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Outline of today’s talk

• Discussion of the structure of the course.

• Some basics:
• Vector spaces
• Linear maps and the lag operator

• Concepts in time series econometrics.
• Autocovariance, autocorrelation and partial-autocorrelation
• Stationarity
• AR and MA processes, and the Wold representation theorem.
• VARs.
• Cointegration and the consistency of VAR estimates under non-stationarity.
• Bayesian VARs.



Structure of the course

• Broadly in two halves.

• First half: Empirical macroeconomics, including:
• Time series econometrics, VARs, SVARs and identification.
• Continuous time stochastic processes and the frequency domain.
• Structural estimation of DSGE models, including filtering (linear and 

otherwise), and GMM/SMM.

• Second half: Topics in macroeconomics, including:
• Discrete time optimal control.
• Continuous time optimal control and models of growth.
• Search and matching models.
• Rational expectations and learning.



Reading for today

• Canova: “Methods for applied macroeconomic research”
• Chapter 1 covers the basics.
• Chapter 4 covers VARs.
• Chapter 10 covers BVARs.

• Wikipedia, as needed for basic results in linear algebra.
• Reading all of the pages in this category would be a good start: 

https://en.wikipedia.org/wiki/Category:Matrix_decompositions

• Hendry: “Dynamic econometrics” may also be useful for the 
cointegration material.

• Worth buying just for the appendices.

https://en.wikipedia.org/wiki/Category:Matrix_decompositions


Vector Spaces

• Let 𝔽𝔽 be a field, such as ℝ or ℂ.
• A field is a set endowed with two operations “+” and “×”, where both operations 

have identity elements and inverses.
• Let 𝑉𝑉 be some set endowed with two operations, “+” and “×” where +:𝑉𝑉 ×
𝑉𝑉 → 𝑉𝑉 and ×:𝔽𝔽 × 𝑉𝑉 → 𝑉𝑉.

• So you can add two elements of 𝑉𝑉, but we only define multiplication between an 
element of 𝑉𝑉 and an element of 𝔽𝔽.

• As is standard, we will omit multiplication signs in practice.

• If “+” is associative (𝑣𝑣 + 𝑤𝑤 + 𝑥𝑥 = 𝑣𝑣 + 𝑤𝑤 + 𝑥𝑥), commutative (𝑣𝑣 + 𝑤𝑤 =
𝑤𝑤 + 𝑣𝑣), possesses an identity element, denoted 0 ∈ 𝑉𝑉, (𝑣𝑣 + 0 = 𝑣𝑣), 
possesses an inverse (𝑣𝑣 + −𝑣𝑣 = 0), if “×” is compatible with 
multiplication in the field ( 𝛼𝛼𝛼𝛼 𝑣𝑣 = 𝛼𝛼 𝛼𝛼𝑣𝑣 ) and shares an identity element 
with the field, denoted 1 ∈ 𝔽𝔽 (1𝑣𝑣 = 𝑣𝑣), and if the distributive laws are 
satisfied (𝛼𝛼 𝑣𝑣 + 𝑤𝑤 = 𝛼𝛼𝑣𝑣 + 𝛼𝛼𝑤𝑤, 𝛼𝛼 + 𝛼𝛼 𝑣𝑣 = 𝛼𝛼𝑣𝑣 + 𝛼𝛼𝑣𝑣), then we call 𝑉𝑉 a 
vector space.



More on Vector Spaces

• Canonical example of a vector space is ℝ𝑛𝑛, the space of 𝑛𝑛
dimensional vectors.

• May be thought of as the set: 𝑥𝑥 𝑥𝑥: 1, … ,𝑛𝑛 → ℝ of functions mapping 
1, … ,𝑛𝑛 to ℝ.

• Addition is defined componentwise: 𝑥𝑥 + 𝑦𝑦 𝑖𝑖 = 𝑥𝑥 𝑖𝑖 + 𝑦𝑦 𝑖𝑖 .
• Likewise, multiplication: 𝛼𝛼𝑥𝑥 𝑖𝑖 = 𝛼𝛼𝑥𝑥 𝑖𝑖 .
• Note that this means ℝ1 = ℝ is a vector space too (in fact all fields are 

vector spaces).

• The previous construction generalises.
• In particular, let 𝐼𝐼 be some set, and let 𝑉𝑉 be a vector space, then the set 
𝑉𝑉𝐼𝐼 ≔ 𝑥𝑥 𝑥𝑥: 𝐼𝐼 → 𝑉𝑉 is a vector space too, where addition and multiplication 
are again defined componentwise.

• In time series econometrics, we are interested in infinite dimensional vector 
spaces which are indexed by “time”: i.e. the spaces ℝ𝑛𝑛 ℕ and ℝ𝑛𝑛 ℤ.



The lag operator, and other linear maps

• Let 𝑉𝑉 and 𝑊𝑊 be vector spaces, and let 𝑇𝑇:𝑉𝑉 → 𝑊𝑊, where:
• 𝑇𝑇 𝑢𝑢 + 𝑣𝑣 = 𝑇𝑇𝑢𝑢 + 𝑇𝑇𝑣𝑣 for all 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉, and:
• 𝑇𝑇 𝛼𝛼𝑣𝑣 = 𝛼𝛼𝑇𝑇𝑣𝑣

• Then we call 𝑇𝑇 a linear map.
• When 𝑉𝑉 = 𝑊𝑊 we call 𝑇𝑇 a linear operator.

