
 

Existence and uniqueness of solutions to dynamic models 
with occasionally binding constraints 

 

Tom D. Holden, Deutsche Bundesbank* 

 

Abstract: Occasionally binding constraints (OBCs) like the zero lower bound (ZLB) can lead 

to multiple equilibria, and so to belief-driven recessions. To aid in finding policies that avoid 

this, we derive existence and uniqueness conditions for otherwise linear models with OBCs. 

Our main result gives necessary and sufficient conditions for such models to have a unique 

(“determinate”) perfect foresight solution returning to a given steady state, for any initial 

condition. While standard New Keynesian models have multiple perfect-foresight paths 

eventually escaping the ZLB, price level targeting restores uniqueness. We also derive 

equilibrium existence conditions under rational expectations for arbitrary non-linear models.  

 

Keywords: occasionally binding constraints, zero lower bound, determinacy, existence, 

uniqueness, price level targeting 

 

JEL Classification: C62, E3, E4, E5 

 
* Address: Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt am Main, Germany. 

Email: thomas.holden@gmail.com. Website: https://www.tholden.org/. The views expressed in this paper are those of the 

author and do not represent the views of the Deutsche Bundesbank, the Eurosystem or its staff. 

This manuscript has been accepted for publication in “The Review of Economics and Statistics”. This is the author’s final 

accepted version. (This declaration is made to satisfy the copyright requirements of the journal.) 

The author would like to thank all those who have commented on the paper and related work, particularly the editor Olivier 

Coibion and several anonymous referees. Full acknowledgements are given in the online appendix. 

The author gratefully acknowledges financial support from the ESRC and the EC, and the provision of office space by the 

University of Surrey and the University of Washington, in which parts of this paper were written. 

The research leading to these results has received funding from the European Commission’s Seventh Framework Programme 

(FP7/2007-2013) under grant agreement “Integrated Macro-Financial Modelling for Robust Policy Design” 

(MACFINROBODS, grant no. 612796). 



1 

1. Introduction 

Macroeconomic models are more likely to have multiple equilibria if they include 

aggregate occasionally binding constraints, such as the zero lower bound. With multiplicity, 

non-fundamental changes in beliefs can select equilibria featuring deep recessions. To prevent 

such outcomes, policy makers would like to ensure their actions will produce uniqueness. To 

help with this, this paper supplies existence and uniqueness conditions for otherwise linear 

models with occasionally binding constraints (OBCs). We present conditions guaranteeing that 

for any initial state, the model has a unique perfect foresight solution path converging to a point 

away from the bound. We refer to this as “determinacy”. 

For determinacy, news about future positive shocks to the bounded variable (e.g., nominal 

rates) must have a sufficiently positive impact on that variable. When this does not hold, there 

are some initial states from which there exist multiple paths that eventually escape the bound. 

For example, one path may never hit the bound, while another does, often with adverse effects. 

To see how this multiplicity is possible, suppose the model’s agents knew the economy 

would escape the bound next period. Then expectations of next period’s outcomes would be 

linear in today’s variables, as the model is linear apart from the OBC. However, substituting 

out these expectations does not leave a linear system in today’s variables, due to the OBC. This 

non-linear system may have two solutions, with one featuring a slack constraint, and the other 

having a binding constraint. Alternatively, the non-linear system may have no solution at all, 

giving non-existence. Without the assumption that next period the economy is away from the 

bound, the scope for multiplicity is even greater, and there may be infinitely many solutions. 

Our uniqueness condition is sufficient in all otherwise linear models. It is also necessary if 

the model’s state space is rich enough, or if we want uniqueness for any “generalized” perfect 

foresight exercise. What do we mean by this? A standard perfect foresight exercise calculates 

the model’s path back to steady state given an initial state and perhaps some initial shock. 

However, we might also be interested in the path back to steady state in the presence of a known 

sequence of future “shocks”. This is a generalized perfect foresight exercise. It could capture 

an anticipated tax cut, for example. If we want uniqueness for all possible sequences of future 

shocks, then our uniqueness condition is necessary. We also give conditions ensuring that an 
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otherwise linear model with OBCs has at least one solution eventually escaping the bound. 

We apply our results to New Keynesian (NK) models with a zero lower bound (ZLB). 

Responding aggressively to inflation is generally insufficient to achieve determinacy in the 

presence of the ZLB. This contrasts with the case without the ZLB, where determinacy just 

requires the Taylor principle to be satisfied (Clarida, Galí & Gertler 1997; 2000), meaning 

interest rates respond more than one for one to inflation. We find NK models with a ZLB and 

an endogenous state variable usually have multiple solutions that eventually escape the ZLB, 

even with a monetary rule that satisfies the Taylor principle. However, even a weak response to 

the price level in the monetary rule is sufficient to restore determinacy. 

