Industrial Organisation

Lecture 9: More on advertising Tom Holden <u>http://io.tholden.org/</u>

Outline

- More on advertising:
 - Models.
 - Welfare.
 - Empirics.
- Reminder:
 - Additional reference for the advertising material: <u>Bagwell (2005)</u>

Informative advertising with free entry: <u>Butters (1977)</u> (1/3)

- There are a large number of firms, each of which can produce at most one instance of the same good, for a cost of c.
- There is no entry cost, but no one will buy from a firm unless they receive an advert from them.
- Sending an advert to one random consumer costs
 a. Each advert lists the firm's price.
- Consumers will buy from any firm that sends them an advert with a price below their valuation v.
- Consumers who receive adverts from multiple firms buy from the cheapest.

Informative advertising with free entry: <u>Butters (1977)</u> (2/3)

- If a firm sends an advert listing a price P, with some probability X(P) it will be the cheapest advert that consumer receives, and they will make profits of P c.
 - Thus total expected profits from sending an advert are (P c)X(P) a.
- Because there are a large number of firms (equivalently, no entry costs), each firm must make zero profits.
 - If there was a firm making positive profits, then I would want to send out adverts offering a price just below the one it had chosen.
 - But then my rival faces a lower probability of selling at his posted price, so must be making lower profits.
- Hence: a = (P c)X(P) for all P firms set, so $X(P) = \frac{a}{P-c}$.
 - Since X(P) is a probability the price can never be below the level at which $1 = X(P) = \frac{a}{P-c}$, i.e. $P \ge a + c$.
 - Since no one will buy if P > v, no firm will advertise a price above v. But since $X(v) = \frac{a}{v-c} > 0$ there must be a probability $\frac{a}{v-c}$ that a consumer will only receive one advert, meaning firms can still sell at v.
 - Indeed, in equilibrium, there are firms setting a price at every point between a + c and v.

Informative advertising with free entry: <u>Butters (1977)</u> (3/3)

- X(P) looks a lot like the demand curve faced by each firm.
- Intuitively then, we might expect monopolisticcompetition style distortions.
- In fact, this is efficient (welfare optimal).
 - Price is a transfer, so it's irrelevant.
 - The social benefit to reaching a new consumer (for sure) is v c.
 - Thus the social benefit from sending another advert is v c times the probability that the consumer had not received any other adverts. But this probability is $\frac{a}{v-c}$, in equilibrium.
 - So social benefit to another ad equals the cost!
 - However, when consumers have heterogeneous valuations it may be shown that advertising is inadequate.

Advertising in oligopoly: <u>Grossman</u> <u>and Shapiro (1984)</u> (1/3)

- Two firms, Hotelling set-up, fixed locations (0 and 1), linear transport cost t, zero MC.
- Firm A (B) sends adverts to a proportion z_A (z_B).
- This costs them $\frac{r}{2}z_A^2$ ($\frac{r}{2}z_B^2$).
- Adverts are randomly distributed over consumers so, e.g. a proportion $(1 z_A)(1 z_B)$ receive no ads so do not buy.
- As in the standard Hotelling model, of those consumers who received two ads, the indifferent one is located at $x^* = \frac{1}{2} + \frac{p_B p_A}{2t}$.
- Demand faced by firm² A is then: $z_A(1 z_B) + z_A z_B x^*$.

Advertising in oligopoly: <u>Grossman</u> and Shapiro (1984) (2/3)

• So firm *A*'s profits are: $z_A \left[(1-z_B) + z_B \left(\frac{1}{2} + \frac{p_B - p_A}{2t} \right) \right] p_A - \frac{r}{2} z_A^2$.

• FOC z_A : $0 = \left[(1 - z_B) + z_B \left(\frac{1}{2} + \frac{p_B - p_A}{2t} \right) \right] p_A - r z_A$. • I.e. $z_A = \frac{p_A}{r} \left[(1 - z_B) + z_B \left(\frac{1}{2} + \frac{p_B - p_A}{2t} \right) \right]$.

