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1. The free-entry and first order conditions 
When deciding how much research and appropriation to perform, firms realise 

that if they perform a non-equilibrium amount then in the next period they will 

have an incentive to set a different mark-up to the other firms in their industry. 

(The clearest example of this is when we have perfect competition, in which case 

the most productive firm would want to price just below the second most 

productive firms’ marginal cost.) It may be seen that in non-symmetric 

equilibrium the optimal price satisfies: 

𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗)⎣

⎢
⎡1 + 𝜂𝜂𝜂𝜂

1 − (1 − 𝜂𝜂) 1
𝐽𝐽𝑡𝑡−1(𝑖𝑖) �

𝑃𝑃𝑡𝑡(𝑖𝑖,𝑗𝑗)
𝑃𝑃𝑡𝑡(𝑖𝑖) �

− 1
𝜂𝜂𝜂𝜂

⎦
⎥
⎤. 

Since we are looking for a symmetric equilibrium, it is sufficient to approximate 

this locally around 𝑃𝑃𝑡𝑡(𝑖𝑖) = 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)  in order to calculate firms’ research and 

appropriation incentives. Taking a log-linear approximation of log 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)  in 
𝑃𝑃𝑡𝑡(𝑖𝑖,𝑗𝑗)
𝑃𝑃𝑡𝑡(𝑖𝑖)  gives us that: 

𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) ≈ 𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗)

�1 + 𝜇𝜇𝑡𝑡−1(𝑖𝑖)��𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)
𝑃𝑃𝑡𝑡(𝑖𝑖)

�
−𝜔𝜔𝑡𝑡−1(𝑖𝑖)

 

where 𝜔𝜔𝑡𝑡(𝑖𝑖) ≔ 𝐽𝐽𝑡𝑡(𝑖𝑖)(1−𝜂𝜂)
�𝐽𝐽𝑡𝑡(𝑖𝑖)−(1−𝜂𝜂)�2�1+𝜇𝜇𝑡𝑡(𝑖𝑖)�

 captures the strength of these incentives to 

deviate from setting the same mark-up as all other firms in their industry. 
Therefore 𝑃𝑃𝑡𝑡(𝑖𝑖) ≈ 𝑊𝑊𝑡𝑡

𝐴𝐴𝑡𝑡(𝑖𝑖) �1 + 𝜇𝜇𝑡𝑡−1(𝑖𝑖)�  and 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) ≈ 𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡(𝑖𝑖,𝑗𝑗) �1 +

𝜇𝜇𝑡𝑡−1(𝑖𝑖)��
𝐴𝐴𝑡𝑡(𝑖𝑖,𝑗𝑗)
𝐴𝐴𝑡𝑡(𝑖𝑖) �

𝜔𝜔𝑡𝑡−1(𝑖𝑖)
1+𝜔𝜔𝑡𝑡−1(𝑖𝑖) where: 

𝐴𝐴𝑡𝑡(𝑖𝑖) ≔ � 1
𝐽𝐽𝑡𝑡−1(𝑖𝑖)

� 𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗)
1

𝜂𝜂𝜂𝜂�1+𝜔𝜔𝑡𝑡−1(𝑖𝑖)�

𝐽𝐽𝑡𝑡−1(𝑖𝑖)

𝑗𝑗=1
�

𝜂𝜂𝜂𝜂�1+𝜔𝜔𝑡𝑡−1(𝑖𝑖)�

. 

Therefore, up to a first order approximation around the symmetric solution, 

profits are given by: 

𝛽𝛽 1
𝐼𝐼𝑡𝑡𝐽𝐽𝑡𝑡(𝑖𝑖)

� 1 + 𝜇𝜇𝑡𝑡
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

�
1
𝜂𝜂
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝑌𝑌𝑡𝑡+1 ��

𝐴𝐴𝑡𝑡+1(𝑖𝑖, 𝑗𝑗)
𝐴𝐴𝑡𝑡+1(𝑖𝑖)

�
𝜔𝜔𝑡𝑡(𝑖𝑖)

1+𝜔𝜔𝑡𝑡(𝑖𝑖)

− 1
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

��
𝐴𝐴𝑡𝑡+1(𝑖𝑖, 𝑗𝑗)
𝐴𝐴𝑡𝑡+1(𝑖𝑖)

�
1−𝜂𝜂𝜂𝜂𝜔𝜔𝑡𝑡(𝑖𝑖)

𝜂𝜂𝜂𝜂�1+𝜔𝜔𝑡𝑡(𝑖𝑖)�

�
𝐴𝐴𝑡𝑡+1(𝑖𝑖)
𝐴𝐴𝑡𝑡+1

�
1
𝜂𝜂

− [𝐿𝐿𝑡𝑡
R(𝑖𝑖, 𝑗𝑗) + 𝐿𝐿𝑡𝑡

A(𝑖𝑖, 𝑗𝑗) + 𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) + 𝐿𝐿F]𝑊𝑊𝑡𝑡. 
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Note that if 𝐽𝐽𝑡𝑡(𝑖𝑖) > 2
√

2�3−
√

2�
1+2

√
2 ≈ 1.17, then 1 − 𝜂𝜂𝜂𝜂𝜔𝜔𝑡𝑡(𝑖𝑖) > 0 (by tedious algebra), 

so providing there are at least two firms in the industry, this expression is 

guaranteed to be increasing and concave in 𝐴𝐴𝑡𝑡+1(𝑖𝑖, 𝑗𝑗). 

Let 𝓂𝓂𝑡𝑡
R(𝑖𝑖, 𝑗𝑗)𝑊𝑊𝑡𝑡 be the Lagrange multiplier on research’s positivity constraint 

and 𝓂𝓂𝑡𝑡
A(𝑖𝑖, 𝑗𝑗)𝑊𝑊𝑡𝑡  be the Lagrange multiplier on appropriation’s positivity 

constraint. Then in a symmetric equilibrium the two first order conditions and 

the free entry condition (respectively) mean: 

𝛽𝛽 1
𝐼𝐼𝑡𝑡𝐽𝐽𝑡𝑡(𝑖𝑖)

𝜇𝜇𝑡𝑡(𝑖𝑖)
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

� 1 + 𝜇𝜇𝑡𝑡
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

�
1
𝜂𝜂
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝑌𝑌𝑡𝑡+1 �

𝐴𝐴𝑡𝑡+1(𝑖𝑖)
𝐴𝐴𝑡𝑡+1

�
1
𝜂𝜂 𝒹𝒹𝑡𝑡(𝑖𝑖)
𝜇𝜇𝑡𝑡(𝑖𝑖)

𝑍𝑍𝑡𝑡+1𝐴𝐴𝑡𝑡
∗∗(𝑖𝑖)−𝜁𝜁RΨ

1 + 𝛾𝛾𝑍𝑍𝑡𝑡+1𝐴𝐴𝑡𝑡
∗∗(𝑖𝑖)−𝜁𝜁RΨ𝐿𝐿𝑡𝑡

R(𝑖𝑖)
= 𝑊𝑊𝑡𝑡�1 −𝓂𝓂𝑡𝑡

R(𝑖𝑖)� 

𝛽𝛽 1
𝐼𝐼𝑡𝑡𝐽𝐽𝑡𝑡(𝑖𝑖)

𝜇𝜇𝑡𝑡(𝑖𝑖)
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

� 1 + 𝜇𝜇𝑡𝑡
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

�
1
𝜂𝜂
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝑌𝑌𝑡𝑡+1 �

𝐴𝐴𝑡𝑡+1(𝑖𝑖)
𝐴𝐴𝑡𝑡+1

�
1
𝜂𝜂 𝒹𝒹𝑡𝑡(𝑖𝑖)
𝜇𝜇𝑡𝑡(𝑖𝑖)

1 + (𝛾𝛾 − 𝜁𝜁R)𝑍𝑍𝑡𝑡+1𝐴𝐴𝑡𝑡
∗∗(𝑖𝑖)−𝜁𝜁RΨ𝐿𝐿𝑡𝑡

R(𝑖𝑖)
1 + 𝛾𝛾𝑍𝑍𝑡𝑡+1𝐴𝐴𝑡𝑡

∗∗(𝑖𝑖)−𝜁𝜁RΨ𝐿𝐿𝑡𝑡
R(𝑖𝑖)

⋅ 1
𝜏𝜏

𝐴𝐴𝑡𝑡(𝑖𝑖)−𝜁𝜁AΥ(𝐴𝐴𝑡𝑡
∗𝜏𝜏 − 𝐴𝐴𝑡𝑡(𝑖𝑖)𝜏𝜏)

𝐴𝐴𝑡𝑡
∗∗(𝑖𝑖)𝜏𝜏 �1 + 𝐴𝐴𝑡𝑡(𝑖𝑖)−𝜁𝜁AΥ𝐿𝐿𝑡𝑡

A(𝑖𝑖)�
2 = 𝑊𝑊𝑡𝑡 �1 −𝓂𝓂𝑡𝑡

A(𝑖𝑖)� 

𝛽𝛽 1
𝐼𝐼𝑡𝑡𝐽𝐽𝑡𝑡(𝑖𝑖)

𝜇𝜇𝑡𝑡(𝑖𝑖)
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

� 1 + 𝜇𝜇𝑡𝑡
1 + 𝜇𝜇𝑡𝑡(𝑖𝑖)

�
1
𝜂𝜂
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝑌𝑌𝑡𝑡+1 �

𝐴𝐴𝑡𝑡+1(𝑖𝑖)
𝐴𝐴𝑡𝑡+1

�
1
𝜂𝜂

= [𝐿𝐿𝑡𝑡
R(𝑖𝑖, 𝑗𝑗) + 𝐿𝐿𝑡𝑡

A(𝑖𝑖, 𝑗𝑗) + 𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) + 𝐿𝐿𝑡𝑡

F]𝑊𝑊𝑡𝑡 

where: 

𝒹𝒹𝑡𝑡(𝑖𝑖) ≔ 1 − 𝜔𝜔𝑡𝑡(𝑖𝑖)
1 + 𝜔𝜔𝑡𝑡(𝑖𝑖)

�𝜂𝜂 − 𝜇𝜇𝑡𝑡(𝑖𝑖)�(𝜇𝜇𝑡𝑡(𝑖𝑖) − 𝜂𝜂𝜂𝜂)
𝜂𝜂(1 − 𝜂𝜂)𝜇𝜇𝑡𝑡(𝑖𝑖)

< 1 

and where we have dropped 𝑗𝑗 indices on variables which are the same across the 

industry. 

We also have that: 
�𝜂𝜂 − 𝜇𝜇𝑡𝑡(𝑖𝑖)�(𝜇𝜇𝑡𝑡(𝑖𝑖) − 𝜂𝜂𝜂𝜂)

𝜂𝜂(1 − 𝜂𝜂)𝜇𝜇𝑡𝑡(𝑖𝑖)
≤ 𝜂𝜂(1 −

√
𝜂𝜂)(

√
𝜂𝜂 − 𝜂𝜂)√

𝜂𝜂
< 𝜂𝜂 

so providing 𝜂𝜂 < 1, 𝒹𝒹𝑡𝑡(𝑖𝑖) > 0. 

