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Abstract: Many important shocks in the real world are correlated not only in time, but also across some notion of space. 
This may be physical space, or the space of product, firm or household types. As a result of this spatial correlation, 
aggregate volatility emerges naturally from idiosyncratic shocks. In this paper, we introduce a tractable framework that 
allows for such shocks without necessitating the discretisation of space, or a departure from perturbation approximation. 
As a lead example, we construct a dynamic, stochastic, general equilibrium model of economic geography (DSGEEG). 
This model features population movement, firm dynamics and semi-endogenous growth. Using it, we show how 
transitory, spatially located productivity shocks can lead to permanent movements in population, helping to explain the 
decline of the U.S. mid-west. As an additional theoretical contribution, we derive conditions for the existence of 
continuous-in-space shock processes on a range of spaces of economic interest.  
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1. Introduction 

Modern dynamic macroeconomic models are driven by a variety of shocks, including shocks to 
productivity, discounting and the disutility of labour supply. Each of these is likely to be spatially correlated. 
Good ideas diffuse in the local neighbourhood, leading to spatial correlation in productivity. A desire to bring 
forward consumption, or to reduce labour supply might be driven by the weather, which is highly spatially 
correlated. Shocks may also be correlated across other notions of space, such as the space of product, firm or 
household types, or, more generally, any space of economic agents in which “nearby” agents are expected to 
share similar properties and experience similar shocks. For example, one might expect firms producing 
similar products to experience correlated shocks to their returns from R&D. Since such correlation allows 
idiosyncratic shocks to lead to aggregate volatility, this also gives a partial answer to the question of the 
sources of aggregate fluctuations. 

We make two key contributions in this paper. Firstly, we build a DSGE model incorporating the key features 
of the new economic geography literature, driven by a continuous in space productivity process. This allows 
us to see how spatially located productivity shocks might drive movements in population, helping to explain, 
for example, the decline of the U.S. mid-west. Secondly, we introduce a tractable framework that allows for 
shocks that are continuous in space, and hence correlated over it. We derive conditions for the existence of 
such processes for a range of spaces of economics interest. 

Our model features the key features highlighted by the new economic geography literature (see e.g. 
Krugman (1998) or Redding (2013) for reviews). Firstly, firms in the model produce differentiated varieties, 
and consumers have a taste for variety. Thus, in regions with high population, since there will be greater firm 
entry, there will also be greater productivity, via the variety effect. We model firm entry here following Bilbiie, 
Ghironi, and Melitz (2012). Since high population is associated with high productivity, high population 
regions are attractive to further inward migration. Concentration of population also reduces transport costs, 
further increasing effective productivity, particularly since we allow for a role for intermediates in 
production, following Krugman and Venables (1995). 

These agglomeration forces are counterbalanced by the populations’ need for living space, and their need 
to consume agricultural goods. As population increases in a location, more of it must be allocated for living 
space, and thus there is less remaining for the production of the agricultural good. Consequently, more of 
the agricultural good must be imported into the location, pushing up its relative price. This increases the 
desirability of locations producing significant quantities of the agricultural good. Additionally, an increase 
in productivity pushes up wages, and thus makes entry relatively more expensive in high population 
locations. 

While these dispersion forces are enough for the existence of a steady-state with uniform population, it 
will turn out that they are insufficient for the local stability of that steady-state. Small, temporary, exogenous 
changes in productivity in one location can drive a move to an asymmetric steady-state. Thus, cities are an 
endogenous outcome of our model in steady-state, as in new economic geography models such as Krugman 
(1991). However, due to the difficulty in working with asymmetric steady-states, we work with a version of 
the model in which there is an additional dispersive force: a preference for living in a location with moderate 
population. We calibrate the strength of this force so that the model is only just locally stable. Under this 
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calibration, positive productivity shocks have extremely persistent effects on population. In essence, the 
location that gets “lucky” originally will have a permanent advantage. 

Apart from the specifics of our model, we also contribute to the modelling of stochastic processes that are 
continuous in space. For example, if space is modelled as a circle, then it may be natural to draw shocks across 
space from a Gaussian periodic Ornstein-Uhlenbeck process (Pedersen 2002). These may be thought of as the 
continuous time (here: space) equivalent of an autoregressive process, conditional on their values being 
identical at the ends of the unit interval. As a result, a single shock process generates both idiosyncratic and 
aggregate volatility, leading to both substantial heterogeneity across agents, as well as aggregate movement. 
We go on to generalise this construction to arbitrary compact spaces equipped with Radon measures. 

The existing literature contains many techniques for solving heterogeneous agent models in which shocks 
are i.i.d. across agents. These generally necessitate time-consuming global solution methods (see e.g. den 
Haan 2010). Of course, one way of taking a local approximation to a heterogeneous agent model is to solve 
the model with a finite collection of agents. However, getting reasonable accuracy along these lines requires 
a prohibitively high number of agents, given the 1

�𝑁𝑁
  rate guaranteed by the central limit theorem. In our 

modelling framework however, due to the continuity and bounded variation of the driving stochastic 
processes, accurate solution does not require large state spaces. This makes taking a perturbation solution to 
the model much more tractable, which is the approach we pursue here. 

Interestingly, Desmet and Rossi-Hansberg (2014) write that: “Incorporating a continuum of locations into 
a dynamic framework is a challenging task for two reasons: it increases the dimensionality of the problem by 
requiring agents to understand the distribution of economic activity over time and over space, and clearing 
goods and factor markets is complex because prices depend on trade and mobility patterns. These two 
difficulties typically make spatial dynamic models intractable, both analytically and numerically.” That our 
approach enables us to solve rich dynamic spatial models without drastic simplification is a considerable 
advantage to our approach. 

1.1. The puzzle of aggregate volatility 
Spatial correlation provides one partial explanation for the emergence of aggregate volatility. The standard 

puzzle is as follows: suppose an economy comprises 𝑁𝑁 firms, each of which receive an i.i.d. productivity 
draw with finite variance. Then by the Lindeberg–Lévy CLT, as 𝑁𝑁 → ∞, the standard deviation of aggregate 
productivity declines as 1

�𝑁𝑁
. Modern economies have millions of firms, so a back of the envelope calculation 

suggests they ought to have a miniscule variance. Our solution to the puzzle is almost trivial, we just assume 
that firms receive correlated shocks, as indeed they do in the real world. While perhaps not particularly 
“deep”, this story both captures the micro-level data on correlation, resolves some macro-level puzzles, and 
provides a technical approach for addressing important macroeconomic issues. 

This paper’s story of the source of aggregate variation is a complement to those of Gabaix (2011) and 
Acemoglu et al. (2012). Gabaix (2011) argues that aggregate fluctuations may be explained if firms receive a 
multiplicative productivity shock with magnitude unrelated to their size and, the distribution of firm sizes 
is fat-tailed, so the economy contains large firms. Gabaix shows that in the extreme case of a 𝑠𝑠−1 tail to the 
firm size distribution, aggregate volatility declines as 1

log 𝑁𝑁, meaning that the observed aggregate volatility 

need not be particularly surprising. 
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However, this explanation can at best be part of the story, as the law of large numbers applies just as well 
within a large firm (comprised of many workers, in many factories, producing many different products or 
components) as it does across firms. So, we ought to be as surprised that the variance of productivity does 
not wash out in large firms, as we are that it does not wash out in aggregate. Gabaix suggests that the units 
that make up a firm may themselves follow a power-law size distribution, but the justification for this is 
unclear: if firms or firm units are receiving shocks with a second moment, it is hard to see how a power-law 
size distribution could emerge in the first place, given such a distribution has infinite second moment. Our 
model gives one way of completing Gabaix’s story: if the many products produced by large firms are all 
nonetheless close in product space, then they will be tightly correlated, and there will still be substantial 
variance at the firm level.  

1.2. Other related literature 
There have been several prior dynamic models of economic geography, though these have usually been 

non-stochastic, with discrete space and simplifications which remove any forward-looking component to 
economic decisions. Examples preserving some dynamic component to decisions include the model of Caselli 
and Coleman (2001) and Eckert & Peters (2017), who build OLG models to explain structural change featuring 
capital investment decisions. Models with a static or purely backward looking solution include Michaels, 
Rauch, & Redding (2012), and Nagy (2016). Example with continuous space include Desmet & Rossi-
Hansberg (2014) and Desmet, Nagy, and Rossi-Hansberg (2015), who propose models which, although 
dynamic, have a solution that is backwards looking. Examples of dynamic economic geography models with 
a stochastic component include Duranton (2007), who presents a version of the Grossman & Helpman (1991) 
model with a fixed discrete set of cities, and Rossi-Hansberg and Wright (2007), who produce a model with 
many point cities to match the city size distribution. In both cases, restrictive assumptions are made to ensure 
tractability. 

On the macro side, there have been a few simple non-stochastic models involving continuous space, but 
without allowing for substantial interactions between locations. These include Brito (2004) and Boucekkine, 
Camacho, & Zou (2009), who present Ramsey models with continuous space, as well as Quah (2002), who 
presents a version of the Lucas (1988) model on the surface of a sphere. 

Relative to the aforementioned papers, we are almost unconstrained in our model building. We will have 
continuous space, with a distribution of population over the space that is changing over time in response to 
opportunities. We will have both many state variables, and many forward-looking variables, and we will 
need to impose transversality constraints in solving the model. We also allow for a rich shock structure, with 
both spatially located shocks, and aggregate shocks. 

Our model will be partly driven by spatially correlated productivity shocks. There has been a large 
literature finding the evidence for such spatial correlation. Some recent papers include Glass, Kenjegalieva, 
and Paez-Farrell (2013), Cardamone (2014), Glass, Kenjegalieva, and Sickles (2016). 

1.3. Outline 
The structure of our paper is follows. In Section 2, we introduce spatially correlated shock processes. We 

also present a first simple model with spatially correlated shocks, and discuss the tools we have produced to 
assist with the simulation of such models. The theoretical results on existence of continuous stochastic 
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processes are relegated to Appendix A, due to their technical nature. In Section 2.3, we describe our dynamic 
stochastic general equilibrium model of economic geography (DSGEEG). Section 4 presents theoretical and 
computational results from this model. Section 5 concludes. 

2. Spatially correlated shock processes 

2.1. Fixing ideas 
In macroeconomics, it is usually helpful to work with continuums of types, as it ensures individuals have 

no impact on aggregates. Given this, in order for nearby types to receive correlated shock draws, it is sufficient 
that the drawn shock is continuous in type space. 

As an example, to fix ideas, suppose that firms produce products of types indexed by [0,1]. We would 
expect firms producing similar products to receive similar productivity shocks. We might then suppose that 
if 𝑎𝑎𝑥𝑥,𝑡𝑡 is the log-productivity of firm 𝑥𝑥 ∈ [0,1] at 𝑡𝑡, then: 

𝑎𝑎𝑥𝑥,𝑡𝑡 = �1 − 𝜌𝜌�𝜇𝜇 + 𝜌𝜌𝑎𝑎𝑥𝑥,𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑥𝑥,𝑡𝑡, 
where 𝜀𝜀𝑥𝑥,𝑡𝑡  is a continuous function of 𝑥𝑥 . By induction, it is then trivial to show that 𝑎𝑎𝑥𝑥,𝑡𝑡  is a continuous 
function of 𝑥𝑥  as well, so firm productivity is always spatially correlated. Later we will consider 
generalisations of this structure in which productivity today can depend on the lagged productivity of nearby 
firms as well. 

2.2. Simple examples 
If we wanted a discrete time stationary stochastic process, using a Gaussian AR(1) process would be the 

natural choice. Ornstein-Uhlenbeck processes are the continuous equivalent of Gaussian AR(1) processes, 
and are defined on ℝ. Using a draw from an Ornstein-Uhlenbeck process is one possibility when we want 
shocks on e.g. the type space [0,1]. These processes are characterised by Gaussian marginals, with an auto-
covariance function of the form: 

cov(𝜀𝜀𝑥𝑥, 𝜀𝜀𝑥𝑥̃) = 𝜎𝜎2 exp{−𝜁𝜁|𝑥𝑥 − 𝑥𝑥|̃}, 
where 𝜎𝜎2 scales the variance, and 𝜁𝜁 > 0 controls the persistence. An example of a realisation of such a process 
is given in Figure 1. As 𝜁𝜁 → 0, we get Brownian motion, and as 𝜁𝜁 → ∞ we get “white-noise”. It turns out that 
Ornstein-Uhlenbeck processes are the unique stationary, Gaussian, Markovian process on ℝ (Doob 1942). 
The other processes we look at in Appendix A will not be Markovian, but whereas the Markovian assumption 
is natural in time, in space it does not have any particular intuitive appeal. 

One downside to using [0,1] as the type space is that types at the end of the interval may end up with 
different properties. For example, if space is physical space, and some goods are produced at each location, 
then households at the end of the interval will have to pay higher transport costs. It is often convenient then 
to work with spaces which are invariant under translation, since this will ensure that all points are a priori 
the same. One way to do this is to work with circles, spheres or torii. (Recall that a torus is a “donut” shape. 
It may be thought of as a square in which when you move off the top edge, you reappear on the bottom edge, 
and when you move off the left edge, you reappear on the right.) 
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Figure 1: A realisation of an Ornsein-Uhlenbeck process with 𝝈𝝈 = 𝟏𝟏 and 𝜻𝜻 = 𝟖𝟖 

 
It turns out that the natural Gaussian continuous stochastic process on a circle or a torus is characterised 

by an auto-covariance function of the form: 
cov(𝜀𝜀𝑥𝑥, 𝜀𝜀𝑥𝑥̃) = 𝜎𝜎2𝑠𝑠�𝜁𝜁, 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃�, 

where 𝜎𝜎2 scales the variance, 𝜁𝜁 > 0 controls the persistence, 𝑑𝑑 is the distance function (metric) being used on 
the circle (identified with [0,1]) or torus (identified with [0,1] × [0,1]) and for all 𝜁𝜁 , 𝒹𝒹 > 0: 

𝑠𝑠�𝜁𝜁, 𝒹𝒹� =
exp�−𝜁𝜁𝒹𝒹 + 𝜁𝜁𝑑𝑑�̅ + exp�𝜁𝜁𝒹𝒹 − 𝜁𝜁𝑑𝑑�̅

exp�𝜁𝜁𝑑𝑑�̅ + exp�−𝜁𝜁𝑑𝑑�̅
, 

where: 
𝑑𝑑 ̅≔ sup

𝑥𝑥,𝑥𝑥∈̃𝑋𝑋
𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃ 

is the maximum distance between points. 
Further examples, along with proofs that these processes are well-defined are given in Appendix A. 