FOC
$$p_A: 0 = z_A \left[(1 - z_B) + z_B \left(\frac{1}{2} + \frac{p_B - p_A}{2t} \right) \right] - \frac{z_A z_B}{2t} p_A.$$

• I.e. $p_A = \frac{2t}{z_B} \left[(1 - z_B) + z_B \left(\frac{1}{2} + \frac{p_B - p_A}{2t} \right) \right].$

- Solution must be symmetric, with $p \coloneqq p_A = p_B$ and $z \coloneqq z_A = z_B$. Hence: $z = \frac{p}{r} \left(1 \frac{z}{2}\right)$ and $p = \frac{2t}{z} \left(1 \frac{z}{2}\right)$.
 I.e. $\frac{pz}{2t} = \frac{rz}{p}$. So $p = \sqrt{2tr}$ and $z = \frac{\frac{p}{r}}{1 + \frac{1p}{2r}} = \frac{2p}{2r + p} = \frac{2\sqrt{2tr}}{2r + \sqrt{2tr}} = \frac{2}{1 + \sqrt{\frac{2r}{t}}}$.
 - For this to be valid we need z < 1. $r > \frac{t}{2}$ is necessary and sufficient for this.

• Profits then are:
$$\frac{2}{1+\sqrt{\frac{2r}{t}}} \left[1 - \frac{1}{2} \frac{2}{1+\sqrt{\frac{2r}{t}}} \right] \sqrt{2tr} - \frac{r}{2} \left[\frac{2}{1+\sqrt{\frac{2r}{t}}} \right]^2 = \frac{2\sqrt{2tr} \left(1 + \sqrt{\frac{2r}{t}} \right)^{-2\sqrt{2tr} - 2r}}{\left(1 + \sqrt{\frac{2r}{t}} \right)^2} = \frac{2r}{\left(1 + \sqrt{\frac{2r}{t}} \right)^2}$$

Advertising in oligopoly: <u>Grossman</u> <u>and Shapiro (1984)</u> (3/3)

► So...

- Price is higher than without the need for advertising. $(r > \frac{t}{2} \text{ implies } P = \sqrt{2tr} > t.)$
- When products are more differentiated (t is high), there is more advertising.
 - So even if we observe higher differentiation in industries with a lot of advertising, it does not mean that advertising caused the differentiation.
- Expensive advertising actually increases profits.
 - High costs reduce the amount of advertising performed, reducing the proportion of consumers who see two adverts, pushing up prices.
- Advertising cost and differentiation have the same (positive) effect on profits, but opposite effects on the amount of advertising performed.
 - Thus we should not be surprised by finding either a positive or a negative correlation between advertising and profits.
- There may be too much or too little advertising.
 - If extra advertising reaches a new consumer, then the social benefit exceeds the private benefit to the firm (non-appropriability).
 - But firm *A* has an incentive to advertise more in order to expand its market share (business stealing).

Complementary advertising

- A model of complementary advertising will begin with specifications for agent's utility functions under which viewing adverts (or others viewing adverts) is a complement for the good.
- A very simple model is the following.
 - If I have not seen an advert, then I value the good at zero.
 - If I have seen an advert, then I value the good at v.
- Thus every model of informative advertising may be reinterpreted as a model of complementary advertising.

Empirics

- Read <u>Bagwell (2005)</u>!
 - Conclusion is that different views are valid in different industries.
- Consistent with the informative/search view.
 - <u>Benham (1972)</u> found eyeglass prices were higher where advertising was banned.
 - <u>Kwoka (1984)</u> found a similar result for optometry.
 - <u>Milyo and Waldfogel (1999)</u> look at the end of a ban on liquor price advertising and find firms cut the prices of only those goods that either they advertise or their rival does.
- Other important papers:
 - <u>Comanor and Wilson (1967)</u> find profits, advertising and differentiation move together. (Possible in <u>Grossman and Shapiro</u> (1984) model.)
 - <u>Nelson (1974)</u>, <u>Porter (1974)</u>, <u>Esposito et al. (1990)</u> product characteristics are important. Experience goods different to search goods etc. Some evidence for an inverse–U relationship between concentration and advertising (but e.g. <u>Willis and Rogers (1998)</u> find the opposite result.)

Summary

Advertising is not unambiguously bad.

- All three views (persuasive, informative, complementary) have something going for them.
 - But the persuasive view is unpopular these days for methodological reasons.
- Empirical evidence is hard to interpret, since differentiation, entry, advertising and profits are all endogenous.

Recap: Advertising exercises

- OZ Ex. 11.7
 - Question 1,2
- OZ Extra exercises:
 - <u>http://ozshy.50webs.com/io-exercises.pdf</u>
 - Set #16

Merry Christmas!

And a Happy New Year.