
Inverse demand curve: 𝑝 = 1 − 𝑄 

Zero costs of production. Entry cost of 𝐹. 

Profits of firm 𝑖: 𝜋𝑖 = (1 − 𝑄)𝑞𝑖 

FOC of firm 𝑖: 0 =
𝜕𝜋𝑖

𝜕𝑞𝑖
= −𝑞𝑖 + 1 − 𝑄 

Adding FOCs across the 𝑖 firms gives: 0 = −𝑄 + 𝑛(1 − 𝑄) 

So: (1 + 𝑛)𝑄 = 𝑛 
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Producer surplus is given by: 𝑃𝑆 = ∑ 𝜋𝑖
𝑛
𝑖=1 − 𝑛𝐹 = (1 − 𝑄)𝑄 − 𝑛𝐹 

Consumer surplus is given by: 𝐶𝑆 =
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2
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Thus welfare is given by: 𝑊 = 𝐶𝑆 + 𝑃𝑆 =
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𝑄2 + (1 − 𝑄)𝑄 − 𝑛𝐹 =
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The social planner would choose the number of firms to maximise welfare. 

Social planner FOC: 

0 =
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Now, if 𝐹 > 1, then 𝑛 < 0 with or without the social planner. So suppose 𝐹 < 1. Then 𝐹
1

3 > 𝐹
1

2, so 

𝐹−
1

3 < 𝐹−
1

2. Thus the social planner would prefer fewer firms to enter than will enter under laissez-

faire. 
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