2.3. A yeoman farmer model 
To illustrate the basic idea of a DSGE model driven by a stochastic process that is continuous across space, 

we first present a very simple yeoman farmer model. 
Suppose physical space is the circle, which we identify with [0,1]. At each point in space, there is a yeoman 

farmer, who owns the land at that point. We assume that there is no market in land, perhaps because owning 
land is necessary for survival. Production at a point 𝑥𝑥 ∈ [0,1] takes place with the production function 𝑌𝑌𝑥𝑥,𝑡𝑡 =
𝐴𝐴𝑥𝑥,𝑡𝑡

𝛼𝛼 𝐿𝐿𝑥𝑥,𝑡𝑡
1−𝛼𝛼, where 𝐴𝐴𝑥𝑥,𝑡𝑡 is the productivity of land at 𝑥𝑥 and 𝐿𝐿𝑥𝑥,𝑡𝑡 is the labour supply from the yeoman farmer at 

𝑥𝑥. All farmers produce the same good, which is traded in a perfectly competitive market, and which we take 
as the numeraire. We suppose that there are no markets in state contingent securities, but that farmers can 
trade a one period zero net supply non-stochastic bond (an IOU). 
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Given this, farmers choose 𝐿𝐿𝑥𝑥,𝑡𝑡 and bond holdings 𝐵𝐵𝑥𝑥,𝑡𝑡 to maximise: 

𝔼𝔼0 � 𝛽𝛽𝑡𝑡

⎣
⎢⎡log 𝐶𝐶𝑥𝑥,𝑡𝑡 −

𝐿𝐿𝑥𝑥,𝑡𝑡
1+𝜈𝜈

1 + 𝜈𝜈⎦
⎥⎤

∞

𝑡𝑡=0
 

subject to the constraint that: 

𝐶𝐶𝑥𝑥,𝑡𝑡 + 𝐵𝐵𝑥𝑥,𝑡𝑡 +
𝜙𝜙
2 𝐵𝐵𝑥𝑥,𝑡𝑡

2 = 𝑌𝑌𝑥𝑥,𝑡𝑡 + 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑥𝑥,𝑡𝑡−1, 

where 𝜙𝜙 gives a cost of bond holdings, to ensure they are stationary. This leads to the first order conditions: 
(1 − 𝛼𝛼)𝐴𝐴𝑥𝑥,𝑡𝑡

𝛼𝛼 = 𝐿𝐿𝑥𝑥,𝑡𝑡
𝛼𝛼+𝜈𝜈𝐶𝐶𝑥𝑥,𝑡𝑡, 

1 + 𝜙𝜙𝐵𝐵𝑥𝑥,𝑡𝑡 = 𝛽𝛽𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡
𝐶𝐶𝑥𝑥,𝑡𝑡

𝐶𝐶𝑥𝑥,𝑡𝑡+1
. 

We may define aggregated variables by integration: 

𝑌𝑌𝑡𝑡 ≔ � 𝑌𝑌𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥
1

0
,   𝐶𝐶𝑡𝑡 ≔ � 𝐶𝐶𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥

1

0
,   𝐵𝐵𝑡𝑡 ≔ � 𝐵𝐵𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥

1

0
. 

With these definitions, the market clearing condition is just that 𝐵𝐵𝑡𝑡 = 0, which, providing 𝜙𝜙 ≈ 0, implies 𝑌𝑌𝑡𝑡 ≈
𝐶𝐶𝑡𝑡. Links between households in this model are quite weak, and entirely work via 𝑅𝑅𝑡𝑡. 

It just remains for us to specify a stochastic process for 𝐴𝐴𝑥𝑥,𝑡𝑡. In particular, we let 𝐴𝐴𝑥𝑥,𝑡𝑡 = exp 𝑎𝑎𝑥𝑥,𝑡𝑡, and suppose 
that: 

𝑎𝑎𝑥𝑥,𝑡𝑡 = 𝜌𝜌
⎣
⎢⎡(1 − 𝜒𝜒)𝑎𝑎𝑥𝑥,𝑡𝑡−1 + 𝜒𝜒

∫ 𝑠𝑠�𝜂𝜂, 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃�𝑎𝑎𝑥𝑥,̃𝑡𝑡−1 𝑑𝑑𝑥𝑥̃1
0

∫ 𝑠𝑠�𝜂𝜂, 𝑑𝑑(0, 𝑥𝑥)̃� 𝑑𝑑𝑥𝑥̃1
0 ⎦

⎥⎤ + 𝜎𝜎𝜀𝜀𝑥𝑥,𝑡𝑡, 

where: 
𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃ = min{|𝑥𝑥 − 𝑥𝑥|̃, 1 − |𝑥𝑥 − 𝑥𝑥|̃}, 

and where 𝜀𝜀𝑡𝑡: [0,1] → ℝ is a draw from the mean zero Gaussian process with covariance: 
cov�𝜀𝜀𝑥𝑥,𝑡𝑡, 𝜀𝜀𝑥𝑥,̃𝑡𝑡� = 𝑠𝑠�𝜁𝜁 , 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃�, 

where 𝑠𝑠  is as defined in the previous section. This stochastic process features spatial spill-overs in 
productivity, controlled by 𝜒𝜒 and 𝜂𝜂. When 𝜒𝜒 = 0, productivity at a location today is only a function of the 
shock and the previous value of productivity at that location. However, as 𝜒𝜒 increases, productivity becomes 
dependent on previous productivity at nearby locations, where 𝜂𝜂 defines the meaning of “nearby”. 

Despite these spatial spill-overs, it turns out that aggregate log-productivity still follows an AR(1) process. 
To see this, define aggregate log-productivity by 𝑎𝑎𝑡𝑡 ≔ ∫ 𝑎𝑎𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥1

0  and the aggregate shock by 𝜀𝜀𝑡𝑡 ≔ ∫ 𝜀𝜀𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥1
0 . 

Then by exchanging the order of integration, we have that: 
𝑎𝑎𝑡𝑡 = 𝜌𝜌𝑎𝑎𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡, 

so average log-productivity follows a standard AR(1). It is also easy to see that 𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁�0, ∫ 𝑠𝑠�𝜁𝜁, 𝑑𝑑(0, 𝑥𝑥)̃� 𝑑𝑑𝑥𝑥̃1
0 �, 

and that ∫ 𝑠𝑠�𝜁𝜁 , 𝑑𝑑(0, 𝑥𝑥)̃� 𝑑𝑑𝑥𝑥̃1
0 < 1, so the variance of aggregate productivity is lower than that of idiosyncratic 

productivity, in line with the data. 

2.4. Simulating DSGE models with continuous in space stochastic processes 
This model, like all the models we are interested in, possesses an infinite dimensional state, making 

simulation non-trivial. However, by the continuity of the shock, all variables including the states are 
continuous in space. Furthermore, it is easy to show that they are all of bounded variation. Consequently, 
their integrals may be approximated arbitrarily well by their values at finitely many points, via standard 
quadrature methods, and convergence of this quadrature will be much faster than with Monte Carlo (as used 
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say in the Krusell-Smith algorithm). For example, if the trapezium rule is used on a circle, then the error will 
fall as Ο� 1

𝑛𝑛2� (Rahman and Schmeisser 1990), rather than Ο � 1
�𝑛𝑛

� with Monte Carlo. 

These results carry across to convergence in distribution. For example, if we let 𝑥𝑥 ↦ 𝜀𝜀𝑥𝑥,𝑛𝑛 be the stochastic 
process on the circle in which �𝜀𝜀𝑎𝑎

𝑛𝑛,𝑛𝑛�
𝑎𝑎=1,…,𝑛𝑛

 is jointly normally distributed with mean zero and covariance 

cov�𝜀𝜀𝑎𝑎
𝑛𝑛,𝑛𝑛, 𝜀𝜀𝑏𝑏

𝑛𝑛,𝑛𝑛� = exp�−𝜁𝜁𝑑𝑑�𝑎𝑎
𝑛𝑛 , 𝑏𝑏

𝑛𝑛��, and where 𝜀𝜀𝑥𝑥,𝑛𝑛 is given by linear interpolation away from these points, and 

we let 𝑥𝑥 ↦ 𝜀𝜀𝑥𝑥 be the Gaussian stochastic process on the circle with mean zero and covariance cov�𝜀𝜀𝑥𝑥,𝑡𝑡, 𝜀𝜀𝑥𝑥,̃𝑡𝑡� =
exp[−𝜁𝜁𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃], then it is a theorem (Pedersen 2002) that �𝜀𝜀𝑥𝑥,𝑛𝑛�𝑥𝑥∈[0,1] converges in distribution to [𝜀𝜀𝑥𝑥]𝑥𝑥∈[0,1] 
as 𝑛𝑛 → ∞, uniformly in 𝑥𝑥. 

Our approach to simulation then is to choose a regular grid of points in space, and then to approximate 
the value of endogenous variables at points off this grid by linear interpolation. Having fixed the grid, we 
can then solve the model by standard methods for finite dimensional models; indeed, we may even use 
Dynare  (Adjemian et al. 2011). Of course, manually adding equations for every point on the grid would be 
extremely time consuming. Luckily though, Dynare provides a pre-processor language that enables one to 
loop over points. 

To assist further with the creation of spatial models, we provide a Dynare toolkit that can automatically 
define spatially correlated shock processes, including ones with spatial diffusion. It is available under an 
open source license from: https://github.com/tholden/DynareTransformationEngine. The model presented 
in this section is contained in “ExampleWithSpatialShocks.mod” in that repository. For a more complete 
example of all of the capabilities of this toolkit, see the code for this paper’s main model here: 
https://github.com/tholden/DynamicSpatialModel. 

2.5. Simulation results from our yeoman farmer model 
We parameterise the model for quarterly periods as follows: 

𝛼𝛼 = 0.3, 𝛽𝛽 = 0.99, 𝜈𝜈 = 2, 𝜌𝜌 = 0.95, 𝜒𝜒 = 0.5, 𝜂𝜂 = 8, 𝜁𝜁 = 4, 𝜎𝜎 = 0.02, 𝜙𝜙 = 10−6 
and we use a 100-point approximation to the continuum,3 and a second order perturbation approximation.  

Figure 2 shows the sample paths from the final 1000 periods (250 years) of a 10,000 period (2,500 years) 
long simulation. Using the aforementioned Dynare toolkit, this simulation run took under 6 minutes. We 
graph both the aggregates and the cross-sectional distributions on the same plot. For the cross-sectional 
distribution, bright colours correspond to high-values. It is clear that there is substantial heterogeneity in 
consumption, chiefly driven by the accumulated bond holdings (which is close to following a random walk4), 
though shocks also generate short-term dispersion in consumption. 

                                                      
3 As an indication of accuracy, note that with 50 points, the integral used in calculating ∫ 𝑠𝑠�𝜂𝜂, 𝑑𝑑(0, 𝑥𝑥)̃� 𝑑𝑑𝑥𝑥̃1

0  is already accurate to 0.05%. 
4 This near random walk (with 𝜙𝜙 ≈ 0) is driven by the same factors that drive the standard random walk assets result in the open 
economy literature. 

https://github.com/tholden/DynareTransformationEngine
https://github.com/tholden/DynamicSpatialModel
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The effects of 𝜒𝜒, which governs whether productivity responds to the lag of individual productivity (𝜒𝜒 =

0), or local productivity (𝜒𝜒 = 1), may be seen from Figure 3 and Figure 4. With 𝜒𝜒 = 0, there is much greater 
spatial variance in productivity, which leads also to greater spatial variance in consumption. 
  

Figure 2: Simulation results from the yeoman farmer model, with 𝝌𝝌 = 𝟎𝟎. 𝟓𝟓. 
The x-axis is measured in years. Bright colours are high values. 
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Figure 3: Simulation results from the yeoman farmer model, with 𝝌𝝌 = 𝟏𝟏. 
The x-axis is measured in years. Bright colours are high values. 

Figure 4: Simulation results from the yeoman farmer model, with 𝝌𝝌 = 𝟎𝟎.  
The x-axis is measured in years. Bright colours are high values. 
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3. A dynamic stochastic general equilibrium economic geography model 

We now present our DSGE model of economic geography. This model combines standard real business 
cycle features, with features from the workhorse models of new economic geography of e.g. Krugman (1991). 
The work of Bilbiie, Ghironi, and Melitz (2012) on firm dynamics is used to help bridge the gap between these 
two literatures. We are careful in our modelling choices to ensure that the model is consistent with balanced 
growth. This rules out non-homothetic preferences, for example. 

The model features two types of final goods, agricultural products and manufactured products. 
Manufactured products are an aggregate of differentiated varieties produced by the firms in the model. Both 
these differentiated varieties and agriculture are produced using raw goods as an input, where raw goods 
are produced from capital, labour and intermediate inputs of manufactured goods. These raw goods may be 
thought of as providing production services. They are introduced chiefly to avoid complicating the model 
with multiple varieties of capital and labour. In agricultural production, the raw good is combined with land, 
whereas it is the sole input in the production of manufactured goods. For tractability, agricultural goods will 
be freely transportable and tradeable across locations, and manufactured goods will be untradeable. The 
differentiated varieties will be tradeable however, and will be subject to iceberg transportation costs. 

Firms, capital and population will all have a density over space. We denote the set of points in space by 𝑋𝑋 
and assume that land is uniformly distributed over 𝑋𝑋. We normalise the total measure of 𝑋𝑋 to 1, so ∫ d𝑥𝑥𝑋𝑋 =

1. We assume that a metric is defined on 𝑋𝑋, giving the distance between any 𝑥𝑥, 𝑥𝑥̃ ∈ 𝑋𝑋 as 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃. 
At each location, there will be a representative household. For simplicity though, we assume that all these 

households are part of one representative family, and that household decisions are coordinated by a family 
head, who maximises a utilitarian social welfare function. As usual, this is equivalent to assuming the 
existence of complete markets between households. While assuming complete markets may be a little of a 
stretch, it greatly enhances the tractability of our model. Without this assumption, at each point in space there 
would be a distribution of asset holdings, as households who moved to that location would come with 
different assets to those who were already there. Furthermore, the decision of a household on where to move 
would be complicated by the need to consider what their utility would be at some location, which will differ 
in general from the utility of the households already there. If the reader is sceptical of the existence of 
complete markets in reality, it may help to think of our assumptions as giving the outcomes that a social 
planner could achieve with sufficient instruments. If real government policy is sufficiently close to optimal, 
then our model will provide a good guide to real world outcomes. 

