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Abstract: Traditional macroeconomic learning algorithms are misspecified when all agents are 

learning simultaneously. In this paper, we produce a number of learning algorithms that do not 

share this failing, and show that this enables them to learn almost any solution, for any parameters, 

implying learning cannot be used for equilibrium selection. As a by-product, we are able to show 

that when all agents are learning by traditional methods, all deep structural parameters of standard 

new-Keynesian models are identified, overturning a key result of Cochrane (2009; 2011). This holds 

irrespective of whether the central bank is following the Taylor principle, irrespective of whether the 

implied path is or is not explosive, and irrespective of whether agents’ beliefs converge. If shocks are 

observed then this result is trivial, so following Cochrane (2009) our analysis is carried out in the 

more plausible case in which agents do not observe shocks.  
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1. Introduction 

There is a contradiction at the heart of the traditional approach to macroeconomic learning (Marcet 

and Sargent (1989), Evans and Honkapohja (2001)). In this literature, each of the agents in an 

economy is supposed to run a regression that is correctly specified when all the other agents know 

the true law of motion. Were it indeed the case that only one agent in the economy had partial 

information about the economy’s law of motion, then this agent’s regression would always 

converge to the true law of motion, meaning that “learnability” in this weak sense is of no use for 

equilibrium selection. The literature supposes instead that all agents are learning at the same time, 

yet they continue to run a regression that is only correctly specified when everyone else has full 

information. As a result, these agents would be readily able to detect the misspecification in their 

regression, through evidence of serially correlated errors, or parameter non-constancy. This 

misspecification is most clear precisely when learning fails, meaning a finding of non-learnability via 

the traditional method only implies that agents would switch from that traditional method to a 

more sophisticated one. In this paper, we demonstrate the existence of a family of learning 

mechanisms that remain correctly specified when all agents are learning simultaneously. 

Along the way, we will answer three challenges raised by Cochrane (2009) (directly or otherwise). 

Firstly, we will show that the non-observability of shocks does not pose any fundamental challenges 

either to learning, or to the formation of rational expectations, and we give general conditions 

under which a rational expectations equilibrium is precisely implementable without observing 

shocks.2 Secondly, we show that serially correlated monetary policy shocks do not prevent Taylor-

rule parameter identification, at least when everyone is learning at the same time, whether or not 

the central bank is following active policy. Finally, we demonstrate a learning mechanism capable of 

learning stationary minimal state variable (McCallum 1983) solutions whenever they exist, and 

another that may converge towards any sunspot solution, including explosive ones,3 though a 

simple extension of our mechanism will rule out the latter when (and only when) they are 

prohibited by transversality or non-explosiveness constraints. Since, new-Keynesian models 

generally have no such constraints ruling out explosive paths for inflation (Cochrane 2011),  in such 

models there is no guarantee that the stationary minimal state variable solution will be learnt, 

meaning that Cochrane (2009) was correct to conclude that learnability could not “save” the 

standard logic of new-Keynesian models. 

The structure of our paper is as follows. In section 2 and the first appendix (7.1), we derive the 

general solution of a rational expectations model, under determinacy and indeterminacy, when 

shocks are unobserved. The resulting reduced form solution will be the basis of all of the learning 

mechanisms considered. The presence of sunspot shocks in the general solution will be key to our 

proof of structural parameter identification when agents are learning. In section 3, we show that an 

                                                      

2 In general a Kalman filter must be used as in Pearlman, Currie, and Levine (1986) or Ellison and Pearlman (2011), and 

impulse responses will differ. 
3 We cannot guarantee asymptotic convergence to explosive solutions, nonetheless beliefs will at least initially 

approach these solutions, and they will certainly diverge from beliefs under the stationary minimal state variable 

solution. 
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awareness that everyone else is learning is sufficient to achieve identification even when other 

agents are learning using a traditional method. Then in section 4, we introduce our family of 

sophisticated learning algorithms under which everyone in the economy realises everyone else is 

learning at the same time. 

2. FREE solutions 

2.1. Motivating example 

Suppose, following Cochrane (2009), that the central bank follows the Taylor rule: 

 𝑖𝑡 = 𝑟 +
1

𝛽
(𝑥𝑡 − 𝛾 − 𝜎𝑠𝑡), (2.1) 

   

where 𝑥𝑡 is the inflation rate, 𝑟 is the constant real interest rate, 
𝛾

1−𝛽
 is the inflation target and 𝑠𝑡 is 

the monetary policy shock which is given by: 

𝑠𝑡 = 𝜌𝑠𝑡−1 + 휀𝑡, 

with 휀𝑡~NIID(0,1). From the Fisher equation, we also have that: 

 𝑖𝑡 = 𝑟 + 𝔼𝑡𝑥𝑡+1. 4 (2.2) 
   

Hence, from combining (2.1) and (2.2): 

𝑥𝑡 = 𝛽𝔼𝑡𝑥𝑡+1 + 𝛾 + 𝜎𝑠𝑡. 

More generally, there might also be a lag term in the model. Here, this would emerge if the central 

bank used the rule: 

𝑖𝑡 = 𝑟 +
1

𝛽
((1 − 𝛼)𝑥𝑡 + 𝛼∆𝑥𝑡 − 𝛾 − 𝜎𝑠𝑡) 

which punishes accelerating inflation, and leads to the general univariate model: 

 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛽𝔼𝑡𝑥𝑡+1 + 𝛾 + 𝜎𝑠𝑡. (2.3) 
   

We work with this general model not because we believe central banks respond to inflation 

acceleration, but because in its multivariate version this structure encompasses all linear 

macroeconomic models, and we wish to make clear nothing we say is specific to the 𝛼 = 0 case. 

The crucial thing to note about (2.3) is that since the transversality conditions of the consumer’s 

optimisation problem do not restrict inflation, when solving this model there is no justification for 

restricting ourselves to stationary solutions.5 

                                                      

4 Throughout this document, variables with 𝑡 subscripts are in the information set under which 𝔼𝑡 is taken. 
5 If the Taylor rule is the result of optimal policy on behalf of the central bank, then there will in general be a 

transversality constraint coming from the central bank’s optimisation problem that restricts inflation. But since it is 

consumer inflation expectations that determine the solution picked, the central bank’s transversality constraint does 

not rule out explosive solutions, conditional on them using a Taylor rule. 
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2.2. Solution 

For the time being, we suppose that all the agents in the economy have full knowledge of the 

values of 𝛼, 𝛽, 𝛾, 𝜌 and 𝜎, and may observe 𝑥𝑡 (and its lags), and 𝔼𝑡−1𝑥𝑡 (and its lags), at 𝑡. In our 

motivating example, the observability of expectations just requires nominal interest rates to be 

observable, thanks to the constant real interest rate, and the Fisher equation, (2.2). In reality, 

expectations may still be observed thanks to the survey of professional forecasters (or, more 

plausibly, media reports based on economic pundit’s expectations). Expectations are also 

effectively observable if agents have access to prices from futures markets, or if they know that all 

other agents are forming expectations via the same mechanism. The traditional learning literature 

usually assumes homogeneous beliefs across agents, and we will continue to do so here, so in the 

models we work with, even in the absence of observable nominal and real interest rates, or 

observable futures contracts, aggregate expectations will always be observable. 

We do not assume however that agents may observe 𝑠𝑡 or 휀𝑡. As pointed out by Cochrane (2009), 

that most shocks in DSGE models should be observable is rather implausible, thus ruling out 

rational expectations equilibria (REE) which require the observability of shocks seems like a minimal 

sensible restriction. We call the set of resulting equilibria the feasible rational expectations 

equilibria (FREE) of the original model. The key trick that enables agents to form expectations 

without seeing shocks is the fact that current news about past expectational errors is informative 

about the current shock. Thus, in general, agents will form expectations as a linear function of their 

lagged expectations. 

To see this, let us begin by defining the expectational error by 휂𝑡 ≔ 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡. Now, normally 

when solving rational expectations models we choose 휂𝑡 to rule out explosive solutions, but here 

this is not justified, due to the lack of a consumer transversality condition on inflation. Thus there is 

a REE to the model for any 휂𝑡 satisfying 𝔼𝑡−1휂𝑡 = 0. Without loss of generality then, we may 

assume (following Lubik and Schorfheide (2003)) that 휂𝑡 = 𝑚 ,𝑡−1휀𝑡 +𝑚 ,𝑡−1
′ 휁𝑡, for some sunspot 

shock 휁𝑡  (possibly a vector) satisfying 𝔼𝑡−1휁𝑡 = 0 , 𝔼𝑡−1휀𝑡휁𝑡 = 0  and 𝔼𝑡−1휁𝑡휁𝑡
′ = 𝐼 , and some 

possibly time-varying belief parameters 𝑚 ,𝑡−1 and 𝑚 ,𝑡−1, known at 𝑡 − 1. (There is no reason why 

agents should always believe in the same set of sunspot shocks.) 

Under the assumption then that 𝑚 ,𝑡−1 ≠ 0 for all 𝑡, subtracting 𝜌 times the first lag of (2.3) from 

(2.3), gives: 

 

𝑥𝑡 = (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1𝑥𝑡 + (1 − 𝜌)𝛾 + 𝜎휀𝑡 
= (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1𝑥𝑡 + (1 − 𝜌)𝛾

+ 𝜎
𝑥𝑡 − 𝔼𝑡−1𝑥𝑡 −𝑚 ,𝑡−1

′ 휁𝑡

𝑚 ,𝑡−1
. 

(2.4) 
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Hence providing 𝛽 ≠ 06: 

 

𝔼𝑡𝑥𝑡+1 =
1

𝛽
(1 −

𝜎

𝑚 ,𝑡−1
) 𝑥𝑡 −

1

𝛽
(𝛼 + 𝜌)𝑥𝑡−1 +

1

𝛽
𝛼𝜌𝑥𝑡−2 + (𝜌 +

1

𝛽

𝜎

𝑚 ,𝑡−1
)𝔼𝑡−1𝑥𝑡

−
1

𝛽
(1 − 𝜌)𝛾 +

1

𝛽

𝜎

𝑚 ,𝑡−1
𝑚 ,𝑡−1
′ 휁𝑡 , 

(2.5) 

   

which enables agents to form rational expectations without observing the value of shocks (i.e. 𝑠𝑡 or 

휀𝑡). Thus providing 𝛽 ≠ 0, almost all of the model’s REE are FREE. 

When |𝛼 + 𝛽| < 1, the unique stationary minimal state variable (MSV) solution corresponds to 

setting 𝑚 ,𝑡 ≡ 𝑚
MSV ≔ 𝜎 [

1

2
− 𝛽𝜌 +

1

2
√1 − 4𝛼𝛽]

−1

 and 𝑚 ,𝑡 ≡ 𝑚
MSV ≔ 0. To see this, let us first 

define: 

𝜐𝑡 ≔ 𝔼𝑡𝑥𝑡+1 − 𝑎1
MSV𝑥𝑡 − 𝑎2

MSV𝑥𝑡−1 − 𝑐
MSV 

where 𝑎1
MSV ≔ 𝜌 +

1−√1−4𝛼𝛽

2𝛽
, 𝑎2

MSV ≔ −𝜌
1−√1−4𝛼𝛽

2𝛽
 and 𝑐MSV ≔

2(1−𝜌)𝛾

1−2𝛽+√1−4𝛼𝛽
. Hence, 𝔼𝑡𝑥𝑡+1 =

𝑎1
MSV𝑥𝑡 + 𝑎2

MSV𝑥𝑡−1 + 𝑐
MSV + 𝜐𝑡 for all 𝑡. Then, when 𝑚 ,𝑡 ≡ 𝑚

MSV and 𝑚 ,𝑡 ≡ 𝑚
MSV, from (2.5): 

𝔼𝑡𝑥𝑡+1 = 𝑎1
MSV𝑥𝑡 + 𝑎2

MSV𝑥𝑡−1 + 𝑐
MSV +

1 + √1 − 4𝛼𝛽

2𝛽
𝜐𝑡−1, 

i.e. 𝜐𝑡 =
1+√1−4𝛼𝛽

2𝛽
𝜐𝑡−1 . Now when |𝛼 + 𝛽| < 1  and 𝛼𝛽 < 1 4⁄  (so 𝑥𝑡  is real), 

1+√1−4𝛼𝛽

2𝛽
> 1 , 

therefore 𝑥𝑡 is stationary if and only if 𝜐𝑡 = 0 for all 𝑡, i.e. if and only if expectations always take this 

minimum state variable form. However, since current expectations are not constrained to render 

past expectations rational, if agents find themselves off the 𝜐𝑡 = 0 path, it is still rational for them 

to jump back onto it, at least if 𝑥𝑡 is constrained to be stationary. 

Linear models such as this have two MSV solutions, however only one of them will be stationary 

under determinacy. In the below we refer to the MSV solution that is stationary under determinacy 

as the SMSV solution. 

2.3. Generalization 

All our analysis in the body of this paper will be confined to the univariate case; however, the tricks 

used above to express expectations as a function of observables carry over to the multivariate case, 

and the case in which at least some combinations of variables are constrained by transversality. 

This is discussed in the first appendix, section 7.1, where we provide a range of necessary and/or 

sufficient conditions for the existence of FREE solutions in multivariate models. Particularly intuitive 

results include the facts that: 

                                                      

6 Automatic in the particular case under consideration, but in other models there may be particular parameters for 

which expectations cease to matter, and in the multivariate case, 𝛽 may not be invertible. 
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 if the model is completely indeterminate (perhaps because of a lack of transversality 

conditions), so there are as many degrees of freedom in expectations as there are variables, and 

there are at most as many shocks as variables, then almost all REE are FREE; 

 there is always a REE with the form 𝔼𝑡𝑥𝑡+1 = 𝑇−1,21𝑥𝑡−1 + 𝑇−1,22𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2 + 𝑇𝑠,2𝑠𝑡, which 

is always a FREE when dim 𝑠𝑡 = 1, and is a FREE more generally providing: 

o 𝑇𝑠,2 has linearly independent columns, 

o the number of explosive (or transversality violating) roots is greater or equal to dim 𝑠𝑡, 

o a further technical condition is satisfied; 

 if the unobserved shocks are not serially correlated, and if for any linear combination of shocks 

which does not appear in the transversality-violating block, that same linear combination does 

not appear anywhere in the model (i.e. agents can back out the value of relevant shocks from 

observing jump variables), then the model has at least one FREE, and a continuum under 

indeterminacy. 

In all cases, the FREE solution to the model takes the form: 

𝔼𝑡𝑥𝑡+1 = 𝒜1𝑥𝑡 +𝒜2𝑥𝑡−1 +𝒜3𝑥𝑡−2 + ℬ1𝔼𝑡−1𝑥𝑡 + ℬ2𝔼𝑡−2𝑥𝑡−1 + 𝒸 + 𝒹1,𝑡−1
′ 휁𝑡 , 

which is identical to the univariate case, except for the extra lag on expectations. 