That the solution for research when 𝑍𝑍𝑡𝑡+1 ≡ 1 is given by equation (1.2) from 

Holden (2013a) is a trivial consequence of the complementary slackness condition 
and the facts that 1

𝜇𝜇𝑡𝑡(𝑖𝑖) < 𝛾𝛾 and 𝒹𝒹𝑡𝑡(𝑖𝑖) < 1. Deriving (1.3) from Holden (2013a) is 

less trivial though. 
Begin by defining 𝓀𝓀𝑡𝑡(𝑖𝑖) ≔ 1+�𝛾𝛾−𝜁𝜁R�ℒ𝑡𝑡

R(𝑖𝑖)
1+𝛾𝛾ℒ𝑡𝑡

R(𝑖𝑖) , and note that since we are assuming 

𝛾𝛾 > 𝜁𝜁R ≥ 0, we have that 0 < 𝓀𝓀𝑡𝑡(𝑖𝑖) ≤ 1. Also define: 

𝓃𝓃𝑡𝑡(𝑖𝑖) ≔ 𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖)
𝜏𝜏𝜇𝜇𝑡𝑡(𝑖𝑖)

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)−𝜁𝜁AΥ�� 𝐴𝐴𝑡𝑡

∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏

− 1� [𝐿𝐿𝑡𝑡
R(𝑖𝑖) + 𝐿𝐿𝑡𝑡

ℛ(𝑖𝑖) + 𝐿𝐿𝑡𝑡
F] ≥ 0, 
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which is not a function of 𝐿𝐿𝑡𝑡
A(𝑖𝑖), given 𝐿𝐿𝑡𝑡

R(𝑖𝑖). 

We can then combine the appropriation first order condition with the free entry 

condition to obtain: 
1

�1 + ℒ𝑡𝑡
A(𝑖𝑖)�

2 �𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

𝐴𝐴𝑡𝑡
∗∗(𝑖𝑖)

�
𝜏𝜏

�𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖)
𝜏𝜏𝜇𝜇𝑡𝑡(𝑖𝑖)

�� 𝐴𝐴𝑡𝑡
∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏

− 1�ℒ𝑡𝑡
A(𝑖𝑖) +𝓃𝓃𝑡𝑡(𝑖𝑖)�

= 1 −𝓂𝓂𝑡𝑡
A(𝑖𝑖). 

Since the left hand side is weakly positive, from the dual feasibility condition 

we know 𝓂𝓂𝑡𝑡
A(𝑖𝑖) ∈ [0,1]. Now when 𝐿𝐿𝑡𝑡

A(𝑖𝑖) = 0, this becomes: 

𝓃𝓃𝑡𝑡(𝑖𝑖) = 1 −𝓂𝓂𝑡𝑡
A(𝑖𝑖), 

since in this case 𝐴𝐴𝑡𝑡
∗(𝑖𝑖) = 𝐴𝐴𝑡𝑡

∗∗(𝑖𝑖). Therefore when 𝐿𝐿𝑡𝑡
A(𝑖𝑖) = 0, 𝓃𝓃𝑡𝑡(𝑖𝑖) ≤ 1. 

We now prove the converse. Suppose then for a contradiction that 𝐿𝐿𝑡𝑡
A(𝑖𝑖) > 0, 

but 𝓃𝓃𝑡𝑡(𝑖𝑖) ≤ 1. By complementary slackness, we must have 𝓂𝓂𝑡𝑡
A(𝑖𝑖) = 0, hence: 

1 ≥ 𝓃𝓃𝑡𝑡(𝑖𝑖) = �1 + ℒ𝑡𝑡
A(𝑖𝑖)�

2
�𝐴𝐴𝑡𝑡

∗∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
�

𝜏𝜏

− 𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖)
𝜏𝜏𝜇𝜇𝑡𝑡(𝑖𝑖)

�� 𝐴𝐴𝑡𝑡
∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏

− 1�ℒ𝑡𝑡
A(𝑖𝑖) 

≥ �1 + ℒ𝑡𝑡
A(𝑖𝑖)�

2
�𝐴𝐴𝑡𝑡

∗∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
�

𝜏𝜏

− �� 𝐴𝐴𝑡𝑡
∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏

− 1�ℒ𝑡𝑡
A(𝑖𝑖) 

= �1 + ℒ𝑡𝑡
A(𝑖𝑖)���1 + ℒ𝑡𝑡

A(𝑖𝑖)� + ℒ𝑡𝑡
A(𝑖𝑖) �� 𝐴𝐴𝑡𝑡

∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏

− 1��

− �� 𝐴𝐴𝑡𝑡
∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏

− 1�ℒ𝑡𝑡
A(𝑖𝑖), 

where we have used the facts that 𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖) ≤ 1 and 1
𝜇𝜇𝑡𝑡(𝑖𝑖) < 𝜏𝜏  to derive the 

second inequality. 

Expanding the brackets then gives that: 

1 ≥ 1 + 2ℒ𝑡𝑡
A(𝑖𝑖) + � 𝐴𝐴𝑡𝑡

∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)

�
𝜏𝜏
ℒ𝑡𝑡

A(𝑖𝑖)2, 

i.e. that 0 ≥ 2 + � 𝐴𝐴𝑡𝑡
∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)�

𝜏𝜏
ℒ𝑡𝑡

A(𝑖𝑖) which is a contradiction as � 𝐴𝐴𝑡𝑡
∗

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)�

𝜏𝜏
ℒ𝑡𝑡

A(𝑖𝑖) ≥ 0. 

We have proven then that providing 1
𝜇𝜇𝑡𝑡(𝑖𝑖) < 𝜏𝜏 , 𝐿𝐿𝑡𝑡

A(𝑖𝑖) = 0 if and only if 𝓃𝓃𝑡𝑡(𝑖𝑖) ≤

1. It just remains for us to solve for 𝐿𝐿𝑡𝑡
A(𝑖𝑖) when it is strictly positive. From the 

above, we have that, in this case: 

�𝐴𝐴𝑡𝑡
∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

[𝓃𝓃𝑡𝑡(𝑖𝑖) − 1]

= 2�1 − 1
2
�1 + 𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖)

𝜏𝜏𝜇𝜇𝑡𝑡(𝑖𝑖)
� �1 − �𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

��ℒ𝑡𝑡
A(𝑖𝑖) + ℒ𝑡𝑡

A(𝑖𝑖)2. 
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Hence: 

ℒ𝑡𝑡
A(𝑖𝑖)

= −�1 − 1
2
�1 + 𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖)

𝜏𝜏𝜇𝜇𝑡𝑡(𝑖𝑖)
� �1 − �𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

��

+
⎷

��
�

�1 − 1
2
�1 + 𝒹𝒹𝑡𝑡(𝑖𝑖)𝓀𝓀𝑡𝑡(𝑖𝑖)

𝜏𝜏𝜇𝜇𝑡𝑡(𝑖𝑖)
� �1 − �𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

��
2

+ �𝐴𝐴𝑡𝑡
∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

[𝓃𝓃𝑡𝑡(𝑖𝑖) − 1], 

since the lower solution is guaranteed to be negative as 𝓃𝓃𝑡𝑡(𝑖𝑖) > 1 when 𝐿𝐿𝑡𝑡
A(𝑖𝑖) >

0. 

2. The steady state for non-patent-protected 
industries 

In an industry 𝑖𝑖 which is not patent-protected and in which appropriation, but 

no research, is performed, from (1.1) and (1.3) of Holden (2013a): 

𝒻𝒻𝑡𝑡(𝑖𝑖) + �𝒻𝒻𝑡𝑡(𝑖𝑖)
2 + ℊ𝑡𝑡(𝑖𝑖) = ℒ𝑡𝑡

A(𝑖𝑖) =
⎣
⎢⎡1 −

�𝐴𝐴𝑡𝑡+1
∗ (𝑖𝑖)
𝐴𝐴𝑡𝑡

∗(𝑖𝑖) �
𝜏𝜏

− 1

1 − �𝐴𝐴𝑡𝑡
∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏 �𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

⎦
⎥⎤

−1

− 1. 

If we treat 𝔭𝔭1 ≔ 𝜏𝜏 𝜇𝜇𝑡𝑡(𝑖𝑖)
𝒹𝒹𝑡𝑡(𝑖𝑖) − 1 ≈ 0 , 𝔭𝔭2 ≔ 𝐴𝐴𝑡𝑡

∗(𝑖𝑖)−𝜁𝜁AΥ𝑡𝑡𝐿𝐿𝑡𝑡
F ≈ 0  and 𝔭𝔭3 ≔ �𝐴𝐴𝑡𝑡+1

∗ (𝑖𝑖)
𝐴𝐴𝑡𝑡

∗(𝑖𝑖) �
𝜏𝜏

−

1 ≈ 0 as fixed, this leaves us with a cubic in �𝐴𝐴𝑡𝑡
∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏
, for which only one solution 

will be feasible (i.e. strictly less than 1 ). Taking a second order Taylor 

approximation of this solution in 𝔭𝔭1 , 𝔭𝔭2  and  𝔭𝔭3 , reveals (after some messy 

computation), that: 

�𝐴𝐴𝑡𝑡
∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏

≈ 𝔭𝔭2�1 − (𝔭𝔭1 + 𝔭𝔭2)� = 𝐴𝐴𝑡𝑡
∗(𝑖𝑖)−𝜁𝜁AΥ𝑡𝑡𝐿𝐿𝑡𝑡

F �2 − 𝜏𝜏 𝜇𝜇𝑡𝑡(𝑖𝑖)
𝒹𝒹𝑡𝑡(𝑖𝑖)

− 𝐴𝐴𝑡𝑡
∗(𝑖𝑖)−𝜁𝜁AΥ𝑡𝑡𝐿𝐿𝑡𝑡

F� 

(The effect of 𝔭𝔭3 on �𝐴𝐴𝑡𝑡
∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏
 is third order and hence it does not appear in this 

expression.) 
From this approximate solution for �𝐴𝐴𝑡𝑡

∗(𝑖𝑖)
𝐴𝐴𝑡𝑡

∗ �
𝜏𝜏
 then, we have that the relative 

productivity of a non-protected industry is decreasing in its mark-up. 

Furthermore, from dropping to a first order approximation, we have that 

𝐴𝐴𝑡𝑡
∗(𝑖𝑖)1+𝜁𝜁A

𝜏𝜏 ≈ 𝐴𝐴𝑡𝑡
∗(Υ𝑡𝑡𝐿𝐿𝑡𝑡

F)1
𝜏𝜏, so asymptotically non-protected industries are growing 

at �1 + 𝜁𝜁A

𝜏𝜏 �
−1

 times the growth rate of the frontier. 

3. The inventor-firm bargaining process 
We model the entire process of setting and paying rents as follows: 
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1) Firms enter, paying the fixed cost. 