• If 𝑉𝑉 = ℝ𝑛𝑛 and 𝑊𝑊 = ℝ𝑚𝑚, then 𝑇𝑇 may be represented as a matrix.
• In general, you may think of linear maps as being a generalisation of matrices.

• Just as matrices may be multiplied, so too linear maps may be “multiplied” 
through functional composition.

• For linear maps 𝑆𝑆 and 𝑇𝑇, 𝑆𝑆𝑇𝑇 𝑣𝑣 = 𝑆𝑆 𝑇𝑇𝑣𝑣 . 

• In time series econometrics, one linear map in particular will be very useful, 
namely the lag operator, 𝐿𝐿: ℝ𝑛𝑛 ℤ → ℝ𝑛𝑛 ℤ, defined by:

• 𝐿𝐿 𝑥𝑥 𝑖𝑖 = 𝑥𝑥 𝑖𝑖 − 1 for all 𝑥𝑥 ∈ ℝ𝑛𝑛 ℤ and 𝑖𝑖 ∈ ℤ.
• In the standard notation of time series econometrics, this is often written as 𝐿𝐿𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 for 

all 𝑡𝑡.



Stochastic processes

• Stochastic processes are just random variables drawn from a vector 
space that is indexed by time.

• Important to keep in mind the distinction between the random 
variable (which is strictly a function of the state of nature), and the 
realisation of that random variable.

• Some use capital letters for random variables and lower case for realisations 
e.g. Pr 𝑋𝑋𝑡𝑡 ≤ 𝑥𝑥𝑡𝑡 is the probability that the random variable 𝑋𝑋𝑡𝑡 was lower 
than some particular value 𝑥𝑥𝑡𝑡.

• Others make the dependence on the state of nature explicit by writing e.g. 
𝑥𝑥𝑡𝑡 𝜒𝜒 for the random variable, where 𝜒𝜒 is the state of nature.

• Particularly in time series econometrics though, these conventions are rarely 
followed exclusively, so often 𝑥𝑥𝑡𝑡 may denote a random variable in one place, 
and a realisation in another. Be careful!



Autocovariance

• The autocovariance function of a possibly vector valued stochastic 
process 𝑥𝑥𝑡𝑡 is given by:

ACF𝑡𝑡 𝜏𝜏 = 𝔼𝔼 𝑥𝑥𝑡𝑡 − 𝔼𝔼𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−𝜏𝜏 − 𝔼𝔼𝑥𝑥𝑡𝑡−𝜏𝜏 ′

• I.e. its value at 𝜏𝜏 is the covariance between 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡−𝜏𝜏.

• There is no reason in general why ACF𝑡𝑡 𝜏𝜏 should equal ACF𝑠𝑠 𝜏𝜏 if 
𝑡𝑡 ≠ 𝑠𝑠.

• However, by definition: ACF𝑡𝑡 𝜏𝜏 = ACF𝑡𝑡−𝜏𝜏 −𝜏𝜏 .



Autocorrelation and partial autocorrelation

• The autocorrelation of a scalar valued stochastic process 𝑥𝑥𝑡𝑡 is defined 
as you would expect:

ACRF𝑡𝑡 𝜏𝜏 =
ACF𝑡𝑡 𝜏𝜏

var 𝑥𝑥𝑡𝑡 var 𝑥𝑥𝑡𝑡−𝜏𝜏

• I.e. it is the correlation between 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡−𝜏𝜏.

• The partial autocorrelation PACRF𝑡𝑡 𝜏𝜏 is the correlation between 
𝑥𝑥𝑡𝑡 − �𝑥𝑥𝑡𝑡|𝑡𝑡−𝜏𝜏+1,𝑡𝑡−𝜏𝜏+2,…,𝑡𝑡−1 and 𝑥𝑥𝑡𝑡−𝜏𝜏 − �𝑥𝑥𝑡𝑡−𝜏𝜏|𝑡𝑡−𝜏𝜏+1,𝑡𝑡−𝜏𝜏+2,…,𝑡𝑡−1, where 
�𝑥𝑥𝑡𝑡|𝑡𝑡−𝜏𝜏+1,𝑡𝑡−𝜏𝜏+2,…,𝑡𝑡−1 and �𝑥𝑥𝑡𝑡−𝜏𝜏|𝑡𝑡−𝜏𝜏+1,𝑡𝑡−𝜏𝜏+2,…,𝑡𝑡−1 are the best linear 
predictors of 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡−𝜏𝜏 given 𝑥𝑥𝑡𝑡−𝜏𝜏+1, 𝑥𝑥𝑡𝑡−𝜏𝜏+2, …, 𝑥𝑥𝑡𝑡−1 (in the sense 
of minimal mean squared error).



Stationarity: definitions

• A stochastic process is called stationary if for any finite index set    
𝐼𝐼 ⊆ ℤ, and any 𝜏𝜏 ∈ ℤ, the joint distribution of 𝑥𝑥𝑡𝑡 𝑡𝑡 ∈ 𝐼𝐼 is the same 
as that of 𝑥𝑥𝑡𝑡−𝜏𝜏 𝑡𝑡 ∈ 𝐼𝐼 .

• I.e. shifting the process backwards or forwards will not change its 
distribution.