These results hopefully go some way to reassuring the reader that although from here on in we will 

be focussing on the univariate case, the non-observability of shocks does not cause any additional 

problems when we generalise to the multivariate case.7 

3. Learning (and identifying) from unsophisticated learners 

We now turn to the formation of expectations when the values of 𝛼, 𝛽, 𝛾, 𝜌, 𝜎, 𝑚 ,𝑡 and 𝑚 ,𝑡 are 

not common knowledge. Before introducing our misspecification free learning methods in section 

4, we address the issue of parameter identification when the agents in an economy are using a 

traditional learning method. For the duration of this section, we also assume it is common 

knowledge that 𝑚 ,𝑡  and 𝑚 ,𝑡 are constant across time, since the traditional models of 

macroeconomic learning cannot deal with actual laws of motion (ALMs) with time varying 

parameters. 

                                                      

7 These results are closely related to the conditions derived by Levine et al. (2012) for solutions under imperfect 

information to be identical to solutions under perfect information. The results of Levine et al. (2012) are at once more 

general than our results (as they allow for arbitrary informational assumptions, rather than assuming that only shocks 

are unobserved) and less general (as they are restricted to the solutions of determinate models, and depend on 

assorted strong invertability assumptions). 
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3.1. Set-up 

Under the saddle-path learning method of Ellison and Pearlman (2011), agents learn using the same 

rule they use to form expectations. Under the FREE solution to (2.3), given in equation (2.5), this 

suggests that agents should learn by estimating the regression model: 

 
𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝑎3𝑥𝑡−2 + 𝑏𝔼𝑡−1

∗ 𝑥𝑡 + 𝑐 + 𝑑1
′ 휁𝑡 + 휂𝑡+1,

휂𝑡+1~NIID(0, 𝜎
2), (3.1) 

   

where 𝔼𝑡−1
∗ 𝑥𝑡 is lagged aggregate (not-necessarily rational) expectations, which are observable for 

the reasons given previously. 

If agents observed shocks, then by replacing 휂𝑡+1 with 𝑚 휀𝑡+1 +𝑚
′ 휁𝑡+1, this would become an 

exact line fitting exercise, rather than a regression problem: after a finite number of periods agents 

would know the value of all parameters, thanks to the observability of 𝔼𝑡−1
∗ 𝑥𝑡. (We also need that 

there is at least some variation in 𝔼𝑡−1
∗ 𝑥𝑡 that is independent of the other terms, this will be true 

providing initial beliefs about 𝑎3 and/or 𝑑1 are non-zero.) Thus when shocks are observed, learning 

is trivial. This further justifies our focus on the non-observable shock case in this paper. 

3.2. (Non-)Identification via OLS 

Given that it is common knowledge that 𝑚 ,𝑡 and 𝑚 ,𝑡 are constant, the “true” model has 6 +

dim 휁𝑡 free parameters (𝛼, 𝛽, 𝛾, 𝜌, 𝜎, 𝑚 , 𝑚 ), and by running the regression (3.1) agents will also 

learn 6 + dim 휁𝑡  parameters (𝑎1 , 𝑎2 , 𝑎3 , 𝑏, 𝑐 , 𝜎2 , 𝑑1), which is a necessary condition for the 

identification of all of the model’s parameters. This also means that if any variables are omitted 

from this regression (as they are in the traditional regressions used in the literature) then agents 

will have no information about at least one of the model’s parameters. 

Providing 𝜌 ≠ 1 and 𝜎 > 0, equating terms reveals that all the model’s parameters are uniquely 

identified if any only if either 𝛼 = 𝜌 = 0, or the following equation for 𝛽 has a unique solution:8 

𝛽3𝑎3 = (−𝛽
2𝑎2 − (𝛽𝑏 − 1 + 𝛽𝑎1))(𝛽𝑏 − 1 + 𝛽𝑎1). 

Tedious algebra reveals that this in turn holds if any only if 𝛼 ≠ 0, 𝜌 ≠ 0 and 𝛼𝛽 >
1

4
, which implies 

there is no non-explosive, real, minimal state variable solution for 𝑥𝑡. This confirms Cochrane’s 

(2009) result that Taylor rule parameters are not identified under determinacy via this simple form 

of OLS learning. Away from this case, there will either be two or three discrete solutions for the 

model’s parameters. 

However, we previously argued that sunspots were observable to agents. Hence, agents using the 

perceived law of motion (PLM) (3.1) are not using all available information. If they instead run the 

regression: 

 
𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝑎3𝑥𝑡−2 + 𝑏𝔼𝑡−1

∗ 𝑥𝑡 + 𝑐 + 𝑑1
′ 휁𝑡 + 𝑑0

′ 휁𝑡+1 +𝑚 휀𝑡+1,
휀𝑡+1~NIID(0,1), 

(3.2) 

                                                      

8 The equations also have a unique solution when either 𝛼 = 0 and 𝜌 =
1

𝛽
, or when 𝜌 = 0. However, these two cases 

are observationally equivalent. 
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then all parameters will apparently be identified, providing 𝑑0 ≠ 0. For example, in the case where 

dim 휁𝑡 = 1 we have: 
1

𝛽
= 𝑎1 +

𝑑1

𝑑0
 and 𝜌 = 𝑏 −

𝑑1

𝑑0
. We also have the over-identifying restriction 

𝑎3 + (𝑎1 +
𝑑1

𝑑0
) (𝑏 −

𝑑1

𝑑0
)
2

= −𝑎2 (𝑏 −
𝑑1

𝑑0
). When dim 휁𝑡 > 1, these equalities must hold for each 

non-zero component of 𝑑0 and the corresponding component of 𝑑1, giving further over-identifying 

restrictions. Unfortunately, since the estimated value of 𝑑0 will be non-zero with probability one 

(even under a MSV solution with 𝑚 = 0), under (3.2) although it may seem like we have identified 

a non-MSV solution, we must continue to place positive probability on being in a MSV solution, so 

the identification here is illusory. Furthermore, agents generally have no grounds for believing that 

𝑚 ,𝑡  and 𝑚 ,𝑡  are indeed constant. This means that the standard errors on their parameter 

estimates should be bounded away from zero even asymptotically, further dashing any hope of 

identification. 

3.3. Identification by learning from learners 

Although agents cannot identify structural parameters via running either of the regressions given in 

the last section, if one sophisticated agent realises that everyone else is running these regressions 

in order to form expectations then that sophisticated agent will be able to identify parameters. 

Since we did not use the rationality of expectations in deriving equation (2.4), it must always be the 

case that: 

 𝑥𝑡 = (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡
∗𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1

∗ 𝑥𝑡 + (1 − 𝜌)𝛾 + 𝜎휀𝑡. (3.3) 
   

The only thing stopping us from running a regression of this form in order to identify 𝛽 is the 

endogeneity of 𝔼𝑡
∗𝑥𝑡+1. But if agents are forming expectations using (3.1) or (3.2) then we know 

that 𝑑1,𝑡−1
′ 휁𝑡  is a valid instrument for 𝔼𝑡

∗𝑥𝑡+1 (where 𝑑1,𝑡−1 is the estimated values of 𝑑1 using 

information up to period 𝑡 − 1 at the latest)9, since 휁𝑡  is uncorrelated with 휀𝑡  by assumption. 

Hence, one potential way of achieving identification would be to run a standard IV-regression. 

However, this is unlikely to be very efficient as it discards a lot of information. 

We can do considerably better here by considering the structure of the implied actual law of 

motion (ALM). Note that if everyone is forming expectations by running the regression (3.1) or 

(3.2), then: 

𝑥𝑡 = (1 − 𝛽𝑎1,𝑡−1)
−1
[(𝛼 + 𝜌 + 𝛽𝑎2,𝑡−1)𝑥𝑡−1 + (𝛽𝑎3,𝑡−1 − 𝛼𝜌)𝑥𝑡−2 + 𝛽(𝑏𝑡−1 − 𝜌)𝔼𝑡−1

∗ 𝑥𝑡

+ [(1 − 𝜌)𝛾 + 𝛽𝑐𝑡−1] + 𝛽𝑑1,𝑡−1
′ 휁𝑡 + 𝜎휀𝑡], 

where time subscripts on the regression coefficients again refer to agents’ estimates using 

information up to period 𝑡 − 1 at the latest. We do not specify at this point if these estimates are 

the result of recursive least squares (RLS—equivalent to OLS), constant gain least squares (CGLS), or 

some other estimation method. In the appendix, section 7.2 we analyse e-stability, which will 

                                                      

9 We are assuming that the OLS agents adopt the standard convention of forming expectations using parameter 

estimates from previous periods’ observations. When they are allowed to use current observations then we can proxy 

the estimates with current observations by the estimates with lagged ones to avoid further endogeneity issues. 
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determine convergence of the naïve agents’ beliefs under RLS; but this will not be important for the 

analysis of the convergence of the beliefs of our one sophisticated agent. 

Using the ALM above, we can estimate the model’s structural parameters by conditional maximum 

likelihood (ML). The conditional log-likelihood is given by: 

log 𝑓(𝑥1, … , 𝑥𝑇|𝑥0, 𝑥−1, 𝔼0
∗𝑥1, 휁1, … , 휁𝑇 , ℎ0, 휃) 

=∑log 𝑓(𝑥𝑡|𝑥𝑡−1, 𝑥𝑡−2, 𝔼𝑡−1
∗ 𝑥𝑡, 휁𝑡 , ℎ0, … , ℎ𝑡−1, 휃)

𝑇

𝑡=1

 

= −
𝑇

2
log 2𝜋  +∑[log|1 − 𝛽𝑎1,𝑡−1| − log 𝜎 −

1

2𝜎2
(𝑥𝑡 − 𝜇𝑡)

2]

𝑇

𝑡=1

 

where ℎ𝑡 = [𝑎1,𝑡 𝑎2,𝑡 𝑎3,𝑡 𝑏𝑡 𝑐𝑡 𝑑1,𝑡
′ ]′, 휃 = [𝛼 𝛽 𝛾 𝜌 𝜎]′,  

𝜇𝑡 ≔ (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡
∗𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1

∗ 𝑥𝑡 + (1 − 𝜌)𝛾, 

and: 

 𝔼𝑡
∗𝑥𝑡+1 = 𝑎1,𝑡−1𝑥𝑡 + 𝑎2,𝑡−1𝑥𝑡−1 + 𝑎3,𝑡−1𝑥𝑡−2 + 𝑏𝑡−1𝔼𝑡−1

∗ 𝑥𝑡 + 𝑐𝑡−1 + 𝑑1,𝑡−1
′ 휁𝑡. (3.4) 

   

Note that in introducing the conditioning on ℎ0, … , ℎ𝑡−1 in the first equality we have used the fact 

that ℎ0, … , ℎ𝑡−1 are deterministic functions of 𝑥−1, … , 𝑥𝑡−1. 

The first order conditions then imply that10: 

 

0 =∑(𝑥𝑡−1 − �̂�𝑥𝑡−2)(𝑥𝑡 − �̂�𝑡)

𝑇

𝑡=1

 

0 =∑[𝔼𝑡
∗𝑥𝑡+1(𝑥𝑡 − �̂�𝑡) −

𝑎1,𝑡−1�̂�
2

1 − �̂�𝑎1,𝑡−1
]

𝑇

𝑡=1

 

0 =∑(𝑥𝑡−1 − �̂�𝑥𝑡−2 − �̂�𝔼𝑡−1
∗ 𝑥𝑡 − 𝛾)(𝑥𝑡 − �̂�𝑡)

𝑇

𝑡=1

 

0 =∑(𝑥𝑡 − �̂�𝑡)

𝑇

𝑡=1

, �̂�2 =
1

𝑇
∑(𝑥𝑡 − �̂�𝑡)

2

𝑇

𝑡=1

 

(3.5) 

   

Since the second equation is a polynomial of at least order 𝑇 in 𝛽, in general these equations will 

have to be solved numerically. However, providing parameters are indeed identified, the resulting 

estimates will have all the usual desirable properties of ML estimates (consistency, efficiency, 

asymptotic normality). 

To show that the ML estimator does indeed identify parameters, we give an alternative estimator 

that we are able to prove to be consistent. Since the existence of a consistent estimator implies 

identification (Gabrielsen 1978), this is sufficient for the consistency and asymptotic normality of 

                                                      

10 As usual, hats denote estimates. 
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the ML estimator. This alternative estimator will also have a recursive form, making it convenient 

for the case in which everyone realises everyone else is learning. 

Let 휃 ≔ [휃1 휃2 휃3 휃4 휃5]
′ = [(1 − 𝜌)𝛾 𝛼 + 𝜌 −𝛼𝜌 𝛽 −𝛽𝜌]′  be a vector of 

parameters to be estimated, and let: 

 𝑧𝑡 ≔ [1 𝑥𝑡−1 𝑥𝑡−2 (
𝑎2,𝑡−1𝑥𝑡−1 + 𝑎3,𝑡−1𝑥𝑡−2 +

𝑏𝑡−1𝔼𝑡−1
∗ 𝑥𝑡 + 𝑐𝑡−1 + 𝑑1,𝑡−1

′ 휁𝑡
) 𝔼𝑡−1

∗ 𝑥𝑡]
′

. (3.6) 

   

Suppose for the moment that an oracle told us the value of 𝛽. Then by running the regression: 

 (1 − 𝛽𝑎1,𝑡−1)𝑥𝑡 = 𝑧𝑡
′휃 + 𝜎휀𝑡, 휀𝑡~NIID(0,1), (3.7) 

   

we could identify all parameters, even if we forgot what the oracle had told us as soon as the 

regression had been run. In particular �̂� is the standard deviation of the shock, �̂� = 휃̂4, �̂� = −
̂
5

�̂�
=

−
̂
5

̂
4
, 𝛾 =

̂
1

1−�̂�
=

̂
1
̂
4

̂
4+̂5

, and �̂� is given by either 휃̂2 − �̂� =
̂
2
̂
4+̂5
̂
4

 or −
̂
3

�̂�
=
̂
3
̂
4

̂
5

. (The two estimates 

of 𝛼 may be near-optimally combined to give �̂� =
̂
3
̂
4
̂
5𝑠𝜃,22+̂4(̂2̂4+̂5)𝑠𝜃,33−(̂2̂4̂5+̂3̂4

2+̂5
2)𝑠𝜃,23

̂
5
2𝑠𝜃,22+̂4

2𝑠𝜃,33−2̂4̂5𝑠𝜃,23
, 

where [
𝑠 ,22 𝑠 ,23

𝑠 ,32 𝑠 ,33
] is the estimated covariance matrix of [

휃̂2
휃̂3
].) 