2) Firms who have entered conduct appropriation, then research. 

3) The “idea shock” for next period’s production, 𝑍𝑍𝑡𝑡+1, is realised and firms and 

patent holders learn its level. 

4) Finally, firms arrive at the patent-holder to conduct bargaining, with these 

arrivals taking place sequentially but in a random order. (For example, all 

firms phone the patent-holder sometime in the week before production is to 

begin.) In this bargaining we suppose that the patent-holder has greater 

bargaining power, since they have a longer outlook2 and since they lose 

nothing if bargaining collapses3. We also suppose that neither patent-holders 

nor firms are able to observe or verify either how many (other) firms paid the 

fixed cost, or what research and appropriation levels they chose. This is 

plausible because until production begins it is relatively easy to keep such 

things hidden (for example, by purchasing the licence under a spin-off 

company), and because it is hard to ascertain ahead of production exactly 

what product a firm will be producing. We assume bargaining takes an 

alternating offer form, (Rubinstein 1982) but that it happens arbitrarily 

quickly (i.e. in the no discounting limit). 

5) Firms pay the agreed rents if bargaining was successful. Since this cost is 

expended before production, we continue to suppose firms have to borrow in 

the period before production in order to cover it. Firms will treat it as a fixed 

cost, sunk upon entry, since our unobservability assumptions mean 

bargaining’s outcome will not be a function of research and appropriation 

levels. 

6) The next period starts, other aggregate shocks are realised and production 

takes place. 

2 Consider what happens as the time gap between offers increases. When this gap is large enough only one offer 
would be made per-period, meaning the patent-holder would make a take-it-or-leave-it offer giving (almost) 
nothing to the firm, which the firm would then accept. 
3 The firm owner may, for example, face restrictions from starting businesses in future if as a result of the 
bargaining collapse they are unable to repay their creditors. 
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7) The patent-holder brings court cases against any firms who produced but 

decided not to pay the rent. For simplicity, we assume the court always orders 

the violating firm to pay damages to the patent-holder, which are given as 

follows: 

a) When the courts believe rents were not reasonable (i.e.  𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) > 𝐿𝐿𝑡𝑡

ℛ∗(𝑖𝑖), 

where 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡  is the level courts determine to be “reasonable 

royalties”), they set damages greater than 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡, as “the infringer 

would have nothing to lose, and everything to gain if he could count on 

paying only the normal, routine royalty non-infringers might have paid”4. 

We assume excess damages over 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡  are less than the patent-

holder’s legal costs however. 

b) When the courts consider the charged rent to have been reasonable (i.e. 

𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) ≤ 𝐿𝐿𝑡𝑡

ℛ∗(𝑖𝑖) ) the courts award punitive damages of more than 
max� 𝐿𝐿𝑡𝑡

ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡, � 1
1−𝓅𝓅�𝐿𝐿𝑡𝑡

ℛ(𝑖𝑖)𝑊𝑊𝑡𝑡, �, where 𝓅𝓅 is the bargaining power of 

the firm, in the sense of the generalized Nash bargaining solution.5 

Under this specification: 

𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) = min{𝐿𝐿𝑡𝑡

ℛ∗(𝑖𝑖), (1 − 𝓅𝓅)[𝐿𝐿𝑡𝑡
R(𝑖𝑖) + 𝐿𝐿𝑡𝑡

A(𝑖𝑖) + 𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) + 𝐿𝐿F]} 

since entry is fixed when bargaining takes place, since patent-holders know that 

bargaining to a rent level any higher than 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡 will just result in them 

having to pay legal costs,6 and since [𝐿𝐿𝑡𝑡
R(𝑖𝑖) + 𝐿𝐿𝑡𝑡

A(𝑖𝑖) + 𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) + 𝐿𝐿F]𝑊𝑊𝑡𝑡  is equal 

to the production period profits of each firm in industry 𝑖𝑖, by the free entry 

condition.7 Therefore, in equilibrium: 
 𝐿𝐿𝑡𝑡

ℛ(𝑖𝑖) = min�𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖),𝐿𝐿𝑡𝑡

ℛ†(𝑖𝑖)�, (3.1) 

4 Panduit Corp. v. Stahlin Brothers Fibre Works, Inc., 575 F.2d 1152, 1158 (6th Circuit 1978), cited in Pincus 
(1991). 
5 The level � 1

1−𝓅𝓅�𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖)𝑊𝑊𝑡𝑡 is chosen to ensure that, with equilibrium rents, firms prefer not to produce at all 

rather than to produce without paying rents. 
6 The disagreement point is zero since it is guaranteed that 𝐿𝐿𝑡𝑡

ℜ(𝑖𝑖) ≤ 𝐿𝐿𝑡𝑡
ℜ∗(𝑖𝑖) and so punitive damages would be 

awarded were the firm to produce without paying rents, which, by construction, leaves them worse off than not 
producing. 
7 A similar expression can also be derived if we assume instead that courts guarantee infringers a fraction 𝓅𝓅 of 
production profits, or if we assume courts always award punitive damages but firms are able to hide a fraction 
𝓅𝓅 of their production profits. 
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where 𝐿𝐿𝑡𝑡
ℛ†(𝑖𝑖)  is a solution to equations (1.2), (1.3) and (1.4) from Holden 

(2013a), (i.e. 𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) = 1−𝓅𝓅

𝓅𝓅 [𝐿𝐿𝑡𝑡
R(𝑖𝑖) + 𝐿𝐿𝑡𝑡

A(𝑖𝑖) + 𝐿𝐿F]) if one exists, or +∞ otherwise. 

Because damages are always greater than 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡 , these rents will be 

sufficiently low to ensure firms are always prepared to licence the patent at the 

bargained price in equilibrium. 

Now suppose we are out of equilibrium and fewer firms than expected have 

entered. Since neither the patent-holder nor firms can observe how many firms 

have entered, and since firms arrive at the patent-holder sequentially, both sides 

will continue to believe that the equilibrium number of firms has entered and so 

rents will not adjust. On the other hand, suppose that (out of equilibrium) too 

many firms enter. When the first unexpected firm arrives at the patent-holder to 

negotiate, the patent-holder will indeed realise that too many firms have entered. 

However, since the firm they are bargaining with has no way of knowing this,8 

the patent-holder can bargain for the same rents as in equilibrium. Therefore, 

even out of equilibrium: 

𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖) = min�𝐿𝐿𝑡𝑡

ℛ∗(𝑖𝑖), 𝐿𝐿𝑡𝑡
ℛ†(𝑖𝑖)� 

where we stress 𝐿𝐿𝑡𝑡
ℛ†(𝑖𝑖) is not a function of the decisions any firm happened to 

take. This ensures that any solution of equation (3.1) with equations (1.2) and 

(1.3) from Holden (2013a), will also be an equilibrium, even allowing for the 

additional condition that the derivative of firm profits with respect to the number 

of firms must be negative at an optimum. 

We now just have to pin down “reasonable royalties”, 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖)𝑊𝑊𝑡𝑡. Georgia-

Pacific, 318 F. Supp. at 1120 (S.D.N.Y. 1970), modified on other grounds, 446 

F.2d 295 (2d Cir.), cert. denied, 404 U.S. 870 (1971), cited in Pincus (1991), 

defines a reasonable royalty as “the amount that a licensor (such as the patentee) 

and a licensee (such as the infringer) would have agreed upon (at the time the 

infringement began) if both had been reasonably and voluntarily trying to reach 

an agreement; that is, the amount which a prudent licensee—who desired, as a 

8 Either they are a firm that thinks the equilibrium number of firms has entered, or they are a firm that thinks 
more than the equilibrium number of firms has entered, but does not know whether the patent-holder has yet 
realised this. 
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business proposition, to obtain the licence to manufacture and sell a particular 

article embodying the patented invention—would have been willing to pay as a 

royalty and yet be able to make a reasonable profit and which amount would have 

been acceptable by a prudent patentee who was willing to grant a licence.” 

Certainly it must be the case that 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖) ≤ 𝐿𝐿𝑡𝑡

ℛ����(𝑖𝑖), where 𝐿𝐿𝑡𝑡
ℛ����(𝑖𝑖) is the level of 

rents at which 𝐽𝐽𝑡𝑡(𝑖𝑖) = 1, since rents so high that no one is prepared to pay them 

must fall foul of the courts’ desire to ensure licensees can make a profit. 9 

However, since when 𝐽𝐽𝑡𝑡(𝑖𝑖) = 1 the sole entering firm (almost) may as well be the 

patent-holder themselves, where possible the courts will set 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖) sufficiently 

low to ensure that 𝐽𝐽𝑡𝑡(𝑖𝑖) > 1 in equilibrium, again following the idea that licensees 

ought to be able to make a profit. When there is a 𝐽𝐽𝑡𝑡(𝑖𝑖) > 1 solution to equations 

(1.2), (1.3) and (1.4) from Holden (2013a) already (i.e. 𝐿𝐿𝑡𝑡
ℛ†(𝑖𝑖) < ∞), the courts 

will just set 𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖) at the rent level that would obtain in that solution, thus 

preventing the possibility of  𝐽𝐽𝑡𝑡(𝑖𝑖) = 1 being an equilibrium. It may be shown 

that for sufficiently large 𝑡𝑡 such a solution is guaranteed to exist, so in this case 

𝐿𝐿𝑡𝑡
ℛ∗(𝑖𝑖) = 𝐿𝐿𝑡𝑡

ℛ†(𝑖𝑖) = 𝐿𝐿𝑡𝑡
ℛ(𝑖𝑖).10 

4. The de-trended model 
Below we give the equations of the stationary model to which the model 

described in section 2.1 of Holden (2013a) converges as 𝑡𝑡 → ∞. 

4.1. Households 
• Stochastic discount factor: Ξ𝑡𝑡 = 𝐶𝐶�̂�𝑡−1

𝐶𝐶�̂�𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
, where 𝐶𝐶�̂�𝑡 ≔ 𝐶𝐶𝑡𝑡

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
 is consumption 

per person in labour supply units and 𝐺𝐺𝑉𝑉 ,𝑡𝑡 is the exponent of the growth rate 

of the variable 𝑉𝑉𝑡𝑡 at 𝑡𝑡. 

9 “…the very definition of a reasonable royalty assumes that, after payment, the infringer will be left with a 
profit.” Georgia-Pacific Corp. v. U.S. Plywood-Champion Papers Corp., 446 F.2d 295, 299 & n.1 (2d Cir.), cert. 
denied, 404 U.S. 870 (1971), cited in Pincus (1991). 
10 There may still be multiple solutions for rents (as (1.2), (1.3) and (1.4) from Holden (2013a) might have 
multiple solutions), but of these only the one with minimal entry is really plausible, since this is both weakly 
Pareto dominant (firms always make zero profits and it may be shown that the patent-holder prefers minimal 
entry) and less risky for entering firms (if entering firms are unsure if the patent-holder will play the high rent 
or the low rent equilibrium, they are always better off assuming the high rent one since if that assumption is 
wrong they make strict profits, whereas had they assumed low rents but rents were in fact high they would 
make a strict loss). 
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• Labour supply: �̂�𝐿𝑡𝑡
S𝜈𝜈

= 𝑊𝑊�𝑡𝑡
𝐶𝐶�̂�𝑡

, where �̂�𝐿𝑡𝑡
S ≔ 𝐿𝐿𝑡𝑡

S

𝑁𝑁𝑡𝑡
 is labour supply per person and 

𝑊𝑊�𝑡𝑡 ≔ 𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡

 is the wage per effective unit of labour supply. 