• Consequently, for any stationary process, and any 𝑡𝑡, 𝑠𝑠, 𝜏𝜏 ∈ ℤ, 𝔼𝔼𝑥𝑥𝑡𝑡𝜏𝜏 = 𝔼𝔼𝑥𝑥𝑠𝑠𝜏𝜏, 
ACF𝑡𝑡 𝜏𝜏 = ACF𝑠𝑠 𝜏𝜏 , ACRF𝑡𝑡 𝜏𝜏 = ACRF𝑠𝑠 𝜏𝜏 and PACRF𝑡𝑡 𝜏𝜏 = PACRF𝑠𝑠 𝜏𝜏 .

• As a result, for stationary processes we usually drop the 𝑡𝑡 index to the A.C.F. 
and just write e.g. ACF 𝜏𝜏 .

• A process is called weakly or weak-sense or covariance stationary if 
for all 𝑡𝑡, 𝑠𝑠, 𝜏𝜏 ∈ ℤ, 𝔼𝔼𝑥𝑥𝑡𝑡 = 𝔼𝔼𝑥𝑥𝑠𝑠 < ∞ and ACF𝑡𝑡 𝜏𝜏 = ACF𝑠𝑠 𝜏𝜏 < ∞ (so 
𝔼𝔼𝑥𝑥𝑡𝑡2 = 𝔼𝔼𝑥𝑥𝑠𝑠2 < ∞ as well).



Stationarity: relationship between the 
definitions

• Most (but not all) stationary processes are weakly stationary.
• Can you spot which stationary processes are not weakly stationary?
• Note that Canova repeats a common mistake and asserts that all stationary 

processes are weakly stationary, which is not correct.

• Not all weakly stationary processes are stationary.
• Example in exercises.



Sample analogues of A.C.F. etc.

• For weakly stationary processes we can estimate the ACF etc.
• Why can’t we do this for non-stationary ones?

• Sample analogues are defined in the obvious way:

�ACF 𝜏𝜏 =
1
𝑇𝑇
�
𝑡𝑡=𝜏𝜏+1

𝑇𝑇

𝑥𝑥𝑡𝑡 − �̂�𝜇 𝑥𝑥𝑡𝑡−𝜏𝜏 − �̂�𝜇 ′

• where �𝜇𝜇 is the process’s sample mean.

• An alternative estimator uses 1
𝑇𝑇−𝜏𝜏

in front instead, which is unbiased when the mean is 
known, but has higher MSE generally.

• For the partial auto correlation function the best linear predictors are just 
estimated by regression.



Moving average processes

• Let 𝜀𝜀𝑡𝑡 be i.i.d. with mean 0 and variance 𝜎𝜎2.
• In future we will write 𝜀𝜀𝑡𝑡 ∼ WNIID 0,𝜎𝜎2 .

• An MA 𝑞𝑞 process is of the form:
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞

= 𝜇𝜇 + 𝐼𝐼 + 𝜃𝜃1𝐿𝐿 + 𝜃𝜃2𝐿𝐿2 + ⋯+ 𝜃𝜃𝑞𝑞𝐿𝐿𝑞𝑞 𝜀𝜀𝑡𝑡
= 𝜇𝜇 + Θ𝑞𝑞 𝐿𝐿 𝜀𝜀𝑡𝑡

• where Θ𝑞𝑞 𝑧𝑧 = 1 + 𝜃𝜃1𝑧𝑧 + 𝜃𝜃2𝑧𝑧2 + ⋯+ 𝜃𝜃𝑞𝑞𝑧𝑧𝑞𝑞.

• The process is called invertible if 𝑥𝑥𝑡𝑡 may be written as a linear combination of 
𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2, … and 𝜀𝜀𝑡𝑡, with the coefficients on the lags being absolutely 
summable.

• Let 𝜌𝜌Θ,1, … ,𝜌𝜌Θ,𝑞𝑞 be the 𝑞𝑞 (possibly complex) roots of the polynomial Θ𝑞𝑞.
• Then 𝑥𝑥𝑡𝑡 − 𝜇𝜇 = ∏𝑘𝑘=1

𝑞𝑞 𝐼𝐼 − 𝜌𝜌Θ,𝑘𝑘
−1 𝐿𝐿 𝜀𝜀𝑡𝑡.

• Note that 1
1−𝜌𝜌−1𝑧𝑧

= 1 + 𝜌𝜌−1𝑧𝑧 + 𝜌𝜌−2𝑧𝑧2 + ⋯ where the RHS is only well defined if 𝜌𝜌 > 1.

• Consequently (or at least, by this intuition), 𝑥𝑥𝑡𝑡 is only invertible if 𝜌𝜌Θ,𝑘𝑘 > 1 for all 𝑘𝑘.



Autoregressive processes

• Let 𝜀𝜀𝑡𝑡 ∼ WNIID 0,𝜎𝜎2 .
• An AR 𝑝𝑝 process is of the form:

𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡
• Hence:

𝐼𝐼 − 𝜙𝜙1𝐿𝐿 − 𝜙𝜙2𝐿𝐿2 − ⋯− 𝜙𝜙𝑝𝑝𝐿𝐿𝑝𝑝 𝑥𝑥𝑡𝑡 = Φ𝑝𝑝 𝐿𝐿 𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜀𝜀𝑡𝑡
• where Φ𝑝𝑝 𝑧𝑧 = 1 − 𝜙𝜙1𝑧𝑧 − 𝜙𝜙2𝑧𝑧2 − ⋯− 𝜙𝜙𝑝𝑝𝑧𝑧𝑝𝑝.

• The process is called causal (“stable” in Canova) if it may be written 
as a linear combination of 𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡−1, …, with the coefficients being 
absolutely summable.

• Clearly any causal process is also stationary.