3.1. Manufactured good aggregator at 𝒙𝒙 ∈ 𝑿𝑿 
The non-tradeable manufactured final good at location 𝑥𝑥 is produced by a perfectly competitive industry 

with access to the CES production function: 

𝑌𝑌𝑥𝑥,𝑡𝑡 =
⎣
⎢⎢
⎡� � �

𝑌𝑌𝑗𝑗,𝑥𝑥,̃𝑥𝑥,𝑡𝑡

exp[𝜏𝜏𝑡𝑡𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃]�
1

1+𝜆𝜆

𝑑𝑑𝑗𝑗
𝐽𝐽�̃�𝑥,𝑡𝑡

0
𝑑𝑑𝑥𝑥̃

𝑋𝑋 ⎦
⎥⎥
⎤

1+𝜆𝜆

. (1) 

Here, 1+𝜆𝜆
𝜆𝜆   is the elasticity of substitution between varieties, 𝜏𝜏𝑡𝑡  gives the strength of iceberg transportation 

costs in period 𝑡𝑡, 𝐽𝐽𝑥𝑥,̃𝑡𝑡 gives the mass of firms located at 𝑥𝑥 ̃in period 𝑡𝑡, and 𝑌𝑌𝑗𝑗,𝑥𝑥,̃𝑥𝑥,𝑡𝑡 denotes the quantity of the 

differentiated variety produced by firm 𝑗𝑗  at 𝑥𝑥 ̃ that is used in producing the final manufactured good at 
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location 𝑥𝑥 in period 𝑡𝑡. For convenience, we relabel firms each period, so that even with firm exit, the measure 
of firms located at 𝑥𝑥 ̃ in period 𝑡𝑡  is still given by �0, 𝐽𝐽𝑥𝑥,̃𝑡𝑡� . Allowing for imperfect substitutability between 
varieties is crucial both because it allows for an increase in the measure of firms to increase productivity, 
providing an agglomerative force, and because it allows for the introduction of transport costs without having 
to deal with positivity constraints on consumption of varieties. Transport costs provide further agglomerative 
pressure, since in locations producing large numbers of varieties, less will need to be spent on transport. 

In period 𝑡𝑡, the manufactured final good at 𝑥𝑥 is sold at a price 𝑃𝑃𝑥𝑥,𝑡𝑡, and the input produced by firm 𝑗𝑗 in 
location 𝑥𝑥 ̃is sold at a price 𝑃𝑃𝑗𝑗,𝑥𝑥,̃𝑡𝑡. Thus, the profits of firms making the final manufactured good are given by: 

𝑃𝑃𝑥𝑥,𝑡𝑡𝑌𝑌𝑥𝑥,𝑡𝑡 − � � 𝑃𝑃𝑗𝑗,𝑥𝑥,̃𝑡𝑡𝑌𝑌𝑗𝑗,𝑥𝑥,̃𝑥𝑥,𝑡𝑡 𝑑𝑑𝑗𝑗
𝐽𝐽�̃�𝑥,𝑡𝑡

0
𝑑𝑑𝑥𝑥̃

𝑋𝑋
.  

From the first order condition for 𝑌𝑌𝑗𝑗,𝑥𝑥,̃𝑥𝑥,𝑡𝑡 we then have that: 

𝑌𝑌𝑗𝑗,𝑥𝑥,̃𝑥𝑥,𝑡𝑡 = 𝑌𝑌𝑥𝑥,𝑡𝑡 �
𝑃𝑃𝑥𝑥,𝑡𝑡
𝑃𝑃𝑗𝑗,𝑥𝑥,̃𝑡𝑡

�
1+𝜆𝜆

𝜆𝜆
exp �−

𝜏𝜏𝑡𝑡
𝜆𝜆 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃� , (2) 

so demand is decreasing in the distance to the seller of the variety in question. From substituting equation 
(2) into equation (1), we have that: 

𝑃𝑃𝑥𝑥,𝑡𝑡 = �� � �𝑃𝑃𝑗𝑗,𝑥𝑥,̃𝑡𝑡 exp[𝜏𝜏𝑡𝑡𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃]�−1
𝜆𝜆 𝑑𝑑𝑗𝑗

𝐽𝐽�̃�𝑥,𝑡𝑡

0
𝑑𝑑𝑥𝑥̃

𝑋𝑋
�

−𝜆𝜆
. (3) 

Furthermore, equation (2) implies that the total demand for the good produced by firm 𝑗𝑗 in location 𝑥𝑥 at 𝑡𝑡 is 
given by: 

𝑌𝑌𝑗𝑗,𝑥𝑥,𝑡𝑡 ≔ � 𝑌𝑌𝑗𝑗,𝑥𝑥,𝑥𝑥,̃𝑡𝑡 𝑑𝑑𝑥𝑥̃
𝑋𝑋

= 𝑃𝑃𝑗𝑗,𝑥𝑥,𝑡𝑡
−1+𝜆𝜆

𝜆𝜆 𝑌𝑌����𝑥𝑥,𝑡𝑡, (4) 

where: 

𝑌𝑌����𝑥𝑥,𝑡𝑡 ≔ � 𝑌𝑌𝑥𝑥,̃𝑡𝑡𝑃𝑃𝑥𝑥,̃𝑡𝑡

1+𝜆𝜆
𝜆𝜆 exp �−

𝜏𝜏𝑡𝑡
𝜆𝜆 𝑑𝑑(𝑥𝑥,̃ 𝑥𝑥)� 𝑑𝑑𝑥𝑥̃

𝑋𝑋
. 

3.2. Firms at 𝒙𝒙 ∈ 𝑿𝑿 
The 𝑗𝑗th firm at location 𝑥𝑥 producing a differentiated variety has access to the production function: 

𝑌𝑌𝑗𝑗,𝑥𝑥,𝑡𝑡 = 𝑍𝑍𝑗𝑗,𝑥𝑥,𝑡𝑡, (5) 
where 𝑍𝑍𝑗𝑗,𝑥𝑥,𝑡𝑡 is the amount of the raw good (“production services”) it purchases in period 𝑡𝑡, at a price of 𝒫𝒫𝑥𝑥,𝑡𝑡. 

The firm maximises its profits which are given by: 

𝑌𝑌𝑗𝑗,𝑥𝑥,𝑡𝑡�𝑃𝑃𝑗𝑗,𝑥𝑥,𝑡𝑡 − 𝒫𝒫𝑥𝑥,𝑡𝑡� = �𝑃𝑃𝑗𝑗,𝑥𝑥,𝑡𝑡
−1

𝜆𝜆 − 𝒫𝒫𝑥𝑥,𝑡𝑡𝑃𝑃𝑗𝑗,𝑥𝑥,𝑡𝑡
−1+𝜆𝜆

𝜆𝜆 � 𝑌𝑌����𝑥𝑥,𝑡𝑡. 

From the first order condition for 𝑃𝑃𝑗𝑗,𝑥𝑥,𝑡𝑡, we derive the usual mark-up pricing condition: 
𝑃𝑃𝑗𝑗,𝑥𝑥,𝑡𝑡 = (1 + 𝜆𝜆)𝒫𝒫𝑥𝑥,𝑡𝑡. (6) 

Consequently, profits are equal across firms located at 𝑥𝑥 in period 𝑡𝑡, and are given by: 

Π𝑥𝑥,𝑡𝑡 ≔
𝜆𝜆

1 + 𝜆𝜆 (1 + 𝜆𝜆)−1
𝜆𝜆𝒫𝒫𝑥𝑥,𝑡𝑡

−1
𝜆𝜆𝑌𝑌����𝑥𝑥,𝑡𝑡. 

Furthermore, from substituting equation (6) into equation (3) we have that: 

𝑃𝑃𝑥𝑥,𝑡𝑡 = (1 + 𝜆𝜆) �� 𝐽𝐽𝑥𝑥,̃𝑡𝑡�𝒫𝒫𝑥𝑥,𝑡𝑡 exp[𝜏𝜏𝑡𝑡𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃]�−1
𝜆𝜆 𝑑𝑑𝑥𝑥̃

𝑋𝑋
�

−𝜆𝜆
. 

Much as in the model of Bilbiie, Ghironi, and Melitz (2012), firm entry requires paying 𝜙𝜙𝑡𝑡 units of the raw 
input, and firms exit at an exogenous rate, 𝛿𝛿𝐽𝐽 . Since firms are owned by the representative family, they 
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discount the future with that family’s, stochastic discount factor, which we denote by Ξ𝑡𝑡+1. This leads to the 
free entry condition: 

𝜙𝜙𝑡𝑡𝒫𝒫𝑥𝑥,𝑡𝑡 = 𝔼𝔼𝑡𝑡 � �� Ξ𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� �1 − 𝛿𝛿𝐽𝐽�𝑠𝑠Π𝑥𝑥,𝑡𝑡+𝑠𝑠

∞

𝑠𝑠=0
, 

i.e.: 
𝜙𝜙𝑡𝑡𝒫𝒫𝑥𝑥,𝑡𝑡 = Π𝑥𝑥,𝑡𝑡 + �1 − 𝛿𝛿𝐽𝐽�𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝜙𝜙𝑡𝑡+1𝒫𝒫𝑥𝑥,𝑡𝑡+1. 

3.3. Capital holding company at 𝒙𝒙 ∈ 𝑿𝑿  
Without loss of generality, we assume that the capital stock at location 𝑥𝑥  is owned by a representative 

capital holding company that is located there. The capital stock at 𝑥𝑥 evolves according to: 

𝐾𝐾𝑥𝑥,𝑡𝑡 = (1 − 𝛿𝛿𝐾𝐾)𝐾𝐾𝑥𝑥,𝑡𝑡−1 + �1 − Φ �
𝐼𝐼𝑥𝑥,𝑡𝑡

𝐼𝐼𝑥𝑥,𝑡𝑡−1
�� 𝐼𝐼𝑥𝑥,𝑡𝑡, (7) 

where 𝛿𝛿𝐾𝐾 is the depreciation rate of capital, and Φ reflects Christiano, Eichenbaum, and Evans (2005) style 
investment adjustment costs, with Φ(1) = Φ′(1) = 0 and Φ′′(1) > 0. Capital is rented out at a rate ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡 per 
unit at location 𝑥𝑥  in period 𝑡𝑡  and is immovable across locations. Including investment adjustment costs 
ensures that it is hard to move capital across locations by disinvesting in one location and reinvesting 
somewhere else. It thus helps to give persistence to the location of clusters of economic activity (“cities”).  

The representative capital holding company at 𝑥𝑥 chooses period 𝑡𝑡 investment to maximise their profits: 

𝔼𝔼𝑡𝑡 � �� Ξ𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� �ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡+𝑠𝑠𝐾𝐾𝑥𝑥,𝑡𝑡+𝑠𝑠−1 − 𝑃𝑃𝑥𝑥,𝑡𝑡𝐼𝐼𝑥𝑥,𝑡𝑡+𝑠𝑠�

∞

𝑠𝑠=0
 

subject to law of motion for capital, equation (7). Writing 𝑄𝑄𝑥𝑥,𝑡𝑡 for the Lagrange multiplier on equation (7), 
this leads to the first order condition for 𝐾𝐾𝑥𝑥,𝑡𝑡: 5 

1 = 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡+1 + 𝑄𝑄𝑥𝑥,𝑡𝑡+1(1 − 𝛿𝛿𝐾𝐾)

𝑄𝑄𝑥𝑥,𝑡𝑡
, 

and first order condition for 𝐼𝐼𝑥𝑥,𝑡𝑡: 

𝑃𝑃𝑥𝑥,𝑡𝑡 = 𝑄𝑄𝑥𝑥,𝑡𝑡 �1 − Φ �
𝐼𝐼𝑥𝑥,𝑡𝑡

𝐼𝐼𝑥𝑥,𝑡𝑡−1
� − Φ′ �

𝐼𝐼𝑥𝑥,𝑡𝑡
𝐼𝐼𝑥𝑥,𝑡𝑡−1

�
𝐼𝐼𝑥𝑥,𝑡𝑡

𝐼𝐼𝑥𝑥,𝑡𝑡−1
� + 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝑄𝑄𝑥𝑥,𝑡𝑡+1Φ′ �

𝐼𝐼𝑥𝑥,𝑡𝑡+1
𝐼𝐼𝑥𝑥,𝑡𝑡

� �
𝐼𝐼𝑥𝑥,𝑡𝑡+1
𝐼𝐼𝑥𝑥,𝑡𝑡

�
2
. 

3.4. Agriculture at 𝒙𝒙 ∈ 𝑿𝑿 
The agricultural sector at location 𝑥𝑥 is perfectly competitive and has access to the production function: 

𝐹𝐹𝑥𝑥,𝑡𝑡 = 𝐿𝐿𝑥𝑥,𝑡𝑡
𝛾𝛾 𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡

1−𝛾𝛾 , 
where 𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡 is the amount of the raw good (“production services”) used as an input to farming at location 𝑥𝑥 
in period 𝑡𝑡, and where 𝐿𝐿𝑥𝑥,𝑡𝑡 is the amount of land allocated to farming at location 𝑥𝑥 in period 𝑡𝑡. Farm land 𝐿𝐿𝑥𝑥,𝑡𝑡 
is rented from households at a rate of ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡 per unit, and, as before, the raw good costs 𝒫𝒫𝑥𝑥,𝑡𝑡 per unit. We take 
the agricultural product as our numeraire (i.e. we assume it has unit cost), and further assume that it is 
tradeable without costs. The assumption of costless trade in agricultural products is common in the new 
economic geography literature previously cited. Introducing trade costs to the agricultural product would 
have required either introducing differentiation in agricultural products, or dealing with positivity 
constraints on agricultural production at each location, both of which would have substantially complicated 
the model. Furthermore, it is plausible that agricultural products should have relatively low trade costs 

                                                      
5 The Lagrangian for this problem is contained in Appendix B.1. 
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compared to the rest of economic output, since many non-agricultural products are essentially non-tradeable 
(consider e.g. services, which, in our model, is subsumed within manufacturing). 

Firms producing the agricultural good at location 𝑥𝑥 in period 𝑡𝑡 have profits: 
𝐹𝐹𝑥𝑥,𝑡𝑡 − ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡𝐿𝐿𝑥𝑥,𝑡𝑡 − 𝒫𝒫𝑥𝑥,𝑡𝑡𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡, 

and thus choose 𝐿𝐿𝑥𝑥,𝑡𝑡 such that: 

𝛾𝛾
𝐹𝐹𝑥𝑥,𝑡𝑡
𝐿𝐿𝑥𝑥,𝑡𝑡

= ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡, 

and 𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡 such that: 

(1 − 𝛾𝛾)
𝐹𝐹𝑥𝑥,𝑡𝑡

𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡
= 𝒫𝒫𝑥𝑥,𝑡𝑡. 