To relate our perfect-foresight results to rational expectations, we prove supplemental 

results on existence under rational expectations for arbitrary non-linear models (not just 

otherwise linear ones with OBCs). Under mild assumptions, we show that for each solution 

under perfect foresight, there is a corresponding solution under rational expectations. This 

solution approximately follows the dynamics of the solution under perfect foresight until a 

“reset” shock hits, at which point it restarts from time zero. Additionally, when there are 

multiple perfect foresight solutions, we show that there are a continuum of rational expectations 

solutions that switch between them. Thus, multiplicity under perfect foresight implies 

multiplicity under rational expectations. We apply these results to otherwise linear models with 

OBCs, proving existence of a rational expectations equilibrium for a broad class of models. 

The next section presents simple examples of multiplicity and non-existence, and illustrates 

our main results. Section 3 provides the key equivalence result enabling us to examine models 

with OBCs via an associated linear complementarity problem. Section 4 then gives our main 

results on existence and uniqueness under perfect foresight, with applications to NK models. 

Section 5 provides additional results under rational expectations. Finally, Section 6 places our 

results in the context of the broader literature and discusses key assumptions. 

2. Multiplicity in simple models 

We start by presenting two simple models with multiple perfect foresight solutions. These 

will make clear why non-uniqueness is so common in models with OBCs. We also use these 
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models to introduce our general results, and to illustrate the key ideas behind them. Next, we 

give a demonstration that price level targeting produces uniqueness, which is a robust 

conclusion of our results. We conclude the section by showing that the multiplicity we find 

under perfect foresight is also present under rational expectations.  

We focus on New Keynesian examples due to the continued relevance of the ZLB. Other 

examples of multiplicity of transition paths in NK models are provided by Hebden, Lindé & 

Svensson (2011), Brendon, Paustian & Yates (2013; 2019), and our Appendix E. We will also 

examine the standard three equation NK model in Subsection 4.3. 

2.1. A simple first example 

We consider the simplest possible NK setting. Suppose the central bank follows the Taylor-

type rule: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡�, 

where 𝑟𝑟𝑡𝑡  is the real interest rate (not the natural rate), 𝑖𝑖𝑡𝑡  is the nominal interest rate, 𝜋𝜋𝑡𝑡  is 

inflation, and 𝜙𝜙 > 1 to ensure the Taylor principle is satisfied. Suppose further that the Fisher 

equation holds: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

Away from the ZLB, combining the two equations implies 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡,  which has the 

unique, non-explosive solution, 𝜋𝜋𝑡𝑡 = 0 . Thus, 𝜋𝜋 = 0  is one steady state of the model. The 

model has an additional steady state, in which 𝑖𝑖 = 0 and 𝜋𝜋 = −𝑟𝑟, but we will focus on solutions 

returning to the “standard” steady state with 𝜋𝜋 = 0 . This is in line with the evidence of 

Gürkaynak, Levin & Swanson (2010) who find that under inflation targeting, agents expect a 

return to the non-deflationary steady state. We also exclude the explosive equilibria discussed 

by Cochrane (2011). 

For simplicity, we consider an economy with exogenous real interest rates, as under flexible 

prices. In particular, suppose 𝑟𝑟𝑡𝑡 = 𝑟𝑟 + 𝜀𝜀𝑡𝑡, with 𝑟𝑟 > 0 and 𝜀𝜀𝑡𝑡 acting as a shock to real rates. We 

assume 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1, meaning the shock can only occur in period 1. 

We seek to solve for 𝜋𝜋𝑡𝑡 for 𝑡𝑡 = 1,2, …. If inflation is to return to the standard steady state, 

then we must have that 𝜋𝜋𝑡𝑡 = 0 for 𝑡𝑡 ≥ 2. To see this, suppose 𝑖𝑖𝑡𝑡 = 0 for some 𝑡𝑡 ≥ 2. Then by 



4 

the Fisher equation 𝜋𝜋𝑡𝑡+1 = −𝑟𝑟, implying 𝑖𝑖𝑡𝑡+1 = 0 by the Taylor rule. By induction, 𝑖𝑖𝑠𝑠 = 0 for 

all 𝑠𝑠 ≥ 𝑡𝑡, contradicting our assumption of a return to the standard steady state. Thus, 𝑖𝑖𝑡𝑡 > 0 for 

all 𝑡𝑡 ≥ 2, so 𝜋𝜋𝑡𝑡 = 0 for 𝑡𝑡 ≥ 2. Hence, from the period one Fisher equation and monetary rule: 

𝑟𝑟 + 𝜀𝜀1 = 𝑖𝑖1 = max�0, 𝑟𝑟 + 𝜀𝜀1 + 𝜙𝜙𝜋𝜋1�, 

so: 

0 = max�−𝑟𝑟 − 𝜀𝜀1, 𝜙𝜙𝜋𝜋1� . (1) 

This is a simple linear complementarity problem. It means that −𝑟𝑟 − 𝜀𝜀1 ≤ 0 , 𝜙𝜙𝜋𝜋1 ≤ 0  and 

either −𝑟𝑟 − 𝜀𝜀1 = 0, or 𝜙𝜙𝜋𝜋1 = 0. These conditions are illustrated in Figure 1. 
  