• Much as before, let 𝜌𝜌Φ,1, …, 𝜌𝜌Φ,𝑝𝑝 be the roots of Φ𝑝𝑝.
• Then ∏𝑘𝑘=1

𝑝𝑝 𝐼𝐼 − 𝜌𝜌Φ,𝑘𝑘
−1 𝐿𝐿 𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜀𝜀𝑡𝑡, so as long as 𝜌𝜌Φ,𝑘𝑘 > 1 for all 𝑘𝑘, the 

process will be causal.



ARMA processes

• Are what you expect them to be…
• An ARMA 𝑝𝑝, 𝑞𝑞 has the form:

Φ𝑝𝑝 𝐿𝐿 𝑥𝑥𝑡𝑡 = 𝜇𝜇 + Θ𝑞𝑞 𝐿𝐿 𝜀𝜀𝑡𝑡

• One nice motivation for using ARMA processes is that any linear 
combination of finite ARMA processes has a finite ARMA 
representation.

• In general this will have both an AR and an MA part, unless all of the original 
processes were MA.

• If the roots of Φ𝑝𝑝 are all outside the unit circle, then the process is 
stationary and admits an infinite MA representation, and if the roots 
of Θ𝑞𝑞 are outside the unit circle it admits an infinite AR 
representation.



Wold’s representation theorem

• Let 𝑥𝑥𝑡𝑡 be an arbitrary weakly stationary stochastic process.

• Then Wold’s representation theorem states that there exists a 
deterministic process 𝜂𝜂𝑡𝑡, an independently distributed white noise 
process 𝜀𝜀𝑡𝑡 and 𝜃𝜃0,𝜃𝜃1, … ∈ ℝ such that:

𝑥𝑥𝑡𝑡 = 𝜂𝜂𝑡𝑡 + �
𝑘𝑘=0

∞

𝜃𝜃𝑘𝑘 𝜀𝜀𝑡𝑡−𝑘𝑘

• I.e. all weakly stationary processes admit a representation as a sum 
of a deterministic process and an MA one.

• Since ARMA processes provide efficient representations of MA ones, 
this is further justification for using ARMA processes.



Lag selection

• ACF and PACF are invaluable for lag selection, as:
• The PACF of an AR process has 𝑝𝑝 non-zero entries.
• The ACF of an MA process has 𝑞𝑞 non-zero entries.

• See examples…



Spurious regression

• When 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 are non-stationary stochastic processes, regressing 
𝑥𝑥𝑡𝑡 on 𝑦𝑦𝑡𝑡 (or vice versa) will result in spurious correlation (the 
estimated 𝛼𝛼 is inconsistent) and high “𝑅𝑅2” values.

• Generally high “𝑅𝑅2” values are a bad thing, not a good thing!

• Important to check stationarity first. (ADF, KPSS etc.)
• ADF effectively tests the null that 𝜙𝜙 = 1 in 𝑥𝑥𝑡𝑡 = 𝜙𝜙𝑥𝑥𝑡𝑡−1 + other lags + 𝜀𝜀𝑡𝑡.
• KPSS tests the null that 𝜎𝜎 = 0 in 𝑥𝑥𝑡𝑡 = 𝑧𝑧𝑡𝑡 + 𝑦𝑦𝑡𝑡 where 𝑦𝑦𝑡𝑡 is stationary and 𝑧𝑧𝑡𝑡 =
𝑧𝑧𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡.



Vector auto-regressions

• Vector versions of AR, MA and ARMA processes are straightforward to 
define.

• If 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for all 𝑡𝑡, then rather than being scalars, 𝜙𝜙1, … ,𝜙𝜙𝑝𝑝 and 𝜃𝜃1, … ,𝜃𝜃𝑝𝑝 are 
now matrices.

• E.g.: A VAR 𝑝𝑝 has a representation:
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡

• where 𝜀𝜀𝑡𝑡 ∼ WNIID 0, Σ𝜀𝜀 , 𝑥𝑥𝑡𝑡 , 𝜇𝜇 ∈ ℝ𝑛𝑛,Σ,𝜙𝜙1, … ,𝜙𝜙𝑝𝑝 ∈ ℝ𝑛𝑛×𝑛𝑛.

• The conditions for being causal and invertible are now conditions on the 
roots of detΦ𝑝𝑝 𝑧𝑧 and detΘ𝑞𝑞 𝑧𝑧 respectively (where as before the roots 
need to be outside of the unit circle).

• Basically then, everything is the same.



Moments of a stationary VAR 1

• Taking unconditional expectations gives: 𝔼𝔼𝑥𝑥𝑡𝑡 − 𝜙𝜙1𝔼𝔼𝑥𝑥𝑡𝑡−1 = 𝜇𝜇.
• If the process is stationary, 𝔼𝔼𝑥𝑥𝑡𝑡 = 𝔼𝔼𝑥𝑥𝑡𝑡−1, hence 𝐼𝐼 − 𝜙𝜙1 𝔼𝔼𝑥𝑥𝑡𝑡 = 𝜇𝜇, i.e. 𝔼𝔼𝑥𝑥𝑡𝑡 =
𝐼𝐼 − 𝜙𝜙1 −1𝜇𝜇.
• Note that the inverse on the RHS exists for stationary processes.

• Taking variances gives: var 𝑥𝑥𝑡𝑡 = 𝜙𝜙1 var 𝑥𝑥𝑡𝑡−1 𝜙𝜙1′ + Σ𝜀𝜀, since 𝑥𝑥𝑡𝑡−1 and 
𝜀𝜀𝑡𝑡 are independent.

