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Outline of today’s talk

e SVARs.
e |dentification methods.

e Continuous time stochastic processes.



Reading on SVARs and identification

e Canova: “Methods for applied macroeconomic research”.
* Section 4.5 & 4.6 covers Identification and SVARs.
e Section 10.3 covers this in a Bayesian context.

 Wikipedia, as needed for basic results in linear algebra.

» Reading all of the pages in this category would be a good start:
https://en.wikipedia.org/wiki/Category:Matrix decompositions

e Christiano, Eichenbaum and Evans (2005):
* A classic paper which you ought to be familiar with.
e www.tau.ac.il/~yashiv/cee.pdf



https://en.wikipedia.org/wiki/Category:Matrix_decompositions
http://www.tau.ac.il/%7Eyashiv/cee.pdf

Readings on continuous time processes etc.

e Cochrane (2012):

* Nice review of continuous time stochastic processes, with a macro slant.

e http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous
time linear models.pdf

e Any finance textbook for details (shouldn’t really be needed).
e E.g. Chapter 3 of Merton’s “Continuous Time Finance”.

* Wikipedia as needed...


http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous_time_linear_models.pdf

Structural VARs: Motivation (1/2)

* We would like to know what the effects of (say) an unexpected
increase in monetary policy is.

e But a change in monetary policy will produce changes in other
variables within the same time period.

e Conversely, exogenous shocks to other variables will produce
automatic reactions from monetary policy.

e E.g. a Taylor Rule.

* Thus, if we see that interest rates were (say) tighter than was
expected yesterday, we do not know if this was due to a change in
policy or if it was an endogenous reaction to other changes in the
economy.

e A standard VAR tells us nothing about the effects of changes in policy!



Structural VARs: Motivation (2/2)

* Furthermore, even after contemporaneous responses of one variable to
another have been taken into account, there may still be correlations in the
shocks.

For example, an exogenous increase in rainfall may both decrease labour supply
holding fixed the wage, and increase labour demand holding fixed the wage.

Thus in a VAR in which rainfall is omitted, it would show up as both a labour
supply and a labour demand shock.

No way of knowing how much of this variance component due to rainfall should
be assigned to supply, and how much should be assigned to demand.

However, this really reflects a failure of the model (omitting an observable
variable).

Alternatively, some variables may respond directly to structural shocks to other
variables.

In macroeconomic terms this is rather implausible, as shocks are generally not
observed directly, and if they are observed, they’re generally only observed by
the agent that experiences the shock.

Nonetheless, in a few rare cases this may be justified.



Structural VARs: Definition

* This suggests the following structural representation:
Xt =C+apx +a;xe_q + -+ apxe—p + U + bouy
* where both a, and b, have a zero diagonal and where u; ~ WNIID(O0, Z,,), with
X, diagonal.
* Then:
(I —ag)xe =c+ayxe_g + -+ apxe_p + (I + by)u,

* Thenif wedefineA:=1—aygand B :=1 + by:
xy =A"c+ A \agxe g + -+ A ayx_, + AT Bug.

e Compare this to our previous reduced form:
Xe = U+ P1Xpq + Poxep + o+ Ppxepy + &, g ~ WNIID(0,X,)
e Matching terms gives:
Au = c, Ad, = a4, e ) Aqbp = ap, Ag; = Buy,
AX_A' = BX, B’



Structural VARs: Basic identification (1/2)

e Our hope is to be able to use some prior restrictions on A and B (or equivalently
ao and by), in order to solve for X, in the equation AX . A" = BX,B’.

* We know A and B have a unit diagonal, and that Z,, is zero everywhere except
the diagonal.

* If we knew AX_A’ could we at least work out B and X,,?

No, not uniquely, without additional information.

By the Cholesky decomposition, there exists a lower triangular matrix L such that

A A" = LL'. So one candidate solution is B := L(diagdiag L)™!, and £, := (diag diag L)?.
But let U be any real orthogonal matrix. Then AX,A" = (LU)(LU)' too. Thus B :=

LU(diag diag LU)™1, and T, := (diag diag LU)? is another solution.

nn-1)

The space of all n X n orthogonal matrices is dimensional, so this is the number of

restriction we need on B if we already know AX_A’.

This may be seen directly from noting that in the equation RR' = S, with S symmetric, the
equations above the diagonal are identical to those below.



Structural VARs: Basic identification (2/2)

* In practice B is almost always assumed to be equal to the identity matrix, for
the reasons | gave previously.

* If it’s not, it reflects either strange informational assumptions, or omitted
variables.
e So with B known, can we pin down A without additional assumptions?

* No. Much as before, the equation AX,A" = BX, B’ has n(n-1)
with B known.
e So this is the number of assumptions we need to make on A.

free parameters

* A common assumption is that A is lower triangular, which gives the required
n(n-1)

restrictions.

e This means a, is strictly lower triangular, implying a “causal ordering” on the
variables.