3.5. Raw good production at 𝒙𝒙 ∈ 𝑿𝑿  
The raw good at location 𝑥𝑥 is produced in period 𝑡𝑡 by a perfectly competitive industry with access to the 

production function: 
𝑍𝑍𝑥𝑥,𝑡𝑡 = �𝐾𝐾𝑥𝑥,𝑡𝑡−1

𝛼𝛼 �𝐴𝐴𝑥𝑥,𝑡𝑡𝐻𝐻𝑥𝑥,𝑡𝑡�1−𝛼𝛼�1−𝜅𝜅𝑀𝑀𝑥𝑥,𝑡𝑡
𝜅𝜅 , 

where in period 𝑡𝑡 capital 𝐾𝐾𝑥𝑥,𝑡𝑡−1 is rented from capital holding companies at a rate of ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡 per unit, labour 
𝐻𝐻𝑥𝑥,𝑡𝑡 is hired from the household at a wage 𝑊𝑊𝑥𝑥,𝑡𝑡 per unit, and intermediate inputs of the final manufactured 
good, 𝑀𝑀𝑥𝑥,𝑡𝑡, cost 𝑃𝑃𝑥𝑥,𝑡𝑡 per unit. 𝐴𝐴𝑥𝑥,𝑡𝑡 is productivity at location 𝑥𝑥 in period 𝑡𝑡. Allowing for capital in production 
is important as high concentrations of capital are a defining feature of cities. It is also important to give a role 
for intermediate inputs of the final manufactured good in production, both because such inputs account for 
around half of gross output, and because this ensures that productivity is higher in locations where the final 
good is relatively cheap, generating further agglomerative pressure. We assume that the raw good is 
untradeable across locations, since it reflects production services. 

Firms producing the raw good at location 𝑥𝑥 in period 𝑡𝑡 have profits: 
𝒫𝒫𝑥𝑥,𝑡𝑡𝑍𝑍𝑥𝑥,𝑡𝑡 − ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡𝐾𝐾𝑥𝑥,𝑡𝑡−1 − 𝑊𝑊𝑥𝑥,𝑡𝑡𝐻𝐻𝑥𝑥,𝑡𝑡 − 𝑃𝑃𝑥𝑥,𝑡𝑡𝑀𝑀𝑥𝑥,𝑡𝑡, 

and thus choose 𝐾𝐾𝑥𝑥,𝑡𝑡−1 such that: 

(1 − 𝜅𝜅)𝛼𝛼𝒫𝒫𝑥𝑥,𝑡𝑡
𝑍𝑍𝑥𝑥,𝑡𝑡

𝐾𝐾𝑥𝑥,𝑡𝑡−1
= ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡, 

𝐻𝐻𝑥𝑥,𝑡𝑡 such that: 

(1 − 𝜅𝜅)(1 − 𝛼𝛼)𝒫𝒫𝑥𝑥,𝑡𝑡
𝑍𝑍𝑥𝑥,𝑡𝑡
𝐻𝐻𝑥𝑥,𝑡𝑡

= 𝑊𝑊𝑥𝑥,𝑡𝑡, 

and 𝑀𝑀𝑥𝑥,𝑡𝑡 such that: 

𝜅𝜅𝒫𝒫𝑥𝑥,𝑡𝑡
𝑍𝑍𝑥𝑥,𝑡𝑡
𝑀𝑀𝑥𝑥,𝑡𝑡

= 𝑃𝑃𝑥𝑥,𝑡𝑡. 

3.6. Households and the representative family 
There is a household with population 𝑁𝑁𝑥𝑥,𝑡𝑡−1  at 𝑡𝑡  at each 𝑥𝑥 ∈ 𝑋𝑋 . Population is pre-determined here to 

capture the fact that it takes time for people to move to exploit new opportunities elsewhere. As previously 
mentioned, for simplicity, we assume that all households are part of one representative family that takes 
decisions on their behalf. 

In period 𝑡𝑡, the family head maximises the discounted utilitarian social welfare function: 

𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑘𝑘−1

𝑠𝑠

𝑘𝑘=1
�

�
⎮⎮
� 𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1

𝑈𝑈𝑥𝑥,𝑡𝑡+𝑠𝑠
1−𝜍𝜍

1 − 𝜍𝜍 𝑑𝑑𝑥𝑥
𝑋𝑋

∞

𝑠𝑠=0
, 
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where 𝛽𝛽𝑡𝑡 is the discount factor between periods 𝑡𝑡 and 𝑡𝑡 + 1, 𝜍𝜍 ≠ 15F5F

6 controls risk aversion and intertemporal 
substitution and: 

𝑈𝑈𝑥𝑥,𝑡𝑡 = �
𝐶𝐶𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1
�

𝜃𝜃𝐶𝐶

�
𝐸𝐸𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1
�

𝜃𝜃𝐹𝐹

�
1 − 𝐿𝐿𝑥𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

�
𝜃𝜃𝐿𝐿

⎝
⎜⎛ 1

1 + 𝜈𝜈 Γ1+𝜈𝜈 −
1

1 + 𝜈𝜈 �
𝐻𝐻𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1
�

1+𝜈𝜈

⎠
⎟⎞

𝜃𝜃𝐻𝐻

⋅
⎝
⎜⎛1

2 Ω2 −
1
2 �log �

𝑁𝑁𝑥𝑥,𝑡𝑡−1
𝑁𝑁𝑡𝑡−1

��
2

⎠
⎟⎞

𝜃𝜃𝑁𝑁

�1 −
𝒩𝒩𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1
�

𝜓𝜓1

�𝑑𝑑 ̅−
𝒟𝒟𝑥𝑥,𝑡𝑡

𝒩𝒩𝑥𝑥,𝑡𝑡
�

𝜓𝜓2

exp �𝜓𝜓3 �
𝑁𝑁𝑥𝑥,̃𝑡𝑡−1
𝑁𝑁𝑡𝑡−1

log
𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

𝑑𝑑𝑥𝑥̃
𝑋𝑋

�, 

where: 
𝑁𝑁𝑡𝑡−1 ≔ � 𝑁𝑁𝑥𝑥,̃𝑡𝑡−1 𝑑𝑑𝑥𝑥̃

𝑋𝑋
, 

𝒩𝒩𝑥𝑥,𝑡𝑡 ≔ � 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡 𝑑𝑑𝑥𝑥̃
𝑋𝑋

, 

𝒟𝒟𝑥𝑥,𝑡𝑡 ≔ � 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡 𝑑𝑑𝑥𝑥̃
𝑋𝑋

, 

and: 
1 = 𝜃𝜃𝐶𝐶 + 𝜃𝜃𝐹𝐹 + 𝜃𝜃𝐿𝐿 + 𝜃𝜃𝐻𝐻 + 𝜃𝜃𝑁𝑁 + 𝜓𝜓1 + 𝜓𝜓2 + 𝜓𝜓3. (8) 

The broad form of the utility function is dictated by the requirement that the model be consistent with 
balanced growth. This is particularly onerous in this model since the first order condition for population will 
include 𝑈𝑈𝑥𝑥,𝑡𝑡, thus we cannot have additive terms within a household’s felicity that have different growth 
rates. In order, the terms in 𝑈𝑈𝑥𝑥,𝑡𝑡 are as follows: 

• 𝐶𝐶𝑥𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

 is consumption of the manufactured final good per head. 

• 𝐸𝐸𝑥𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

 is consumption (“eating”) of the agricultural good per head. 

• 1−𝐿𝐿𝑥𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

 reflects the utility gained from access to unfarmed land. This captures the necessity of space for 

housing, which is otherwise unmodeled. While it might be natural to model a stock of housing, to 
keep the model tractable we abstract from the housing stock here. 

• 1
1+𝜈𝜈 Γ1+𝜈𝜈 − 1

1+𝜈𝜈 � 𝐻𝐻𝑥𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

�
1+𝜈𝜈

 gives the utility gained from leisure. Here Γ controls the maximum amount 

of labour per head that will ever be supplied, and 𝜈𝜈 controls the (inverse) elasticity of labour supply. 

• 1
2 Ω2 − 1

2 �log�𝑁𝑁𝑥𝑥,𝑡𝑡−1
𝑁𝑁𝑡𝑡−1

��
2
 reflects the utility gained from living in a location with moderate population, 

with Ω  controlling the maximum acceptable departure from this level. This term is necessary to 
ensure the stability of the symmetric steady-state. 

• 1 − 𝒩𝒩𝑥𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

 reflects the utility of not having substantial outward migration 𝒩𝒩𝑥𝑥,𝑡𝑡, i.e. it captures people 

being upset by their friends and relatives moving away. This ensures that there is always an interior 
solution for 𝒩𝒩𝑥𝑥,𝑡𝑡, which is necessary for tractability. 

• 𝑑𝑑 ̅− 𝒟𝒟𝑥𝑥,𝑡𝑡
𝒩𝒩𝑥𝑥,𝑡𝑡

  gives the utility of not having migration to distant locations, where as in Section 2.2, 𝑑𝑑 ̅≔

sup
𝑥𝑥,𝑥𝑥∈̃𝑋𝑋

𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃ gives the maximum distance between points, and 𝒟𝒟𝑥𝑥,𝑡𝑡
𝒩𝒩𝑥𝑥,𝑡𝑡

 is a measure of the average distance 

moved. I.e. this term captures people being upset by their friends and relatives moving far away. This 
term helps to avoid rapid jumps in population to distant locations, implying that most migration will 
be between a city and its suburbs. 

                                                      
6 The normal device of subtracting 1 from the numerator is not possible here, as it renders the first order condition for population 
inconsistent with balanced growth. 
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• exp �∫ 𝑁𝑁�̃�𝑥,𝑡𝑡−1
𝑁𝑁𝑡𝑡−1

log 𝒩𝒩𝑥𝑥,�̃�𝑥,𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡−1

𝑑𝑑𝑥𝑥̃𝑋𝑋 � reflects a preference to have at least some migration to all locations (𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡 

is the amount of migration from location 𝑥𝑥  to location 𝑥𝑥 ̃ at 𝑡𝑡 ), with higher weight (and so higher 
migration) to locations with higher populations, i.e. it captures the inevitability of people starting new 
households with people from far away. This ensures that there is an interior solution for 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡, which 
is necessary for tractability. 

The family head faces the budget constraint: 
� �𝑃𝑃𝑥𝑥,𝑡𝑡𝐶𝐶𝑥𝑥,𝑡𝑡 + 𝐸𝐸𝑥𝑥,𝑡𝑡� 𝑑𝑑𝑥𝑥

𝑋𝑋
+ 𝐵𝐵𝑡𝑡 = � �ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡𝐿𝐿𝑥𝑥,𝑡𝑡 + 𝑊𝑊𝑥𝑥,𝑡𝑡𝐻𝐻𝑥𝑥,𝑡𝑡� 𝑑𝑑𝑥𝑥

𝑋𝑋
+ 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑡𝑡−1 + Τ𝑡𝑡,  

where Τ𝑡𝑡 includes all net profits from owning firms and capital holding companies, and where the family’s 
bond holdings, 𝐵𝐵𝑡𝑡 , are zero in equilibrium. The family head also faces the following constraint on the 
evolution of 𝑁𝑁𝑥𝑥,𝑡𝑡, for all 𝑥𝑥 ∈ 𝑋𝑋: 

𝑁𝑁𝑥𝑥,𝑡𝑡 = 𝐺𝐺𝑁𝑁,𝑡𝑡𝑁𝑁𝑥𝑥,𝑡𝑡−1 − � 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡 𝑑𝑑𝑥𝑥̃
𝑋𝑋

+ � 𝒩𝒩𝑥𝑥̃,𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥̃
𝑋𝑋

, (9) 

where 𝐺𝐺𝑁𝑁,𝑡𝑡  is the growth rate of aggregate population 𝑁𝑁𝑡𝑡 , ∫ 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡 𝑑𝑑𝑥𝑥̃𝑋𝑋   is outwards migration from 𝑥𝑥  and 
∫ 𝒩𝒩𝑥𝑥,̃𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥̃𝑋𝑋  is inwards migration to 𝑥𝑥. Writing 𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡 for the Lagrange multiplier on the law of motion for 𝑁𝑁𝑥𝑥,𝑡𝑡, 
equation (6)(9), we may derive the following first order conditions7 for consumption 𝐶𝐶𝑥𝑥,𝑡𝑡: 

𝜃𝜃𝐶𝐶𝐸𝐸𝑥𝑥,𝑡𝑡 = 𝜃𝜃𝐹𝐹𝑃𝑃𝑥𝑥,𝑡𝑡𝐶𝐶𝑥𝑥,𝑡𝑡, 
land 𝐿𝐿𝑥𝑥,𝑡𝑡: 

𝜃𝜃𝐿𝐿𝐸𝐸𝑥𝑥,𝑡𝑡 = 𝜃𝜃𝐹𝐹ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡�1 − 𝐿𝐿𝑥𝑥,𝑡𝑡�, 
hours 𝐻𝐻𝑥𝑥,𝑡𝑡: 

𝜃𝜃𝐻𝐻 �
𝐻𝐻𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1
�

𝜈𝜈
= 𝜃𝜃𝐹𝐹

𝑁𝑁𝑥𝑥,𝑡𝑡−1
𝐸𝐸𝑥𝑥,𝑡𝑡

𝑊𝑊𝑥𝑥,𝑡𝑡
⎝
⎜⎛ 1

1 + 𝜈𝜈 Γ1+𝜈𝜈 −
1

1 + 𝜈𝜈 �
𝐻𝐻𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1
�

1+𝜈𝜈

⎠
⎟⎞, 

bonds 𝐵𝐵𝑡𝑡: 

1 = 𝛽𝛽𝑡𝑡𝑅𝑅𝑡𝑡𝔼𝔼
𝑁𝑁𝑥𝑥,𝑡𝑡𝐸𝐸𝑥𝑥,𝑡𝑡𝑈𝑈𝑥𝑥,𝑡𝑡+1

1−𝜍𝜍

𝐸𝐸𝑥𝑥,𝑡𝑡+1𝑁𝑁𝑥𝑥,𝑡𝑡−1𝑈𝑈𝑥𝑥,𝑡𝑡
1−𝜍𝜍, 

population 𝑁𝑁𝑥𝑥,𝑡𝑡: 

𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡 = 𝛽𝛽𝑡𝑡𝔼𝔼𝑡𝑡

⎣
⎢⎢
⎢⎢
⎡

𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡+1𝐺𝐺𝑁𝑁,𝑡𝑡+1 + 𝑈𝑈𝑥𝑥,𝑡𝑡+1
1−𝜍𝜍

+ (1 − 𝜍𝜍)𝑈𝑈𝑥𝑥,𝑡𝑡+1
1−𝜍𝜍

⎣
⎢⎢
⎢
⎡

𝜃𝜃𝐻𝐻

�𝐻𝐻𝑥𝑥,𝑡𝑡+1
𝑁𝑁𝑥𝑥,𝑡𝑡

�
1+𝜈𝜈

1
1+𝜈𝜈 Γ1+𝜈𝜈 − 1

1+𝜈𝜈 �𝐻𝐻𝑥𝑥,𝑡𝑡+1
𝑁𝑁𝑥𝑥,𝑡𝑡

�
1+𝜈𝜈 − 𝜃𝜃𝑁𝑁

log�𝑁𝑁𝑥𝑥,𝑡𝑡
𝑁𝑁𝑡𝑡

�

1
2 Ω2 − 1

2 �log�𝑁𝑁𝑥𝑥,𝑡𝑡
𝑁𝑁𝑡𝑡

��
2 + 𝜓𝜓1

𝒩𝒩𝑥𝑥,𝑡𝑡+1

𝑁𝑁𝑥𝑥,𝑡𝑡 − 𝒩𝒩𝑥𝑥,𝑡𝑡+1

− �𝜃𝜃𝐶𝐶 + 𝜃𝜃𝐹𝐹 + 𝜃𝜃𝐿𝐿 + 𝜓𝜓3�

⎦
⎥⎥
⎥
⎤

⎦
⎥⎥
⎥⎥
⎤

, 

                                                      
7 This is somewhat complicated by the need to differentiate with respect to functions. We solve this by first replacing expressions of 
the form ∫ 𝑓𝑓 (𝑥𝑥) 𝑑𝑑𝑥𝑥𝑋𝑋   with 1

�𝑋𝑋��
∑ 𝑓𝑓 (𝑥𝑥)𝑥𝑥∈𝑋𝑋�   where 𝑋𝑋� ⊂ 𝑋𝑋  is a finite set. We then simplify, and take limits as �𝑋𝑋�� → ∞  and as 𝑋𝑋�  becomes 

dense in 𝑋𝑋. The Lagrangian, and further details on the derivation of these conditions is contained in Appendix B.1. 
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and migration 𝒩𝒩𝑥𝑥,𝑥𝑥,̌𝑡𝑡: 

𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡 = 𝜇𝜇𝑁𝑁,𝑥𝑥,̌𝑡𝑡 + (1 − 𝜍𝜍)𝑁𝑁𝑥𝑥,𝑡𝑡−1𝑈𝑈𝑥𝑥,𝑡𝑡
1−𝜍𝜍

⎣
⎢⎡𝜓𝜓3

𝑁𝑁𝑥𝑥,̌𝑡𝑡−1

𝑁𝑁𝑡𝑡−1𝒩𝒩𝑥𝑥,𝑥𝑥,̌𝑡𝑡
− 𝜓𝜓1

1
𝑁𝑁𝑥𝑥,𝑡𝑡−1 − 𝒩𝒩𝑥𝑥,𝑡𝑡

− 𝜓𝜓2
𝑑𝑑(𝑥𝑥, 𝑥𝑥)̌𝒩𝒩𝑥𝑥,𝑡𝑡 − 𝒟𝒟𝑥𝑥,𝑡𝑡

𝑑𝑑�̅�𝒩𝑥𝑥,𝑡𝑡
2 − 𝒩𝒩𝑥𝑥,𝑡𝑡𝒟𝒟𝑥𝑥,𝑡𝑡 ⎦

⎥⎤. 

We also have that the representative family’s stochastic discount factor is given by: 

Ξ𝑡𝑡+1 ≔ 𝛽𝛽𝑡𝑡
𝑁𝑁𝑥𝑥,𝑡𝑡𝐸𝐸𝑥𝑥,𝑡𝑡𝑈𝑈𝑥𝑥,𝑡𝑡+1

1−𝜍𝜍

𝐸𝐸𝑥𝑥,𝑡𝑡+1𝑁𝑁𝑥𝑥,𝑡𝑡−1𝑈𝑈𝑥𝑥,𝑡𝑡
1−𝜍𝜍, 

and that 𝐸𝐸𝑥𝑥,𝑡𝑡

𝑁𝑁𝑥𝑥,𝑡𝑡−1𝑈𝑈𝑥𝑥,𝑡𝑡
1−𝜍𝜍 = 𝐸𝐸�̃�𝑥,𝑡𝑡

𝑁𝑁�̃�𝑥,𝑡𝑡−1𝑈𝑈�̃�𝑥,𝑡𝑡
1−𝜍𝜍  for all 𝑥𝑥, 𝑥𝑥̃ ∈ 𝑋𝑋 , implying that with 𝜍𝜍 > 1 , households with low utility have 

high food consumption (a pattern that certainly holds in the data). Note also that with 𝜍𝜍 > 1, 𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡 gives a 
measure of the undesirability of location 𝑥𝑥, so it will be optimal to reduce population in locations in which 
𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡 is high. 

3.7. Market clearing 
The final manufactured good is used for consumption 𝐶𝐶𝑥𝑥,𝑡𝑡, investment 𝐼𝐼𝑥𝑥,𝑡𝑡 and as an intermediate in raw 

good production 𝑀𝑀𝑥𝑥,𝑡𝑡, giving the period 𝑡𝑡 market clearing condition: 
𝑌𝑌𝑥𝑥,𝑡𝑡 = 𝐶𝐶𝑥𝑥,𝑡𝑡 + 𝐼𝐼𝑥𝑥,𝑡𝑡 + 𝑀𝑀𝑥𝑥,𝑡𝑡. 

Since raw goods are used in farming, firm entry and by the producers of differentiated varieties, demand for 
raw goods in period 𝑡𝑡 is: 

𝑍𝑍𝑥𝑥,𝑡𝑡 = 𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡 + 𝜙𝜙𝑡𝑡�𝐽𝐽𝑥𝑥,𝑡𝑡 − �1 − 𝛿𝛿𝐽𝐽�𝐽𝐽𝑥𝑥,𝑡𝑡−1� + � 𝑍𝑍𝑗𝑗,𝑥𝑥,𝑡𝑡 𝑑𝑑𝑗𝑗
𝐽𝐽𝑥𝑥,𝑡𝑡

0
 

= 𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡 + 𝜙𝜙𝑡𝑡�𝐽𝐽𝑥𝑥,𝑡𝑡 − �1 − 𝛿𝛿𝐽𝐽�𝐽𝐽𝑥𝑥,𝑡𝑡−1� + 𝐽𝐽𝑥𝑥,𝑡𝑡(1 + 𝜆𝜆)−1+𝜆𝜆
𝜆𝜆 𝒫𝒫𝑥𝑥,𝑡𝑡

−1+𝜆𝜆
𝜆𝜆 𝑌𝑌����𝑥𝑥,𝑡𝑡, 

where to derive the second line we have used equations (4) and (5). The agricultural product is only “eaten”, 
and is freely traded across locations, giving the period 𝑡𝑡 market clearing condition: 

� 𝐸𝐸𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥
𝑋𝑋

= � 𝐹𝐹𝑥𝑥,𝑡𝑡 𝑑𝑑𝑥𝑥
𝑋𝑋

. 

3.8. Stochastic processes 
We close the model by specifying the driving stochastic processes. We assume that productivity 𝐴𝐴𝑥𝑥,𝑡𝑡 is 

driven by a permanent component that is not location specific, 𝐴𝐴𝑡𝑡
P , and a location specific transitory 

component, 𝐴𝐴𝑥𝑥,𝑡𝑡
T . In particular: 

𝐴𝐴𝑥𝑥,𝑡𝑡 = 𝐴𝐴𝑡𝑡
P𝐴𝐴𝑥𝑥,𝑡𝑡

T , 
where: 

𝐴𝐴𝑡𝑡
P = 𝐺𝐺𝐴𝐴,𝑡𝑡𝐴𝐴𝑡𝑡−1

P , 
and where log 𝐺𝐺𝐴𝐴,𝑡𝑡 follows the AR(1) process: 

log 𝐺𝐺𝐴𝐴,𝑡𝑡 = �1 − 𝜌𝜌𝐺𝐺𝐴𝐴
� log 𝐺𝐺𝐴𝐴 + 𝜌𝜌𝐺𝐺𝐴𝐴

log 𝐺𝐺𝐴𝐴,𝑡𝑡−1 + 𝜎𝜎𝐺𝐺𝐴𝐴
𝜀𝜀𝐺𝐺𝐴𝐴,𝑡𝑡, 

and log 𝐴𝐴𝑥𝑥,𝑡𝑡
T  follows the spatial AR(1) process: 

log 𝐴𝐴𝑥𝑥,𝑡𝑡
T = 𝜌𝜌𝐴𝐴T log 𝐴𝐴𝑥𝑥,𝑡𝑡−1

T + 𝜎𝜎𝐴𝐴T𝜀𝜀𝐴𝐴T,𝑥𝑥,𝑡𝑡, 
where 𝜀𝜀𝐴𝐴T,𝑥𝑥,𝑡𝑡  is a realisation of some continuous stochastic process on 𝑋𝑋 . We also assume that the other 

aggregate stochastic variables follow AR(1) processes, with: 
log 𝐺𝐺𝑁𝑁,𝑡𝑡 = �1 − 𝜌𝜌𝐺𝐺𝑁𝑁

� log 𝐺𝐺𝑁𝑁 + 𝜌𝜌𝐺𝐺𝑁𝑁
log 𝐺𝐺𝑁𝑁,𝑡𝑡−1 + 𝜎𝜎𝐺𝐺𝑁𝑁

𝜀𝜀𝐺𝐺𝑁𝑁,𝑡𝑡, 
log 𝜏𝜏𝑡𝑡 = �1 − 𝜌𝜌𝜏𝜏� log 𝜏𝜏 + 𝜌𝜌𝜏𝜏 log 𝜏𝜏𝑡𝑡−1 + 𝜎𝜎𝜏𝜏𝜀𝜀𝜏𝜏,𝑡𝑡, 
log 𝜙𝜙𝑡𝑡 = �1 − 𝜌𝜌𝜙𝜙� log 𝜙𝜙 + 𝜌𝜌𝜙𝜙 log 𝜙𝜙𝑡𝑡−1 + 𝜎𝜎𝜙𝜙𝜀𝜀𝜙𝜙,𝑡𝑡, 
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and: 

logit 𝛽𝛽𝑡𝑡 = �1 − 𝜌𝜌𝛽𝛽� logit 𝛽𝛽 + 𝜌𝜌𝛽𝛽 logit 𝛽𝛽𝑡𝑡−1 + 𝜎𝜎𝛽𝛽𝜀𝜀𝛽𝛽,𝑡𝑡.
8 

4. Results 

4.1. Growth rates 
From combining the model’s equilibrium conditions, it may be shown that the model admits a balanced 

growth path in which for any 𝑥𝑥, 𝑌𝑌𝑥𝑥,𝑡𝑡 has stochastic trend: 

𝐺𝐺𝑌𝑌�,𝑡𝑡 ≔ �𝐺𝐺𝐴𝐴,𝑡𝑡𝐺𝐺𝑁𝑁,𝑡𝑡�
(1−𝛼𝛼)(1−𝜅𝜅)(1+𝜆𝜆)

(1−𝛼𝛼)(1−𝜅𝜅)(1+𝜆𝜆)−𝜆𝜆. 

(Note, this does not mean that 𝐺𝐺𝑌𝑌�,𝑡𝑡 will equal 𝑌𝑌𝑥𝑥,𝑡𝑡
𝑌𝑌𝑥𝑥,𝑡𝑡−1

 for any particular 𝑥𝑥. Rather, this means that 𝑌𝑌𝑥𝑥,𝑡𝑡

𝑌𝑌�𝑡𝑡
 will be 

stationary, where �̃�𝑌𝑡𝑡  evolves according to �̃�𝑌𝑡𝑡 = 𝐺𝐺𝑌𝑌�,𝑡𝑡�̃�𝑌𝑡𝑡−1 .) Since (1 − 𝛼𝛼)(1 − 𝜅𝜅)(1 + 𝜆𝜆) − 𝜆𝜆 > 0  in any 

reasonable calibration, this implies that the growth rate of output is higher than that of 𝐺𝐺𝐴𝐴,𝑡𝑡𝐺𝐺𝑁𝑁,𝑡𝑡. Thus, this 
is a model of semi-endogenous growth. Exogenous growth in productivity or population leads to further 
endogenous growth since it increases the measure of firms producing differentiated varieties, which feeds 
into the love for variety embedded in our aggregator, equation (1). The smaller is 𝜆𝜆, the weaker will be this 
endogenous growth channel, with purely exogenous growth in the 𝜆𝜆 = 0 , perfect competition, limit. The 
presence of this channel is also suggestive of areas of high population (“cities”) having higher productivity. 

The stochastic trend of other variables may be given in terms of the stochastic trend in output. In particular, 

we have that for any 𝑥𝑥, the stochastic trend in 𝑍𝑍𝑥𝑥,𝑡𝑡 and 𝐽𝐽𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡

1
1+𝜆𝜆, the stochastic trend in 𝐹𝐹𝑥𝑥,𝑡𝑡, 𝐸𝐸𝑥𝑥,𝑡𝑡 

and ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡

1−𝛾𝛾
1+𝜆𝜆, the stochastic trend in 𝑊𝑊𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡

1−𝛾𝛾
1+𝜆𝜆𝐺𝐺𝑁𝑁,𝑡𝑡

−1 , the stochastic trend in 𝑃𝑃𝑥𝑥,𝑡𝑡, 𝑄𝑄𝑥𝑥,𝑡𝑡 

and ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡
−𝛾𝛾+𝜆𝜆

1+𝜆𝜆, the stochastic trend in 𝒫𝒫𝑥𝑥,𝑡𝑡 and Π𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡
− 𝛾𝛾

1+𝜆𝜆, the stochastic trend in 

𝑌𝑌����𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡
−𝛾𝛾

𝜆𝜆 , the stochastic trend in 𝑈𝑈𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡
𝜃𝜃𝐶𝐶+𝜃𝜃𝐹𝐹

1−𝛾𝛾
1+𝜆𝜆𝐺𝐺𝑁𝑁,𝑡𝑡

−(𝜃𝜃𝐶𝐶+𝜃𝜃𝐹𝐹+𝜃𝜃𝐿𝐿), and the stochastic trend in 

𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡 is given by 𝐺𝐺𝑌𝑌�,𝑡𝑡
�𝜃𝜃𝐶𝐶+𝜃𝜃𝐹𝐹

1−𝛾𝛾
1+𝜆𝜆�(1−𝜍𝜍)𝐺𝐺𝑁𝑁,𝑡𝑡

−(𝜃𝜃𝐶𝐶+𝜃𝜃𝐹𝐹+𝜃𝜃𝐿𝐿)(1−𝜍𝜍). Thus, amongst other results, the model predicts that the 

price of manufactured goods and capital is falling with respect to the price of agricultural goods, and that 
consumption of agricultural goods is growing less quickly than consumption of manufactured ones. 