• Under stationarity this simplifies to the Lyapuvnov equation
var 𝑥𝑥𝑡𝑡 = 𝜙𝜙1 var 𝑥𝑥𝑡𝑡 𝜙𝜙1′ + Σ𝜀𝜀.

• Applying the vec operator to both sides then gives:
vec var 𝑥𝑥𝑡𝑡 = 𝜙𝜙1 ⊗ 𝜙𝜙1 vec var 𝑥𝑥𝑡𝑡 + vec Σ𝜀𝜀, (as vec𝐴𝐴𝐴𝐴𝐴𝐴 = (

)
𝐴𝐴′ ⊗

𝐴𝐴 vec𝐴𝐴).
• I.e. vec var 𝑥𝑥𝑡𝑡 = 𝐼𝐼 − 𝜙𝜙1 ⊗ 𝜙𝜙1 −1 vec Σ𝜀𝜀.
• This is numerically unstable though, and not recommended in practice!

• Matlab’s dlyap command is preferable.



Companion form representation

• We have proven some nice theoretical results for a VAR 1 .
• Luckily, any VAR 𝑝𝑝 procedure may be transformed into a VAR 1

with an augmented state space.
• The procedure is the same as that used when solving rational expectations 

models with multiple lags, or lagged expectations.
• In particular, we define 𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡′ 𝑥𝑥𝑡𝑡−1′ ⋯ 𝑥𝑥𝑡𝑡−𝑝𝑝+1′ ′.
• Then:

𝑦𝑦𝑡𝑡 =
𝜙𝜙1 ⋯ 𝜙𝜙𝑝𝑝−1 𝜙𝜙𝑝𝑝
𝐼𝐼 𝑝𝑝−1 𝑛𝑛× 𝑝𝑝−1 𝑛𝑛 0 𝑝𝑝−1 𝑛𝑛×𝑛𝑛

𝑦𝑦𝑡𝑡−1 +

𝜀𝜀𝑡𝑡
0
⋮
0

• The previously given condition for stationarity can be derived from 
this representation.



Cointegration

• Let 𝑥𝑥𝑡𝑡 be an 𝑛𝑛 dimensional stochastic process. If 𝑥𝑥𝑡𝑡 ∼ 𝐼𝐼 1 (i.e. each 
component of 𝑥𝑥𝑡𝑡 is non-stationary, and Δ𝑥𝑥𝑡𝑡~𝐼𝐼 0 , i.e. each component of 
Δ𝑥𝑥𝑡𝑡 is stationary), then 𝑥𝑥𝑡𝑡 is described as “cointegrated” if there exists 𝛼𝛼1 ∈
ℝ𝑛𝑛 such that 𝛼𝛼1′𝑥𝑥𝑡𝑡 ∼ 𝐼𝐼 0 .

• More generally, 𝑥𝑥𝑡𝑡 is described as being cointegrated with rank 𝑟𝑟 ≤ 𝑛𝑛 if 
there exists a full-rank matrix 𝛼𝛼 = 𝛼𝛼1 ⋯ 𝛼𝛼𝑟𝑟 ∈ ℝ𝑛𝑛×𝑟𝑟 such that 
𝛼𝛼′𝑥𝑥𝑡𝑡~𝐼𝐼 0 (and this isn’t true for any matrix of higher rank).

• The economic relevance of this concept comes from thinking about common 
trends.



From common trends to cointegration

• Suppose 𝑧𝑧𝑡𝑡 is a 𝑘𝑘 dimensional stochastic process, and 𝛾𝛾′𝑧𝑧𝑡𝑡 ∼ 𝐼𝐼 1 for any 𝛾𝛾 ∈ ℝ𝑘𝑘, 𝛾𝛾 ≠ 0.

• Suppose further that 𝑥𝑥𝑡𝑡 is an 𝑛𝑛 ≥ 𝑘𝑘 dimensional stochastic process, with 𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 + 𝑢𝑢𝑡𝑡
where 𝑢𝑢𝑡𝑡 ∼ 𝐼𝐼 0 and where 𝐴𝐴 is full rank, so 𝐴𝐴′𝐴𝐴 is invertible.

• Define 𝑃𝑃 ≔ 𝐴𝐴 𝐴𝐴′𝐴𝐴 −1𝐴𝐴′. Then 𝑃𝑃𝑥𝑥𝑡𝑡 = 𝑃𝑃𝐴𝐴𝑧𝑧𝑡𝑡 + 𝑃𝑃𝑢𝑢𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 + 𝑃𝑃𝑢𝑢𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝑢𝑢𝑡𝑡 + 𝑃𝑃𝑢𝑢𝑡𝑡, so 
𝐼𝐼 − 𝑃𝑃 𝑥𝑥𝑡𝑡 = 𝐼𝐼 − 𝑃𝑃 𝑢𝑢𝑡𝑡.

• Since 𝐴𝐴 is full rank, by the singular value decomposition (SVD), there exists unitary matrices 
𝑈𝑈 (𝑛𝑛 × 𝑛𝑛) and 𝑉𝑉 (𝑘𝑘 × 𝑘𝑘), and a diagonal matrix 𝐷𝐷 (𝑘𝑘 × 𝑘𝑘), such that 𝐴𝐴 =
𝑈𝑈�1 𝑈𝑈�2

𝐷𝐷
0 𝑉𝑉′ = 𝑈𝑈�1𝐷𝐷𝑉𝑉′, where 𝑈𝑈�1 𝑈𝑈�2 = 𝑈𝑈 is a partition of 𝑈𝑈 with 𝑈𝑈�1 𝑛𝑛 × 𝑘𝑘.