• Euler equation: 𝛽𝛽𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡[Ξ𝑡𝑡+1] = 1, where 𝑅𝑅𝑡𝑡 is the real interest rate. 

4.2. Aggregate relationships 
• Aggregate mark-up pricing: 𝑊𝑊�𝑡𝑡 = 1

1+𝜇𝜇𝑡𝑡−1
 where 𝜇𝜇𝑡𝑡−1  is the aggregate 

mark-up in period 𝑡𝑡. 

• Mark-up aggregation: � 1
1+𝜇𝜇𝑡𝑡

�
1
𝜂𝜂 = � 1

1+𝜇𝜇𝑡𝑡
P�

1
𝜂𝜂 𝓈𝓈𝑡𝑡 + � 1

1+𝜂𝜂𝜂𝜂�
1
𝜂𝜂(1 − 𝓈𝓈𝑡𝑡) , where 

𝜇𝜇𝑡𝑡
P = 𝜇𝜇𝑡𝑡(𝐼𝐼𝑡𝑡) is the mark-up in any protected industry at 𝑡𝑡 + 1, and 𝓈𝓈𝑡𝑡 ≔

(1 − 𝓆𝓆) 𝓈𝓈𝑡𝑡−1
𝐺𝐺𝐼𝐼,𝑡𝑡

+ 1 − 1
𝐺𝐺𝐼𝐼,𝑡𝑡

 is the proportion of industries that will produce a 

patent protected product in period 𝑡𝑡 + 1. 

• Productivity aggregation: � 𝐴𝐴�̂�𝑡
1+𝜇𝜇𝑡𝑡−1

�
1
𝜂𝜂

= � 1
1+𝜇𝜇𝑡𝑡−1

P �
1
𝜂𝜂 𝓈𝓈𝑡𝑡−1 + � 𝐴𝐴�̂�𝑡

N

1+𝜂𝜂𝜂𝜂�
1
𝜂𝜂
(1 −

𝓈𝓈𝑡𝑡−1), where 𝐴𝐴�̂�𝑡 ≔ 𝐴𝐴𝑡𝑡
𝐴𝐴𝑡𝑡

∗ is aggregate productivity relative to the frontier11 and 

𝐴𝐴�̂�𝑡
N ≔ �� 1

𝐺𝐺𝐴𝐴∗,𝑡𝑡
�

1
𝜂𝜂 � 𝓆𝓆

1 𝓈𝓈𝑡𝑡−2⁄ −(1−𝓆𝓆)� + � 𝐴𝐴�̂�𝑡−1
N

𝐺𝐺𝐴𝐴∗,𝑡𝑡
�

1
𝜂𝜂
�1 − 𝓆𝓆

1 𝓈𝓈𝑡𝑡−2⁄ −(1−𝓆𝓆)��
𝜂𝜂

 is the aggregate 

relative productivity of non-protected industries. 

4.3. Firm decisions 
• Strategic in-industry pricing: 𝜇𝜇𝑡𝑡

P = 𝜂𝜂 𝜂𝜂𝐽𝐽�̂�𝑡
P

𝐽𝐽�̂�𝑡
P−(1−𝜂𝜂), where 𝐽𝐽�̂�𝑡

P ≔ 𝐽𝐽𝑡𝑡(𝐼𝐼𝑡𝑡) is the 

number of firms in a protected industry performing research at 𝑡𝑡. 
• Firm research decisions: 𝒹𝒹𝑡𝑡

𝓅𝓅𝜇𝜇𝑡𝑡
P 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝑌𝑌 ,𝑡𝑡+1𝐴𝐴�̂�𝑡+1

−1
𝜂𝜂 𝑍𝑍𝑡𝑡+1ℒ�̂�𝑡

R

1+𝛾𝛾𝑍𝑍𝑡𝑡+1ℒ�̂�𝑡
R = (1 −

𝓂𝓂𝑡𝑡
R)𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝑌𝑌 ,𝑡𝑡+1𝐴𝐴�̂�𝑡+1

−1
𝜂𝜂 , where ℒ�̂�𝑡

R ≔ 𝐴𝐴𝑡𝑡
∗−𝜁𝜁Ψ𝐿𝐿𝑡𝑡

R  is the amount of effective 

research conducted by firms in protected industries 𝒹𝒹𝑡𝑡 is the value of 𝒹𝒹𝑡𝑡(𝑖𝑖) 

in protected industries and 𝑍𝑍𝑡𝑡 is the aggregate research-return shock. (This 
equation means that ℒ�̂�𝑡

R ≈ 𝓅𝓅𝜇𝜇𝑡𝑡
P

𝒹𝒹𝑡𝑡−𝓅𝓅𝛾𝛾𝜇𝜇𝑡𝑡
P.) 

• Research and appropriation payoff: 𝐺𝐺𝐴𝐴∗,𝑡𝑡 = �1 + 𝛾𝛾𝑍𝑍𝑡𝑡ℒ�̂�𝑡−1
R �

1
𝛾𝛾. 

• Free entry of firms: 𝛽𝛽 1
𝐼𝐼�̂�𝑡𝐽𝐽�̂�𝑡

P
𝜇𝜇𝑡𝑡

P

1+𝜇𝜇𝑡𝑡
P �1+𝜇𝜇𝑡𝑡

1+𝜇𝜇𝑡𝑡
P�

1
𝜂𝜂 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝑌𝑌 ,𝑡𝑡+1𝐴𝐴�̂�𝑡+1

−1
𝜂𝜂 = 1

𝓅𝓅ℒ�̂�𝑡
R 𝑊𝑊�𝑡𝑡

𝑌𝑌�̂�𝑡
, 

where 𝐼𝐼�̂�𝑡 ≔ 𝐼𝐼𝑡𝑡
𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡

∗−𝜁𝜁Ψ
 is the measure of products relative to its trend,12 and 

𝑌𝑌�̂�𝑡 ≔ 𝑌𝑌𝑡𝑡
𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡

 is output per person in labour supply units. 

11 As a consequence, we have that 𝐺𝐺𝐴𝐴,𝑡𝑡 = 𝐴𝐴�̂�𝑡
𝐴𝐴�̂�𝑡−1

𝐺𝐺𝐴𝐴∗,𝑡𝑡. 
12 This means 𝐺𝐺𝐼𝐼,𝑡𝑡 = 𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴∗,𝑡𝑡

−𝜁𝜁 𝐼𝐼�̂�𝑡
𝐼𝐼�̂�𝑡−1

. 
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4.4. Inventor decisions 
• Inventor profits: are given recursively by: 

𝜋𝜋�̂�𝑡 = 1−𝓅𝓅
𝓅𝓅 ℒ�̂�𝑡

R𝑊𝑊�𝑡𝑡𝐽𝐽�̂�𝑡
P + 𝛽𝛽(1 − 𝓆𝓆)𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝐴𝐴,𝑡𝑡+1𝐺𝐺𝐴𝐴∗,𝑡𝑡+1

𝜁𝜁 𝜋𝜋�̂�𝑡+1, where 𝜋𝜋�̂�𝑡 ≔ 𝜋𝜋𝑡𝑡
𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡

∗𝜁𝜁. 

• Free entry of inventors: Either 𝐺𝐺𝐼𝐼,𝑡𝑡 ≥ 1 binds or Ψ𝐸𝐸𝜁𝜁ℒI𝑊𝑊�𝑡𝑡 ≥ 𝜋𝜋�̂�𝑡 does. 

4.5. Market clearing 
• Labour market clearing: �̂�𝐿𝑡𝑡

S = Ψ𝐸𝐸𝜁𝜁ℒ𝑡𝑡
I𝐼𝐼�̂�𝑡 �1 − 1

𝐺𝐺𝐼𝐼,𝑡𝑡
� + 𝐼𝐼�̂�𝑡𝓈𝓈𝑡𝑡𝐽𝐽�̂�𝑡

Pℒ�̂�𝑡
R +

𝑌𝑌�̂�𝑡 �� 1
𝐴𝐴�̂�𝑡

�
1

𝜂𝜂𝑡𝑡 �1+𝜇𝜇𝑡𝑡−1
1+𝜇𝜇𝑡𝑡−1

P �
1+𝜂𝜂

𝜂𝜂 𝓈𝓈𝑡𝑡−1 + �𝐴𝐴�̂�𝑡
N

𝐴𝐴�̂�𝑡
�

1
𝜂𝜂𝑡𝑡 �1+𝜇𝜇𝑡𝑡−1

1+𝜂𝜂𝜂𝜂 �
1+𝜂𝜂

𝜂𝜂 (1 − 𝓈𝓈𝑡𝑡−1)�. 

• Goods market clearing: 𝑌𝑌�̂�𝑡 = 𝐶𝐶�̂�𝑡. 

5. The extended de-trended model 
Define 𝒶𝒶 ≔ 1

(1−𝛼𝛼P)(1−𝜄𝜄P) , 𝒷𝒷 ≔(1 − 𝛼𝛼R)(1 − 𝜄𝜄R) , 𝒸𝒸 ≔�1−𝛼𝛼R
1−𝛼𝛼P

𝛼𝛼P𝜉𝜉KP − 𝛼𝛼R𝜉𝜉KR�(1 −

𝜄𝜄R), ℯ ≔𝜉𝜉L + 𝛼𝛼P
1−𝛼𝛼P

𝜉𝜉KP and make the normalisation Ψ = 𝐸𝐸 = 1. 

5.1. Households 
• Budget constraint Lagrange multiplier: 1

𝐶𝐶 ̃̂
𝑡𝑡

= 𝓂𝓂�𝑡𝑡
C +

𝛽𝛽𝒽𝒽𝒽𝒽INT𝔼𝔼𝑡𝑡
𝑁𝑁𝑡𝑡+1Θ𝑡𝑡+1

𝑁𝑁𝑡𝑡Θ𝑡𝑡

1
𝐺𝐺𝐴𝐴,𝑡𝑡+1
𝒶𝒶 𝐶𝐶̃̂

𝑡𝑡+1

, where 𝓂𝓂�𝑡𝑡
C

𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ℯ𝑁𝑁𝑡𝑡
  is the Lagrange multiplier on the 

budget constraint and 𝐶𝐶 ̃̂
𝑡𝑡 ≔ 𝐶𝐶�̃�𝑡

𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ℯ = 𝐶𝐶�̂�𝑡 − 𝒽𝒽 𝐶𝐶�̂�𝑡−1
𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ . 