* The variable ordered first is assumed to have no contemporaneous response to
later variables.

* The one ordered second just responds to the first contemporaneously, but no
others. Etc. etc. till...

 The one ordered last responds contemporaneously to all variables.



Reporting SVAR results: Impulse responses

* Normally, we are primarily interested in the response of the economy to some
shock.

* So, suppose there’s a shock of one standard deviation to variable i in period 0, and then
from then on, no further shocks hit the economy.

* le., suppose thatuy; = 1forsomei € {1,...,n}, butthatu, ; = O forallt € Nandallj €
{1,...,n},unlesst = 0andj = i.

* Given these assumptions on the shocks, we can simulate the SVAR model and plot the
responses of the variables of interest.

* The result of this is an “impulse response”. Often plotted relative to the variable’s mean.

* In non-linear models, there are various possible definitions of an impulse
response.
* Oneis IE[xt|u0,i = 1].
e Another is IE[xt|u0,i =1Up; + 1], where i, ; has the same distribution as that of u, ;.

* Some authors also condition on the initial state in these expectations. (Dynare does not.)



Other identification methods: AB restrictions

* Causal orderings are deeply implausible. Most variables have some
contemporaneous effect on most other variables.

* Indeed, many variables have strong anticipatory effects on other variables.

* |f a shock to another variable is expected in future (and the econometricians data-
set is insufficient to pick this up) then shocks (observed) tomorrow might have an
effect on variables today.

e Other restrictions on the A and B matrices based on theory are often as bad,
for basically the same reason.

e The Blanchard and Perotti (2002) approach uses micro data to estimate
some parameters of the A matrix in a fiscal policy context.

e Their argument is based upon government taking more than quarter to respond,
so is little better than the causal ordering approach.



Other identification methods: Sign
restrictions

e The sign restriction approach (Uhlig 2005) effectively places a flat prior over the space of all
orthogonal rotation matrices, then truncates this prior to zero in areas where the model
generates “the wrong results” in some sense.

* “Flat” may not be as intuitive as it seems, see e.g. Baumeister & Hamilton (2017).

e “Wrong” is usually defined in terms of the sign of the impulse response to a certain shock
at a certain point in time.

* May end up assuming what it wants to prove. E.g. causal ordering identification of monetary policy
shocks often produces “price puzzles”, with increasing interest rates increasing inflation.

* Assuming away price puzzles begs the question of whether these are real features or not.

 If interpreted classically, sign restrictions only produce set identification, not point
identification. (see Moon, Schorfheide and Granziera 2013).

* Following identification via sign restrictions, there is no such thing as “the” estimated impulse
response.

* Rather, the estimator provides a band of impulse responses, even with infinite data.

* Finite sample parameter uncertainty produces even larger bands.



Other identification methods: Narrative
evidence

* Pioneered by Romer and Romer (1989), who use the text of FOMC
meetings to identify times when policy makers intended to use
contractionary policy to bring down inflation.

e Later work has tightened the definition of a monetary shock.

e In fiscal contexts, Ramey and Shapiro (1998) performed a similar
analysis using military build-ups.

e One difficulty with this approach is that hand selected shocks will
always “smell funny”.
e Some recent researchers have ameliorated this via using automated textual
analysis.
e Another problem is that it’s not always clear that the narrative
analysis procedure really succeeds in purging all endogeneity.



Other identification methods: Long-run
restrictions

* While there’s a lot of debate about how the economy evolves in the
short-run, there’s a lot more consensus about the long-run effects of
various shocks.

e E.g. only a technology shock increases GDP per capita in the long-run.
Monetary shocks are neutral for all variables in the long-run. Etc.

e Blanchard and Quah (1989) exploit this for identification.

* It is a bit like a sign restriction at t = oo, but since they are imposing exact
coefficients for the long-run response they get point, not set, identification.

e Can be imposed without simulation, either:
* by deriving the limit of the IRF by diagonalization (see exercises), or,

* by using the following Beveridge-Nelson type decomposition: Ax; = O(L)e; = 0(1)e; +
0(L)—-06(1) Ae
2879 Ae,,

— so the permanent impact of a structural shock is ®(1)A~1Bu,.



SVARs and identification in practice

* There is a huge literature looking at the responses of monetary and fiscal
shocks.

* Results vary wildly depending on which identification method is used,
though there is more consensus about monetary shocks than fiscal ones.

e For example, in a cross country study lletzki, Mendoza and Vegh (2013) find
basically zero fiscal multipliers in developed, open economies, and Ramey’s
narrative based work finds at most moderate multipliers, around one.

* On the other hand Perotti continues to find large multipliers.
* The correct response is broad distrust of most VAR identification methods.

* In any case, it is unclear why we should care about fiscal multipliers.

e The fact that government expenditure increases GDP more than one for one tells
us nothing about whether this is good for welfare.

 |n fact, in most modern macro models that generate large multipliers,
expansionary fiscal policy is unambiguously bad for welfare.