Now let 𝑍𝑇 ≔ [
𝑧1
′

⋮
𝑧𝑇
′
], 𝑥 ≔ [

𝑥1
⋮
𝑥𝑇
] and 𝑦 ≔ [

𝑎0𝑥1
⋮

𝑎𝑇−1𝑥𝑇
]. Then the (OLS) estimated value of 휃 is given by: 

휃̂ = (𝑍𝑇
′ 𝑍𝑇)

−1𝑍𝑇
′ (𝑥 − 𝑦𝛽). 

To show consistency of this estimator, let us begin by defining a vector of “pseudo-instruments” 

(variables that we would like to use in place of 𝑧𝑡, were they observable): 

𝒹𝑡 ≔ [1
𝜎휀𝑡−1

1 − 𝛽𝑎1,𝑡−2

𝜎휀𝑡−2
1 − 𝛽𝑎1,𝑡−3

𝑑1,𝑡−1
′ 휁𝑡

𝑑1,𝑡−2
′ 휁𝑡−1

1 − 𝛽𝑎1,𝑡−2
]

′

. 

Denote by 𝔼+𝑉 the unconditional expectation of 𝑉 that would have obtained were 𝑎1,𝑡, 𝑎2,𝑡, 𝑎3,𝑡, 

𝑏𝑡, 𝑐𝑡 and 𝑑1,𝑡 non-stochastic for all 𝑡. Then if 𝐽𝑡 ≔ 𝔼+𝒹𝑡𝒹𝑡
′ , 

𝐽𝑡 = diag [1
𝜎2

(1 − 𝛽𝑎1,𝑡−2)
2

𝜎2

(1 − 𝛽𝑎1,𝑡−3)
2 𝑑1,𝑡−1

′ 𝑑1,𝑡−1
𝑑1,𝑡−2
′ 𝑑1,𝑡−2

(1 − 𝛽𝑎1,𝑡−2)
2] , 11 

and if 𝐾𝑡 ≔ (𝔼+𝒹𝑡𝒹𝑡
′)−1𝔼+𝒹𝑡𝑧𝑡

′, 

𝐾𝑡 =

[
 
 
 
 
 
1 ? ? ? ?
0 1 0 𝑎2,𝑡−1 + 𝑏𝑡−1𝑎1,𝑡−2 𝑎1,𝑡−2

0 𝑞𝑡−2 1 (𝑎2,𝑡−1 + 𝑏𝑡−1𝑎1,𝑡−2)𝑞𝑡−2 + 𝑎3,𝑡−1 + 𝑏𝑡−1𝑎2,𝑡−2 𝑎2,𝑡−2 + 𝑎1,𝑡−2𝑞𝑡−2
0 0 0 1 0
0 𝛽 0 𝛽𝑎2,𝑡−1 + 𝑏𝑡−1 1 ]

 
 
 
 
 

, 

                                                      

11 The diag operator maps vectors to diagonal matrices with a diagonal with the same elements as the vector, and maps 

matrices to a vector with the same elements as their diagonal. 
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where 𝑞𝑡−2 =
𝛼+𝜌+𝛽𝑎2,𝑡−2+𝛽(𝑏𝑡−2−𝜌)𝑎1,𝑡−3

1−𝛽𝑎1,𝑡−2
, and ? denotes a term omitted for the sake of space. We 

also define 𝐽𝑇 ≔ ∑ 𝐽𝑡
𝑇
𝑡=1 , and �̃�𝑇 ≔ 𝐽𝑇

−1∑ 𝐽𝑡𝐾𝑡
𝑇
𝑡=1 , so if 𝐷 ≔ [

𝒹1
′

⋮
𝒹𝑇
′
] , 𝐽𝑇 = 𝔼

+𝐷′𝐷  and �̃�𝑇 =

(𝔼+𝐷′𝐷)−1𝔼+𝐷′𝑍𝑇. These definitions are valid as 𝐽𝑇  is diagonal, with a strictly positive diagonal, for 

all 𝑡. (Though the elements of the diagonal may tend to 0 asymptotically.) A sufficient condition for 

the invertability of both 𝐾𝑇 and �̃�𝑇, for all 𝑇, is that 𝛽 ≠ 1, in which case the eigenvalues of 𝐾𝑡 and 

�̃�𝑇 must be bounded away from 0 asymptotically. 

If we go on to define: 

𝑈𝑇 ≔ 𝑍𝑇 − 𝐷(𝐷
′𝐷)−1𝐷′𝑍𝑇 , 

then 𝐷′𝑈 = 0 and: 

𝑍𝑇
′ 𝑍𝑇 = 𝑍𝑇

′𝐷(𝐷′𝐷)−1𝐷′𝐷(𝐷′𝐷)−1𝐷′𝑍𝑇 + 𝑈𝑇
′𝑈𝑇 . 

If it were valid to drop the 𝔼+ operators from our expressions for 𝐽𝑇  and �̃�𝑇, asymptotically, then 

we would have: 

 Pr ( lim
𝑇→∞

(�̃�𝑇
′ 𝐽𝑇�̃�𝑇 + 𝑈𝑇

′𝑈𝑇 − 𝑍𝑇
′ 𝑍𝑡) = 0) = 1. (3.8) 

   

Dropping the 𝔼+ operators in this way might be valid, for example, if agents were learning a 

sunspot solution via RLS, and eventually the dependence between their estimates was sufficiently 

weak that 𝑎1,𝑡, 𝑎2,𝑡, etc. were “near exogenous”, in some loose sense. However, rather than making 

such specific assumptions, we will instead just assume the validity of (3.8), since (3.8) encompasses 

many other cases, including ones in which plim
𝑇→∞

�̃�𝑇 does not even exist, as it will not under constant 

gain learning. 

Given (3.8), by applying Theorem 1 of Lai and Wei (1982) to the regression (3.7), providing: 

1) there exists 𝛿 > 0 such that lim sup
𝑡→∞

max{1,𝑎1,𝑡
2 }

𝑡1−𝛿min{1,𝑑1,𝑡
′ 𝑑1,𝑡}

< ∞,12 and 

2) there exists 𝛿′ ≥ 0 such that lim sup
𝑡→∞

𝑧𝑡
′𝑧𝑡

𝑡𝛿
′ < ∞,13 

then 휃̂
𝑎.𝑠.
→ 휃. Note that 2) already covers all sub-exponential explosion in 𝑧𝑡

′𝑧𝑡. We do not as yet 

have a proof of consistency for the case with an exponential (or super-exponential) explosion, but 

our simulation results below certainly suggest that 𝛽 can still be consistently estimated in this case 

(though obviously 𝛾 cannot be). 

Furthermore, under slightly stronger assumptions 𝐽𝑇
1
2⁄ �̃�𝑇휃̂  will be asymptotically normally 

distributed, implying that we have 
1

√log𝑇
 convergence in the worst case. 

                                                      

12 Sufficient as ∑ 𝑡−(1−𝛿)∞
𝑡=1 = ∞ for all 𝛿 ≥ 0. 

13 Sufficient as lim
𝑇→∞

∑ 𝑡𝛿
′𝑇

𝑡=1

𝑇1+𝛿
′ < ∞, lim

𝑇→∞

log 𝑇

∑ 𝑡−(1−𝛿)𝑇
𝑡=1

= 0 for all 𝛿 > 0, and since tr 𝑧𝑡𝑧𝑡
′ is guaranteed to be between the 

largest eigenvalue of 𝑧𝑡𝑧𝑡
′ and 5 times this quantity. 
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It is easy to see that these sufficient conditions will hold under any non-exponentially-explosive 

learning algorithm, with slower than 
1

√𝑇
 convergence, such as constant gain least squares, or 

stochastic gradient learning. Under recursive least squares, there exists 𝛿 ≥ 0 such that 𝑡
1−𝛿

2 𝑑1,𝑡 

converges in distribution to a normal, (Marcet and Sargent 1992), with 𝛿 = 0 only if the real parts 

of the eigenvalues of the “𝑇” matrix are all less than 1 2⁄ .14 When 𝛿 > 0 here, our sufficient 

conditions will be satisfied, but in the other case, Theorem 1 of Lai and Wei (1982) no longer 

applies. From their reasoning, we do however have that lim sup
𝑡→∞

(휃̂ − 휃)
′
(휃̂ − 휃) < ∞, 

even here, so at worst, beyond a certain point in time standard errors on 휃 would cease improving. 

Additionally, we note that a sufficient condition for consistency in this case is that: 

 lim sup
𝑇→∞

‖𝐽𝑇
−1 2⁄ �̃�𝑇

′−1𝑈𝑇
′𝑈𝑇�̃�𝑇

−1𝐽𝑇
−1 2⁄ ‖ < ∞, (3.9) 

   

by Theorem 3 of Lai and Wei (1982). This will hold, for example, if 𝛼 = 𝜌 = 0, so it may be thought 

of as an additional weak-dependency condition. 

We have demonstrated then a range of conditions under which 휃̂ is a consistent estimator of 휃, in 

our oracle-aided regression, equation (3.7). Now suppose there is no oracle, but we have received 

infinitely many periods of data. If we guessed a value for 𝛽, we could repeat the “oracle” exercise 

with the guessed value and we would end up with an alternative estimate for 𝛽 (namely 휃̂3). We 

can thus think of this as a fixed-point problem. In general our guess of 𝛽 and the estimated value 

will not coincide, but we know that they must coincide at least once, namely when our guess is the 

true value. Thus if the (infinite-data) fixed-point problem has a unique solution for 𝛽, then we know 

that value must be the true value. Hence, if in finite samples this fixed-point problem also has a 

unique solution, that solution must be a consistent estimator of 𝛽, at least when the conditions 

discussed above hold. 

We proceed to establish the uniqueness of the solution to the fixed-point problem, by establishing 

a closed form solution. Let 𝑒4 ≔ [0 0 0 1 0]′ . Then the fixed-point problem may be 

expressed as finding the value of �̂� for which: 

�̂� = 𝑒4
′(𝑍′𝑍)−1𝑍′(𝑥 − 𝑦�̂�). 

Consequently: 

�̂� =
𝑒4
′(𝑍′𝑍)−1𝑍′𝑥

1 + 𝑒4
′(𝑍′𝑍)−1𝑍′𝑦

. 

Armed with a consistent estimator of �̂�, all other parameters may be estimated consistently by 

following our oracle procedure. In particular, the consistent estimator of 휃 is: 

 
휃̂2SLS = (𝑍′𝑍)−1𝑍′ [𝑥 − 𝑦

𝑒4
′(𝑍′𝑍)−1𝑍′𝑥

1 + 𝑒4
′(𝑍′𝑍)−1𝑍′𝑦

] 

= (𝐼 + (𝑍′𝑍)−1𝑍′𝑦𝑒4
′)−1(𝑍′𝑍)−1𝑍′𝑥 (3.10) 

                                                      

14 These eigenvalues are given in the appendix, 7.2. 
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= (𝑍′𝑍 + 𝑍′𝑦𝑒4
′)−1𝑍′𝑥, 

   

which turns out to be equal to the 2SLS-IV estimator when (𝑎2,𝑡−1𝑥𝑡−1 + 𝑎3,𝑡−1𝑥𝑡−2 +

𝑏𝑡−1𝔼𝑡−1
∗ 𝑥𝑡 + 𝑐𝑡−1 + 𝑑1,𝑡−1

′ 휁𝑡) is used as an instrument for 𝔼𝑡
∗𝑥𝑡+1. 

This gives us the following proposition: 

Proposition 1: Suppose the economy is made up of agents that are all forming expectations through 

running regressions of the form of (3.1) or (3.2), with dim 휁𝑡 > 0. Let 휃̂2SLS be the estimator defined 

by equation (3.10), and suppose that: 

1) the weak-dependence condition (3.8) holds, 

2) there exists 𝛿 > 0 such that lim sup
𝑡→∞

𝑚𝑎𝑥{1,𝑎1,𝑡
2 }

𝑡1−𝛿𝑚𝑖𝑛{1,𝑑1,𝑡
′ 𝑑1,𝑡}

< ∞, and 

3) there exists 𝛿′ ≥ 0 such that lim sup
𝑡→∞

𝑧𝑡
′𝑧𝑡

𝑡𝛿
′ < ∞, 

Then if one of the following conditions holds: 

a) the agents learn by any algorithm with slower than 1
√𝑡
⁄  convergence, such as constant gain 

least squares, stochastic gradient learning, or recursive least squares in the case in which the 

eigenvalues of the “𝑇” matrix (defined in appendix 7.2) are greater than 1 2⁄ , 

b) the agents learn a sunspot solution, 

c) the agents learn by recursive least squares, or another algorithm under which √𝑡𝑑1,𝑡
′  converges 

in distribution, and the second weak-dependence condition (3.9) holds, 

then the 2SLS-like estimator 휃̂2SLS is consistent. 

Since the existence of a consistent estimator implies parameter identification under maximum 

likelihood, we have the following immediate corollary: 

Corollary 1.1: Under the conditions of Proposition 1, the maximum likelihood estimator given by the 

solution to the FOCs, (3.5) is consistent. 

Note that the consistency of these estimators is in spite of the convergence of 𝑎1,𝑡, 𝑎2,𝑡, etc. rather 

than because of this convergence. Indeed, the worse the learning process that is determining 𝑎1,𝑡, 

𝑎2,𝑡, etc., the faster this more sophisticated agent will learn the structural parameters of the model. 

So for example, if almost all agents are using stochastic gradient learning or constant gain least 

squares, then learning structural parameters is likely to be particularly easy. Likewise if 𝑎1,𝑡, 𝑎2,𝑡, 

etc. never converge then learning the structural parameters is again likely to be fast. This result is 

related to Cochrane’s (2009) claim that with unsophisticated learning it is only in the explosive case 

that structural parameters may be identified, but here we have identification quite generally. 

3.4. Learning from MSV learners 

It is natural to wonder the extent to which our results are driven by the fact that the agents in the 

economy are learning and forming expectations using equation (3.1) or (3.2), rather than the more 

traditional MSV form: 

 𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝑐 +𝑚 휀𝑡+1, 휀𝑡+1~NIID(0,1). (3.11) 
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Since many REE do not have a representation in this form, by estimating (3.11) the agents in the 

economy are already putting a prior probability of zero on any non-fundamental solution, which is 

certainly not justified in the absence of transversality constraints limiting 𝑥𝑡  to asymptotic 

stationarity. Nonetheless, even given these priors, when agents observe a stationary realisation of 

𝑥𝑡 they will still not be able to work out the value of 𝛽, as there are observationally equivalent MSV 

solutions. So, it remains an interesting question whether or not 𝛽 can be identified from examining 

these learners. 