Figure 1: The solution to equation (1): Inflation in period one as a function of the shock. 

The hatched area shows where −𝑟𝑟 − 𝜀𝜀1 ≤ 0. The shaded area shows where 𝜙𝜙𝜋𝜋1 ≤ 0. 

A value for 𝜋𝜋1 is a solution if and only if it is within both of these areas, and on the border of one of them. 

These points are marked with a thick (rotated L shaped) line. 

If 𝜀𝜀1 < −𝑟𝑟 then (1) has no solution, so the model has no solution returning to the standard 

steady state. In fact, there is no bounded solution in this case.1 If 𝜀𝜀1 = −𝑟𝑟, then any 𝜋𝜋1 ≤ 0 is 

consistent with (1): there is indeterminacy. This is the thick vertical line in Figure 1. Finally, if 

𝜀𝜀1 > −𝑟𝑟, then 𝜋𝜋1 = 0 is the unique solution. This is the thick horizontal line in Figure 1. So, 

this model has either zero, one or infinitely many solutions returning to the standard steady 

state, depending on the value of the shock. 

2.2. An example with pervasive multiplicity 

While the last example only had multiplicity in a knife-edge case, multiplicity is more 

common in richer models. For example, suppose the central bank responds to lagged as well as 
 

1 Ensuring 𝑖𝑖1 ≥ 0 when 𝑟𝑟 + 𝜀𝜀1 < 0 requires 𝜋𝜋2 > 0 by the Fisher equation. This leads to explosive inflation as 𝜙𝜙 > 1. 

𝜀𝜀1 

𝜋𝜋1 
−𝑟𝑟 − 𝜀𝜀1 = 0 

𝜙𝜙𝜋𝜋1 = 0 

𝜙𝜙𝜋𝜋1 ≤ 0 

−𝑟𝑟 − 𝜀𝜀1 ≤ 0 
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current inflation.2 This is an easy way of generating some endogenous persistence, but almost 

any state variable would have a similar effect. Assuming 𝑟𝑟𝑡𝑡 is now constant, the model becomes: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1�, 

where 𝜙𝜙 − 𝜓𝜓 > 1 and 𝜓𝜓 > 0. These assumptions are sufficient for a determinate solution 

when there is no ZLB. The initial state, 𝜋𝜋0, is given. To simplify presentation, we set 𝜙𝜙 ≔ 2, 

so we need 𝜓𝜓 < 1. Our results are not specific to this case. 

Away from the ZLB, the model’s solution takes the form 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1, where 𝐴𝐴2 = 𝜙𝜙𝐴𝐴 −

𝜓𝜓, so 𝐴𝐴 = 1 − �1 − 𝜓𝜓 ∈ (0,1). We first prove that the model cannot be at the ZLB for more 

than one period, if it is to ever escape the bound. Suppose that for some 𝑡𝑡 ≥ 1, 𝑖𝑖𝑡𝑡+1 = 0 but 

𝑖𝑖𝑡𝑡+2 > 0, i.e., the economy is at the bound in 𝑡𝑡 + 1, but escapes in 𝑡𝑡 + 2. Since the economy is 

away from the bound in 𝑡𝑡 + 2, 𝜋𝜋𝑡𝑡+2 = 𝐴𝐴𝜋𝜋𝑡𝑡+1. Thus, by the Fisher equation, 0 = 𝑖𝑖𝑡𝑡+1 = 𝑟𝑟 +

𝐴𝐴𝜋𝜋𝑡𝑡+1 , so 𝜋𝜋𝑡𝑡+1 = − 𝑟𝑟
𝐴𝐴 . Hence, 𝑖𝑖𝑡𝑡 = 𝑟𝑟 − 𝑟𝑟

𝐴𝐴 = 𝑟𝑟�𝐴𝐴−1
𝐴𝐴 � < 0  which is inconsistent with the 

monetary rule. This contradiction proves that if the economy eventually escapes the bound, 

then for 𝑡𝑡 ≥ 1, 𝑖𝑖𝑡𝑡+1 > 0. In particular, the economy must be away from the ZLB in period two, 

so 𝜋𝜋2 = 𝐴𝐴𝜋𝜋1 and: 

𝑟𝑟 + 𝐴𝐴𝜋𝜋1 = 𝑖𝑖1 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0�. 