• Stochastic discount factor: Ξ𝑡𝑡 = Θ𝑡𝑡𝓂𝓂�𝑡𝑡
C

Θ𝑡𝑡−1𝓂𝓂�𝑡𝑡−1
C 𝐺𝐺𝐴𝐴,𝑡𝑡

𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡
ℯ . 

• Labour supply: (1 + 𝜂𝜂L)𝓌𝓌�1,𝑡𝑡 = 𝑊𝑊��𝑡𝑡
1+𝜈𝜈1+𝜂𝜂L

𝜂𝜂L 𝓌𝓌�2,𝑡𝑡 , where 𝑊𝑊��𝑡𝑡 ≔

�𝑊𝑊�𝑡𝑡

− 1
𝜂𝜂L−𝓋𝓋� 𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃,𝑡𝑡
𝐺𝐺𝑊𝑊

𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ 𝑊𝑊�𝑡𝑡−1�
− 1

𝜂𝜂L

1−𝓋𝓋
�

−𝜂𝜂L

 ( 𝑊𝑊��𝑡𝑡𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ℯ  is the real wage set by a 
household that updates its wage at 𝑡𝑡), 𝑊𝑊�𝑡𝑡 ≔ 𝑊𝑊𝑡𝑡

𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ ℯ, and where 𝓌𝓌�1,𝑡𝑡 and 𝓌𝓌�2,𝑡𝑡 

are the sums of costs and benefits respectively from the wage setting first 

order conditions.13 

• Euler equation: 𝛽𝛽𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡[Ξ𝑡𝑡+1] = 1. 

13  𝓌𝓌�1,𝑡𝑡 = Φ𝑡𝑡 �𝑊𝑊�𝑡𝑡

1+𝜂𝜂L
𝜂𝜂L �̃�𝐿𝑡𝑡

S�
𝜈𝜈

+ 𝛽𝛽𝓋𝓋𝔼𝔼𝑡𝑡
Θ𝑡𝑡+1𝑁𝑁𝑡𝑡+1

Θ𝑡𝑡𝑁𝑁𝑡𝑡
� 𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃,𝑡𝑡+1

𝐺𝐺𝑊𝑊
𝐺𝐺𝑊𝑊,𝑡𝑡+1

�
−1+𝜂𝜂L

𝜂𝜂L 𝐿𝐿�𝑡𝑡+1
S

𝐿𝐿�𝑡𝑡
S � 𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃,𝑡𝑡+1

𝐺𝐺𝑊𝑊
𝐺𝐺𝐴𝐴,𝑡𝑡+1
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡+1

ℯ �
−𝜈𝜈1+𝜂𝜂L

𝜂𝜂L 𝓌𝓌�1,𝑡𝑡+1 , 𝓌𝓌�2,𝑡𝑡 =

𝓂𝓂�𝑡𝑡
C + 𝛽𝛽𝓋𝓋𝔼𝔼𝑡𝑡

Θ𝑡𝑡+1𝑁𝑁𝑡𝑡+1
Θ𝑡𝑡𝑁𝑁𝑡𝑡

� 𝐺𝐺𝑃𝑃
𝐺𝐺𝑃𝑃,𝑡𝑡+1

𝐺𝐺𝑊𝑊
𝐺𝐺𝑊𝑊,𝑡𝑡+1

�
−1+𝜂𝜂L

𝜂𝜂L 𝐿𝐿�𝑡𝑡+1
S

𝐿𝐿�𝑡𝑡
S

𝐺𝐺𝑃𝑃
𝐺𝐺𝑃𝑃,𝑡𝑡+1

𝐺𝐺𝑊𝑊
𝐺𝐺𝐴𝐴,𝑡𝑡+1
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡+1

ℯ 𝓌𝓌�2,𝑡𝑡+1. This formulation avoids any explicit log-

linearization and allows us to compute arbitrarily high order approximations to the model, for robustness 
checks. A similar formulation is used in Schmitt-Grohé and Uribe (2006). 
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• Investment decisions: for V ∈ {P,R}: 
1

𝐸𝐸𝑡𝑡
KV = Γ𝑡𝑡

𝑅𝑅�𝑡𝑡
KV

𝛿𝛿V′�𝑢𝑢𝑡𝑡
V� �1 − 𝑄𝑄KV�𝐺𝐺𝐼𝐼KV*,𝑡𝑡� − 𝐺𝐺𝐼𝐼KV,𝑡𝑡𝑄𝑄KV′�𝐺𝐺𝐼𝐼KV*,𝑡𝑡�� +

𝛽𝛽𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1Γ𝑡𝑡+1
𝑅𝑅�𝑡𝑡+1

KV

𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KV 𝛿𝛿V′�𝑢𝑢𝑡𝑡+1

V �
𝐺𝐺𝐼𝐼KV*,𝑡𝑡+1

2 𝑄𝑄KV′�𝐺𝐺𝐼𝐼KV*,𝑡𝑡+1� , where 𝑅𝑅�𝑡𝑡
KV ≔ 𝑅𝑅𝑡𝑡

KV𝐴𝐴𝑡𝑡
∗𝜉𝜉KV 

and 𝐺𝐺𝐼𝐼KV*,𝑡𝑡 = 𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KV 𝐸𝐸𝑡𝑡

KV

𝐸𝐸𝑡𝑡−1
KV 𝐺𝐺𝐼𝐼KV,𝑡𝑡 

• Utilisation decisions: for V ∈ {P,R} : 𝑅𝑅�𝑡𝑡
KV

𝛿𝛿V′�𝑢𝑢𝑡𝑡
V� = 𝛽𝛽𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

𝑅𝑅�𝑡𝑡+1
KV

𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KV �𝑢𝑢𝑡𝑡+1

V +

1−𝛿𝛿V�𝑢𝑢𝑡𝑡+1
V �

𝛿𝛿V′�𝑢𝑢𝑡𝑡+1
V � �. 

• Capital accumulation: for V ∈ {P,R} : �̂�𝐾𝑡𝑡
V = �1 −

𝛿𝛿V(𝑢𝑢𝑡𝑡
V)� 𝐾𝐾�𝑡𝑡−1

V

𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ+𝜉𝜉KV + Γ𝑡𝑡𝐸𝐸𝑡𝑡
KV𝐼𝐼�̂�𝑡

KV�1 − 𝑄𝑄KV�𝐺𝐺𝐼𝐼KV,𝑡𝑡�� , where �̂�𝐾𝑡𝑡
V ≔

𝐾𝐾𝑡𝑡
V

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ℯ+𝜉𝜉KV and 𝐼𝐼�̂�𝑡
KV = 𝐼𝐼𝑡𝑡

KV

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ℯ (hence 𝐺𝐺𝐼𝐼KV,𝑡𝑡 = 𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ 𝐼𝐼�̂�𝑡
KV

𝐼𝐼�̂�𝑡−1
KV ). 

5.2. Aggregate relationships 

• Aggregate mark-up pricing: 
�𝑅𝑅𝑡𝑡

KP𝛼𝛼P𝑊𝑊�𝑡𝑡
EP1−𝛼𝛼P�

1−𝜄𝜄P

𝜄𝜄P
𝜄𝜄P(1−𝜄𝜄P)1−𝜄𝜄P�𝛼𝛼P

𝛼𝛼P(1−𝛼𝛼P)1−𝛼𝛼P�1−𝜄𝜄P
= 1

1+𝜇𝜇𝑡𝑡−1
 where 

𝑊𝑊�𝑡𝑡
EP ≔ 𝑊𝑊�𝑡𝑡

𝐸𝐸𝑡𝑡
L�1−𝑄𝑄LP� 𝐿𝐿�𝑡𝑡

TP

𝐿𝐿�𝑡𝑡−1
TP 𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉𝐿𝐿 ��
 and �̂�𝐿𝑡𝑡

TP = 𝐿𝐿𝑡𝑡
TP

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
∗𝜉𝜉𝐿𝐿, where 𝐿𝐿𝑡𝑡

T ≔ 𝐴𝐴𝑡𝑡
∗𝜉𝜉L𝐸𝐸𝑡𝑡

L𝐿𝐿𝑡𝑡
S. 

• Mark-up aggregation: � 1
1+𝜇𝜇𝑡𝑡

�
1
𝜂𝜂 = � 1

1+𝜇𝜇𝑡𝑡
P�

1
𝜂𝜂 𝓈𝓈𝑡𝑡 + � 1

1+𝜂𝜂𝜂𝜂�
1
𝜂𝜂(1 − 𝓈𝓈𝑡𝑡) , where 

𝜇𝜇𝑡𝑡
P = 𝜇𝜇𝑡𝑡(𝐼𝐼𝑡𝑡)and 𝓈𝓈𝑡𝑡 ≔ (1 − 𝓆𝓆) 𝓈𝓈𝑡𝑡−1

𝐺𝐺𝐼𝐼,𝑡𝑡
+ 1 − 1

𝐺𝐺𝐼𝐼,𝑡𝑡
. 

• Productivity aggregation: � 𝐴𝐴�̂�𝑡
1+𝜇𝜇𝑡𝑡−1

�
1
𝜂𝜂

= � 1
1+𝜇𝜇𝑡𝑡−1

P �
1
𝜂𝜂 𝓈𝓈𝑡𝑡−1 + � 𝐴𝐴�̂�𝑡

N

1+𝜂𝜂𝜂𝜂�
1
𝜂𝜂
(1 −

𝓈𝓈𝑡𝑡−1) , where 𝐴𝐴�̂�𝑡 ≔ 𝐴𝐴𝑡𝑡
𝐴𝐴𝑡𝑡

∗  and 𝐴𝐴�̂�𝑡
N ≔ �� 1

𝐺𝐺𝐴𝐴∗,𝑡𝑡
�

1
𝜂𝜂 � 𝓆𝓆

1 𝓈𝓈𝑡𝑡−2⁄ −(1−𝓆𝓆)� + � 𝐴𝐴�̂�𝑡−1
N

𝐺𝐺𝐴𝐴∗,𝑡𝑡
�

1
𝜂𝜂
�1 −

𝓆𝓆
1 𝓈𝓈𝑡𝑡−2⁄ −(1−𝓆𝓆)��

𝜂𝜂

. 

5.3. Firm decisions 
• Strategic in-industry pricing: 𝜇𝜇𝑡𝑡

P = 𝜂𝜂 𝜂𝜂𝐽𝐽�̂�𝑡
P

𝐽𝐽�̂�𝑡
P−(1−𝜂𝜂), where 𝐽𝐽�̂�𝑡

P = 𝐽𝐽𝑡𝑡(𝐼𝐼𝑡𝑡). 