• Then 𝑃𝑃 = 𝑈𝑈�1𝐷𝐷𝑉𝑉′ 𝑉𝑉𝐷𝐷𝑈𝑈�1′ 𝑈𝑈�1𝐷𝐷𝑉𝑉′ −1𝑉𝑉𝐷𝐷𝑈𝑈�1′ = 𝑈𝑈�1𝐷𝐷𝑉𝑉′ 𝑉𝑉𝐷𝐷𝐷𝐷𝑉𝑉′ −1𝑉𝑉𝐷𝐷𝑈𝑈�1′ =
𝑈𝑈�1𝐷𝐷𝑉𝑉′𝑉𝑉𝐷𝐷−2𝑉𝑉′𝑉𝑉𝐷𝐷𝑈𝑈�1′ = 𝑈𝑈�1𝑈𝑈�1′ . Thus 𝐼𝐼 − 𝑃𝑃 = 𝐼𝐼 − 𝑈𝑈�1𝑈𝑈�1′ = 𝑈𝑈�2𝑈𝑈�2′ .

• Hence, 𝑈𝑈�2𝑈𝑈�2′ 𝑥𝑥𝑡𝑡 = 𝑈𝑈�2𝑈𝑈�2′ 𝑢𝑢𝑡𝑡, so 𝑈𝑈�2′ 𝑥𝑥𝑡𝑡 = 𝑈𝑈�2′ 𝑢𝑢𝑡𝑡 ∼ 𝐼𝐼 0 . I.e. 𝑈𝑈�2 is a cointegrating matrix.

• Now suppose 𝛿𝛿 is a cointegrating vector. Then 𝛿𝛿′ 𝐴𝐴𝑧𝑧𝑡𝑡 + 𝑢𝑢𝑡𝑡 ∼ 𝐼𝐼 0 .  By assumption, this 
implies 𝛿𝛿′𝐴𝐴 = 0, i.e. 𝛿𝛿′𝑈𝑈�1 = 0, so 0 = 𝛿𝛿′𝑈𝑈�1𝑈𝑈�1′ = 𝛿𝛿′ 𝐼𝐼 − 𝑈𝑈�2𝑈𝑈�2′ meaning 𝛿𝛿 = 𝑈𝑈�2 𝑈𝑈�2′ 𝛿𝛿 .

• Thus there is no larger rank cointegrating matrix, and 𝑥𝑥𝑡𝑡 is cointegrated with rank 𝑛𝑛 − 𝑘𝑘.



From cointegration to common trends

• Suppose 𝑥𝑥𝑡𝑡 is cointegrated with a rank 𝑟𝑟 cointegration matrix 𝛼𝛼.

• Given 𝛼𝛼′𝑥𝑥𝑡𝑡 ∼ 𝐼𝐼 0 , there must exist some 𝐼𝐼 0 stochastic process 𝑣𝑣𝑡𝑡 such that 𝛼𝛼′𝑥𝑥𝑡𝑡 = 𝑣𝑣𝑡𝑡.

• Since 𝛼𝛼 is full rank, by the SVD, there exists unitary matrices 𝑈𝑈 (𝑛𝑛 × 𝑛𝑛) and 𝑉𝑉 (𝑟𝑟 × 𝑟𝑟), and a 

diagonal matrix 𝐷𝐷 (𝑟𝑟 × 𝑟𝑟), such that 𝛼𝛼 = 𝑈𝑈�1 𝑈𝑈�2
𝐷𝐷
0 𝑉𝑉′ = 𝑈𝑈�1𝐷𝐷𝑉𝑉′, where 𝑈𝑈�1 𝑈𝑈�2 =

𝑈𝑈 is a partition of 𝑈𝑈 with 𝑈𝑈�1 𝑛𝑛 × 𝑟𝑟.

• Define 𝑢𝑢𝑡𝑡 ≔ 𝑈𝑈�1𝐷𝐷−1𝑉𝑉′𝑣𝑣𝑡𝑡, 𝐴𝐴 ≔ 𝑈𝑈�2 and 𝑧𝑧𝑡𝑡 ≔ 𝑈𝑈�2′ 𝑥𝑥𝑡𝑡.

• Then, 𝑢𝑢𝑡𝑡 = 𝑈𝑈�1𝐷𝐷−1𝑉𝑉′𝑉𝑉𝐷𝐷𝑈𝑈�1′ 𝑥𝑥𝑡𝑡 = 𝑈𝑈�1𝑈𝑈�1′ 𝑥𝑥𝑡𝑡 = 𝐼𝐼 − 𝑈𝑈�2𝑈𝑈�2′ 𝑥𝑥𝑡𝑡. I.e. 𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 + 𝑢𝑢𝑡𝑡.
• Clearly 𝐴𝐴 is full rank and 𝑢𝑢𝑡𝑡 ∼ 𝐼𝐼 0 .