Much like before, this implies: 

0 = max�−𝑟𝑟 − 𝐴𝐴𝜋𝜋1, �𝜙𝜙 − 𝐴𝐴�𝜋𝜋1 − 𝜓𝜓𝜋𝜋0� , (2) 

which is another simple linear complementarity problem. Equation (2)  means −𝑟𝑟 −

𝐴𝐴𝜋𝜋1 ≤ 0 , �𝜙𝜙 − 𝐴𝐴�𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0  and either −𝑟𝑟 − 𝐴𝐴𝜋𝜋1 = 0  or �𝜙𝜙 − 𝐴𝐴�𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 = 0 . We 

plot these conditions in Figure 2. 

Figure 2 shows two solutions exist for large enough values of 𝜋𝜋0. The upward sloping thick 

line captures the “fundamental” solution with 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝑡𝑡𝜋𝜋0 for 𝑡𝑡 ≥ 0. The horizontal thick line 

captures an alternative solution that jumps to the ZLB, with 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 > 0 and 𝑖𝑖1 =

0. This alternative solution is at the bound in the first period but escapes it in the next, with a 

gradual return to the standard steady state. Crucially, the alternative solution does not require 

agents to expect convergence to a different steady state. This is in contrast to the literature on 
 

2 Responding negatively to lagged inflation is optimal if firms index to past inflation (Giannoni & Woodford 2003). This is one 

possible justification for a response to lagged inflation. 
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the consequences of steady-state multiplicity (Benhabib, Schmitt-Grohé & Uribe 2001a; 

2001b; Schmitt-Grohé & Uribe 2012; Mertens & Ravn 2014; Aruoba, Cuba-Borda & 

Schorfheide 2018). 
  

Figure 2: The solution to equation (2): Inflation in period one as a function of initial inflation. 

The hatched area shows where −𝑟𝑟 − 𝐴𝐴𝜋𝜋1 ≤ 0. The shaded area shows where �𝜙𝜙 − 𝐴𝐴�𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0. 

A value for 𝜋𝜋1 is a solution if and only if it is within both of these areas, and on the border of one of them. 

These points are marked with a thick (wedge shaped) line. 

The two solutions agree when 𝜋𝜋0 = −𝐴𝐴−2𝑟𝑟, giving a unique solution. For 𝜋𝜋0 < −𝐴𝐴−2𝑟𝑟, 

there is no solution returning to the standard steady state, as the fundamental solution violates 

the ZLB and the alternative solution violates the Taylor rule. Both solutions exist and are 

distinct when 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟. 

As we approach the canonical model with 𝜓𝜓 → 0+, the region of non-existence shrinks but 

the multiplicity region grows until it encompasses the entire state space.3 The Fisher equation 

and Taylor rule are the core of all NK models, so it is unsurprising that this result generalizes. 

We have found pervasive multiplicity in all the NK models with endogenous state variables we 

have analysed. While we show in Subsection 4.1 that the standard three equation NK model has 

 
3 With 𝜓𝜓 = 0 and constant 𝑟𝑟, there is a unique solution returning to the standard steady state (as with 𝜓𝜓 = 0, if 𝑖𝑖𝑡𝑡 = 0 for some 

𝑡𝑡 > 0, then 𝜋𝜋𝑡𝑡+1 = −𝑟𝑟, so 𝑖𝑖𝑡𝑡+1 = 0 as well). This no longer holds once a shock is introduced, as seen above. 

𝜋𝜋0 

𝜋𝜋1 

−𝑟𝑟 − 𝐴𝐴𝜋𝜋1 = 0 

�𝜙𝜙 − 𝐴𝐴�𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 = 0 

�𝜙𝜙 − 𝐴𝐴�𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0 

−𝑟𝑟 − 𝐴𝐴𝜋𝜋1 ≤ 0 
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a unique solution, this is not a robust result. With a positive inflation target, price dispersion 

enters as a state variable, and this is sufficient to produce multiplicity. We show examples of 

this and other multiplicity in NK models in Subsection 4.3 and Appendix E. 

2.3. The mechanics of our main results 

Even in such simple models, deriving these multiplicity and non-existence results is 

cumbersome. Our theoretical results provide an easier alternative. To understand how they 

work, it is helpful to begin by looking at the impact of a monetary policy shock in the previous 

model. So, suppose: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 + 𝜈𝜈𝑡𝑡�, 

where 𝜈𝜈𝑡𝑡 is a monetary policy shock with 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 > 1, and where 𝜋𝜋0 is given. The solution 

away from the ZLB must take the form 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1 + 𝐹𝐹𝜈𝜈𝑡𝑡, with 𝐴𝐴 as before and 𝐹𝐹 = − 1
𝜙𝜙−𝐴𝐴 <

0 . Thus, away from the ZLB, 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋0 + 𝐴𝐴𝐹𝐹𝜈𝜈1 . Hence, since 𝐴𝐴𝐹𝐹 < 0 , a positive 

monetary policy shock actually lowers nominal interest rates. 