The argument of the previous section would suggest using 𝑎2,𝑡−1𝑥𝑡−1 + 𝑐𝑡−1 as an instrument for 

𝔼𝑡
∗𝑥𝑡+1. Proving the general validity of this instrument in the MSV set-up is tricky, however. This is 

clearest when 𝛼 = 𝜌 = 0, in which case, asymptotically 𝑥𝑡+1 = 𝑚 휀𝑡+1, if parameters converge. 

With no serial correlation in 𝑥𝑡, finding “pseudo-instruments” (i.e. potential elements of 𝒹𝑡) that 

are correlated with 𝔼𝑡
∗𝑥𝑡+1 and 𝔼𝑡−1

∗ 𝑥𝑡, but not with 휀𝑡−1 or 휀𝑡−2 is non-trivial. 

Suppose that 
1

𝜅𝑎(𝑡)
[
𝑎1,𝑡 − 𝑎1,∞
𝑎2,𝑡 − 𝑎2,∞

] tends in distribution to some non-degenerate distribution, as 𝑡 →

∞, for some function 𝜅𝑎(𝑡), and some constants 𝑎1,∞ and 𝑎2,∞. Then under any “reasonable” 

estimator (including the RLS, CGLS etc. estimators): 

 

lim inf
𝑡→∞

𝜅𝑎(𝑡)
2 cov(𝑎1,𝑡, 휀𝑡휀𝑡−1) > 0, 

lim inf
𝑡→∞

𝜅𝑎(𝑡)
2 cov(𝑎2,𝑡, 휀𝑡휀𝑡−2) > 0, & 

lim sup
𝑡→∞

𝜅𝑎(𝑡)
2 cov(𝑎2,𝑡, 휀𝑡휀𝑡−1) = 0. 

(3.12) 

Thus if we define: 

 𝒹𝑡 ≔ [1
𝜎휀𝑡−1

1 − 𝛽𝑎1,𝑡−2

𝜎휀𝑡−2
1 − 𝛽𝑎1,𝑡−3

𝜎𝜅𝑎(𝑡)
2휀𝑡−1
2 휀𝑡−3

1 − 𝛽𝑎1,𝑡−2

𝜎𝜅𝑎(𝑡)
2휀𝑡−1휀𝑡−2휀𝑡−4

1 − 𝛽𝑎1,𝑡−2
]

′

, (3.13) 

   

then providing lim inf
𝑡→∞

𝑡1−𝛿𝜅𝑎(𝑡)
2 > 0 for some 𝛿 > 0, the previous proof goes through.15  Of 

course, under recursive least squares learning 𝜅𝑎(𝑡) =
1

√𝑡
 when the eigenvalues of the “𝑇” matrix 

are less than 1 2⁄ , so this sufficient condition does not hold. While the second weak-dependence 

condition (3.9) could be generalised to this case, it seems highly implausible that it would hold here, 

due to the convoluted nature of our “pseudo-instruments”.16 

The convoluted nature of these pseudo-instruments also suggests that our actual-instrument 

vector, 𝑧𝑡 may be a rather poor instrument. One other possibility that could be used as an 

additional instrument is 𝑎1,𝑡−1, since it is correlated with the first term of 𝔼𝑡
∗𝑥𝑡+1. Indeed, it is easy 

to see that whether agents are learning from (3.11), or one of our more general laws, (3.1) or (3.2), 

the asymptotically optimal choice of instruments is: 

                                                      

15 We also need to adjust the definition of 𝔼𝑡
+ so that only the 𝑎1,𝑡 in the denominator of the ALM of 𝑥𝑡 is treated as 

non-stochastic. 
16 Since completing this paper, we discovered the results of Christopeit and Massmann (2010) who were able to prove 

consistency in an RLS learning of the MSV solution context, for a simple model, using a more direct technique. In future 

work we intend to investigate whether their proof techniques may be generalised to cover regressions such as these. 
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𝑧𝑡
∗ ≔ [

𝑧𝑡
𝑎1,𝑡−1𝑧𝑡

] 

since 𝔼𝑡𝑥𝑡+1 = 𝐹𝑧𝑡
∗ + 𝑎1,𝑡−1휀𝑡 for some non-stochastic, constant matrix 𝐹, and this is not true for 

any proper subset of these instruments. We then have the following generalisation of Proposition 1 

and Corollary 1.1 for this choice of instruments: 

Proposition 2: Suppose the economy is made up of agents that are all forming expectations through 

running regressions of the form of (3.1), (3.2) or (3.11). Let 𝑧𝑡
∗ = [𝑧𝑡

′ 𝑎1,𝑡−1𝑧𝑡
′]′, where 𝑧𝑡 is defined 

by equation (3.6), and let 𝑌 ≔ 𝑍 + 𝑦𝑒4
′ , 𝑍∗ ≔ [𝑧1

∗ ⋯ 𝑧𝑇
∗ ]′, and: 

휃̂𝑇
AEIV ≔ (𝑌′𝑍∗(𝑍∗

′
𝑍∗)

−1
𝑍∗

′
𝑌)
−1

𝑍∗(𝑍∗
′
𝑍∗)

−1
𝑍∗

′
𝑥. 

Then if either: 

i) (3.1) or (3.2) is being used, and conditions 1), 2) and 3) of Proposition 1 hold, or: 

ii) (3.11) is being used and: 

1) the weak-dependence condition (3.8) holds (with 𝒹𝑡 defined by (3.13)), and, 

2) there exists δ′ ≥ 0 such that lim sup
t→∞

a1,t
2

tδ
′ < ∞ and lim sup

t→∞

zt
′zt

tδ
′ < ∞, 

and one of the following further conditions holds also: 

a) the agents learn by any reasonable17 algorithm which converges in distribution, but slower than 

1
√𝑡
⁄ , such as stochastic gradient learning, or recursive least squares in the case in which the 

eigenvalues of the “𝑇” matrix (defined in appendix 7.2) are greater than 1 2⁄ , 

b) the agents learn a sunspot solution, 

c) the agents learn by recursive least squares on regression (3.1) or (3.2), or another algorithm 

under which √𝑡𝑑1,𝑡
′  converges in distribution, dim 휁𝑡 > 0 and the second weak-dependence 

condition (3.9) holds, 

then the estimator  휃̂𝑇
AEIV is consistent and asymptotically efficient. 

Corollary 2.1: Under the conditions of Proposition 2, the maximum likelihood estimator given by the 

solution to the FOCs, (3.5) is consistent. 

3.5. Simulation evidence 

In light of the slightly obscure nature of some our theoretical conditions, particularly in the 

recursive least squares (RLS) case, we now present some simulation evidence of the estimator’s 

success in identifying the key 𝛽 parameter. Figure 1 gives results for economies populated with RLS 

learners estimating equation (3.2), and Figure 2 gives results for economies populated with RLS 

learners estimating the MSV form, equation (3.11). 

In order to show the estimates performance, for each parameterisation (different rows of the two 

figures) we generate 214 simulation paths (each of length 28), and then apply each estimator 

                                                      

17 Where a reasonable algorithm is defined as one for which (3.12) is satisfied. 
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considered to each of the resulting paths. In both figures, each of the first three columns 

corresponds to a different estimator. For both figures, column 1 is our original 2SLS estimator, 

column 2 is the asymptotically efficient IV one (henceforth, AEIV) and column 3 is the ML 

estimator18. In each graph of the first three columns, we plot the 2.5%, 5.0%, 7.5%,… , 97.5% 

percentiles of the estimator’s distribution. For convenience, the quartiles are given in solid rather 

than dotted lines. The final column of both figures gives the 95% trimmed root mean squared error 

(RMSE) of the estimators.19 In this column, the dotted line corresponds to the 2SLS estimator, the 

dashed to the AEIV one, and the solid to the ML one. 

In each simulation run, there was a “burn-in” time of 32 periods during which time expectations 

were set to their value under the SMSV solution (defined in section 2.2), plus ∑ 휁𝑡,𝑖
dim 𝑡
𝑖=1 + 휁𝑡

B, 

where 휁𝑡
B is an additional, unobservable, NIID(0,1) shock. This was done purely in order to help the 

OLS learners converge, and our estimators were only run on simulated data from the end of the 

burn-in period. Additionally, the OLS learners’ estimates were constrained to have each parameter 

in [−1000,1000] , to prevent numerically unstable hyper-explosions with super-exponential 

growth. This is in the spirit of the “projection facility” invoked by Marcet and Sargent (1989). 

                                                      

18 Obtaining a global solution to the numerical maximum likelihood was too slow to permit us to perform as many 

replications as necessary. Instead then, we start the local maximisation algorithm at the AEIV solution, denoted �̂�𝑡
AEIV, 

and constrain the ML estimate of 𝛽 to be greater than max[{0} ∪ {1 𝑎1,𝑡−1⁄ |�̂�𝑡
AEIV > 1 𝑎1,𝑡−1⁄ , 1 ≤ 𝑡 ≤ 𝑇}] and less 

than min[{0} ∪ {1 𝑎1,𝑡−1⁄ |�̂�𝑡
AEIV < 1 𝑎1,𝑡−1⁄ , 1 ≤ 𝑡 ≤ 𝑇}]. 

19 I.e. the RMSE after first discarding any observations below the 2.5% percentile or above the 97.5% percentile These 

outliers are trimmed to limit the damage caused by the numerical errors that are introduced by the occasional 

explosive, or near-explosive, path. 
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Figure 1: Distribution properties of the estimates of 𝜷, from 𝟐𝟏𝟒 runs, when agents estimate equation 
(3.2) using OLS. 

See text (section 3.5) for full details. 
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The first two rows of graphs in Figure 1, and the first row in Figure 2, are all generated with 𝛼 = 0.2, 

𝛽 = 0.7 , 𝜌 = 0.9 , 𝜎 = 0.001  and 𝔼𝑥𝑡 = 0.005 . These parameters mean there is a unique 

stationary MSV solution, which is also the only e-stable MSV solution. The graphs in the first row of 

Figure 1 are with dim 휁𝑡 = 0, while those in the second have dim 휁𝑡 = 1. Obviously, in Figure 2 we 

always set dim 휁𝑡 = 0. As was expected, the ML estimator dominates the other two, which are 

practically indistinguishable here. The initial rate of convergence is very quick for all three 

estimators, but beyond a certain point, convergence certainly seems to slow, in line with our 
1

√log𝑇
 

convergence finding. However, although the rate of improvement is slow, the level of the RMSE is 

low enough that this is unlikely to be a problem in practice. 

In the next row of both figures, we repeat the exercise with 𝛼 = 0.5121, 𝛽 = 0.4789 and 𝜌 =

0.2405. These values were selected as they result in dynamics under full-information that are 

observationally equivalent to our original ones. Convergence here is slower since two of the 

eigenvalues of the “𝑇” map are now greater than 1 2⁄ . There is also clearly large upwards bias in 

finite samples when agents are estimating (3.11). Surprisingly, it appears the AEIV estimator 

dominates the ML one in this case, whichever equation is being estimated. Nonetheless, 

asymptotically our estimators appear to have very similar properties. 

In the penultimate row of the figures we show the results when 𝛼 = 0.2, 𝛽 = −1.2 and 𝜌 = 0.9. 

This is in the indeterminate region of the parameter space, but still in a region in which the MSV 

solution is e-stable. Performance appears similar to performance in the 𝛽 = 0.7 case. 

Finally, in the last row of both figures we show the behaviour of our estimators in an indeterminate 

region of the parameter space in which the SMSV is not e-stable. (In particular we set 𝛼 = 0.2, 𝛽 =

1.2 and 𝜌 = 0.9.) The underlying instability of the system makes identification easier for our 

sophisticated agent, giving us better performance than in any other case, whichever equation is 

being estimated. 

The graphs make clear that even in small samples, when agents are estimating (3.2) all three 

estimators are approximately unbiased, whatever the true parameters, and whatever the value of 

dim 휁𝑡. Moreover, the estimators are highly peaked around the true value, meaning that the RMSE 

significantly overstates the median absolute error. Hence, people using these estimators can expect 

their estimated values to be closer to the truth than is suggested by the standard errors. 

4. Learning from sophisticated learners 

Having established that our ML and 2SLS-like estimators can successfully identify the structural 

parameters of the model, we now use these techniques to describe our family of misspecification 

free learning algorithms. Under these algorithms, each agent in the economy will realise that 

everyone else is learning at the same time as them, and indeed, they will take advantage of this fact 

to identify the model’s structural parameters. By learning these structural parameters, rather than 

a reduced form equation, agents will be able to disentangle learning which particular solution to 

the model is being used from the time variation in reduced form parameters caused by 

simultaneous learning. 
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4.1. General results 

Suppose for the moment that 𝑚 ,𝑡 and 𝑚 ,𝑡 are public knowledge and hence do not have to be 

estimated, even when no one knows any of the other structural parameters. 

Suppose further that everyone is learning using the ML or 2SLS-like estimator from section 3.3. 
Providing agents continue to use an expression of the form of (3.4) to form expectations, where 
now 𝑎1,𝑡 etc. will be functions of estimated structural parameters, this will be valid. 
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Figure 2: Distribution properties of the estimates of 𝜷, from 𝟐𝟏𝟒 runs, when agents estimate equation 
(3.11) using OLS. 

See text (section 3.5) for full details. 
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In particular, we might suppose that agents treat their estimate of structural parameters as the true 
values and set: 

 

𝑎1,𝑡 =
1

�̂�𝑡
(1 −

�̂�𝑡
𝑚 ,𝑡

) , 𝑎2,𝑡 = −
1

�̂�𝑡
(�̂�𝑡 + �̂�𝑡), 𝑎3,𝑡 =

1

�̂�𝑡
�̂�𝑡�̂�𝑡,  

𝑏𝑡 = �̂�𝑡 +
1

�̂�𝑡

�̂�𝑡
𝑚 ,𝑡

, 𝑐𝑡 = −
1

�̂�𝑡
(1 − �̂�𝑡)𝛾𝑡, 𝑑1,𝑡 =

1

�̂�𝑡

�̂�𝑡
𝑚 ,𝑡

𝑚 ,𝑡. 