• Suppose that there exists 𝛾𝛾 ∈ ℝ𝑟𝑟, 𝛾𝛾 ≠ 0 such that 𝛾𝛾′𝑧𝑧𝑡𝑡 ∼ 𝐼𝐼 0 .
• Then 𝑈𝑈�2𝛾𝛾 ′𝑥𝑥𝑡𝑡 ∼ 𝐼𝐼 0 .
• But 𝑈𝑈�2𝛾𝛾 is linearly independent of 𝛼𝛼 (as 𝛼𝛼 = 𝑈𝑈�1𝐷𝐷𝑉𝑉′) hence the matrix 𝛼𝛼 𝑈𝑈�2𝛾𝛾 is full rank, 

which contradicts our assumption that 𝑥𝑥𝑡𝑡 is cointegrated with rank 𝑟𝑟.
• Hence 𝛾𝛾′𝑧𝑧𝑡𝑡 ∼ 𝐼𝐼 1 for any 𝛾𝛾 ∈ ℝ𝑟𝑟.



“Error correcting” representation

• Given:
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡

• We have:
Δ𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙1 − 𝐼𝐼 𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡

= 𝜇𝜇 + 𝜙𝜙1 − 𝐼𝐼 𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝−2𝑥𝑥𝑡𝑡−𝑝𝑝+2
+ 𝜙𝜙𝑝𝑝−1 + 𝜙𝜙𝑝𝑝 𝑥𝑥𝑡𝑡−𝑝𝑝+1 − 𝜙𝜙𝑝𝑝Δ𝑥𝑥𝑡𝑡−𝑝𝑝+1 + 𝜀𝜀𝑡𝑡
= ⋯

= 𝜇𝜇 + �
𝑖𝑖=1

𝑝𝑝

𝜙𝜙𝑖𝑖 − 𝐼𝐼 𝑥𝑥𝑡𝑡−1 − �
𝑖𝑖=2

𝑝𝑝

𝜙𝜙𝑖𝑖 Δ𝑥𝑥𝑡𝑡−1 − �
𝑖𝑖=3

𝑝𝑝

𝜙𝜙𝑖𝑖 Δ𝑥𝑥𝑡𝑡−2 − ⋯

−𝜙𝜙𝑝𝑝Δ𝑥𝑥𝑡𝑡−𝑝𝑝+1 + 𝜀𝜀𝑡𝑡
• You might recognise this representation from the ADF test.



Relationship between vector error correcting 
models (VECM) and cointegration

• Assuming Δ𝑥𝑥𝑡𝑡 ∼ 𝐼𝐼 0 ,  every term is stationary except perhaps �
�

∑𝑖𝑖=1
𝑝𝑝 𝜙𝜙𝑖𝑖 −

𝐼𝐼 𝑥𝑥𝑡𝑡−1.
• Hence this term too must be stationary.

• Let 𝑟𝑟 be the rank of ∑𝑖𝑖=1
𝑝𝑝 𝜙𝜙𝑖𝑖 − 𝐼𝐼 .

• By (e.g.) the singular value decomposition, we may write ∑𝑖𝑖=1
𝑝𝑝 𝜙𝜙𝑖𝑖 − 𝐼𝐼 = 𝛼𝛼𝛼𝛼′, where 𝛼𝛼,𝛼𝛼 ∈

ℝ𝑛𝑛×𝑟𝑟 are full rank.
• Then 𝛼𝛼 must be a cointegration matrix for 𝑥𝑥𝑡𝑡, and so 𝑥𝑥𝑡𝑡 is cointegrated with rank 𝑟𝑟.
• If we choose 𝛼𝛼 such that 𝛼𝛼′𝛼𝛼 = 𝐼𝐼, then we may interpret 𝛼𝛼 as giving the rate of convergence 

to the long-run equilibrium determined by the cointegrating relationship.

• Suppose we knew 𝛼𝛼, then we could estimate 𝛼𝛼 and the other parameters 
consistently via OLS.

• This is the heart of the Engle and Granger (1987) two step-procedure.
• If we know the number of cointegrating relationships, then 𝛼𝛼 may be “super-consistently” 

pre-estimated using a simple regression in levels.



Consistency of a VAR with non-stationary 
variables

• The problem arises because although 𝔼𝔼𝜀𝜀𝑡𝑡𝑥𝑥𝑡𝑡−1′ = 0, if 𝑥𝑥𝑡𝑡−1 is non-stationary, 
then 𝑇𝑇−1 ∑𝑡𝑡=1𝑇𝑇 𝜀𝜀𝑡𝑡𝑥𝑥𝑡𝑡−1′ does not converge to 0 in probability.

• Non-stationary regressors act as if they were endogenous, with all this entails 
(bias, non-Gaussian limiting distributions etc.).

• However, VARs in levels are asymptotically efficient, and any linear 
combination of parameters that has standard asymptotics in a VECM model 
with known cointegration matrix will also have standard asymptotics when 
the VAR in level is run (Sims, Stock and Watson 1990).

• This includes alpha and the parameters on all lags except the first.
• It does not include 𝜇𝜇 or any included trends.

• Standard asymptotics on the first lag may be produced via the Toda and 
Yamamoto (1995) trick.

• Read a nice description here http://davegiles.blogspot.co.uk/2011/10/var-or-
vecm-when-testing-for-granger.html .

http://davegiles.blogspot.co.uk/2011/10/var-or-vecm-when-testing-for-granger.html


Alternative approaches

• Pre-testing for cointegration following Johansen (1991), then 
estimating the VECM model via ML.

• The danger is that this introduces a zero-one decision about the number of 
cointegration vectors.

• Running a so-called FM-VAR (Phillips 1995).
• Like a VAR in levels, but requires no knowledge of the degree of 

cointegration.
• Plus, it has lower finite sample bias, and (conservative) standard asymptotics

for all lags.
• However, it requires an estimate of variance at frequency 0, which is difficult 

in practice. (Read: impossible...)