This solution would just touch the ZLB if 0 = 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋0 + 𝐴𝐴𝐹𝐹𝜈𝜈1. This happens when 

𝜈𝜈1 = 𝜈𝜈1
∗ ≔ − 𝑟𝑟+𝐴𝐴2𝜋𝜋0

𝐴𝐴𝐴𝐴  . In this case, 𝜋𝜋1 = 𝐴𝐴𝜋𝜋0 − 𝐹𝐹𝜈𝜈1
∗ = − 𝑟𝑟

𝐴𝐴 , so 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟  for 𝑡𝑡 > 0 . Note 

that a monetary policy shock of this magnitude is a positive innovation (i.e., 𝜈𝜈1
∗ > 0) if and only 

if 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟. Thus, when 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟: 

𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 𝜈𝜈1
∗ = 0 = 𝑖𝑖1 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 𝜈𝜈1

∗� 

= max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 0�. 

In other words, with 𝜈𝜈1 = 𝜈𝜈1
∗ > 0, there is no observable evidence that a shock has arrived at 

all, since the ZLB means that nominal interest rates should be zero even without such a shock. 

𝜋𝜋1 = − 𝑟𝑟
𝐴𝐴  satisfies the monetary rule both with the shock 𝜈𝜈1 = 𝜈𝜈1

∗  and also when 𝜈𝜈1 = 0 . 

Moreover, 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 > 0 must be an equilibrium in either case. 

This establishes that when 𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟, 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟 for 𝑡𝑡 > 0 is an equilibrium of the 

model without the shock, as we had already discovered in the previous subsection. We have 

learnt something extra though. The outcome is as if the monetary policy shock 𝜈𝜈1
∗ hit, whether 

or not it did in reality. This construction is valid as long as there is a positive shock that reduces 

nominal interest rates to the ZLB. The negative effect of the positive innovation permits such 
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shocks to be “censored” away. This explains why the condition for 𝜈𝜈1
∗ to be positive (𝜋𝜋0 >

−𝐴𝐴−2𝑟𝑟) should be the same as the multiplicity condition we found in the previous subsection 

(𝜋𝜋0 > −𝐴𝐴−2𝑟𝑟), and why the condition for a positive shock to have a negative effect (𝜓𝜓 > 0), 

should be the same as the condition for there to be multiplicity for some 𝜋𝜋0 (𝜓𝜓 > 0). 

This reveals a tight connection between multiplicity and positive shocks having negative 

effects. Indeed, our key uniqueness condition requires that positive shocks to the bounded 

variable have positive effects. The condition calls for strict positivity to ensure cases like 𝜓𝜓 =

0 are correctly classified as having multiple solutions. Our uniqueness condition also requires 

that news today about a future positive shock to the bounded variable results in the bounded 

variable being higher in the period the shock arrives. This is the natural generalisation for 

models in which the bound may be hit in future periods. More than this, it requires that the 

impact of news shocks to the bounded variable at different horizons be “jointly” positive, in a 

sense to be made clear in the next subsection. 

2.4. Examining our first example through the lens of our main results 

We will now analyse our first simple example (from Subsection 2.1) using the general 

results presented in this paper. This illustrates the form of our main results. 

A crucial object for these main results is the “𝑀𝑀” matrix. In the current context, the first 

column of 𝑀𝑀 gives the impulse response of 𝑖𝑖𝑡𝑡 to a contemporaneous monetary policy shock, 

without the bound. The second column of 𝑀𝑀 gives the impulse response of 𝑖𝑖𝑡𝑡 to news today 

that next period there will be a monetary policy shock, again ignoring the bound. The third 

column gives the impulse response of 𝑖𝑖𝑡𝑡 to news today about a shock in two periods, and so on. 

More generally, the first column will be the impulse response of the bounded variable to a 

contemporaneous shock to the equation defining that variable, ignoring the bound, and 

similarly for other columns. In practice, we will usually only consider 𝑇𝑇 periods of IRFs, for 

news shocks out to horizon 𝑇𝑇 − 1 , giving a 𝑇𝑇 × 𝑇𝑇  matrix 𝑀𝑀 . Given this truncation, the 𝑀𝑀 

matrix is easy to calculate from a solution to the model without the bound. 

To calculate the 𝑀𝑀 matrix for our current model, we start by augmenting the model without 

bound or shocks to 𝑟𝑟𝑡𝑡 by an exogenous forcing process, 𝜈𝜈𝑡𝑡, giving: 
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𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜈𝜈𝑡𝑡. 