• Firm research decisions: 𝒹𝒹𝑡𝑡
𝓅𝓅𝜇𝜇𝑡𝑡

P 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝑌𝑌 ,𝑡𝑡+1𝐴𝐴�̂�𝑡+1
−1

𝜂𝜂 𝑍𝑍𝑡𝑡+1ℒ�̂�𝑡
R

1+𝛾𝛾𝑍𝑍𝑡𝑡+1ℒ�̂�𝑡
R = (1 −

𝓂𝓂𝑡𝑡
R)𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝑌𝑌 ,𝑡𝑡+1𝐴𝐴�̂�𝑡+1

−1
𝜂𝜂 , where ℒ�̂�𝑡

R ≔ 𝐴𝐴𝑡𝑡
∗−𝜁𝜁𝑋𝑋𝑡𝑡

R𝜄𝜄𝑅𝑅�𝐾𝐾𝑡𝑡
R𝛼𝛼𝑅𝑅𝐿𝐿𝑡𝑡

R1−𝛼𝛼𝑅𝑅�
1−𝜄𝜄𝑅𝑅  is the 

amount of effective research conducted by firms in protected industries. 

• Research and appropriation payoff: 𝐺𝐺𝐴𝐴∗,𝑡𝑡 = �1 + 𝛾𝛾𝑍𝑍𝑡𝑡ℒ�̂�𝑡−1
R �

1
𝛾𝛾. 

• Free entry of firms: 𝛽𝛽 1
𝐼𝐼�̂�𝑡𝐽𝐽�̂�𝑡

P
𝜇𝜇𝑡𝑡

P

1+𝜇𝜇𝑡𝑡
P �1+𝜇𝜇𝑡𝑡

1+𝜇𝜇𝑡𝑡
P�

1
𝜂𝜂 𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝑌𝑌 ,𝑡𝑡+1𝐴𝐴�̂�𝑡+1

−1
𝜂𝜂 = 1

𝓅𝓅ℒ�̂�𝑡
R 𝒞𝒞�̂�𝑡

𝑌𝑌�̂�𝑡
, where 

𝐼𝐼�̂�𝑡 ≔ 𝐼𝐼𝑡𝑡

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
𝒶𝒶(1−𝒷𝒷)𝐴𝐴𝑡𝑡

∗ℯ−(𝒸𝒸+𝜁𝜁)  is the measure of products relative to its trend, 14 

14 This means 𝐺𝐺𝐼𝐼,𝑡𝑡 = 𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶(1−𝒷𝒷)𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ−(𝒸𝒸+𝜁𝜁) 𝐼𝐼�̂�𝑡
𝐼𝐼�̂�𝑡−1

. 
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𝑌𝑌�̂�𝑡
GROSS ≔ 𝑌𝑌𝑡𝑡

GROSS

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
𝒶𝒶𝐴𝐴𝑡𝑡

∗ ℯ  is gross output relative to trend and 𝒞𝒞�̂�𝑡 ≔
�𝑅𝑅𝑡𝑡

KR𝛼𝛼R𝑊𝑊�𝑡𝑡
ER1−𝛼𝛼R�

1−𝜄𝜄R

𝜄𝜄R
𝜄𝜄R(1−𝜄𝜄R)1−𝜄𝜄R�𝛼𝛼R

𝛼𝛼R(1−𝛼𝛼R)1−𝛼𝛼R�1−𝜄𝜄R  is the marginal cost of a unit of research or 

invention, divided by 𝐴𝐴𝑡𝑡
𝒶𝒶𝒷𝒷𝐴𝐴𝑡𝑡

∗𝒸𝒸  (where 𝑊𝑊�𝑡𝑡
ER ≔ 𝑊𝑊�𝑡𝑡

𝐸𝐸𝑡𝑡
L�1−𝑄𝑄LR� 𝐿𝐿�𝑡𝑡

TR

𝐿𝐿�𝑡𝑡−1
TR 𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉𝐿𝐿 ��
 and 

�̂�𝐿𝑡𝑡
TR = 𝐿𝐿𝑡𝑡

TR

𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡
∗𝜉𝜉𝐿𝐿). 

5.4. Inventor decisions 
• Inventor profits: are given recursively by: 

𝜋𝜋�̂�𝑡 = 1−𝓅𝓅
𝓅𝓅 ℒ�̂�𝑡

R𝒞𝒞�̂�𝑡𝐽𝐽�̂�𝑡
P + 𝛽𝛽(1 − 𝓆𝓆)𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1𝐺𝐺𝐴𝐴,𝑡𝑡+1

𝒶𝒶𝒷𝒷 𝐺𝐺𝐴𝐴∗,𝑡𝑡+1
𝒸𝒸+𝜁𝜁 𝜋𝜋�̂�𝑡+1, where 𝜋𝜋�̂�𝑡 ≔ 𝜋𝜋𝑡𝑡

𝐴𝐴𝑡𝑡
𝒶𝒶𝒷𝒷𝐴𝐴𝑡𝑡

∗𝒸𝒸+𝜁𝜁. 

• Free entry of inventors: Either 𝐺𝐺𝐼𝐼,𝑡𝑡 ≥ 1 binds or ℒ𝑡𝑡
I𝒞𝒞�̂�𝑡 ≥ 𝜋𝜋�̂�𝑡 does. 

5.5. Market clearing 
• R&D expenditure: RND𝑡𝑡 ≔ 𝒞𝒞�̂�𝑡𝐼𝐼�̂�𝑡 �ℒ𝑡𝑡

I �1 − 1
𝐺𝐺𝐼𝐼,𝑡𝑡

� + ℒ�̂�𝑡
R𝓈𝓈𝑡𝑡𝐽𝐽�̂�𝑡

P�. 

• Labour market clearing: 𝐸𝐸𝑡𝑡
L�̂�𝐿𝑡𝑡

S = �̂�𝐿𝑡𝑡
TY + �̂�𝐿𝑡𝑡

TR, where �̂�𝐿𝑡𝑡
S ≔ 𝐿𝐿𝑡𝑡

T

𝐴𝐴𝑡𝑡
∗𝜉𝜉L𝑁𝑁𝑡𝑡𝐸𝐸𝑡𝑡

L. 

• Production labour market clearing: 𝑊𝑊�𝑡𝑡�̂�𝐿𝑡𝑡
TY = 𝐸𝐸𝑡𝑡

L(1 − 𝛼𝛼P)(1 −

𝜄𝜄P)ℐ𝑡𝑡𝑌𝑌�̂�𝑡
GROSS  where ℐ𝑡𝑡 ≔ 𝓈𝓈𝑡𝑡−1

1+𝜇𝜇𝑡𝑡−1
P � 1

𝐴𝐴�̂�𝑡

1+𝜇𝜇𝑡𝑡−1
1+𝜇𝜇𝑡𝑡−1

P �
1
𝜂𝜂 + 1−𝓈𝓈𝑡𝑡−1

1+𝜂𝜂𝜂𝜂 �𝐴𝐴�̂�𝑡
N

𝐴𝐴�̂�𝑡

1+𝜇𝜇𝑡𝑡−1
1+𝜂𝜂𝜂𝜂 �

1
𝜂𝜂

 is a 

weighted measure of average inverse gross mark-ups. 

• R&D labour market clearing: 𝑊𝑊�𝑡𝑡�̂�𝐿𝑡𝑡
TR = 𝐸𝐸𝑡𝑡

L(1 − 𝛼𝛼R)(1 − 𝜄𝜄R)RND𝑡𝑡. 

• Capital markets clearing: 𝑢𝑢𝑡𝑡
P�̂�𝐾𝑡𝑡−1

P 𝑅𝑅�𝑡𝑡
KP = 𝛼𝛼P(1 − 𝜄𝜄P)ℐ𝑡𝑡𝑌𝑌�̂�𝑡

GROSS , 

𝑢𝑢𝑡𝑡
R�̂�𝐾𝑡𝑡−1

R 𝑅𝑅�𝑡𝑡
KR = 𝛼𝛼R(1 − 𝜄𝜄R)RND𝑡𝑡 

• Goods market clearing: 𝑌𝑌�̂�𝑡 = 𝑌𝑌�̂�𝑡
GROSS(1 − 𝜄𝜄Pℐ𝑡𝑡) − 𝜄𝜄RRND𝑡𝑡 − (1 −

𝜚𝜚GDP)𝐼𝐼�̂�𝑡
R = 𝐶𝐶�̂�𝑡 + 𝐼𝐼�̂�𝑡

P + 𝜚𝜚GDP𝐼𝐼�̂�𝑡
R , where 𝑌𝑌�̂�𝑡  is GDP over 𝑁𝑁𝑡𝑡𝐴𝐴𝑡𝑡

𝒶𝒶𝐴𝐴𝑡𝑡
∗ℯ  and 𝜚𝜚GDP 

specifies the proportion of R&D capital investment that is measured in GDP. 

(Given R&D itself is not measured in GDP it is not obvious that this equals 

1.) 

• Monetary rule: 
𝑅𝑅𝑡𝑡

NOM

𝑅𝑅NOM =

�𝑅𝑅𝑡𝑡
NOM

𝑅𝑅NOM�
𝜌𝜌𝑅𝑅NOM

��𝐺𝐺𝑃𝑃,𝑡𝑡
𝐺𝐺𝑃𝑃,𝑡𝑡

∗ �
ℳP

�𝐸𝐸𝑡𝑡−1
KP 𝐺𝐺𝐴𝐴∗

𝜉𝜉KP

𝐸𝐸𝑡𝑡
KP𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉KP �
ℳPKP

�𝐸𝐸𝑡𝑡−1
KR 𝐺𝐺𝐴𝐴∗

𝜉𝜉KR

𝐸𝐸𝑡𝑡
KR𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉KR �
ℳPKR

�𝐺𝐺𝑊𝑊,𝑡𝑡
𝐺𝐺𝑊𝑊

�
ℳW �𝑅𝑅�𝑡𝑡

KP

𝑅𝑅�KP�
ℳRKP

⋅

�𝑅𝑅�𝑡𝑡
KR

𝑅𝑅� KR�
ℳRKR

Θ𝑡𝑡
ℳΘ𝛿𝛿�̃�𝑡

−ℳ𝛿𝛿 ̃�
1−𝜌𝜌𝑅𝑅NOM

⋅ ��𝑌𝑌�̂�𝑡
𝑌𝑌̂ �

ℳY
�𝐺𝐺𝑌𝑌 ,𝑡𝑡 𝐺𝐺𝑁𝑁,𝑡𝑡⁄

𝐺𝐺𝑌𝑌 𝐺𝐺𝑁𝑁⁄ �
ℳG�

1−𝜌𝜌𝑅𝑅NOM

exp 𝜖𝜖𝑅𝑅NOM,𝑡𝑡. 
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5.6. Observation equations 
• Nominal output growth: 𝑔𝑔𝑌𝑌 ,𝑡𝑡 + 𝑔𝑔𝑃𝑃,𝑡𝑡 + meY,𝑡𝑡 − meY,𝑡𝑡−1 , where 𝑔𝑔𝑌𝑌 ,𝑡𝑡 =

log � 𝑌𝑌�̂�𝑡
𝑌𝑌�̂�𝑡−1

𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ �. 

• Consumption price inflation: 𝑔𝑔𝑃𝑃,𝑡𝑡 + mePC,𝑡𝑡 − mePC,𝑡𝑡−1. 