The multiple different stochastic trends in the model complicate its simulation. However, this is facilitated 
by the ability of the toolkit we provide here: : https://github.com/tholden/DynareTransformationEngine to 
automatically take care of detrending variables, once the stochastic trends are supplied. 

4.2. Properties of the steady-state, and choice of space and spatial correlation 
While the full steady-state of the detrended model does not admit a closed form solution, in the special 

case in which the space 𝑋𝑋 is invariant under translation (i.e. 𝑋𝑋 is a circle or a torus), then the detrended model 
admits a uniform steady-state in which all variables are constant over 𝑥𝑥, and in which some variables have a 
closed form solution. In particular, in the uniform solution in the absence of shocks, 𝐿𝐿𝑥𝑥,𝑡𝑡 = 𝛾𝛾𝜃𝜃𝐹𝐹

𝜃𝜃𝐿𝐿+𝛾𝛾𝜃𝜃𝐹𝐹
 and 𝒩𝒩𝑥𝑥,𝑡𝑡 

𝑁𝑁𝑡𝑡−1
=

𝜓𝜓3
𝜓𝜓1+𝜓𝜓3

. Thus, the steady-state amount of land used in agriculture is increasing in the importance of land for 

                                                      
8 The logit function is defined by logit 𝑝𝑝 = log� 𝑝𝑝

1−𝑝𝑝�. Specifying the process in this way ensures that 𝛽𝛽𝑡𝑡 remains in the unit interval. 

https://github.com/tholden/DynareTransformationEngine
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agricultural production, and in the importance of food for utility, and decreasing in the importance of land 
for utility. Additionally, the steady-state amount of migration is increasing in the family’s desire to have at 
least some migration to each location, and decreasing in the amount the family dislikes any migration. 

When the space 𝑋𝑋 is not invariant under translation, as in the case when 𝑋𝑋 is the plane [0,1] × [0,1] with 
the usual Euclidean metric, numerical results suggest that the steady-state features a significant concentration 
of population around the centre, �1

2 , 1
2� . To see why this is unsurprising, suppose that population were 

initially uniformly distributed. Then the centre would have lower average transport costs, since it is on 
average closer to other places. These lower transport costs would imply lower prices and higher productivity 
in the centre, making it an attractive destination for migration. 

In reality, in the U.S. at least, we see a lot of population on the coasts, and less in the centre. This is partly 
down to historical artefact, as the coasts were settled first, and partly due to the fact that in reality the coasts 
have low transport costs both to other points on the coast, and to the rest of the world. Rather than modelling 
trade along the coast, and to the rest of the world, we keep things simple by modelling space as a torus, 
identified with [0,1] × [0,1]. I.e. our model of space is similar to how the continental U.S. would be were it 
the case that if you crossed the Canadian border, you teleported onto an equivalent point on the Mexican 
border, and if you stepped off the pier in Boston, you teleported to Seattle. This also means that there is a 
uniform steady-state, which greatly eases its computation. We place the usual Euclidean norm on the torus, 
i.e.: 

𝑑𝑑([𝑥𝑥1, 𝑥𝑥2], [𝑥𝑥1̃, 𝑥𝑥2̃]) = �(min{|𝑥𝑥1 − 𝑥𝑥1̃|, 1 − |𝑥𝑥1 − 𝑥𝑥1̃|})2 + (min{|𝑥𝑥2 − 𝑥𝑥2̃|, 1 − |𝑥𝑥2 − 𝑥𝑥2̃|})2. 

Given this, it makes sense to use the “natural” continuous stochastic process on the torus introduced in 
Section 2.2, so: 

cov�𝜀𝜀𝐴𝐴T,𝑥𝑥,𝑡𝑡, 𝜀𝜀𝐴𝐴T,𝑥𝑥,̃𝑡𝑡� = 𝑠𝑠�𝜁𝜁 , 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃�, 

where 𝑠𝑠 is as defined in Section 2.2. 

4.3. Calibration and parameterisation 
We now describe the calibration and parameterisation that we use for our simulation results. For this 

exercise, and due to the cost of solving the model, we choose to calibrate only a few key parameters, setting 
others to values from the literature or reasonable values. U.S. evidence suggests that the average home buyer 
stays in their house for around 13 years.9 Since this omits renters who likely move more often, we calibrate 
𝜓𝜓3  to hit a proportion of 1

12.5×4 = 1
50  of household members moving each quarter. This implies that 𝜓𝜓3 =

𝜓𝜓1
0.02

1−0.02. U.S. evidence also suggests that the share of land with broadly agricultural usage is around 75%. 10 
This requires us to set 𝜃𝜃𝐿𝐿 = 1−0.75

0.75 𝛾𝛾𝜃𝜃𝐹𝐹. Furthermore, in the U.S. food is around 20% of personal consumption 
expenditure excluding housing.11  Thus we set 𝜃𝜃𝐹𝐹 = 1

4 𝜃𝜃𝐶𝐶 . Finally, we note that population per km2 for the 

contiguous US is 41.5, whereas for Wyoming (the least dense state) it is 2.33 for New Jersey (the most dense 

                                                      
9 See http://eyeonhousing.org/2013/01/latest-study-shows-average-buyer-expected-to-stay-in-a-home-13-years/  
10  Data from https://www.ers.usda.gov/data-products/major-land-uses/, Summary Table 1. We classify cropland, grassland, 
pasture, range and forest-use land as agricultural, and the rest as non-agricultural.  
11  Data from https://www.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=3&isuri=1&1910=x&0=-
9&1921=survey&1903=65&1904=2015&1905=2017&1906=a&1911=0.  

 

http://eyeonhousing.org/2013/01/latest-study-shows-average-buyer-expected-to-stay-in-a-home-13-years/
https://www.ers.usda.gov/data-products/major-land-uses/
https://www.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=3&isuri=1&1910=x&0=-9&1921=survey&1903=65&1904=2015&1905=2017&1906=a&1911=0
https://www.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=3&isuri=1&1910=x&0=-9&1921=survey&1903=65&1904=2015&1905=2017&1906=a&1911=0
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state) it is 470.12 These correspond to absolute log ratios to the whole U.S. of 2.88 and 2.43 respectively. We 
thus set Ω = 3 > 2.88 so that such dispersion is not ruled out. 

We further parameterise 𝜃𝜃𝐻𝐻 = 𝜃𝜃𝐶𝐶, and 𝜓𝜓1 = 𝜓𝜓2 = 𝜃𝜃𝐹𝐹
2 . With these restrictions, and the adding up constraint, 

equation (8), we just have one remaining degree of freedom for the utility share parameters, which pins 
down the relative size of 𝜃𝜃𝑁𝑁. Numerical experiments reveal that when 𝜃𝜃𝑁𝑁 = 0, the symmetric steady-state is 
locally unstable. This result is not too surprising given that the non-existence of symmetric steady-states is a 
common finding in new economic geography models, at least for some parameters. As a result, we choose 
𝜃𝜃𝑁𝑁 high enough such that the model is stable, but low enough that were 𝜃𝜃𝑁𝑁 significantly smaller, the model 
would be unstable. The resulting model will be close to having a unit root, giving dynamics that illustrate 
the likely behaviour with 𝜃𝜃𝑁𝑁 smaller. 

The final full set of parameters is as follows: 
𝛼𝛼 = 0.3, 𝛾𝛾 = 0.5, 𝜅𝜅 = 0.5, 𝜈𝜈 = 2, 𝜍𝜍 = 1.5, 𝜁𝜁 = 8, 𝜆𝜆 = 0.1, 𝛿𝛿𝐽𝐽 = 0.01, 𝛿𝛿𝐾𝐾 = 0.03, Γ = 1, Ω = 3, Φ′′(0) = 4, 

𝜃𝜃𝐶𝐶 = 0.2618, 𝜃𝜃𝐹𝐹 = 0.0655, 𝜃𝜃𝐿𝐿 = 0.0109, 𝜃𝜃𝐻𝐻 = 0.2618, 𝜃𝜃𝑁𝑁 = 0.3338, 𝜓𝜓1 = 0.0327, 𝜓𝜓2 = 0.0327, 𝜓𝜓3 = 0.007, 13 

𝐺𝐺𝐴𝐴 = 1.005, 𝐺𝐺𝑁𝑁 = 1.0025, 𝜏𝜏 = 1, 𝜙𝜙 = 1, 𝛽𝛽 = 0.99, 
𝜌𝜌𝐴𝐴T = 0.9, 𝜌𝜌𝐺𝐺𝐴𝐴

= 0.8, 𝜌𝜌𝐺𝐺𝑁𝑁
= 0.5, 𝜌𝜌𝜏𝜏 = 0.95, 𝜌𝜌𝜙𝜙 = 0.95, 𝜌𝜌𝛽𝛽 = 0.95, 

𝜎𝜎𝐴𝐴T = 𝜎𝜎𝐺𝐺𝐴𝐴
= 𝜎𝜎𝐺𝐺𝑁𝑁

= 𝜎𝜎𝜏𝜏 = 𝜎𝜎𝜙𝜙 = 𝜎𝜎𝛽𝛽 = 0.001. 

4.4. Impulse responses 
To understand the dynamic behaviour of our model, we start by simulating impulse responses. The code 

we used both to simulate impulse responses, and to simulate stochastic runs is available from: 
https://github.com/tholden/DynamicSpatialModel. This repository also includes the full set of these 
results, including videos showing the evolution over time of all distributions. In all of the simulations 
reported here we used a grid with effective size 9 × 9, with the bottom row of grid points always agreeing 
with the top row, and the right column always agreeing with the left column. 

We start by looking at the effects of a 1%  spatial productivity shock. (Given that 𝜎𝜎𝐴𝐴T = 0.001 , this is a 
magnitude 10  standard deviations shock.) Since space is invariant under translation, without loss of 
generality we may focus on a shock that is centred on the point �1

2 , 1
2� . As shocks are correlated across 

locations, we take the matrix square root of the covariance matrix to determine the impulse at each location. 
The impact of such a shock is shown in Figure 5. Note that where an aggregate IRF is shown, this gives the 
IRF to the integral of the variable over 𝑋𝑋. In the density plots, bright colours represent high values. 

 

                                                      
12 Land area data from https://www.census.gov/geo/reference/state-area.html, 2015 population estimates from the United States 
Census Bureau. 
13 All to four decimal places. For the precise values used, consult https://github.com/tholden/DynamicSpatialModel. 

https://github.com/tholden/DynamicSpatialModel
https://www.census.gov/geo/reference/state-area.html
https://github.com/tholden/DynamicSpatialModel
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Figure 5: Impulse responses to a 1% spatial productivity shock centred on �𝟏𝟏

𝟐𝟐 , 𝟏𝟏
𝟐𝟐�. 

All y-axis values on IRFs are in percent. The x-axis is measured in years. Bright colours are high values. 
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The shock leads to an increase in consumption (manufactured and agricultural), investment, capital, the 
measure of firms, hours and population at the epicentre. Despite this, utility at the epicentre actually falls as 
people there are asked to work harder to take advantage of their high productivity. Since the increase in 
productivity leads to firm entry, it is optimal for the epicentre to move away from agricultural production, 
towards manufacturing. Consequently, agricultural production increases elsewhere, with a consequent 
increase in the land used for farming. This does not harm utility away from the epicentre since population 
flows towards the centre, reducing pressure on land in the periphery. As one would expect, aggregate utility 
increases overall from this positive productivity shock. 

The effects of this initial shock are extremely persistent, with population still not back to trend 100 years 
after the initial shock. This suggests that our model can successful explain how small initial shocks can lead 
to city formation in one place, and not in another. 

One explanation for the decline in the U.S. mid-west through the lens of the model is that the increase in 
productivity in e.g. San Francisco and New York has pulled people out of the mid-west and towards the 
coasts. That utility seems to have declined in the mid-west suggests that our model is still lacking important 
frictions, such as costs to adjust land usage. 

In Figure 6 we plot 1% impulse responses to shocks to the models other driving processes. Note that all 
variables are shown relative to their stochastic trend, thus, for example, the short-run drop in consumption 
following a positive shock to 𝐺𝐺𝐴𝐴,𝑡𝑡 is smaller in levels than appears from the picture, since the stochastic trend 
has permanently increased. Dynamics are broadly in line with dynamics from a modern business cycle 
model, suggesting that the main contribution of our model is in understanding what is going on within a 
country, rather than understanding aggregate dynamics per se. 

4.5. Stochastic simulation 
We finish by presenting selective results from a 1,000-year run of stochastic simulation from the model. 

Over this long period, most variables are fluctuating a great deal, and for many variables variance in time 
dominates variance across space. However, this is not the case for population. Figure 7 plots the distribution 
of population at 20-year intervals over this run, and a great deal of persistence can be seen over the entire 
span. Chance early shocks led to population accumulation in some regions, and these regions then become 
permanently more attractive, ensuring that those population changes persist. Thus, our model is capable of 
endogenously generating highly persistent clustering of population, i.e. cities. Nonetheless, there is still some 
movement in population. We see city centres drifting, cities, expanding, merging and joining, and we see a 
lot of movement between “cities” and their “suburbs”. 

To fully appreciate the dynamics of the model, we recommend watching the simulation videos for 
population and other variables that are contained within the model’s repository: 
https://github.com/tholden/DynamicSpatialModel.  

 

https://github.com/tholden/DynamicSpatialModel
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Figure 6: Aggregate impulse responses to 1% shocks to other stochastic processes 

All variables are relative to their stochastic trends. All y-axis values are in percent. The x-axis is measured in years. 
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Figure 7: Population movements in a simulation run. 