We suppose that the entire path of 𝜈𝜈𝑡𝑡 is known in period one, to enable us to capture the effects 

of news. Thus, the solution must have the form 𝜋𝜋𝑡𝑡 = ∑ 𝐹𝐹𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=0 . Matching coefficients implies 

that 𝐹𝐹𝑗𝑗 = −𝜙𝜙−�𝑗𝑗+1�  for all 𝑗𝑗 ∈ ℕ , so 𝑖𝑖𝑡𝑡 = 𝑟𝑟 − ∑ 𝜙𝜙−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=1  . From this, we can read off the 

columns of the 𝑀𝑀 matrix. The first column is the path of 𝑖𝑖𝑡𝑡 − 𝑟𝑟 when 𝜈𝜈1 = 1 and 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 ≠

1, which is 0,0, …. The second column is the path of 𝑖𝑖𝑡𝑡 − 𝑟𝑟 when 𝜈𝜈2 = 1 and 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 ≠ 2, 

which is 𝜙𝜙−1, 0,0, …. The third is 𝜙𝜙−2, 𝜙𝜙−1, 0,0, …, and so on. Thus, for any matrix size 𝑇𝑇, the 

𝑀𝑀 matrix has a zero diagonal, a strictly negative upper triangle, and a zero lower triangle. 

Applied to the current context, our general results give necessary and sufficient conditions 

for there to be a unique perfect foresight solution to the model: 

𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡� 

for any possible values of 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, …. I.e., we want to ensure there is a unique solution for any 

current and anticipated future shocks to real interest rates. Since without the bound the unique 

solution has 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡, this is equivalent to saying we want uniqueness for any path the bounded 

variable might take with the bound removed. This is the form taken by our general results. 

The necessary and sufficient condition for this uniqueness is that the 𝑀𝑀 matrix is a “P-

matrix”. A matrix is a P-matrix if and only if the determinants of all its principal sub-matrices 

are positive (where principal sub-matrices are sub-matrices formed by taking the same subset 

of rows as of columns). For the current model, since 𝑀𝑀 is an upper triangular matrix with a 

zero diagonal, all the principal sub-matrices of 𝑀𝑀 will also be upper triangular matrices with 

zero diagonals. The determinant of a triangular matrix is the product of its diagonal elements, 

so all of the determinants of 𝑀𝑀’s principal sub-matrices are zero. Thus 𝑀𝑀 is not a P-matrix, so 

this model does not have a unique solution for all possible sequences of shocks to real rates, as 

we already saw. 

2.5. Uniqueness under price targeting  

In applying our general results to NK models, a robust finding is that a response to the price 

level in the monetary rule is sufficient to produce uniqueness. Examples of this are given in 

Subsection 4.3 and Appendix E. To better understand this result, we examine price level 



10 

targeting in the simple model used in the previous subsection (introduced in Subsection 2.1).  

We start by modifying the model to include a response to the log price level, 𝑝𝑝𝑡𝑡, in the Taylor 

rule, so it becomes: 

𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1� + 𝜒𝜒𝑝𝑝𝑡𝑡�, 

where 𝜒𝜒 > 0 controls the strength of the response to the price level, and where 𝑝𝑝0 = 0. 

To find the 𝑀𝑀 matrix for this new model, we need to solve the news shock model: 

𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1� + 𝜒𝜒𝑝𝑝𝑡𝑡 + 𝜈𝜈𝑡𝑡, 

where, as before, 𝜈𝜈𝑡𝑡 is an exogenous forcing process whose entire path is known in period one. 

This must have a solution of the form 𝑝𝑝𝑡𝑡 = ∑ 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=−∞  , where 𝜈𝜈𝑡𝑡 = 0  for all 𝑡𝑡 ≤ 0 . By 

matching coefficients, we can derive closed form expressions for 𝐺𝐺𝑗𝑗, given in Appendix H.1. 

Furthermore, we show there that for any matrix size 𝑇𝑇, there exists 𝜒𝜒𝑇𝑇 ∈ (0, ∞] such that for 

all 𝜒𝜒 ∈ �0, 𝜒𝜒𝑇𝑇�, 𝑀𝑀 (of size 𝑇𝑇 × 𝑇𝑇) is a P-matrix. Consequently, a weak but positive response 

to the price level restores determinacy in this model. Since all NK models have a Fisher 

equation and a Taylor rule, it is unsurprising that this result is robust across NK models. 

To understand why price level rules robustly produce determinacy, suppose that some 

model includes a monetary rule of the form: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜋𝜋 + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋) + 𝜒𝜒�𝑝𝑝𝑡𝑡 − 𝜋𝜋𝑡𝑡� + other terms�, 

where 𝑟𝑟 is the steady-state real interest rate, 𝜋𝜋 ≥ 0 is the inflation target and 𝜙𝜙 & 𝜒𝜒 are non-

negative. The rest of the model is unrestricted and could include all the usual “DSGE” frictions. 