(4.1) 

   

(4.1) is reasonable since the actual law of motion implied by equations (2.4) and (3.4) is: 

𝑥𝑡+1 = (1 − 𝛽𝑎1,𝑡)
−1
[(𝛼 + 𝜌 + 𝛽𝑎2,𝑡 + 𝛽(𝑏𝑡 − 𝜌)𝑎1,𝑡−1)𝑥𝑡 + (𝛽𝑎3,𝑡 − 𝛼𝜌 + 𝛽(𝑏𝑡 − 𝜌)𝑎2,𝑡−1)𝑥𝑡−1

+ 𝛽(𝑏𝑡 − 𝜌)𝑎3,𝑡−1𝑥𝑡−2 + 𝛽(𝑏𝑡 − 𝜌)𝑏𝑡−1𝔼𝑡−1
∗ 𝑥𝑡 + [(1 − 𝜌)𝛾 + 𝛽𝑐𝑡 + 𝛽(𝑏𝑡 − 𝜌)𝑐𝑡−1]

+ 𝛽𝑑1,𝑡
′ 휁𝑡+1 + 𝛽(𝑏𝑡 − 𝜌)𝑑1,𝑡−1

′ 휁𝑡 + 𝜎휀𝑡+1], 

and so when agents use (4.1), if the agents estimates of structural parameters converge in 

probability to their true values, then 𝔼𝑡𝑥𝑡+1 − 𝔼𝑡
∗𝑥𝑡+1 converges in probability to zero. 

If agents believe in the SMSV for some reason, then we might suppose they set: 

 

𝒻𝑡 = √max{0,1 − 4�̂�𝑡�̂�𝑡} , 𝑎1,𝑡 = �̂�𝑡 +
1 − 𝒻𝑡

2�̂�𝑡
, 𝑎2,𝑡 = −�̂�𝑡

1 − 𝒻𝑡

2�̂�𝑡
,  

𝑎3,𝑡 = 0, 𝑏𝑡 = 0, 𝑐𝑡 =
2(1 − �̂�𝑡)𝛾𝑡

1 − 2�̂�𝑡 + 𝒻𝑡
, 𝑑1,𝑡 = 0. 

(4.2) 

   

If they do this, again as estimates of structural parameters converge in probability to their true 

values, 𝔼𝑡𝑥𝑡+1 − 𝔼𝑡
∗𝑥𝑡+1 will converge in probability to zero. 

Furthermore, from Proposition 2 we immediately have the following two corollaries: 

Corollary 2.2: Suppose that 𝑚 ,𝑡 and 𝑚 ,𝑡 are in all agent’s period 𝑡 information set, and 𝑚 ,𝑡 ≠ 0 

for all 𝑡. Then if: 

1) all agents form expectations using (3.4) and (4.1), 

2) conditions 1), 2) and 3) of Proposition 1 hold, 

3) there exists 𝛿 > 0 such that lim inf
𝑡→∞

𝑡1−𝛿𝑚 ,𝑡 > 0, and, 

4) agents estimate structural parameters using either the AEIV estimator defined in Proposition 2, 

or the ML estimator given by the solution to the FOCs, (3.5), 

then all estimates of structural parameters will converge in probability to the true values, and 

agents’ expectations will converge in probability to their values under the full information, rational 

expectations solution. 

Corollary 2.3: If: 

1) all agents form expectations using (3.4) and (4.2), 

2) conditions 1) and 2) of Proposition 2 hold, and, 

3) agents estimate structural parameters using either the AEIV estimator defined in Proposition 2, 

or the ML estimator given by the solution to the FOCs, (3.5), 
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then all estimates of reduced form parameters will converge in probability to the true values, and 

agents’ expectations will converge in probability to their values under the full information, rational 

expectations, SMSV solution. 

Note that Corollary 2.3 only guarantees convergence of reduced form parameters, not structural 

ones. This is because if reduced form parameters converge too quickly, Proposition 2 does not 

apply. Since there are more structural parameters than reduced form ones in the MSV case, it is 

quite possible for the reduced form parameters to converge without the structural ones 

converging. Guaranteeing convergence of reduced form parameters is sufficient for expectations to 

converge to the SMSV solution, however. 

To guarantee the existence of a learning algorithm that will learn an arbitrary solution, we need the 

following supplemental corollary of Corollary 2.2:  

Corollary 2.4: Suppose that agents do not know 𝑚 ,𝑡 and 𝑚 ,𝑡, and each agent 𝑖 forms the estimate 

�̂� ,𝑡(𝑖) and �̂� ,𝑡(𝑖) (respectively) of these parameters at 𝑡. Suppose further that the mechanism 

they use for learning these parameters means that either: 

1) there exists some 𝑇 ∈ ℤ such that for all 𝑡 ≥ 𝑇, and all agents 𝑖 and 𝑗, �̂� ,𝑡(𝑖) = �̂� ,𝑡(𝑗) and 

�̂� ,𝑡(𝑖) = �̂� ,𝑡(𝑗), or, 

2) for all agents 𝑖 and 𝑗 𝑝𝑙𝑖𝑚
𝑡→∞

�̂� ,𝑡(𝑖)

�̂� ,𝑡(𝑗)
= 1 and 𝑝𝑙𝑖𝑚

𝑡→∞

(�̂� ,𝑡(𝑖)−�̂� ,𝑡(𝑗))
′
(�̂� ,𝑡(𝑖)−�̂� ,𝑡(𝑗))

�̂� ,𝑡(𝑖)
′�̂� ,𝑡(𝑖)

= 0,20 

then if 𝑚 ,𝑡(𝑖) ≠ 0 for all 𝑡 and 𝑖, and conditions 1), 2) and 4) of Corollary 2.2 are satisfied, then all 

estimates of reduced form parameters will converge in probability to the true values, and agents’ 

expectations will converge in probability to their values under the full information, rational 

expectations solution. If in addition condition 3) of Corollary 2.2 is satisfied, then all estimates of 

structural parameters will also converge. 

The proof of the result under condition 1) of this proposition follows from Proposition 2. Under 

condition 2) the result follows from the fact that condition 2) implies that asymptotically the 

measurement error induced by treating an idiosyncratic estimate as an aggregate one is dominated 

by the signal, so the estimates will remain consistent, at least when 𝑥𝑡 is non-explosive. 

The set of learning mechanisms covered by Corollary 2.3 and Corollary 2.4 includes a very large 

number of plausible learning mechanisms. In the below, we mention three of particular interest. 

4.2. Guaranteed learning of SMSV solutions 

Corollary 2.3 guarantees convergence to any SMSV solution, given minimal conditions. Again, since 

these technical conditions are a little opaque, in Figure 3 we present simulation evidence 

demonstrating the broad convergence of our algorithm. The rows of Figure 3 correspond to the 

same rows of Figure 2 (identical parameters were used). 

 

                                                      

20 Condition 1) is strictly encompassed by condition 2), but the former will be more useful in practice. 
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As in section 3.5, we make 214 simulation runs, each of length 28. For the sake of numerical 

stability, we again use a projection facility, with all reduced form and structural parameters 

constrained to lie in the interval [−1000,1000]. We also have an eight period burn-in, during which 

expectations are given by their SMSV solution, plus 휁𝑡 (always a scalar). For all simulations, we use 

the ML algorithm for parameter estimation, due to its greater efficiency.21 

                                                      

21 Again, we only search for a local maximum, using the constraints as set up in footnote 18. To further increase the 

chance of finding a global maximum however, each period we try starting the optimisation routine at two different 

points: last period’s estimate, and the AEIV solution. 
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Figure 3: Results from simulations of sophisticated SMSV learners, from 𝟐𝟏𝟒 runs. 

See text (section 4.2) for full details. 
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The first column of Figure 3 presents the distribution of the difference between the expectations 

formed by our sophisticated agents, and the expectations that would be formed by fully informed, 

fully rational agents in the same economy, normalised by the full information one-step ahead 

standard deviation. The second column presents the distribution of the difference between our 

agents’ expectations and the SMSV solution,22 with the same normalisation. In all cases, it is clear 

that we have rapid convergence to the SMSV solution, and even faster convergence to rationality. 

The third column presents the 95% trimmed RMSE in agents’ estimates of 𝛽, and the fourth column 

does the same for 𝑎1
MSV. In line with our theoretical results, while 𝛽 does not appear to converge, 

agents’ estimates of 𝑎1
MSV converge to the truth in all cases. (The RMSE in 𝛽 is nonetheless very 

small.) Finally, the fifth column presents the mean p-value from a (one-sample) bootstrapped LM 

test of serial correlation in expectational errors, at one lag. If information is being used fully 

efficiently, there should be no serial correlation, and these mean p-values should be equal to 0.5. 

While our found p-values are not quite so high, in all cases they are comfortably above 0.2 at all 

lags, so an econometrician would not reject the null of no serial correlation, at any standard 

significance level. Thus although this sophisticated learning algorithm is still not quite fully rational, 

it is close enough to rationality that users of it could not detect their own deviations from 

rationality. 

Under standard OLS learning, there are non-learnable stationary MSV solutions such as the one in 

the final row of Figure 3, so by this measure the present learning algorithm is an improvement. 

However, it is in no sense an answer to Cochrane’s (2009) challenge for learnability to “save new-

Keynesian models”. This learning algorithm is only reasonable if agents already believe that the 

solution is of the SMSV form, an assumption that is not justified by anything in the model. That 

dramatically different results may obtain with different learning mechanisms is made clear by the 

next one presented. 

4.3. Learning any sunspot solution (with positive density) 

Suppose, that agent 𝑖 believes that as well as having access to all the same information as them, 

everyone else in the economy also had access to the additional information that 𝑚 ,𝑡 ≡ 𝑚 ,0 and 

𝑚 ,𝑡 ≡ 𝑚 ,0, where 𝑚 ,0 and 𝑚 ,0 are constants, unknown to agent 𝑖. 

Let us define: 

 ℯ𝑡 ≔
�̂�𝑡−1
�̂�𝑡−1

[
1

�̂�𝑡−1
𝑥𝑡 + �̂�2,𝑡−1𝑥𝑡−1 + �̂�3,𝑡−1𝑥𝑡−2 + �̂�𝑡−1𝔼𝑡−1

∗ 𝑥𝑡 + �̂�𝑡−1 − 𝔼𝑡
∗𝑥𝑡+1], (4.3) 

   

then: 

[ℯ𝑡 휁𝑡
′] [
𝑚 ,𝑡−1

𝑚 ,𝑡−1
] ≈ 𝑥𝑡 − 𝔼𝑡−1

∗ 𝑥𝑡 ≕ 휂𝑡
∗, 

where the approximation is exact when 𝑚 ,𝑡−1 = 𝑚 ,0. (Away from this point, agent 𝑖’s estimate of 

𝑎1,𝑡 will differ from the true value, introducing error into their estimates of 𝛼𝑡, etc..) 

                                                      

22 Given by 𝔼𝑡
MSV𝑥𝑡+1 = 𝑎1

MSV𝑥𝑡 − 𝑎2
MSV𝑥𝑡−1 − 𝑐

MSV 
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The natural estimate of 𝑚 ,𝑡 and 𝑚 ,𝑡 is then: 

[
�̂� ,𝑡

�̂� ,𝑡
] = [

ℯ1 휁1
′

⋮ ⋮
ℯ𝑡 휁𝑡

′
]

+

[
휂1
∗

⋮
휂𝑡
∗
], 

where superscript + denotes the Moore-Penrose pseudo-inverse.23 By the standard properties of 

least squares estimates, this will converge on the truth, and indeed despite the presence of the 

approximation in the previous equation this will happen exactly in finite time, providing estimates 

of other parameters are updated recursively.24 

In the case we are chiefly concerned with, everyone is learning simultaneously, so by the properties 

of the Moore-Penrose pseudo-inverse, we will have �̂� ,𝑡 ≡ �̂� ,1 =
ℯ1

ℯ1
2+ 1

′
1
휂1
∗ and �̂� ,𝑡 ≡ �̂� ,1 =

1

ℯ1
2+ 1

′
1
휂1
∗, ex-post justifying the constancy assumption that motivated the learning method. By 

varying initial beliefs we may attain any value for 휂1
∗, and hence any value for �̂� ,1 and �̂� ,1. So with 

stochastic initial beliefs (a public signal perhaps), any solution is attainable with positive density, 

and expectations will converge to rationality with probability one (at least given the relevant 

technical conditions), by Corollary 2.4.25 

This learning method is readily extended to the case in which agents believe that 𝑚 ,𝑡 and 𝑚 ,𝑡 are 

constant until a certain event occurs. Possible candidates for these events include changes of 

central bank governors, changes of governments, financial crashes and natural disasters. In this 

case, each time the event occurs, a new draw for �̂� ,𝑡 and �̂� ,𝑡 will be taken, and they will remain 

fixed at those values until the event occurs again. In the extreme case in which the event occurs 

every period, we have that �̂� ,𝑡 =
ℯ𝑡

ℯ𝑡
2+ 𝑡

′
𝑡
휂𝑡
∗  and �̂� ,𝑡 =

𝑡

ℯ𝑡
2+ 𝑡

′
𝑡
휂𝑡
∗ . Since 𝔼𝑡−1휂𝑡

∗2 − (�̂� ,𝑡−1
2 +

�̂� ,𝑡−1
′ �̂� ,𝑡−1) → 0  as 𝑡 → ∞ , this means 𝔼𝑡−1(휂𝑡+1

∗ 2
) − 𝔼𝑡−1(휂𝑡

∗2) → 0 , so the variance of 

expectational errors follows a random walk asymptotically, providing endogenous stochastic 

volatility. 

In Figure 4, we show simulations of this learning method, with the exact same set-up as in section 

4.2. (We do not bound �̂� ,𝑡 or �̂� ,𝑡 however.) Since initial estimates of ℯ𝑡 are highly inaccurate, we 

assume all agents update their estimates of �̂� ,𝑡 and �̂� ,𝑡 in each of the first 8 periods after the end 

of the burn-in (i.e. periods 9 to 16), but not in any future period. 

In the two cases in which only the SMSV solution is stationary, expectations asymptotically diverge 

from rationality. However, there is an initial period of rapid convergence, so it is hard to know if this 

                                                      

23 This is of course the standard linear regression formula when 𝑡 ≥ dim 휁𝑡. 
24 In this situation, agent 𝑖 should update their estimates of 𝑎1,1 in all periods 𝑡 with 𝑡 ≥ 1. I.e. in period 𝑡, they should 

estimate 𝑎1,1 as 
1

�̂�1
(1 −

�̂�1

�̂� ,𝑡
). Based on this revised estimate of 𝑎1,1, they can then re-estimate 𝛼2, etc., and then 𝑎1,2, 

etc., and so on. Armed with this set of new estimates, they can then re-estimate 𝑚 ,𝑡 and 𝑚 ,𝑡, repeating the entire 

procedure until they converge on a fixed point. After 1 + dim 휁𝑡  periods have elapsed, there may possible be multiple 

such fixed points, however, the next period, with probability 1 only one will remain. 
25 The solutions with �̂� ,1 = 0 are not guaranteed to converge, but the set of such solutions is of measure zero in the 

whole space. 
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divergence is merely driven by the numerical errors stemming from the explosive behaviour of 𝑥𝑡. 