• Investment price inflation: 𝑔𝑔𝑃𝑃,𝑡𝑡 + 𝑔𝑔𝑃𝑃 I,𝑡𝑡 + mePI,𝑡𝑡 − mePI,𝑡𝑡−1, where: 

 𝐺𝐺𝑃𝑃 I,𝑡𝑡 =

⎷

��
��
�

� 𝐸𝐸𝑡𝑡−1
KP 𝐼𝐼�̂�𝑡−1

KP

𝐸𝐸𝑡𝑡
KP𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉KP
+𝜚𝜚GDP

𝐸𝐸𝑡𝑡−1
KR 𝐼𝐼�̂�𝑡−1

KR

𝐸𝐸𝑡𝑡
KR𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉KR
�

�𝐼𝐼�̂�𝑡−1
KP +𝜚𝜚GDP𝐼𝐼�̂�𝑡−1

KR �
�𝐼𝐼�̂�𝑡

KP+𝜚𝜚GDP𝐼𝐼�̂�𝑡
KR�

�
𝐸𝐸𝑡𝑡

KP𝐼𝐼�̂�𝑡
KP𝐺𝐺𝐴𝐴∗,𝑡𝑡

𝜉𝜉KP

𝐸𝐸𝑡𝑡−1
KP +𝜚𝜚GDP

𝐸𝐸𝑡𝑡
KR𝐼𝐼�̂�𝑡

KR𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KR

𝐸𝐸𝑡𝑡−1
KR �

. 

• Population growth: 𝑔𝑔𝑁𝑁,𝑡𝑡 + meN,𝑡𝑡 − meN,𝑡𝑡−1. 

• Demeaned labour supply: 𝑙𝑙𝑡𝑡S + meLS,𝑡𝑡. 
• R&D share: log �RND𝑡𝑡+𝜚𝜚RND𝐼𝐼�̂�𝑡

𝑅𝑅

𝑌𝑌�̂�𝑡
� + meRND,𝑡𝑡, where 𝜚𝜚RND is the proportion of 

R&D capital investment that is measured in the NIPA R&D measure. 

(𝜚𝜚GDP + 𝜚𝜚RND ≤ 1). 
• Consumption share: log �𝐶𝐶�̂�𝑡

𝑌𝑌�̂�𝑡
� + meC,𝑡𝑡. 

• Labour share: log �𝑊𝑊�𝑡𝑡𝐿𝐿�𝑡𝑡
S

𝑌𝑌�̂�𝑡
� + meL,𝑡𝑡. 

• Depreciation share: log � 𝛿𝛿Y�𝑢𝑢𝑡𝑡
Y�𝐾𝐾�𝑡𝑡−1

Y

𝑌𝑌�̂�𝑡�𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ+𝜉𝜉KY𝐸𝐸𝑡𝑡
KY�

+

𝜚𝜚GDP
𝛿𝛿R�𝑢𝑢𝑡𝑡

R�𝐾𝐾�𝑡𝑡−1
R

𝑌𝑌�̂�𝑡�𝐺𝐺𝑁𝑁,𝑡𝑡𝐺𝐺𝐴𝐴,𝑡𝑡
𝒶𝒶 𝐺𝐺𝐴𝐴∗,𝑡𝑡

ℯ+𝜉𝜉KR𝐸𝐸𝑡𝑡
KR�

� + meD,𝑡𝑡. 

• Demeaned nominal interest rates: log �𝑅𝑅𝑡𝑡
NOM

𝑅𝑅NOM� + meR,𝑡𝑡. 

• Capacity utilisation: 
𝑢𝑢𝑡𝑡

Y 𝐾𝐾�𝑡𝑡−1
Y

𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KY 𝐸𝐸𝑡𝑡

KY
+𝑢𝑢𝑡𝑡

R𝜚𝜚GDP
𝐾𝐾�𝑡𝑡−1

R

𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KR 𝐸𝐸𝑡𝑡

KR

𝐾𝐾�𝑡𝑡−1
Y

𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KY 𝐸𝐸𝑡𝑡

KY
+𝜚𝜚GDP

𝐾𝐾�𝑡𝑡−1
R

𝐺𝐺𝐴𝐴∗,𝑡𝑡
𝜉𝜉KR 𝐸𝐸𝑡𝑡

KR

+ meU,𝑡𝑡. (The capital stocks 

enter here in order to correctly weight to produce the average utilisation.) 
• BAA-AAA Spread: 𝜍𝜍0 − 𝜍𝜍1 log Γ𝑡𝑡 + meS,𝑡𝑡. 

6. Data details 
• Nominal output growth (1947Q2 – 2011Q2), from NIPA table 1.1.5. 

• Consumption price inflation (1947Q2 – 2011Q2), including non-durables 

and durables (from NIPA table 1.1.4) and government consumption15 (from 

15 We are implicitly making the optimistic assumption that government consumption is a perfect substitute for 
private consumption. This is a simplifying shortcut to save us modelling government consumption. 
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NIPA table 3.9.4) and excluding education16 (from NIPA tables 2.4.417 and 

3.15.418). 

• Investment price inflation (1947Q2 – 2011Q2), including education (data 

sources as for consumption price inflation). 

• Population growth (1948Q2 – 2011Q2), X-12 seasonally adjusted, from the 

BLS’s Civilian Non-institutional Population Over 16 series. 

• Labour supply per capita (1948Q1 – 2011Q2), from NIPA table 6.9, 

interpolated to quarterly using the Litterman (1983) method, with “Business 

Sector: Hours of All Persons” from the BEA as a high frequency indicator. 

• R&D share (1959Q1 – 2007Q4), given by R&D expenditure from NIPA 

R&D Satellite Account (1959-2007) table 2.1, over GDP from NIPA table 

1.1.5, interpolated to quarterly using the Litterman (1983) method with GDP 

as the high frequency indicator. 

• Consumption share (1947Q1 – 2011Q2), given by consumption of durables 

and non-durables (from NIPA table 1.1.5) plus government consumption 

(from NIPA table 3.9.5) minus education expenditure (from NIPA table 

2.4.519 and NIPA table 3.15.520) all over GDP (from NIPA table 1.1.5).21 

• Labour share (1947Q1 – 2011Q2), given by compensation of employees paid 

from NIPA table 1.10, over GDP (from NIPA table 1.1.5). 

16 Removing education from the consumption share brings it substantially closer to stationarity, so it is 
important to do the same for the price level too. The price disaggregation necessary to remove education was 
performed by inverting the Fisher formula, which, due to its approximate aggregation property (Diewert 1978) 
is sufficiently accurate. 
17 Interpolated to quarterly using the Litterman (1983) method, with consumption and investment prices as 
indicators (from NIPA table 1.1.4). 
18 Extrapolated back to 1947 using the Litterman (1983) method, with government consumption and investment 
prices (from NIPA table 3.9.4) and private education prices (from NIPA table 2.4.4) as indicators, then 
interpolated to quarterly using the same method with government consumption and investment prices (from 
NIPA table 3.9.4) as high frequency indicators. 
19 Interpolated to quarterly using the Litterman (1983) method, with consumption and investment as indicators 
(from NIPA table 1.1.5). 
20 Extrapolated back to 1947 using the Litterman (1983) method with log-linearly interpolated data from the 
National Centre for Education Statistics, Digest of Education Statistics 2010, table 29 as an indicator, along 
with government consumption and investment (from NIPA table 3.9.5) and private education expenditure 
(from NIPA table 2.4.5). Then interpolated using the same method with government consumption and 
investment (from NIPA table 3.9.5) as high frequency indicators. 
21 In fitting this to the model, we are implicitly treating net exports as investment. 
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• Depreciation share (1947Q1 – 2011Q2), given by consumption of fixed 

capital from NIPA table 1.10, over GDP (from NIPA table 1.1.5). 

• Nominal interest rates (1947Q1 – 2011Q2), in particular, the 3-month 

Treasury bill secondary market rate, from the FRB, release H.15. 

• Capacity utilisation (1967Q1 – 2011Q2), (total industry) from the FRB, 

release G.17, table 7. 

• BAA-AAA Spread (1947Q1 – 2011Q2), from the FRB, release H.15.  
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7. Estimated parameters 
Any parameters in bold are fixed rather than estimated. All values are reported 

to three significant figures, except those below 10−4 which are rounded down to 

zero, those which are of the form 1 + 𝑥𝑥, with |𝑥𝑥| < 0.1 in which case we give 𝑥𝑥 

to three significant figures, percentages, which are given to one decimal place, 

and approximate standard errors (in brackets) which are given to two significant 

figures. 
Variable Value Variable Value 

𝜈𝜈 0.250 (0.0056) 𝛽𝛽 𝟎𝟎. 𝟗𝟗𝟗𝟗 
𝒽𝒽 0.253 (0.0041) 𝒽𝒽INT 0.0151 (0.0032) 
𝒽𝒽LS 0 (0) 𝓋𝓋 0.826 (0.0042) 
𝜂𝜂 0.320 (0.00054) 𝜂𝜂L 0.170 (0.0041) 
𝓅𝓅 0.0427 (0.00021) 𝓆𝓆 0.0374 (0.00030) 

𝜌𝜌𝑅𝑅NOM 0.615 (0.013) ℳP 1.0275 (0.0059) 
ℳPKP 0 (0) ℳPKR 0 (0) 

ℳRKP 0.0509 (0.0016) ℳRKR 0 (0) 
ℳΘ 0 (0) ℳδ̃ 0.0108 (0.0074) 
ℳY 0 (0) ℳG 0 (0) 
ℳW 0 (0)   
exp 𝜍𝜍0 2.57 (2.9 × 10−5) 𝜍𝜍1 872 (880) 
𝜚𝜚GDP 0.494 (0.013) 𝜚𝜚RND 0.506 (0.013) 

𝜁𝜁 0 (0) 𝜉𝜉L 0.0859 (0.0012) 

𝜉𝜉KP 0.0828 (0.00053) 𝜉𝜉KR 2.73 (0.0094) 
𝛼𝛼P 0.201 (0.00040) 𝛼𝛼R 0.996 (7.4 × 10−6) 
𝜄𝜄P 0.0427 (0.0011) 𝜄𝜄R 0.178 (0.0032) 

𝛿𝛿P(𝑢𝑢P) 0.0189 (7.5 × 10−5) 𝛿𝛿R(𝑢𝑢R) 0.0284 (0.00062) 
𝛿𝛿P′(𝑢𝑢P) 0.0413 (0.00011) 𝛿𝛿R′(𝑢𝑢R) 0.0501 (0.00063) 

𝛿𝛿P′′(𝑢𝑢P) 1.64 (0.035) 𝛿𝛿R′′(𝑢𝑢R) 133 (9.4) 
𝑑𝑑
𝑑𝑑𝛿𝛿 ̃log 𝛿𝛿P(𝑢𝑢P) 𝟏𝟏 𝑑𝑑

𝑑𝑑𝛿𝛿 ̃log 𝛿𝛿R(𝑢𝑢R) 64.2 (1.5) 

