0∞ 𝜌𝜌𝑠𝑠𝜀𝜀𝑡𝑡−𝑠𝑠.

• Ornstein-Uhlenbeck processes are solutions to the s.d.e.:
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜃𝜃 𝜇𝜇 − 𝑋𝑋𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡 .

• To find their properties, first define 𝑌𝑌𝑡𝑡 = 𝑒𝑒𝜃𝜃𝑡𝑡𝑋𝑋𝑡𝑡, then, by Itō’s lemma:
𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑑𝑑 𝑒𝑒𝜃𝜃𝑡𝑡𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑌𝑌𝑡𝑡 + 𝜃𝜃 𝜇𝜇 − 𝑋𝑋𝑡𝑡 𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡

= 𝜃𝜃𝜇𝜇𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 .
• I.e.:

𝑌𝑌𝑡𝑡 = 𝑌𝑌0 + �
0

𝑡𝑡
𝜃𝜃𝜇𝜇𝑒𝑒𝜃𝜃𝑢𝑢 𝑑𝑑𝑢𝑢 + �

0

𝑡𝑡
𝜎𝜎𝑒𝑒𝜃𝜃𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 = 𝑋𝑋0 − 𝜇𝜇 + 𝜇𝜇𝑒𝑒𝜃𝜃𝑡𝑡 + 𝜎𝜎�

0

𝑡𝑡
𝑒𝑒𝜃𝜃𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 .

• Thus:

𝑋𝑋𝑡𝑡 = 𝑋𝑋0 − 𝜇𝜇 𝑒𝑒−𝜃𝜃𝑡𝑡 + 𝜇𝜇 + 𝜎𝜎�
0

𝑡𝑡
𝑒𝑒𝜃𝜃 𝑢𝑢−𝑡𝑡 𝑑𝑑𝑊𝑊𝑢𝑢 = 𝑋𝑋0 − 𝜇𝜇 𝑒𝑒−𝜃𝜃𝑡𝑡 + 𝜇𝜇 + 𝜎𝜎�

𝑠𝑠=0

𝑡𝑡
𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 .

• Define 𝑍𝑍𝑡𝑡 = 𝑋𝑋𝑡𝑡+𝜏𝜏 (i.e. 𝑍𝑍𝑡𝑡 is an Ornstein-Uhlenbeck process started at time −𝜏𝜏). Then, in the limit 
as 𝜏𝜏 → ∞:

𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎�
𝑠𝑠=0

∞
𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 .



Conclusion and recap

• Reduced form VARs do not identify shocks.

• Identification is impossible without making strong prior assumptions.

• Continuous time stochastic processes are not so different to discrete 
time ones.
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