(Either hypothesis would be consistent with our theoretical results, as these do not cover cases in 

which 𝑥𝑡 grows exponentially or faster.) In the two “indeterminate” cases, expectations rapidly 

converge to rationality, though not to the MSV solution, implying a sunspot solution has been 

learnt. While structural parameter estimates are very close to the truth in all cases, they do not 

appear to be converging. This again is consistent with our theoretical results if reduced form 

parameters have converged too quickly. Finally, note that there is even less evidence of serial 

correlation in this sunspot case, so again the agents in the model would not be able to detect their 

own departure from rationality. 
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Figure 4: Results from simulations of sophisticated sunspot learners, from 𝟐𝟏𝟒 runs. 
See text (section 4.3) for full details. 
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4.4. Learning in the presence of transversality constraints 

Finally, suppose that in the model under consideration, 𝑥𝑡  is restricted by a transversality 

constraint. (To recap, this is not the case for inflation.) Then if agents are ever confident they are in 

an indeterminate region of the parameter space, they should switch to the SMSV solution. This 

suggests that agents should begin using the sunspot learning method from the previous section. If 

however their estimates ever imply that |�̂�𝑡 + �̂�𝑡| < 1, then they should switch to forming MSV 

expectations. If at a later date they again come to believe that |�̂�𝑡 + �̂�𝑡| > 1, they should switch 

back to the general sunspot solution, with updated values for �̂� ,𝑡 and �̂� ,𝑡. 

Figure 5 presents simulations of this learning method. Performance is an amalgam of the previous 

two cases, with convergence to the SMSV solution under determinacy, and convergence to a 

sunspot solution otherwise. 

16 64 128 192 256

-0.5

0

0.5

16 64 128 192 256
-1

-0.5

0

0.5

1

16 64 128 192 256
0

2

4

6

x 10
-5

16 64 128 192 256
0

0.05

0.1

0.15

0.2

0.25

16 64 128 192 256
0

0.1

0.2

0.3

0.4

0.5

16 64 128 192 256

-0.5

0

0.5

16 64 128 192 256

-2

-1

0

1

2

16 64 128 192 256
0

0.5

1

1.5

x 10
-4

16 64 128 192 256
0

0.05

0.1

0.15

0.2

0.25

16 64 128 192 256
0

0.1

0.2

0.3

0.4

0.5

16 64 128 192 256
-1

-0.5

0

0.5

1

16 64 128 192 256

-1

0

1

16 64 128 192 256
0

1

2

3

4

5

x 10
-4

16 64 128 192 256
0

0.2

0.4

0.6

0.8

16 64 128 192 256
0

0.1

0.2

0.3

0.4

0.5

16 64 128 192 256

-2

-1

0

1

2

16 64 128 192 256

-5

0

5

16 64 128 192 256
0

2

4

6

8

x 10
-5

16 64 128 192 256
0

0.1

0.2

0.3

0.4

16 64 128 192 256
0

0.1

0.2

0.3

0.4

0.5

𝔼t−1
∗ xt − 𝔼t−1xt

√Vart−1(xt − 𝔼t−1xt)
 

 

d
im
휁
𝑡
=
0

, 𝛼
=
0
.5
1
2
1

, 

𝛽
=
0
.4
7
8
9

, 𝜌
=
0
.2
4
0
5

 

d
im
휁
𝑡
=
0

, 𝛼
=
0
.2

, 

𝛽
=
0
.7

, 𝜌
=
0
.9

 
Figure 5: Results from simulations of sophisticated transversality learners, from 𝟐𝟏𝟒 runs. 

See text (section 4.4) for full details. 
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5. Conclusion 

This paper has set forward a family of macroeconomic learning algorithms that are correctly 

specified, even along the transition path. Our simulations and theoretical results imply that vastly 

more equilibria are learnable via these algorithms than via traditional learning methods, implying 

that learnability cannot be used for equilibrium selection. We have also demonstrated that from 

observing traditional macroeconomic learners we may identify all a model’s structural parameters, 

providing those traditional learners are running a regression that encompasses the general solution 

to the model. 

The new estimators produced in this paper have many practical applications. In future empirical 

work we hope to use them to assess whether the Federal Reserve has ever pursued a policy 

satisfying the Taylor principle, something that was not possible until now due to the non-

identification of the key parameter given unobserved, auto-correlated monetary policy shocks. We 

also hope to look for empirical evidence on whether real world macroeconomic learning is best 

described by the traditional algorithm or one of our new, misspecification-free methods. 
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7. Online appendices 

7.1. FREE solutions for arbitrary linear models 

We now extend the structure of (2.3) to the general multivariate case: 

Κ𝑥𝑡 = Α𝑥𝑡−1 + Β𝔼𝑡𝑥𝑡+1 + 𝛾 + Σ𝑠𝑠𝑡 

where: 

𝑠𝑡 = Ρ𝑠𝑡−1 + Σ 휀𝑡 

for the arbitrary matrices Κ, Α, Β, Ρ, Σ𝑠 and Σ , the vector 𝛾 and the shock 휀𝑡~NIID(0, 𝐼). Initially, 

we suppose that there are no transversality conditions restricting any of the components of 𝑥𝑡. 

Again defining the expectational error by 휂𝑡 ≔ 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡 , when Β  and Σ𝑠  have linearly 

independent columns, from the properties of the Moore-Penrose pseudoinverse (denoted by +), 

we have that: 

𝔼𝑡𝑥𝑡+1 = Β
+(Κ + Σ𝑠ΡΣ𝑠

+Β)𝑥𝑡 − Β
+(Α + Σ𝑠ΡΣ𝑠

+Κ)𝑥𝑡−1 + Β
+Σ𝑠ΡΣ𝑠

+Α𝑥𝑡−2 − Β
+Σ𝑠(𝐼 − Ρ)Σ𝑠

+𝛾

− Β+Σ𝑠Σ 휀𝑡 − Β
+Σ𝑠ΡΣ𝑠

−1Β휂𝑡 . 

As before, without loss of generality we may assume that 휂𝑡 = 𝑀 ,𝑡−1휀𝑡 +𝑀 ,𝑡−1휁𝑡, for some 

sunspot shock 휁𝑡 uncorrelated with 휀𝑡 (and satisfying 𝔼𝑡−1휁𝑡 = 0, 𝔼𝑡−1휁𝑡휁𝑡
′ = 𝐼). 

Then, if 𝑀 ,𝑡−1 has linearly independent columns: 

𝔼𝑡𝑥𝑡+1 = Β
+(Κ − Σ𝑠Σ 𝑀 ,𝑡−1

+ )𝑥𝑡 − Β
+(Α + Σ𝑠ΡΣ𝑠

+Κ)𝑥𝑡−1 + Β
+Σ𝑠ΡΣ𝑠

+Α𝑥𝑡−2

+ Β+(Σ𝑠ΡΣ𝑠
+Β + Σ𝑠Σ 𝑀 ,𝑡−1

+ )𝔼𝑡−1𝑥𝑡 − Β
+Σ𝑠(𝐼 − Ρ)Σ𝑠

+𝛾 + Β+Σ𝑠Σ 𝑀 ,𝑡−1
+ 𝑀 ,𝑡−1휁𝑡 . 

This expression no longer contains either 휀𝑡 or 𝑠𝑡. Thus, when Β and Σ𝑠 have linearly independent 

columns, almost all rational expectations solutions to the original model are FREE, i.e. they are 

implementable by agents who cannot observe the model’s fundamental shocks.  

More generally, there will be transversality conditions restricting some variables, and Β and Σ𝑠 will 

not have linearly independent columns. To solve this case, we closely follow Mavroeidis and Zwols’s 

(2007) presentation of Lubik and Schorfheide’s (2003) extension to the irregular case of Sims’s 

(2002) method for solving rational expectations models, which is itself more general than that of 

Blanchard and Kahn (1980). The majority of the results here that are not due to Mavroeidis, Zwols, 

Lubik, Schorfheide or Sims were first shown in an earlier working paper by this author (Holden 

2008). 

With the model set-up as before, let us define 𝑣𝑡 ≔ [
𝑥𝑡

𝔼𝑡𝑥𝑡+1
], Γ0 ≔ [

Κ −Β
𝐼 0

], Γ1 ≔ [
Α 0
0 𝐼

], 𝜇 ≔

[
𝛾
0
],  Ψ ≔ [

Σ𝑠
0
] and Π ≔ [

0
𝐼
]. We then have the general canonical form we will solve here: 

Γ0𝑣𝑡 = Γ1𝑣𝑡−1 + 𝜇 + Ψ𝑠𝑡 + Π휂𝑡 . 

In deriving the conditions for the existence of a rational expectations equilibria (REE) below, we will 

not assume anything about the structure of 𝑣𝑡, 휂𝑡, Γ0, Γ1, 𝜇, Ψ, Π, Ρ, Σ𝑠 or Σ  (beyond the fact that 

휂𝑡  must be chosen subject to 𝔼𝑡−1휂𝑡 = 0). We will also be able to derive sufficient conditions for 
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the existence of a FREE in this fully general case. However, in deriving necessary conditions we will 

assume that 𝑣𝑡 = [
𝑥𝑡

𝔼𝑡𝑥𝑡+1
] and 휂𝑡 = 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡, as in the above. 

By the generalized complex Schur decomposition (also known as the QZ decomposition) 

(Quarteroni, Sacco, and Saleri 2000) of the matrices Γ0 and Γ1, there always exist possibly complex 

matrices 𝑄 , 𝑍 , Λ = (𝜆𝑖,𝑗)𝑖,𝑗  and Ω = (𝜔𝑖,𝑗)𝑖,𝑗  such that 𝑄𝐻Λ𝑍𝐻 = Γ0 , 𝑄𝐻Ω𝑍𝐻 = Γ1 , 𝑄  and 𝑍  are 

unitary, Λ and Ω are upper triangular and a superscript 𝐻 denotes conjugate transpose. 

Now let 𝑤𝑡 = 𝑍
𝐻𝑣𝑡 for all 𝑡 ∈ ℤ, then if we pre-multiply the canonical form by 𝑄 we have: 

Λ𝑤𝑡 = Ω𝑤𝑡−1 + 𝑄(𝜇 + Ψ𝑠𝑡 + Π휂𝑡). 

Providing Γ0 and Γ1 do not have zero eigenvalues corresponding to the same eigenvector26 the QZ 

decomposition always exists and the set {|
𝜔𝑖𝑖

𝜆𝑖𝑖
| |𝑖 ∈ {1,… , dim𝑣𝑡}} ⊆ ℝ ∪ {∞}  is unique even 

though the decomposition itself is not (Sims 2002). Thus, without loss of generality we may assume 

that for 𝑖 < 𝑗, |
𝜔𝑖𝑖

𝜆𝑖𝑖
| < |

𝜔𝑗𝑗

𝜆𝑗𝑗
|. Let �̅� be the number of 𝑖 for which |

𝜔𝑖𝑖

𝜆𝑖𝑖
| ≤ 1 and consider a partition of 

the matrices under consideration in which in each case the top left block is of dimension �̅� × �̅�27. 

We may then write: 

 [
Λ11 Λ12
0 Λ22

] [
𝑤1,𝑡
𝑤2,𝑡

] = [
Ω11 Ω12
0 Ω22

] [
𝑤1,𝑡−1
𝑤2,𝑡−1

] + [
𝑄1∙
𝑄2∙
] (𝜇 + Ψ𝑠𝑡 + Π휂𝑡). (7.1) 

   

The second block of this equation is purely explosive by construction. More generally, we may 

follow Sims (2002) and allow explosive combinations of variables that do not violate transversality 

to enter into the upper block. In New-Keynesian models, inflation rates will generally be such a 

variable. 

                                                      

26 This means that there is one or more equation that places no restrictions on either 𝑣𝑡 or 𝑣𝑡−1. This will create an 

additional source of indeterminacy in 𝑣𝑡 and may also imply that one or more components of 휀𝑡 and 휂𝑡 are linear 

combinations of the others. We, like both Sims and Lubik & Schorfheide, will not further investigate this avenue. 
27 This means that we are not treating unit roots as explosive. Doing this avoids some minor technical complications. 
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If agents expect a non-transversality violating path for 𝑣𝑡, from solving forward, following Sims 

(2002) and Mavroeidis and Zwols (2007), we must have: 

𝑤2,𝑡 = 𝔼𝑡𝑤2,𝑡 = −𝔼𝑡∑(Ω22
−1Λ22)

𝑘−1Ω22
−1𝑄2∙(𝜇 + Ψ𝑠𝑡+𝑘 + Π휂𝑡+𝑘)

∞

𝑘=1

 

= −∑(Ω22
−1Λ22)

𝑘Ω22
−1𝑄2∙ΨΡ

1+𝑘𝑠𝑡

∞

𝑘=0

− [∑(Ω22
−1Λ22)

𝑘

∞

𝑘=0

]Ω22
−1𝑄2∙𝜇 

= 𝑆Ρ𝑠𝑡 + (Λ22 − Ω22)
−1𝑄2∙𝜇, 

where 𝑆 is the solution to the Stein equation28: 

Ω22
−1Λ22𝑆Ρ − 𝑆 = Ω22

−1𝑄2∙Ψ 

and where the sums are well defined since the eigenvalues of Ω22
−1Λ22 are strictly in the unit circle 

by construction (and Ω22 is invertible by construction). Note that for 𝑆 to have linearly independent 

columns, it is necessary that dim𝑤2,𝑡 ≥ dim 𝑠𝑡. 

Consequently (following Mavroeidis and Zwols (2007)), 𝔼𝑡+1𝑤2,𝑡 = 𝔼𝑡𝑤2,𝑡, and so: 

−𝔼𝑡+1∑(Ω22
−1Λ22)

𝑘−1Ω22
−1𝑄2∙(𝜇 + Ψ𝑠𝑡+𝑘 + Π휂𝑡+𝑘)

∞

𝑘=1

= −𝔼𝑡∑(Ω22
−1Λ22)

𝑘−1Ω22
−1𝑄2∙(𝜇 + Ψ𝑠𝑡+𝑘 + Π휂𝑡+𝑘)

∞

𝑘=1

 

i.e. Ω22𝑆Σ 휀𝑡+1 = 𝑄2∙Π휂𝑡+1 (7.2) 
   

(using the fact that Ω22 is of full rank and the definition of 𝑆). This is the key constraint limiting 

expectations. If Ρ = 0, then 𝑆 = −Ω22
−1𝑄2∙Ψ so under the normalisation Σ = 𝐼, it collapses to the 

expression given in Lubik and Schorfheide (2003). 