Assume that in period 0, the price level is on its target path, so 𝑝𝑝0 = 0. Then from summing 

the Fisher equation over periods 1 to ∞, under perfect foresight we have: 

�(𝑖𝑖𝑡𝑡 − 𝑟𝑟 − 𝜋𝜋)
∞

𝑡𝑡=1
= ��𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 − 𝑟𝑟 − 𝜋𝜋�

∞

𝑡𝑡=1
= �(𝑟𝑟𝑡𝑡 − 𝑟𝑟)

∞

𝑡𝑡=1
− �𝑝𝑝1 − 𝜋𝜋� + lim

𝑡𝑡→∞
�𝑝𝑝𝑡𝑡 − 𝜋𝜋𝑡𝑡�. 

We continue to look for equilibria in which the ZLB does not bind in the limit. Therefore, if 

the central bank is price level targeting, meaning 𝜒𝜒 ≠ 0, then the limit on the right-hand side is 

zero.4 Thus, if there were a self-fulfilling jump to the ZLB, making the left side negative, then 

either current and future real interest rates would have to fall by the same amount, or the current 

 
4 From combining the Fisher equation and monetary rule we must have that 0 = �𝜙𝜙 − 1� lim

𝑡𝑡→∞
(𝜋𝜋𝑡𝑡 − 𝜋𝜋) + 𝜒𝜒 lim

𝑡𝑡→∞
�𝑝𝑝𝑡𝑡 − 𝜋𝜋𝑡𝑡�. If 

lim
𝑡𝑡→∞

(𝜋𝜋𝑡𝑡 − 𝜋𝜋) ≠ 0, then lim
𝑡𝑡→∞

�𝑝𝑝𝑡𝑡 − 𝜋𝜋𝑡𝑡� = ±∞. Thus lim
𝑡𝑡→∞

(𝜋𝜋𝑡𝑡 − 𝜋𝜋) = lim
𝑡𝑡→∞

�𝑝𝑝𝑡𝑡 − 𝜋𝜋𝑡𝑡� = 0. 
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price level would have to increase. However, with 𝜙𝜙 > 0 and/or 𝜒𝜒 > 0, the only way for 𝑖𝑖1 to 

hit zero is for there to be sharp decline in 𝑝𝑝1 (assuming that any other terms in the monetary 

rule are positively correlated with 𝜋𝜋𝑡𝑡, as is usually the case). So, for there to be a self-fulfilling 

jump to the ZLB, current and future real rates would have to fall by significantly more than 

current and future nominal rates. But real rates are no way near that responsive to nominal rates 

in NK models (see e.g. Rupert & Šustek 2019). For example, with a standard log-linearized 

Euler equation, 𝑟𝑟𝑡𝑡 − 𝑟𝑟 is proportional to 𝑐𝑐𝑡𝑡+1 − 𝑐𝑐𝑡𝑡 (where 𝑐𝑐𝑡𝑡 is log-consumption), so ∑ (𝑟𝑟𝑡𝑡 −∞
𝑡𝑡=1

𝑟𝑟) is proportional to −𝑐𝑐1. Hence, for current and future real rates to fall, current consumption 

would have to rise, at a time when inflation and inflation expectations are low. This is ruled out 

by any standard Phillips curve specification. 

Indeed, sticky prices or wages help price level targeting rules achieve uniqueness. For there 

to be a self-fulfilling jump to the ZLB, inflation must fall sharply. But under a price level rule, 

this means the central bank is committed to make-up inflation in future. Given this expected 

future inflation, firms and workers are less keen to cut prices and wages today, making it harder 

to produce the fall in inflation required for a self-fulfilling jump to the ZLB. 

2.6. Multiplicity under rational expectations 

While the bulk of our paper will focus on perfect foresight solutions, in Section 5 we give 

results under rational expectations. We show that if there are multiple solutions under perfect 

foresight, then there are usually a continuum of solutions under rational expectations. These 

rational expectations solutions switch between neighbourhoods of the various perfect foresight 

ones. Even if we only consider a single perfect foresight solution, there can still be a continuum 

of rational expectations solutions if that perfect foresight solution depends on time. We give an 

example of such a case below. A key difference to the prior literature on multiplicity under 

rational expectations is that jumps to the ZLB do not have to be persistent in these equilibria. 

As in the example from Subsection 2.2, we examine the model: 

𝑟𝑟 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1� 

with 𝜙𝜙 ≔ 2 and 𝜓𝜓 ∈ (0,1). We look for a rational expectations solution of a similar form to the 

perfect foresight solution 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟  for 𝑡𝑡 > 0  with 𝑖𝑖1 = 0 . Since we do not want ZLB 
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episodes to be confined to period 1, we will effectively allow for the clock to be reset. This will 

happen with probability 𝛿𝛿 ∈ (0,1). 