𝑑𝑑
𝑑𝑑𝛿𝛿 ̃log 𝛿𝛿P′(𝑢𝑢P) 64.2 (1.5) 𝑑𝑑

𝑑𝑑𝛿𝛿 ̃log 𝛿𝛿R′(𝑢𝑢R) 0 (0) 

𝑄𝑄P′′(𝐺𝐺𝐼𝐼KP*) 0.00533 (0.0012) 𝑄𝑄R′′(𝐺𝐺𝐼𝐼KR*) 62.6 (4.0) 
𝑄𝑄LP′(𝐺𝐺𝐿𝐿TP) 0.0875 (0.0047) 𝑄𝑄LR′(𝐺𝐺𝐿𝐿TR) 0 (0) 

Table 1: Estimated parameters, excluding shocks. 
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Variable 𝑽𝑽  (i.e. steady-state) 𝝆𝝆𝑽𝑽  𝟏𝟏𝟎𝟎𝟎𝟎𝝈𝝈𝑽𝑽  p-value on  
1 lag LM-test22 

Φ 1.0349 (0.0047) 0.815 (0.010) 2.46 (0.16) 0 
Θ 𝟏𝟏 0.443 (0.0056) 0.0231 (0.0114) 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎 
𝐺𝐺N 1.00372 (1.4 × 10−5) 0.0675 (0.019) 0.103 (0.0021) 𝟎𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏 
ℒI 7.26 (0.034) 0 (0) 0 (0) 0 
𝑍𝑍 𝟏𝟏 𝟎𝟎 0 (0) 0 
Γ 𝟏𝟏 0 (0) 0 (0) 0.000926 
𝐸𝐸L 𝟏𝟏 0.614 (0.0056) 0 (0) 𝟎𝟎. 𝟕𝟕𝟕𝟕𝟕𝟕 
𝐸𝐸KP 𝟏𝟏 0 (0) 0 (0) 0 
𝐸𝐸KR 𝟏𝟏 0.664 (0.0071) 0.000360 (0.00012) 0.000148 
𝐺𝐺𝑃𝑃,𝑡𝑡

∗  1.00851 (6.1 × 10−6) 0.887 (0.00027) 0 (0) 𝟎𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏 
𝜂𝜂 0.169 (0.00024) 0.0605 (0.2) 0.0147 (0.012) 0 
𝛾𝛾 18.6 (0.054) 0 (0) 0 (0) 0 

exp 𝛿𝛿 ̃ 𝟏𝟏 0.862  (0.0027) 0.403  (0.011) 𝟎𝟎. 𝟗𝟗𝟕𝟕𝟎𝟎 
𝑅𝑅𝑡𝑡

SHOCK 𝟏𝟏 𝟎𝟎 0.00824 (0.00075) 𝟎𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏 
Table 2: Estimated parameters from non-m.e. shocks, tests of misspecification of their 

residuals. 
Each shock takes the form 𝐥𝐥𝐥𝐥𝐥𝐥 𝑽𝑽𝒕𝒕 = (𝟏𝟏 − 𝝆𝝆𝑽𝑽 ) 𝐥𝐥𝐥𝐥𝐥𝐥 𝑽𝑽 + 𝝆𝝆𝑽𝑽 𝐥𝐥𝐥𝐥𝐥𝐥 𝑽𝑽𝒕𝒕−𝟏𝟏 + 𝝈𝝈𝑽𝑽 𝝐𝝐𝑽𝑽 ,𝒕𝒕, where 𝝐𝝐𝒗𝒗,𝒕𝒕~NIID(𝟎𝟎, 𝟏𝟏). 

 
Variable 𝚽𝚽 𝚯𝚯 𝑮𝑮N 𝓛𝓛I 𝒁𝒁 𝚪𝚪 𝑬𝑬L 𝑬𝑬KP 𝑬𝑬KR 𝑮𝑮𝑷𝑷 ,𝒕𝒕

∗  𝜼𝜼 𝜸𝜸 𝑹𝑹𝒕𝒕
SHOCK 𝐞𝐞𝐞𝐞𝐞𝐞𝜹𝜹 ̃

Nom. output 
growth 

𝟏𝟏𝟕𝟕. 𝟗𝟗 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 𝟎𝟎𝟏𝟏. 𝟏𝟏 

Con. price 
inflation 

𝟎𝟎𝟕𝟕. 𝟕𝟕 0.0 𝟕𝟕.𝟕𝟕 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 𝟕𝟕𝟗𝟗. 𝟏𝟏 

Inv. price 
inflation 

𝟎𝟎𝟕𝟕. 𝟏𝟏 0.0 𝟕𝟕.𝟏𝟏 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 𝟏𝟏𝟎𝟎. 𝟏𝟏 

Population 
growth 

0.0 0.0 𝟏𝟏𝟎𝟎𝟎𝟎. 𝟎𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Lab. supply 
per capita 

𝟏𝟏𝟎𝟎. 𝟏𝟏 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 𝟎𝟎𝟎𝟎. 𝟎𝟎 

R&D share 𝟕𝟕. 𝟏𝟏 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 𝟗𝟗𝟕𝟕. 𝟏𝟏 
Consumption 
share 

𝟏𝟏𝟕𝟕. 𝟎𝟎 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 𝟕𝟕𝟏𝟏. 𝟎𝟎 

Labour share 𝟏𝟏. 𝟎𝟎 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 𝟗𝟗𝟕𝟕. 𝟗𝟗 
Depreciation 
share 

𝟏𝟏𝟕𝟕. 𝟎𝟎 0.0 𝟏𝟏.𝟎𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 𝟕𝟕𝟕𝟕.𝟕𝟕 

Nominal 
interest rates 

𝟏𝟏𝟏𝟏. 𝟕𝟕 0.0 𝟕𝟕.𝟎𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 𝟕𝟕𝟏𝟏. 𝟏𝟏 

Capacity 
utilisation 

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 𝟗𝟗𝟗𝟗. 𝟗𝟗 

BAA-AAA 
Spread 

0.0 0.0 0.0 0.0 0.0 𝟏𝟏𝟎𝟎𝟎𝟎. 𝟎𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 3: Percentage non-m.e. variance decomposition of the observation variables.23 

22 Bold values indicate the cases in which we cannot reject the null hypothesis of no auto-correlation at 1%. 
The test uses heteroskedasticity robust standard errors. The lag length of 1 was preferred by the AIC, AICc 
and BIC criterions for all variables. 
23 Bold values are larger than 1%. 
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8. Additional figures 

 
𝓆𝓆 

 
Figure 1: The effect of patent duration on the importance of medium-frequency cycles. 

9. Granger (1969) causality tests in the presence of 
measurement error 

Here we describe two experiments, both of which reveal that Granger (1969) 

causality tests may point in the opposite direction to the model’s information 

flow, when the true leading series is subject to an additional idiosyncratic shock 

(“measurement error”). 

In our first set up, we modelled 𝑥𝑥𝑡𝑡 as a repeated-root AR(2) process given by 

𝑥𝑥𝑡𝑡 = 2𝜌𝜌𝑥𝑥𝑡𝑡−1 − 𝜌𝜌2𝑥𝑥𝑡𝑡−2 + 𝜎𝜎𝑥𝑥𝜀𝜀𝑥𝑥,𝑡𝑡 , with 𝜀𝜀𝑥𝑥,𝑡𝑡~NIID(0,1), and 𝜎𝜎𝑥𝑥  chosen to ensure 

Var𝑥𝑥𝑡𝑡 = 1 . Then we defined 𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑦𝑦,𝑡𝑡  and 𝑧𝑧𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 + 1
100 𝜀𝜀𝑧𝑧,𝑡𝑡 , with 

𝜀𝜀𝑦𝑦,𝑡𝑡, 𝜀𝜀𝑧𝑧,𝑡𝑡~NIID(0,1). Note that the “measurement-error” in 𝑦𝑦𝑡𝑡 is much-larger than 

that in 𝑧𝑧𝑡𝑡 , but that conditional on 𝜀𝜀𝑦𝑦,𝑡𝑡 , 𝑦𝑦𝑡𝑡  contains information useful for 

forecasting 𝑧𝑧𝑡𝑡, namely, 𝑥𝑥𝑡𝑡. 𝑦𝑦𝑡𝑡 here is playing the role of mark-ups in our empirical 

paper (Holden 2013b), and 𝑧𝑧𝑡𝑡 is playing the role of output. 

We then simulated 400 periods from this model, and ran Granger causality 

tests24 at one to ten lags on the pairs (𝑥𝑥𝑡𝑡, 𝑧𝑧𝑡𝑡) and (𝑦𝑦𝑡𝑡, 𝑧𝑧𝑡𝑡). As expected, at all lags 

𝑥𝑥𝑡𝑡 was found to Granger cause 𝑧𝑧𝑡𝑡, with reverse causation only with a single lag. 

However, at all lags 𝑧𝑧𝑡𝑡  was found to Granger cause 𝑦𝑦𝑡𝑡  (again with reverse 

causation only with a single lag). Thus, the mere fact of adding the i.i.d. 
“measurement-error” 𝜀𝜀𝑦𝑦,𝑡𝑡 to 𝑥𝑥𝑡𝑡 has reversed the direction of Granger causality. 

24 Code for this was taken from Seth et al. (2010). 
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This is because 𝑧𝑧𝑡𝑡 contains valuable information about the expectation of future 

𝑦𝑦𝑡𝑡, due to the persistence of the underlying process. 

In a second experiment, we attempted to capture accurately the cross-

correlation of output and mark-ups with a deterministic cycle. In particular, we 
instead set 𝑥𝑥𝑡𝑡 = sin � 𝜋𝜋

10 (𝑡𝑡 + 4)�, 𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑦𝑦,𝑡𝑡 and 𝑧𝑧𝑡𝑡 = sin� 𝜋𝜋
10 𝑡𝑡� + 1

100 𝜀𝜀𝑧𝑧,𝑡𝑡, with 

𝜀𝜀𝑦𝑦,𝑡𝑡, 𝜀𝜀𝑧𝑧,𝑡𝑡~NIID(0,1), and the interpretation of variables as before. Under this set-

up, the cross correlation of 𝑦𝑦𝑡𝑡 and 𝑧𝑧𝑡𝑡 looks very similar to that between mark-

ups and output. After simulating and running Granger causality tests as before, 

we found that at all lags 𝑥𝑥𝑡𝑡 Granger causes 𝑧𝑧𝑡𝑡 (with reverse causation only with 

a single lag), and that at all lags except the first 𝑧𝑧𝑡𝑡 Granger causes 𝑦𝑦𝑡𝑡 (with 

reverse causation only with a single lag). Once again then, the presence of 

measurement error in the leading variable is sufficient to reverse the direction of 

Granger causality. 

We conclude then that Granger causality tests are unreliable in the presence 

of idiosyncratic noise or measurement error. 
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