By the singular value decomposition (SVD) (Horn and Johnson 1985) of 𝑄2∙Π and Ω22𝑆Σ  we can 

write 𝑄2∙Π = 𝑈𝐷𝑉
𝐻 = [𝑈∙1 𝑈∙2] [

𝐷11 0
0 0

] [
𝑉∙1
𝐻

𝑉∙2
𝐻] = 𝑈∙1𝐷11𝑉∙1

𝐻  and  Ω22𝑆Σ = �̂��̂��̂�𝐻 =

[�̂�∙1 �̂�∙2] [
�̂�11 0
0 0

] [
�̂�∙1
𝐻

�̂�∙2
𝐻
] = �̂�∙1�̂�11�̂�∙1

𝐻  where 𝑈 , 𝑉 , �̂�  and �̂�  are unitary and 𝐷11  and �̂�11  have 

strictly positive diagonals and zeroes elsewhere, and where 𝐻 denotes the Hermitian transpose. 

Pre-multiplying the constraint (7.2) by 𝑈∙1𝑈∙1
𝐻 then gives that: 

𝑈∙1𝑈∙1
𝐻Ω22𝑆Σ 휀𝑡+1 = 𝑈∙1𝑈∙1

𝐻𝑄2∙Π휂𝑡+1 = 𝑈∙1𝑈∙1
𝐻𝑈∙1𝐷11𝑉∙1

𝐻휂𝑡+1 = 𝑈∙1𝐷11𝑉∙1
𝐻휂𝑡+1 = 𝑄2∙Π휂𝑡+1 

= Ω22𝑆Σ 휀𝑡+1 

                                                      

28  This equation has a unique solution providing none of the eigenvalues of Ρ  are in the set 

{|
𝜔𝑖𝑖

𝜆𝑖𝑖
| |𝑖 ∈ {�̅� + 1,… , dim 𝑣𝑡}}, which holds automatically providing the autoregressive process for 휀𝑡 is non-explosive. 

The (non-numerically robust) solution is given by: vec 𝑆 = (Ρ′⊗Ω22
−1Λ22 − 𝐼)

−1 vec Ω22
−1𝑄2∙Ψ. 
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(by the constraint and the unitarity of 𝑈). Thus since 휀𝑡+1 may take the value �̂�∙1�̂�11
−1𝜐 for any 𝜐, by 

the unitarity of �̂�, we must have: 

 𝑈∙1𝑈∙1
𝐻�̂�∙1 = �̂�∙1. (7.3) 

   

This condition is also sufficient for the existence of a solution, which we now demonstrate by 

exhibiting an explicit solution. 

Let 𝑞 ≔ rank𝑄2∙Π, so that 𝐷11 is of dimension 𝑞 × 𝑞. Then following Lubik and Schorfheide (2003), 

we posit the following set of solutions for the forecast errors 휂𝑡: 

 휂𝑡 = [𝑉∙1 𝑉∙2] [
𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ
𝑀 ,𝑡−1

] 휀𝑡 + [𝑉∙1 𝑉∙2] [
0

𝑀 ,𝑡−1
] 휁𝑡 , (7.4) 

   

where 휁𝑡 is an arbitrary vector of sunspot shocks, uncorrelated with 휀𝑡, and 𝑀 ,𝑡−1 and 𝑀 ,𝑡−1 are 

arbitrary matrices of size (dim 휂𝑡 − 𝑞) × dim 휀𝑡 and (dim 휂𝑡 − 𝑞) × dim 휁𝑡 respectively, known at 

𝑡 − 1. (The possibility of time variation in 𝑀 ,𝑡−1  and 𝑀 ,𝑡−1  was not noticed by Lubik and 

Schorfheide (2003).) When the condition (7.3) holds, by the unitarity of 𝑉 we have that: 

𝑄2∙Π휂𝑡 = 𝑈∙1𝐷11𝑉∙1
𝐻휂𝑡 

= (𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22𝑆Σ + 𝑈∙1𝐷11𝑉∙1

𝐻𝑉∙2𝑀 ,𝑡−1)휀𝑡 + 𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙2𝑀 ,𝑡−1휁𝑡  

= 𝑈∙1𝑈∙1
𝐻Ω22𝑆Σ 휀𝑡 = 𝑈∙1𝑈∙1

𝐻�̂�∙1�̂�11�̂�∙1
𝐻휀𝑡 = �̂�∙1�̂�11�̂�∙1

𝐻휀𝑡 = Ω22𝑆Σ 휀𝑡 

and so the constraint (7.2) does indeed hold. It is immediate from this solution for the forecast 

errors that the model has a unique solution if and only if 𝑞 = dim 휂𝑡. 

In order for there to be a FREE solution, we must be able to express 휀𝑡 as a function of 휂𝑡 and 휁𝑡. If 

we pre-multiply the above solution for 휂𝑡 by [Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻, using condition (7.3) and the 

unitarity of 𝑉 we have that: 

[
𝑆Σ
𝑀 ,𝑡−1

] 휀𝑡 = [
Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻휂𝑡 − [
0

𝑀 ,𝑡−1
] 휁𝑡 . 

Therefore, a FREE solution will certainly exist if [
𝑆Σ
𝑀 ,𝑡−1

] has linearly independent columns for all 𝑡, 

since when this holds, from standard results on the Moore-Penrose pseudo-inverse we have that: 

휀𝑡 = [
Σ𝐻𝑆𝐻𝑆Σ

𝑀 ,𝑡−1
𝐻 𝑀 ,𝑡−1

]

−1

[[Σ𝐻𝑆𝐻Ω22
−1𝑈∙1𝐷11 𝑀 ,𝑡−1

𝐻 ]𝑉𝐻휂𝑡 −𝑀 ,𝑡−1
𝐻 𝑀 ,𝑡−1휁𝑡] 

and so it is as if 휀𝑡 is in even the limited information set. When dim휂𝑡 − 𝑞 ≥ dim 휀𝑡,  [
𝑆Σ
𝑀 ,𝑡−1

] will 

have linearly independent columns for almost all 𝑀 ,𝑡−1 .29  More generally, we require that 

rank 𝑆Σ + dim휂𝑡 − 𝑞 ≥ dim 휀𝑡. 

                                                      

29 With 𝑞 = 0, this gives a generalisation of our initial result to the case in which Β and Σ𝑠  do not have full rank. 
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Now by (7.3), 𝑄2∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ = Ω22𝑆Σ , thus span 𝑆Σ = spanΩ22𝑆Σ ⊆ span𝑄2∙Π and so 

rank 𝑆Σ ≤ rank𝑄2∙Π = 𝑞. Thus, if it is to be the case that [
𝑆Σ
𝑀 ,𝑡−1

] has linearly independent 

columns, we must have that: 

dim 휀𝑡 − (dim휂𝑡 − 𝑞) ≤ rank 𝑆Σ ≤ rank𝑄2∙Π = 𝑞, 

which implies dim 휀𝑡 ≤ dim휂𝑡. In the special case in which dim 휀𝑡 = dim휂𝑡, these inequalities 

become equalities, meaning that we must have spanΩ22𝑆Σ = span𝑄2∙Π, and hence �̂�∙1�̂�∙1
𝐻𝑈∙1 =

𝑈∙1, by (7.3). 

The fact that [
𝑆Σ
𝑀 ,𝑡−1

] having linearly independent columns implies dim 휀𝑡 ≤ dim 휂𝑡 makes clear 

that this condition is not necessary for the existence of a FREE. For example, suppose Σ = 0, then 

a FREE must exist independently of the dimension of dim 휀𝑡 when 𝑀 ,𝑡−1 ≡ 0. 

In order to derive necessary conditions (and tighter sufficient ones) we must first solve for 𝑣𝑡. We 

begin by pre-multiplying (7.1) by [𝐼 −𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻], which gives: 

[Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22] [
𝑤1,𝑡
𝑤2,𝑡

] 

= [Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22] [
𝑤1,𝑡−1
𝑤2,𝑡−1

] + (𝑄1∙ −𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙)(𝜇 + Ψ𝑠𝑡 + Π휂𝑡) 

= [Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22] [
𝑤1,𝑡−1
𝑤2,𝑡−1

] + (𝑄1∙ −𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙)(𝜇 + Ψ𝑠𝑡)

+ 𝑄1∙Π𝑉∙2(𝑀 ,𝑡−1휀𝑡 +𝑀 ,𝑡−1휁𝑡) 

(using the unitary of 𝑈 and 𝑉, and equation (7.4)). 

Hence, if we stack the equation above with the solution for the transversality-violating terms, and 

pre-multiply by: 

[𝑍∙1Λ11
−1 𝑍∙2 − 𝑍∙1Λ11

−1(Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22)], 

(valid as Λ11 is invertible by construction) we have: 

𝑣𝑡 = 𝑍∙1Λ11
−1[Ω11𝑍∙1

𝐻 + (Ω12 − 𝐽Ω22)𝑍∙2
𝐻]𝑣𝑡−1

+ [𝑍∙1Λ11
−1(𝑄1∙ − 𝐽𝑄2∙) + [𝑍∙2 − 𝑍∙1Λ11

−1(Λ12 − 𝐽Λ22)](Λ22 − Ω22)
−1𝑄2∙]𝜇

+ [𝑍∙1Λ11
−1(𝑄1∙ − 𝐽𝑄2∙)Ψ + [𝑍∙2 − 𝑍∙1Λ11

−1(Λ12 − 𝐽Λ22)]𝑆Ρ]𝑠𝑡 + 𝑍∙1Λ11
−1𝑄1∙Π𝑉∙2𝑉∙2

𝐻휂𝑡, 

where 𝑍 has been partitioned conformably with 𝑤𝑡 and where 𝐽 ≔ 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻. 

For brevity, we rewrite this solution for 𝑣𝑡 as: 

 𝑣𝑡 = 𝑇−1𝑣𝑡−1 + 𝑇𝜇 + 𝑇𝑠𝑠𝑡 + 𝑇 휂𝑡 , (7.5) 
   

where 𝑇−1, 𝑇𝜇, 𝑇𝑠 and 𝑇  are defined by matching terms. 

Let us assume then that 𝑣𝑡 = [
𝑥𝑡

𝔼𝑡𝑥𝑡+1
] and 휂𝑡 = 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡, as in the general linear expectational 

model we presented at the start of this appendix. Then if we define 𝑇 ,𝑡−1 ≔ 𝑇 𝑉∙2𝑀 ,𝑡−1 and 

𝑇 ,𝑡−1 ≔ 𝑇 𝑉∙2𝑀 ,𝑡−1 and partition all the 𝑇∙ matrices conformably with 𝑣𝑡, we have: 

 
𝔼𝑡𝑥𝑡+1 = 𝑇−1,21𝑥𝑡−1 + 𝑇−1,22𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2 + 𝑇𝑠,2𝑠𝑡 + 𝑇 ,2휂𝑡 

= 𝑇−1,21𝑥𝑡−1 + 𝑇−1,22𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2 + 𝑇𝑠,2𝑠𝑡 + 𝑇 ,𝑡−1,2휀𝑡 + 𝑇 ,𝑡−1,2휁𝑡. 
(7.6) 
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When either Ρ = 0, or when 𝑠𝑡−1 is observed, the feasibility of this solution requires that agents 

can work out (𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2)휀𝑡 , given knowledge of 𝑥𝑡 , 휂𝑡  and 휁𝑡 . By taking the SVD of 

(𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2) and [
𝑆Σ
𝑀 ,𝑡−1

] it is straightforward to show that a sufficient condition for feasibility 

is that: 

 ker 𝑆Σ ∩ ker𝑀 ,𝑡−1 ⊆ ker[𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2], (7.7) 
   

in which case: 

[𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2]휀𝑡 = [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [
𝑆Σ
𝑀 ,𝑡−1

]
+

[[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻휂𝑡 − [
0

𝑀 ,𝑡−1
] 휁𝑡], 

and: 

𝔼𝑡𝑥𝑡+1 = [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [
𝑆Σ
𝑀 ,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻𝑥𝑡 + 𝑇−1,21𝑥𝑡−1 + 𝑇𝑠,2Ρ𝑠𝑡−1

+ [𝑇−1,22 − [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [
𝑆Σ
𝑀 ,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻] 𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2

+ [𝑇 ,𝑡−1,2 − [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [
𝑆Σ
𝑀 ,𝑡−1

]
+

[
0

𝑀 ,𝑡−1
]] 휁𝑡 , 

which is in a “semi”-FREE form. 

In fact, when Ρ = 0, we can provide a more intuitive sufficient condition, under the normalisation 

that Σ = 𝐼. In this case,  ker 𝑆Σ = ker 𝑆 = ker𝑄2∙Ψ and so for 𝓋 ∈ ker 𝑆Σ ∩ ker𝑀 ,𝑡−1, Ψ𝑣 =

𝑄1∙
𝐻𝑄1∙Ψ𝑣 and hence: 

𝑄1∙
𝐻Λ11𝑍∙1

𝐻(𝑇𝑠Σ + 𝑇 ,𝑡−1)𝑣 = 𝑄1∙
𝐻Λ11𝑍∙1

𝐻𝑍∙1Λ11
−1𝑄1∙ [Ψ + Π𝑉 [

𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ
𝑀 ,𝑡−1

]] 𝑣 = Ψ𝑣 

Hence if 𝓋 ∈ ker 𝑆Σ ∩ ker𝑀 ,𝑡−1 ∩ kerΨ , 𝑄1∙
𝐻Λ11𝑍∙1

𝐻(𝑇𝑠Σ + 𝑇 ,𝑡−1)𝑣 = 0  which (from pre-

multiplying by [0 𝐼]𝑍∙1Λ11
−1𝑄1∙) implies (𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2)𝑣 = 0. Thus, a sufficient condition for 

feasibility is that: 

ker𝑄2∙Ψ∩ ker𝑀 ,𝑡−1 ⊆ ker𝑄2∙Ψ∩ ker𝑀 ,𝑡−1 ∩ kerΨ = kerΨ ∩ ker𝑀 ,𝑡−1. 

Consequently, a sufficient condition for feasibility for any 𝑀 ,𝑡−1 is that: 

ker𝑄2∙Ψ = kerΨ. 

This states that if there is some linear combination of shocks which does not appear in the 

transversality-violating block, then that same linear combination does not appear anywhere in the 

model. This reveals that it is deviations from the saddle path that enable agents to back out the 

values of shocks. 

We now turn to the general case in which we do not assume that Ρ = 0 or that 𝑠𝑡 is observed even 

with a lag. Our first claim is that (7.7) is a necessary condition for the existence of a FREE. 
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Suppose for a contradiction that (7.7) does not hold, but that: 

𝔼𝑡𝑥𝑡+1 = ℛ𝑡−1𝑥𝑡 + 𝒮𝑡−1휁𝑡 + other terms known at 𝑡 − 1, 

so the expectation can be formed without knowing the value of 휀𝑡. Since ker 𝑆Σ ∩ ker𝑀 ,𝑡−1 ⊈

ker(𝑇𝑠,2 + 𝑇 ,𝑡−1,2), there must exist some 𝓋 ≠ 0 such that 𝑆Σ 𝓋 = 𝑀 ,𝑡−1𝓋 = 0, but (𝑇𝑠,2Σ +

𝑇 ,𝑡−1,2)𝓋 ≠ 0. 