Improving finite sample performance of 
VARs: For classical econometricians

• Use the boostrap!
• Idea: find a distribution that we can sample from which well approximates the 

distribution of the statistics of interest under the null.

• Two main ways of generating the sample:
1. The sieve bootstrap: Estimate a VAR (possibly with more lags), but imposing the null 

hypothesis. Keep the residuals. Run a simulation of that VAR, where the shocks are drawn 
uniformly at random from the stored residuals, with length equal to that of the data, then 
run the test on that simulated series. This provides one sample. Repeat this many times to 
get the distribution under the null.

2. The stationary block bootstrap: Difference source variables as necessary to induce 
stationarity in the data, unless running a test with the null of stationarity. Then construct a 
new stationary data series as follows. Pick a time at random from the data, and use this 
data point as the first observation. With some probability 𝑝𝑝, use the subsequent 
observation in the data as the subsequent observation in the new series (wrapping round 
if we currently have the final observation). With probability 1 − 𝑝𝑝 pick another time at 
random and use that data point instead. Repeat until a series the length of the original 
data has been generated, then run the test on that sample. Again, repeat this many times 
to get the distribution of the test statistic.



Bayesian approaches

• Bayesian statistics has no problems with unit roots generating particularly 
funny distributions, asymptotic, or otherwise.

• Bayesian stats 101:
• Assume we have some prior beliefs over the vector of parameters to be 

estimated, 𝜃𝜃. These priors are captured in 𝑝𝑝 𝜃𝜃 .
• Suppose we observe the data 𝑋𝑋. Then we should update our posterior beliefs 

about 𝜃𝜃 via Bayes-rule: 𝑝𝑝 𝜃𝜃 𝑋𝑋 = 𝑝𝑝 𝜃𝜃∩𝑋𝑋
𝑝𝑝 𝑋𝑋

= 𝑝𝑝 𝑋𝑋 𝜃𝜃 𝑝𝑝 𝜃𝜃
𝑝𝑝 𝑋𝑋

.

• The optimal posterior point estimate  of 𝑓𝑓 𝜃𝜃 (for any 𝑓𝑓 we are interested in) is 

given by 𝔼𝔼 𝑓𝑓 𝜃𝜃 𝑋𝑋 = ∫𝑓𝑓 𝜃𝜃 𝑝𝑝 𝑋𝑋 𝜃𝜃 𝑝𝑝 𝜃𝜃
𝑝𝑝 𝑋𝑋

𝑑𝑑𝜃𝜃.

• For some distributions. this integral will be analytically tractable.
• More generally, we have to evaluate it numerically.

• This may be done without knowing 𝑝𝑝 𝑋𝑋 using Markov Chain Monte Carlo (MCMC, aka the 
Metropolis-Hastings algorithm), which we will discuss later in the course.



Bayesian VARs

• A variety of priors have been proposed in the literature.
• Many use the conjugate-prior property of the Normal-Inverse-Wishart distribution.

• If the prior is from this family, the posterior will be too.

• One prior of this type popular in macro is the “Minnesota prior” of Doan, Litterman and 
Sims (1984).

• This has a distribution with prior mean equal to a random walk, and greater concentration in the 
prior at longer lags reflecting a belief that macro-time series have short memory.

• This solves the curse of dimensionality of VAR models.
• 𝑛𝑛𝑇𝑇 observations, but Ο 𝑛𝑛2𝑇𝑇1+𝑐𝑐 parameters.

• It also tends to reduce MSE.
• In fact this is true even in basic regression, OLS is the best linear unbiased estimator, but estimators that 

deliberately bias towards zero such as ridge regression have lower MSE.

• Normal-Inverse-Wishart type priors are probably over-used in the literature though.
• They were developed at a time when MCMC was computationally infeasible. It isn’t now.
• More reasonable priors would (at a minimum) truncate tails to rule out explosive behaviour a 

priori.
• It is also desirable to use priors with peaks at zero (i.e. a discontinuity in the first derivative), and 

possibly even mass there. These induce sparsity, which makes for more readily interpretable 
results. Appropriate choice of prior gives an “oracle property” that recovers the true DGP 
asymptotically.



Conclusion

• We’ve seen the basics of reduced form time series econometrics.
• This is all you need for macroeconomic forecasting.

• However, to make inferences about the macro-economy, we will 
need to be sure that we have identified structural parameters.

• I.e. we want to be sure that with different policy we wouldn’t have obtained 
different estimates.

• Next week we will start to look at structural approaches, including 
structural VARs.


	Introduction to time series econometrics and VARs
	Outline of today’s talk
	Structure of the course
	Reading for today
	Vector Spaces
	More on Vector Spaces
	The lag operator, and other linear maps
	Stochastic processes
	Autocovariance
	Autocorrelation and partial autocorrelation
	Stationarity: definitions
	Stationarity: relationship between the definitions
	Sample analogues of A.C.F. etc.
	Moving average processes
	Autoregressive processes
	ARMA processes
	Wold’s representation theorem
	Lag selection
	Spurious regression
	Vector auto-regressions
	Moments of a stationary VAR 1 
	Companion form representation
	Cointegration
	From common trends to cointegration
	From cointegration to common trends
	“Error correcting” representation
	Relationship between vector error correcting models (VECM) and cointegration
	Consistency of a VAR with non-stationary variables
	Alternative approaches
	Improving finite sample performance of VARs: For classical econometricians
	Bayesian approaches
	Bayesian VARs
	Conclusion