Time (above each plot) is measured in years. 
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5. Conclusion 

This paper has presented a new approach to building heterogeneous agent macroeconomic models in 
which the heterogeneity is across space. While the paper focuses on applications in which space is physical 
space, our approach can also contribute to understanding heterogeneity across types, be it product variety, 
skills or preferences. 

We suggested that spatial macroeconomic models should be driven by shocks that are continuous across 
space, and presented a variety of examples of such shock processes. We give further technical results on 
existence of such processes across a wide range of spaces of interest in Appendix A. 

We went on to build a DSGE model featuring the key model components of the new economic geography 
literature. We showed that the model was able to generate extremely persistent movements in population, 
even given very strong preferences for a moderate population density. Thus, this is a model in which business 
cycle can shocks endogenously lead to the formation of new cities. 

In future work, we plan on extending the model presented here, incorporating, for example, adjustment 
costs to land, that might ameliorate the need to have a preference for moderate population density. We will 
also undertake a more comprehensive calibration exercise, explore the asymmetric steady-states of the model, 
and assess the feasibility of solving the model at a higher order of approximation to capture the model’s 
important non-linearities. 
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: Continuous stochastic processes 

Appendix A.1: Type spaces 
We would like to be able to draw realisations of a shock which are continuous (and hence locally correlated) 

over some compact space 𝑋𝑋, equipped with a Radon measure. Compactness of 𝑋𝑋 ensures that the law of large 
numbers does not remove the aggregate impact of the stochastic process, and the existence of a Radon 
measure is a technical assumption that will not rule out any spaces of interest. 

Often, we will have 𝑋𝑋 = ℎ−1(𝐺𝐺), where ℎ: 𝑋𝑋 → 𝐺𝐺 is continuous, and 𝐺𝐺 is a locally-compact, abelian group, 
also equipped with some Radon measure. For those readers not familiar with group theory, one may view a 
group as a structure on which “addition” and “subtraction” are defined, along with an identity “zero”. The 
addition and subtraction operations can be thought of as spatial translations. This “additive” group structure 
will be important, since it will give rise to the spatial analogue of the time series procedure of taking lags or 
leads. 

We will define an underlying continuous stochastic process on 𝐺𝐺 , a realisation of which will be a 
continuous function 𝜙𝜙: 𝐺𝐺 → ℝ. It will turn out that continuous stochastic processes will be particularly easy 
to construct on such groups, explaining our interest in type spaces (𝑋𝑋s), that admit such a representation. 
The realisation of the stochastic process on 𝑋𝑋 will then be given by 𝑥𝑥 ↦ 𝜙𝜙�ℎ(𝑥𝑥)�, which is continuous by the 
continuity of 𝜙𝜙 and ℎ. If not stated otherwise, ℎ will be the identity map (or more strictly, the inclusion map). 
The assumption that 𝐺𝐺 is abelian (i.e. the group operation is commutative) is not needed, but all practical 
examples will feature abelian 𝐺𝐺, so nothing is lost. Throughout, the group operation will be denoted “+”, 
with inverse “−” and identity element “0”. 

For example, we might have: 
• 𝑋𝑋 = [0,1]𝑛𝑛 ⊆ ℝ𝑛𝑛 = 𝐺𝐺 , for some 𝑛𝑛 ∈ ℕ . This might represent a space of types in which there is a 

meaningful boundary, such as education levels, or with 𝑛𝑛 = 2, the physical area of a country. The 
group operation and measure are the normal ones on ℝ𝑛𝑛. 

• 𝑋𝑋 = 𝕊𝕊𝑛𝑛 , for some 𝑛𝑛 ∈ ℕ , where 𝕊𝕊𝑛𝑛 = �𝑥𝑥 ∈ ℝ𝑛𝑛+1�‖𝑥𝑥‖ = 1�  (i.e. circle, sphere, etc.). This might 
represent a space of types with no meaningful boundary, in which there is no intrinsic difference 
between the axes of the type space, or with 𝑛𝑛 = 2, it can represent the surface of earth (a sphere!). The 
group operation on 𝕊𝕊1 is addition of angles, so in that case we may take 𝐺𝐺 = 𝑋𝑋1. Spheres in three-
dimensional space do not have an Abelian group operation, so need to be treated specially. The 
measure on the space is given by the usual spherical surface element. 
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• 𝑋𝑋 = 𝕋𝕋𝑛𝑛 = 𝐺𝐺 , for some 𝑛𝑛 ∈ ℕ , where 𝕋𝕋𝑛𝑛 = ℝ𝑛𝑛 ℤ𝑛𝑛⁄ ≃ 𝕊𝕊1
𝑛𝑛  (i.e. circle, torus, etc.). This gives another 

representation for type spaces with no boundary, this time for type spaces with clear axes/anisotropy. 
In this case, the group operation and measure are the ones induced by the quotient construction. 

• 𝑋𝑋 is the embedding of a graph in ℝ𝑛𝑛 (i.e. a collection of joined curved line-segments). This might 
represent a road, river, train or canal network. There is no natural group operation in general, so the 
existence of continuous processes on this space will be non-trivial. The measure in this case is the one 
dimensional Hausdorff measure in 𝑋𝑋. 

Appendix A.2: General results on the existence of continuous stochastic processes 
Before introducing our general results on the existence of continuous stochastic processes in spaces such 

as these, we first need to define two closely related notions of positive definiteness for functions. 
Definition: Let 𝑓𝑓 : 𝐺𝐺 → ℝ. We say 𝑓𝑓  is positive definite on 𝑮𝑮 if 𝑓𝑓  is a positive, even function, and ∀𝑛𝑛 ∈ ℕ, 
∀𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 𝐺𝐺, the matrix �𝑓𝑓 �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��

𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
 is positive semi-definite. 

Definition: Let 𝑓𝑓 : 𝑋𝑋 × 𝑋𝑋 → ℝ. We say 𝑓𝑓  is positive definite on 𝑿𝑿 × 𝑿𝑿  if 𝑓𝑓  is a positive, symmetric function, 
and ∀𝑛𝑛 ∈ ℕ, ∀𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 𝐺𝐺, the matrix �𝑓𝑓 �𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗��

𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
 is positive semi-definite. 

The two notions are related, as if 𝑓𝑓  is a positive definite function on 𝐺𝐺, then (𝑥𝑥1, 𝑥𝑥2) ↦ 𝑓𝑓 �ℎ(𝑥𝑥1) − ℎ(𝑥𝑥2)� is 
positive definite on 𝑋𝑋 × 𝑋𝑋, providing ℎ is as defined previously. 

It is easy to verify that sums and products of positive definite functions are positive definite, and that a 
positive multiple of a positive definite function is positive definite. A further useful characterisation of 
positive definite functions is Bochner’s theorem, which, in our context, implies that 𝑓𝑓  is positive definite on 
𝐺𝐺 if and only if the Fourier transform (equivalently, cosine transform) of 𝑓𝑓  on 𝐺𝐺 is positive. For spaces with a 
group structure, this gives an easy method of constructing positive definite functions. 

We are interested in positive definite functions, as by results due to Doob, for the existence of a Gaussian 
stochastic process with covariance 𝑓𝑓 �𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�  for all 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑋𝑋 , it is sufficient that the function 𝑓𝑓   be positive 

definite on 𝑋𝑋 × 𝑋𝑋. Hence, by using this result along with Bochner’s theorem, we are easily able to verify if 
there is a continuous stochastic process with the covariance structure we desire. Alternatively, if we find 
results in the mathematical literature proving the positive definiteness of some function of interest, then we 
know there is a continuous stochastic process with that auto-covariance function. 

Appendix A.3: Continuous stochastic processes in Euclidean spaces 
We now proceed to give examples of spaces and some of the possible continuous stochastic processes on 

those spaces. Ornstein-Uhlenbeck processes extend naturally to Euclidean spaces, and may be further 
generalized to allow for different rates of decay of the auto-covariance. In particular, let ‖ ‖𝑝𝑝 be the usual ℓ𝑝𝑝 
(quasi-)norm on ℝ𝑛𝑛 , then 𝑥𝑥 ↦ exp�−‖𝑥𝑥‖𝑝𝑝

𝑞𝑞�  is positive definite on ℝ𝑛𝑛  if and only if one of the following 

conditions hold: 
• 0 < 𝑞𝑞 ≤ 𝑝𝑝 ≤ 2 (independent of 𝑛𝑛). 
• 𝑛𝑛 = 1, and 𝑝𝑝 > 0, and 0 < 𝑞𝑞 ≤ 2. 
• 𝑛𝑛 = 2, and 𝑝𝑝 ∈ (2, ∞], and 𝑞𝑞 ∈ (0,1], 

(Schoenberg 1938; Misiewicz 1989; Koldobsky 1992; see also Kuniewski and Misiewicz 2014). This gives us a 
wide range of stochastic processes on ℝ𝑛𝑛 , with the 𝑝𝑝 = 1 , 𝑞𝑞 = 1  and 𝑝𝑝 = 2 , 𝑞𝑞 = 1  processes both being 
contenders to be the “natural” Ornstein-Uhlenbeck process on ℝ𝑛𝑛. The 𝑝𝑝 = 𝑞𝑞 = 2 process is also potentially 
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useful in macroeconomic applications, as it is the unique stochastic process in this class with realisations that 
are smooth almost surely. 

Another useful class of positive definite functions on ℝ𝑛𝑛 are given by 𝑥𝑥 ↦ �1 + ‖𝑥𝑥‖2
𝛼𝛼�−𝜏𝜏

𝛼𝛼, where 𝛼𝛼 ∈ (0,2] 
and 𝜏𝜏 > 0 (Gneiting and Schlather 2004). These have long-memory, so may be useful in applications with 
very high spatial dependence. Further processes on ℝ𝑛𝑛 may be constructed by taking 𝐺𝐺 = ℝ𝑚𝑚, 𝑋𝑋 = ℝ𝑛𝑛, and 
ℎ(𝑥𝑥) = 𝐴𝐴𝑥𝑥  for some matrix 𝐴𝐴 , then 𝑓𝑓 �ℎ(𝑥𝑥1) − ℎ(𝑥𝑥2)� = 𝑓𝑓 �ℎ(𝑥𝑥1 − 𝑥𝑥2)�  so 𝑥𝑥 ↦ exp�−‖𝐴𝐴𝑥𝑥‖𝑝𝑝

𝑞𝑞�  and 𝑥𝑥 ↦ �1 +

‖𝐴𝐴𝑥𝑥‖2
𝛼𝛼�−𝜏𝜏

𝛼𝛼 are positive definite with the same assumptions as before. 

Appendix A.4: Continuous stochastic processes on circles and spheres 
If 𝑋𝑋 = 𝕊𝕊𝑛𝑛, the sphere in 𝑛𝑛 + 1 dimensional space, then the natural distance between points is the great circle 

distance, which, appropriately normalised, is given by 𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) = 1
2𝜋𝜋 arccos�𝑥𝑥1

′ 𝑥𝑥2� ∈ �0, 1
2�. Then, for 𝜁𝜁 > 0, 

(𝑥𝑥1, 𝑥𝑥2) ↦ exp{−𝜁𝜁𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)𝑞𝑞} is positive definite on 𝑋𝑋 × 𝑋𝑋 if and only if 𝑞𝑞 ∈ (0,1] (Bogomolny, Bohigas, and 

Schmit 2007). On 𝕊𝕊1 , this function has cosine transform 𝑘𝑘 ↦ 𝜁𝜁�1−(−1)𝑘𝑘𝑒𝑒−𝜁𝜁 2⁄ �
4𝜋𝜋2𝑘𝑘2+𝜁𝜁2   for 𝑘𝑘 ∈ ℕ+ , which has an 

undesirable oscillating component not present in the cosine transform on ℝ  of 𝑥𝑥 ↦ exp(−𝜁𝜁|𝑥𝑥|) , i.e. 𝜔𝜔 ↦
𝜁𝜁

4𝜋𝜋2𝜔𝜔2+𝜁𝜁2. As a result, this may not be a particularly natural choice. As an alternative, it is worth noting that 

on 𝕊𝕊1 ,1F

14  for 𝜁𝜁 > 0 , the function (𝑥𝑥1, 𝑥𝑥2) ↦ 𝑠𝑠�𝜁𝜁 , 𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)�  is positive definite, where 𝑠𝑠(𝜁𝜁, 𝑑𝑑) =
exp�−𝜁𝜁𝜁𝜁+𝜁𝜁

2�+exp�𝜁𝜁𝜁𝜁−𝜁𝜁
2�

exp�𝜁𝜁
2�+exp�−𝜁𝜁

2�
 (Pedersen 2002). Furthermore, this has a cosine transform proportional to 𝑘𝑘 ↦ 𝜁𝜁

4𝜋𝜋2𝑘𝑘2+𝜁𝜁 2 

for 𝑘𝑘 ∈ ℕ+ , which means it is the natural generalisation of the Ornstein-Uhlenbeck process on ℝ . Other 

possibilities include (𝑥𝑥1, 𝑥𝑥2) ↦ (1 − 𝜁𝜁) + 𝜁𝜁 �1
2 − 𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)�

2
 and (𝑥𝑥1, 𝑥𝑥2) ↦ (1 − 𝜁𝜁) + 1

2 𝜁𝜁�1 + 𝑥𝑥1
′ 𝑥𝑥2�, which are 

both positive definite for 𝜁𝜁 ∈ [0,1], by the condition given in Gneiting (2013). The latter is an analogue of 𝑥𝑥 ↦
exp�−𝜁𝜁𝑥𝑥2� on ℝ, and will lead to smooth sample paths. 

Appendix A.5: Continuous stochastic processes on tori 
If 𝐺𝐺 = 𝐺𝐺1 × 𝐺𝐺2 × … × 𝐺𝐺𝑛𝑛, and 𝑓𝑓𝑖𝑖 is positive definite on 𝐺𝐺𝑖𝑖 for 𝑖𝑖 = 1, … , 𝑛𝑛, then the function 𝑓𝑓 : 𝐺𝐺 → ℝ defined 

by 𝑓𝑓 (𝑥𝑥) = ∏ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑛𝑛
𝑖𝑖=1  is positive definite on 𝐺𝐺. Hence, positive definite functions on tori can be constructed 

from products of positive definite functions on circles (where the circle is identified with ℝ ℤ⁄ ). For example, 
by our previous results, for 𝜁𝜁1, … , 𝜁𝜁𝑛𝑛 > 0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ∈ (0,1], the function: 

(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ↦ exp �− � 𝜁𝜁𝑖𝑖 min{�𝑥𝑥𝑖𝑖�, 1 − �𝑥𝑥𝑖𝑖�}𝑞𝑞𝑖𝑖
𝑛𝑛

𝑖𝑖=1
� 

will be positive definite on 𝐺𝐺. 