Then from (7.6) and the fact that 휁𝑡  is uncorrelated with 휀𝑡 , Cov𝑡−1(ℛ𝑡−1𝑥𝑡 , 𝓋𝓋
𝐻휀𝑡|𝑠𝑡−1) =

Cov𝑡−1(𝔼𝑡𝑥𝑡+1, 𝓋𝓋
𝐻휀𝑡|𝑠𝑡−1) = (𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2)𝔼𝑡−1휀𝑡휀𝑡

𝐻𝓋𝓋𝐻 = (𝑇𝑠,2Σ + 𝑇 ,2)𝓋𝓋
𝐻 ≠ 0 . 

Hence, by our assumption: 

0 ≠ Cov𝑡−1(ℛ𝑡−1𝑥𝑡, 𝓋𝓋
𝐻휀𝑡|𝑠𝑡−1) = Cov𝑡−1(ℛ𝑡−1(휂𝑡 + 𝔼𝑡−1𝑥𝑡),𝓋𝓋

𝐻휀𝑡|𝑠𝑡−1) 

= 𝔼𝑡−1ℛ𝑡−1휂𝑡휀𝑡
𝐻𝓋𝓋𝐻 = ℛ𝑡−1 𝔼𝑡−1 [𝑉 [

𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ
𝑀 ,𝑡−1

] 휀𝑡 + 𝑉 [
0

𝑀 ,𝑡−1
] 휁𝑡] 휀𝑡

𝐻𝓋𝓋𝐻 = 0 

(using equation (7.4)), as 𝑆Σ 𝓋 = 𝑀 ,𝑡−1𝓋 = 0 and 휁𝑡  is uncorrelated with 휀𝑡 . This gives the 

required contradiction. 

Finally, we show that (7.7) and ker 𝑇𝑠,2 = {0} are jointly sufficient. First note that if ker 𝑇𝑠,2 = {0}, 

then 𝑇𝑠,2
+ 𝑇𝑠,2 = 𝐼. Then, from substituting 𝔼𝑡−1𝑥𝑡 out of the top line of (7.6), using the definition of 

휂𝑡, subtracting 𝑇𝑠,2Ρ𝑇𝑠,2
+  times the equation’s lag, then using again the definition of 휂𝑡: 

𝔼𝑡𝑥𝑡+1 = [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑥𝑡 + [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ 𝑇−1,22]𝑥𝑡−1 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇−1,21𝑥𝑡−2

+ [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑇𝜇,2 + 𝑇𝑠,2Σ 휀𝑡 + [𝑇 ,2 − 𝑇−1,22 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ ]휂𝑡

− 𝑇𝑠,2Ρ𝑇𝑠,2
+ [𝑇 ,2 − 𝑇−1,22]휂𝑡−1, 

or equivalently (again by the definition of 휂𝑡): 

𝔼𝑡𝑥𝑡+1 = 𝑇 ,2𝑥𝑡 + [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇 ,2]𝑥𝑡−1 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ 𝑇−1,21𝑥𝑡−2 + [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑇𝜇,2

+ [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ − 𝑇 ,2]𝔼𝑡−1𝑥𝑡 + 𝑇𝑠,2Ρ𝑇𝑠,2

+ [𝑇 ,2 − 𝑇−1,22]𝔼𝑡−2𝑥𝑡−1 + 𝑇𝑠,2Σ 휀𝑡. 

Hence, since 𝑉∙2
𝐻휂𝑡 = 𝑀 ,𝑡−1휀𝑡 +𝑀 ,𝑡−1휁𝑡: 

𝔼𝑡𝑥𝑡+1 = [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇 ,2]𝑥𝑡−1 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ 𝑇−1,21𝑥𝑡−2 + [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑇𝜇,2

+ [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ − 𝑇 ,2]𝔼𝑡−1𝑥𝑡 + 𝑇𝑠,2Ρ𝑇𝑠,2

+ [𝑇 ,2 − 𝑇−1,22]𝔼𝑡−2𝑥𝑡−1

+ [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2]휀𝑡 + 𝑇 ,𝑡−1,2휁𝑡 . 

By (7.7) then we have the FREE solution: 

𝔼𝑡𝑥𝑡+1 = [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [
𝑆Σ
𝑀 ,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻𝑥𝑡 + [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇 ,2]𝑥𝑡−1 

−𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇−1,21𝑥𝑡−2 + [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ ]𝑇𝜇,2 

+ [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ − 𝑇 ,2 − [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [

𝑆Σ
𝑀 ,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻] 𝔼𝑡−1𝑥𝑡 

+𝑇𝑠,2Ρ𝑇𝑠,2
+ [𝑇 ,2 − 𝑇−1,22]𝔼𝑡−2𝑥𝑡−1 + [𝑇 ,𝑡−1,2 − [𝑇𝑠,2Σ + 𝑇 ,𝑡−1,2] [

𝑆Σ
𝑀 ,𝑡−1

]
+

[
0

𝑀 ,𝑡−1
]] 휁𝑡 , 

which establishes the result. 
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A final remark is that the condition (7.7) holds if and only if: 

ker 𝑆Σ ∩ ker𝑀 ,𝑡−1 ⊆ ker 𝑇𝑠,2Σ  

by the definition of 𝑇 ,𝑡−1,2. Under determinacy, this in turn holds if and only if ker 𝑆 ⊆ ker 𝑇𝑠,2. 

7.2. E-stability analysis 

Following Marcet and Sargent (1989) and Evans and Honkapohja (2001), we calculate the 

eigenvalues of the Jacobian of the mapping from the PLM (3.1) to the actual law of motion (ALM) 

(2.3). This mapping takes the form: 

𝑇

[
 
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑏
𝑐
𝑑1
′ ]
 
 
 
 
 

=
1

1 − 𝛽𝑎1

[
 
 
 
 
 
 
𝛼 + 𝜌 + 𝛽(𝑎2 + (𝑏 − 𝜌)𝑎1)

𝛽(𝑎3 + (𝑏 − 𝜌)𝑎2) − 𝛼𝜌

𝛽(𝑏 − 𝜌)𝑎3
𝛽(𝑏 − 𝜌)𝑏

(1 − 𝜌)𝛾 + 𝛽𝑐(1 + 𝑏 − 𝜌)

𝛽(𝑏 − 𝜌)𝑑1
′ ]

 
 
 
 
 
 

, 

since: 

(1 − 𝛽𝑎1)𝑥𝑡+1
= (𝛼 + 𝜌 + 𝛽(𝑎2 + (𝑏 − 𝜌)𝑎1))𝑥𝑡 + (𝛽(𝑎3 + (𝑏 − 𝜌)𝑎2) − 𝛼𝜌)𝑥𝑡−1

+ 𝛽(𝑏 − 𝜌)𝑎3𝑥𝑡−2 + 𝛽(𝑏 − 𝜌)𝑏𝔼𝑡−1𝑥𝑡 + ((1 − 𝜌)𝛾 + 𝛽𝑐(1 + 𝑏 − 𝜌))

+ 𝛽(𝑏 − 𝜌)𝑑1휁𝑡 + 𝜎휀𝑡+1 + 𝛽𝑑1휁𝑡+1. 

The set of fixed points of 𝑇 comprises three discrete islands, two of which are single points with 

𝑎3 = 𝑏 = 𝑑1 = 0 (i.e. the MSV solutions). These only exist when 𝛼𝛽 ≤
1

4
. The third island is of 

dimension 1 + dim 휁𝑡 , capturing the degrees of freedom under indeterminacy. 

If we define 𝒻 ≔ √max{0,1 − 4𝛼𝛽}, then the real-parts of the eigenvalues in the three cases are: 

 For the two MSV solutions, indexed by 𝜆 ∈ {
1±𝒻

2𝛽
} (and assuming 𝛼𝛽 ≤

1

4
): 

0,
𝛽(1 − 𝜌)

1 − 𝛽(𝜌 + 𝜆)
,

𝛽(𝛼 − 𝜌(1 − 𝛽𝜌))

(1 − 𝛽(𝜌 + 𝜆))
2 , −

𝛽𝜌

1 − 𝛽(𝜌 + 𝜆)
 

 For the sunspot solution (where 𝑏 is a free parameter): 

1, −
𝑏

𝜌 − 𝑏
, 1 −

1

𝜌 − 𝑏
, 1 −

|𝜌 − 𝑏| ± (𝜌 − 𝑏)𝒻

2𝛽|𝜌 − 𝑏|(𝜌 − 𝑏)
. 

By the results of Evans and Honkapohja (2001) least squares learning will not converge if any of the 

eigenvalues’ real parts are greater than one. These are similar to, but not identical to, the 

conditions Evans and Honkapohja (2001), derive for the MSV PLM in their proposition 8.3, under 

the assumption that the shock is observable. 

For convergence in the sunspot case, we at last need the following conditions to hold: 𝑏 ≤ 𝜌, 0 ≤

𝜌, 0 ≤ 𝛼, 0 < 𝛽. Providing these conditions hold, the 𝑇 map will not have any eigenvalues with real 

parts greater than one, and those eigenvalues for which the real part equals one will have zero 

complex parts (a further necessary condition for convergence, without this there may be stable 

cycles under learning). Note that these parameter restrictions include the most economically 
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relevant case from our motivating example of the Taylor rule, where we would expect 0 ≤ 𝜌 < 1, 

𝛼 = 0 and 𝛽 > 0. However, they also includes many explosive regions (when 𝛼 is large), and 

regions exhibiting stable cycles in which 𝜌 is fully identified (i.e. 𝛼𝛽 >
1

4
, which requires large 𝛽). 

Define 𝜙 ≔ [𝑎1 𝑎2 𝑎3 𝑏 𝑐 𝑑1]
′ . The system is weakly e-stable at the solution 

[
1

𝛽
+ (𝜌 − �̃�) −

𝛼+𝜌

𝛽

𝛼𝜌

𝛽
�̃� −

𝛾(1−𝜌)

𝛽
�̃�]
′

 for fixed �̃�  and �̃�  if and only if the differential 

equation �̇� = 𝑇𝜙 − 𝜙 is locally stable at this solution, where the dot denotes a derivative with 

respect to “virtual-time” 𝜏. 

Defining: 

𝜓 ≔

[
 
 
 
 
 
1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

𝜙 −

[
 
 
 
 
 
 
 
 
 
 
1

𝛽
+ (𝜌 − �̃�)

−
𝛼 + 𝜌

𝛽
𝛼𝜌

𝛽

�̃�

−
𝛾(1 − 𝜌)

𝛽

�̃�′ ]
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 𝑎1 −

1

𝛽
− (𝜌 − 𝑏)

𝑎2 +
𝛼 + 𝜌

𝛽

𝑎3 −
𝛼𝜌

𝛽

𝑏 − �̃�

𝑐 +
𝛾(1 − 𝜌)

𝛽

𝑑1
′ − �̃�′ ]

 
 
 
 
 
 
 
 
 
 

, 

we then have that: 

�̇� = −
1

𝜓1 − 𝜓4 + (𝜌 − �̃�)

[
 
 
 
 
 
 
 
 
 
 
 𝜓2 + 𝜓1 (𝜓1 +

1

𝛽
+ 𝜌)

𝜓3 + 𝜓1 (𝜓2 −
𝛼 + 𝜌

𝛽
)

𝜓1 (𝜓3 +
𝛼𝜌

𝛽
)

𝜓1(𝜓4 + �̃�)

𝜓5 + 𝜓1 (𝜓5 −
𝛾(1 − 𝜌)

𝛽
)

𝜓1(𝜓6 + �̃�
′) ]

 
 
 
 
 
 
 
 
 
 
 

. 

Combining the third and fourth equations then gives that: 

𝜓4(𝜏) + �̃�

𝜓3(𝜏) +
𝛼𝜌

𝛽

=
𝜓4(0) + �̃�

𝜓3(0) +
𝛼𝜌

𝛽

=
𝑏(0)

𝑎3(0)
. 

Using this equation, we can substitute 𝜓4 out of the above differential equation. We can also ignore 

the final equation since it is the only one containing 𝜓6, meaning that if the other components 

converge to something, so will 𝜓6 . The resulting four-equation system has real eigenvalues 

components: 

𝛽

𝐶𝛼 − 𝛽
,

𝛽

𝜌(𝐶𝛼 − 𝛽)
,

1 ± √max{0,1 − 4𝛼𝛽}

2𝜌(𝐶𝛼 − 𝛽)
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when evaluated at the (zero) steady-state, where 𝐶 ≔
𝑏(0)

𝑎3(0)
. Given the necessary conditions already 

derived (�̃� ≤ 𝜌, 0 ≤ 𝜌, 0 ≤ 𝛼 and 0 < 𝛽), for these real eigenvalues components to be strictly 

negative, we require that 𝛼𝐶 − 𝛽 ≤ 0. However, since we only require local convergence, we may 

assume that 𝑏 and 𝑎3 begin close enough to their steady state for us to have 𝐶 =
𝛽�̃�

𝛼𝜌
+ 𝛽𝜖 for some 

𝜖, small in magnitude. Then 𝛼𝐶 − 𝛽 ≤ 0 if and only if �̃� ≤ 𝜌(1 − 𝛼𝜖). We can always find an 𝜖 for 

which this holds (i.e. start sufficiently close to the solution) providing �̃� < 𝜌 or 𝛼 = 0 and �̃� ≤ 𝜌. 

We now turn to the second PLM, (3.2). Since the two PLMs only differ in a term that is unknown at 

𝑡, period 𝑡 expectations of 𝑥𝑡+1 are identical under both PLMs, meaning that the 𝑇-map is just as 

before, but with one extra component, taking 𝑑0
′  to 

𝛽

1−𝛽𝑎1
𝑑1
′ . Consequently, a solution is weakly 

(strongly) e-stable under the PLM (3.2) if and only if it is weakly (strongly) e-stable under the PLM 

(3.1).30 

                                                      

30 This follows from integrating the corresponding differential equation, to give 𝑑0(𝜏) = 𝑒
−𝜏 ∫

𝛽

1−𝛽𝑎1(𝑡)
𝑑1(𝑡)𝑒

𝑡 𝑑𝑡
𝜏

0
+

𝑑0(0)𝑒
−𝜏. Hence as 𝜏 → ∞, 𝑑0(𝜏) → lim

𝑡→∞

𝛽

1−𝛽𝑎1(𝑡)
𝑑1(𝑡). 
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