Continuous time stochastic processes

e The stochastic processes we looked at in the first lecture were
random variables taking their value from the vector space of
sequences (i.e. functions Z — R).

* |n some circumstances, it is easier to work in continuous time, i.e.
with random variables taking their value from the vector space of
functions R — R.

* This is the standard in finance.

* It’s also increasingly more common in macro, and we’ll look at some
continuous time DSGE models later in the course.



The Wiener process

 The Wiener process (aka “standard Brownian motion”) is the building
blocks of most continuous time stochastic processes.

* You might find it helpful to think of the Wiener process as the
continuous time analogue of a random walk.

* The process, W; is characterised by the following properties:
1. W, =0.
2. W, is almost surely everywhere continuous.
3. IfSy, S5, e, Sttty oty € RY satisfy 0 <s; < t; < s;,.,foralli €
{1, ...,n}, then W, — W, is independent of We, — W, foralli # j.
4, If0 <s <t,thenW, —W, ~N(0,t —s).

e The process ut + oW, is called a Wiener process with drift u and

infinitesimal variance o?2.



The [t0 integral

* We would often like to work with processes with time varying drift and time varying
infinitesimal variance.

* Scaling the Wiener process by a time varying amount will not work, as this will change both the
level of the process and its future infinitesimal variance.

* In some loose sense then, we need to “differentiate” the process, scale it, and then integrate back.
* However, the Wiener process is not differentiable.

* Ito defined a new integral (with different integration laws) in order to tackle this.
* |t allows us to integrate a function times a kind of “derivative” of the Wiener process.
* |In particular, if:
e foralln € N, m,, is an increasing sequence of lengthn + 1, withm, y = Sandm,,, =T, and

lim max |m,; —m,;_1| =0
n—-o ie{1,..,n} i ni 1| ’

» W; is a Wiener process, and X; is another continuous time stochastic process that is left-continuous
and locally bounded,

e then we define:

T
j X dW, = plim Z Xy Wi = We 1)
S

n—oo
ie{1,...,n}



Useful property: The I1to isometry

e Given Sy < Ty, Sy < Ty, with max{Sy, Sy} < min{Ty, Ty} and given
continuous stochastic processes X; and Y;:

Tx Ty min{Tx,Ty}
E Kf X, th> (J Y, th>] = IE [ X,Y, dt]
S S aX{Sx,Sy}

X Y

* Informal “proof”:
* Note:

oL, ) [, o) = =[([, e

X Y

e EdW, dW; “equals” 0dt if s # t and “equals” 1 dtifs = t.



Drift diffusion processes

e Processes used in finance (and continuous time macro) often take

the form:
t

X=Xy + f u(Xy,,u)du+ f o(Xy,,u)dW,.
0 0
e The first integral here is a standard integral, the second is an 1t6 one!

* The function u(X;, t) controls the drift of the process at t.
e The function g (X, t) controls the infinitesimal variance at t.

t

* In practice, this expression is usually written in the more compact

“stochastic differential equation” form:
dXt — M(Xt, t) dt + O-(Xt, t) th

* However, it is important to remember that the latter expression is
just a shorthand for the former.



It0’s lemma

 |[t0’s lemma is an equivalent of the chain rule for continuous time
stochastic processes.

* Suppose:
dXt — ‘th dt + O-t th.

e Then for any twice differentiable function f: R? - R, Itd’s lemma
states:

1
df (t,X;) = (f1 + uefo + Eﬂtzfzz) dt + o.f, dW,

* For example, let Y; = exp X, then:

1
dYt — d eXp Xt — (,uth + §O'tZYt> dt + O-th th



Ornstein-Uhlenbeck processes

» Ornstein-Uhlenbeck processes are the continuous time equivalent of AR(1) processes.

* Recall for later that the AR(1) process x; = (1 — p)u + pxs—, + o€ has an MA(o0) representation
Xe =+ 0XZop s

e Ornstein-Uhlenbeck processes are solutions to the s.d.e.:

* To find their properties, first define Y; = etht, then, by 1t0’s lemma:
dY, = d(e%X,) = (0Y, + 0(u — Xp)e%) dt + ae?t aw;,
= Quebt dt + oet aw,.

e |e.:
t t t
Y, =Y, +j Ouef du +f cePdW, = (Xo — ) + pue + af e dw,.
0 0 0
e Thus: . .
Xe=Xo—pwe Pt +u+ af ePU-0gw, = (X, — e % + u+ aj e 9 aw,_;.
0 s=0

» Define Z; = X, (i.e. Z; is an Ornstein-Uhlenbeck process started at time —t). Then, in the limit

as T — 00
00

Zy = ,u+aj e 95 dw,_.

s=0



Conclusion and recap

e Reduced form VARs do not identify shocks.
e |dentification is impossible without making strong prior assumptions.

e Continuous time stochastic processes are not so different to discrete
time ones.
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