Appendix A.6: Continuous stochastic processes on graphs or networks 
In general, graphs cannot be isometrically embedded in Euclidean space, so if 𝑑𝑑 is the shortest path metric 

on the (embedding of the) graph, (𝑥𝑥1, 𝑥𝑥2) ↦ exp�−𝜁𝜁𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)2�  will only be positive definite for very 
particular graphs. We do know however that (𝑥𝑥1, 𝑥𝑥2) ↦ exp�−𝜁𝜁𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)� will be positive definite for all 𝜁𝜁 >
0 if the following conditions are all satisfied (Chepoi, Deza, and Grishukhin 1997): 

• the graph is unweighted, or possesses integer weights, 
• the graph is planar, 
• every interior face of the graph is an isometric cycle, 

                                                      
14 This does not hold on 𝕊𝕊2 or higher, by the condition given in Gneiting (2013). 
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• two interior faces meet at at most one edge (of length one). 
Additionally, (𝑥𝑥1, 𝑥𝑥2) ↦ exp�−𝜁𝜁𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)� is positive definite on all (weighted) trees, for all 𝜁𝜁 > 0 (Hjorth et 
al. 1998). 

Furthermore, it may be shown that for all graphs, there exists 𝜁𝜁  ̅such that (𝑥𝑥1, 𝑥𝑥2) ↦ exp�−𝜁𝜁𝑑𝑑(𝑥𝑥1, 𝑥𝑥2)� is 
positive definite for 𝜁𝜁 > 𝜁𝜁 .̅ The idea of the proof is the following. For large 𝜁𝜁 , the “ACF” matrix is diagonally 
dominant on the graph’s vertices, hence positive definite, hence we can draw from a finite dimensional 
Gaussian process on the vertices, and then link the realisations at the vertices with independent Ornstein-
Uhlenbeck processes along each, conditional on them taking the given values at the vertices. 

: Further model properties 

Appendix B.1: Lagrangians 
The capital holding company’s problem leads to the following Lagrangian: 

𝔼𝔼𝑡𝑡 � �� Ξ𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
�

⎝
⎜⎜⎛ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡+𝑠𝑠𝐾𝐾𝑥𝑥,𝑡𝑡+𝑠𝑠−1 − 𝑃𝑃𝑥𝑥,𝑡𝑡𝐼𝐼𝑥𝑥,𝑡𝑡+𝑠𝑠 + 𝑄𝑄𝑥𝑥,𝑡𝑡

⎝
⎜⎜⎛(1 − 𝛿𝛿𝐾𝐾)𝐾𝐾𝑥𝑥,𝑡𝑡−1 + �1 − Φ �

𝐼𝐼𝑥𝑥,𝑡𝑡
𝐼𝐼𝑥𝑥,𝑡𝑡−1

�� 𝐼𝐼𝑥𝑥,𝑡𝑡 − 𝐾𝐾𝑥𝑥,𝑡𝑡
⎠
⎟⎟⎞

⎠
⎟⎟⎞

∞

𝑠𝑠=0
. 

The household’s problem leads to the following Lagrangian: 

𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑘𝑘−1

𝑠𝑠

𝑘𝑘=1
�

⎣
⎢
⎢
⎢
⎢
⎡

�
⎮⎮
⎮⎮
⎮�

⎣
⎢⎢
⎢⎢
⎡

𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1

⎣
⎢⎢
⎢
⎡𝑈𝑈𝑥𝑥,𝑡𝑡+𝑠𝑠

1−𝜍𝜍

1 − 𝜍𝜍
𝑋𝑋

∞

𝑠𝑠=0

+ 𝜇𝜇𝑈𝑈,𝑥𝑥,𝑡𝑡+𝑠𝑠

⎣
⎢⎢
⎡

�
𝐶𝐶𝑥𝑥,𝑡𝑡+𝑠𝑠

𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1
�

𝜃𝜃𝐶𝐶

�
𝐸𝐸𝑥𝑥,𝑡𝑡+𝑠𝑠

𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1
�

𝜃𝜃𝐹𝐹

�
1 − 𝐿𝐿𝑥𝑥,𝑡𝑡+𝑠𝑠
𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1

�
𝜃𝜃𝐿𝐿

⎝
⎜⎛ 1

1 + 𝜈𝜈 Γ1+𝜈𝜈 −
1

1 + 𝜈𝜈 �
𝐻𝐻𝑥𝑥,𝑡𝑡+𝑠𝑠

𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1
�

1+𝜈𝜈

⎠
⎟⎞

𝜃𝜃𝐻𝐻

⋅
⎝
⎜⎛1

2 Ω2 −
1
2 �log �

𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1
𝑁𝑁𝑡𝑡+𝑠𝑠−1

��
2

⎠
⎟⎞

𝜃𝜃𝑁𝑁

⋅ �1 −
∫ 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡+𝑠𝑠 𝑑𝑑𝑥𝑥̃𝑋𝑋

𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1
�

𝜓𝜓1

�𝑑𝑑 ̅−
∫ 𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡+𝑠𝑠 𝑑𝑑𝑥𝑥̃𝑋𝑋

∫ 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡+𝑠𝑠 𝑑𝑑𝑥𝑥̃𝑋𝑋
�

𝜓𝜓2

exp
⎣
⎢⎢
⎡

𝜓𝜓3

∫ 𝑁𝑁𝑥𝑥,̃𝑡𝑡+𝑠𝑠−1 log 𝒩𝒩𝑥𝑥,�̃�𝑥,𝑡𝑡+𝑠𝑠
𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1

𝑑𝑑𝑥𝑥̃𝑋𝑋

∫ 𝑁𝑁𝑥𝑥,̃𝑡𝑡+𝑠𝑠−1 𝑑𝑑𝑥𝑥̃𝑋𝑋 ⎦
⎥⎥
⎤

− 𝑈𝑈𝑥𝑥,𝑡𝑡+𝑠𝑠

⎦
⎥⎥
⎤

⎦
⎥⎥
⎥
⎤

+
𝜇𝜇𝑁𝑁,𝑥𝑥,𝑡𝑡+𝑠𝑠

1 − 𝜍𝜍 �𝐺𝐺𝑁𝑁,𝑡𝑡+𝑠𝑠𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠−1 − � 𝒩𝒩𝑥𝑥,𝑥𝑥,̃𝑡𝑡+𝑠𝑠 𝑑𝑑𝑥𝑥̃
𝑋𝑋

+ � 𝒩𝒩𝑥𝑥,̃𝑥𝑥,𝑡𝑡+𝑠𝑠 𝑑𝑑𝑥𝑥̃
𝑋𝑋

− 𝑁𝑁𝑥𝑥,𝑡𝑡+𝑠𝑠�

⎦
⎥⎥
⎥⎥
⎤

𝑑𝑑𝑥𝑥

+ 𝜇𝜇𝐵𝐵,𝑡𝑡+𝑠𝑠 �� �ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡+𝑠𝑠𝐿𝐿𝑥𝑥,𝑡𝑡+𝑠𝑠 + 𝑊𝑊𝑥𝑥,𝑡𝑡+𝑠𝑠𝐻𝐻𝑥𝑥,𝑡𝑡+𝑠𝑠� 𝑑𝑑𝑥𝑥
𝑋𝑋

+ 𝑅𝑅𝑡𝑡+𝑠𝑠−1𝐵𝐵𝑡𝑡+𝑠𝑠−1 + Τ𝑡𝑡+𝑠𝑠

− � �𝑃𝑃𝑥𝑥,𝑡𝑡+𝑠𝑠𝐶𝐶𝑥𝑥,𝑡𝑡+𝑠𝑠 + 𝐸𝐸𝑥𝑥,𝑡𝑡+𝑠𝑠� 𝑑𝑑𝑥𝑥
𝑋𝑋

− 𝐵𝐵𝑡𝑡+𝑠𝑠�

⎦
⎥
⎥
⎥
⎥
⎤

. 

Note that 𝜇𝜇𝑈𝑈,𝑥𝑥,𝑡𝑡 and 𝜇𝜇𝐵𝐵,𝑡𝑡 do not occur in the first order conditions given in the text, as we substitute it out 
from the first order condition for 𝑈𝑈𝑥𝑥,𝑡𝑡: 

𝜇𝜇𝑈𝑈,𝑥𝑥,𝑡𝑡 = 𝑈𝑈𝑥𝑥,𝑡𝑡
−𝜍𝜍. 

and the first order condition of 𝐸𝐸𝑥𝑥,𝑡𝑡: 

𝜇𝜇𝐵𝐵,𝑡𝑡 = 𝜃𝜃𝐹𝐹
𝑁𝑁𝑥𝑥,𝑡𝑡−1

𝐸𝐸𝑥𝑥,𝑡𝑡
𝑈𝑈𝑥𝑥,𝑡𝑡

1−𝜍𝜍. 
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Appendix B.2: Equilibrium conditions 
The complete set of equilibrium conditions of the model are as follows: 

𝑌𝑌����𝑥𝑥,𝑡𝑡 ≔ � 𝑌𝑌𝑥𝑥,̃𝑡𝑡𝑃𝑃𝑥𝑥̃,𝑡𝑡

1+𝜆𝜆
𝜆𝜆 exp �−

𝜏𝜏𝑡𝑡
𝜆𝜆 𝑑𝑑(𝑥𝑥,̃ 𝑥𝑥)� 𝑑𝑑𝑥𝑥̃

𝑋𝑋
 

Π𝑥𝑥,𝑡𝑡 ≔
𝜆𝜆

1 + 𝜆𝜆 (1 + 𝜆𝜆)−1
𝜆𝜆𝒫𝒫𝑥𝑥,𝑡𝑡

−1
𝜆𝜆𝑌𝑌����𝑥𝑥,𝑡𝑡 

𝑃𝑃𝑥𝑥,𝑡𝑡 = (1 + 𝜆𝜆) �� 𝐽𝐽𝑥𝑥,̃𝑡𝑡�𝒫𝒫𝑥𝑥,𝑡𝑡 exp[𝜏𝜏𝑡𝑡𝑑𝑑(𝑥𝑥, 𝑥𝑥)̃]�−1
𝜆𝜆 𝑑𝑑𝑥𝑥̃

𝑋𝑋
�

−𝜆𝜆
 

𝜙𝜙𝑡𝑡𝒫𝒫𝑥𝑥,𝑡𝑡 = Π𝑥𝑥,𝑡𝑡 + �1 − 𝛿𝛿𝐽𝐽�𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝜙𝜙𝑡𝑡+1𝒫𝒫𝑥𝑥,𝑡𝑡+1 
𝐹𝐹𝑥𝑥,𝑡𝑡 = 𝐿𝐿𝑥𝑥,𝑡𝑡

𝛾𝛾 𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡
1−𝛾𝛾  

𝛾𝛾
𝐹𝐹𝑥𝑥,𝑡𝑡
𝐿𝐿𝑥𝑥,𝑡𝑡

= ℛ𝐿𝐿,𝑥𝑥,𝑡𝑡 

(1 − 𝛾𝛾)
𝐹𝐹𝑥𝑥,𝑡𝑡

𝑍𝑍𝐹𝐹,𝑥𝑥,𝑡𝑡
= 𝒫𝒫𝑥𝑥,𝑡𝑡 

𝑍𝑍𝑥𝑥,𝑡𝑡 = �𝐾𝐾𝑥𝑥,𝑡𝑡−1
𝛼𝛼 �𝐴𝐴𝑥𝑥,𝑡𝑡𝐻𝐻𝑥𝑥,𝑡𝑡�1−𝛼𝛼�1−𝜅𝜅𝑀𝑀𝑥𝑥,𝑡𝑡

𝜅𝜅  

(1 − 𝜅𝜅)𝛼𝛼𝒫𝒫𝑥𝑥,𝑡𝑡
𝑍𝑍𝑥𝑥,𝑡𝑡

𝐾𝐾𝑥𝑥,𝑡𝑡−1
= ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡 

(1 − 𝜅𝜅)(1 − 𝛼𝛼)𝒫𝒫𝑥𝑥,𝑡𝑡
𝑍𝑍𝑥𝑥,𝑡𝑡
𝐻𝐻𝑥𝑥,𝑡𝑡

= 𝑊𝑊𝑥𝑥,𝑡𝑡 

𝜅𝜅𝒫𝒫𝑥𝑥,𝑡𝑡
𝑍𝑍𝑥𝑥,𝑡𝑡
𝑀𝑀𝑥𝑥,𝑡𝑡

= 𝑃𝑃𝑥𝑥,𝑡𝑡 

𝐾𝐾𝑥𝑥,𝑡𝑡 = (1 − 𝛿𝛿𝐾𝐾)𝐾𝐾𝑥𝑥,𝑡𝑡−1 + �1 − Φ �
𝐼𝐼𝑥𝑥,𝑡𝑡

𝐼𝐼𝑥𝑥,𝑡𝑡−1
�� 𝐼𝐼𝑥𝑥,𝑡𝑡 

1 = 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
ℛ𝐾𝐾,𝑥𝑥,𝑡𝑡+1 + 𝑄𝑄𝑥𝑥,𝑡𝑡+1(1 − 𝛿𝛿𝐾𝐾)

𝑄𝑄𝑥𝑥,𝑡𝑡
 

𝑃𝑃𝑥𝑥,𝑡𝑡 = 𝑄𝑄𝑥𝑥,𝑡𝑡 �1 − Φ �
𝐼𝐼𝑥𝑥,𝑡𝑡

𝐼𝐼𝑥𝑥,𝑡𝑡−1
� − Φ′ �

𝐼𝐼𝑥𝑥,𝑡𝑡
𝐼𝐼𝑥𝑥,𝑡𝑡−1

�
𝐼𝐼𝑥𝑥,𝑡𝑡

𝐼𝐼𝑥𝑥,𝑡𝑡−1
� + 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝑄𝑄𝑥𝑥,𝑡𝑡+1Φ′ �

𝐼𝐼𝑥𝑥,𝑡𝑡+1
𝐼𝐼𝑥𝑥,𝑡𝑡

� �
𝐼𝐼𝑥𝑥,𝑡𝑡+1
𝐼𝐼𝑥𝑥,𝑡𝑡

�
2
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