In particular, the model has a solution of the following form. Each period, with probability 

1 − 𝛿𝛿 , 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿  and 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 > 0  (away from the ZLB), while with 

probability 𝛿𝛿, 𝜋𝜋𝑡𝑡 = 𝐶𝐶𝛿𝛿 and 𝑖𝑖𝑡𝑡 = 0 (at the ZLB), where 𝐴𝐴𝛿𝛿 ∈ (0,1), 𝐵𝐵𝛿𝛿 < 0 and 𝐶𝐶𝛿𝛿 < 0. This is 

proven in Appendix H.2, where closed form expressions for 𝐴𝐴𝛿𝛿, 𝐵𝐵𝛿𝛿 and 𝐶𝐶𝛿𝛿 are derived. As 𝛿𝛿 →

0, these coefficients satisfy 𝐴𝐴𝛿𝛿 → 𝐴𝐴 (as defined in Subsection 2.2), 𝐵𝐵𝛿𝛿 → 0 and 𝐶𝐶𝛿𝛿 → −𝐴𝐴−1𝑟𝑟. 

Thus, this solution converges to the desired perfect foresight solution as 𝛿𝛿 → 0. However, since 

𝐵𝐵𝛿𝛿 < 0 for 𝛿𝛿 > 0, the rational expectations solution has a deflationary bias. 

Unlike in the prior literature on sunspot equilibria in ZLB-models (see e.g. Nakata & 

Schmidt 2021), here there is no requirement that ZLB episodes are sufficiently persistent. With 

𝛿𝛿 small, ZLB episodes will generally last only one period in this model. In richer models, ZLB 

episodes can be much longer. However, their length is determined by the model’s persistence 

and dynamics, not by the parameters governing exogenous switches between solution regimes. 

This difference comes from the fact that the solutions we examine are not time invariant. For 

example, we can think of the model presented above as one with a single “regime”. It is only at 

the ZLB if the regime “clock” says it is the model’s first period in that regime. However, the 

regime clock is reset after the 𝛿𝛿 shock hits, in a kind of self-transition. 

3. Equivalence result 

We saw in the previous section that for simple models with occasionally binding 

constraints, solving the model under perfect foresight was equivalent to solving a linear 

complementarity problem (LCP). This section establishes that this is a general result. Solving 

a model with an OBC is always equivalent to solving an LCP. This equivalence is behind all 

our results. It enables us to leverage prior theorems on existence and uniqueness for LCPs. 

For now, we assume that there is a single OBC of the form 𝑖𝑖𝑡𝑡 = max{0, … }, where 𝑖𝑖𝑡𝑡 is the 

constrained variable (not necessarily interest rates). This covers all OBCs one encounters in 

practice, possibly via a transformation. For example, the Karush-Kuhn-Tucker (KKT) type 

constraints 𝑖𝑖𝑡𝑡 ≥ 0, 𝜆𝜆𝑡𝑡 ≥ 0, 𝑖𝑖𝑡𝑡𝜆𝜆𝑡𝑡 = 0 hold if and only if 0 = min{𝑖𝑖𝑡𝑡, 𝜆𝜆𝑡𝑡} which in turn holds if 
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and only if 𝑖𝑖𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡}. It is also straightforward to generalize to multiple constraints, 

or to constraints that bind in steady state (see Appendix D.3).  

We continue to look for perfect foresight solutions converging to a steady state with 𝑖𝑖𝑡𝑡 > 0. 

We assume throughout that without the bound, the model would be determinate around a 

unique steady state. We take as given the period 0 value of the model’s endogenous variables. 

Without loss of generality, the equation containing the bound is of the form: 

𝑖𝑖𝑡𝑡 = max�0, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡�� , (3) 

and the model’s other equations are of the form: 

0 = 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡�. 

The vector 𝑥𝑥𝑡𝑡 contains the model’s period 𝑡𝑡 endogenous variables, including 𝑖𝑖𝑡𝑡. The vector 𝜀𝜀𝑡𝑡 

gives exogenous “shocks”, with the entire path (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  known in period one, as we are working 

under perfect foresight. For example, anticipated shocks to interest rates may reflect forward 

guidance. We assume 𝜀𝜀𝑡𝑡 → 0 as 𝑡𝑡 → ∞, consistent with our assumption of an eventual return 

to steady state. 𝑓𝑓  and 𝑔𝑔 are some differentiable functions, later restricted to be linear. 

Now define: 

𝑦𝑦𝑡𝑡 ≔ max�0, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡�� − 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡�. 

By construction, 𝑦𝑦𝑡𝑡 ≥ 0. Also note that: 

𝑖𝑖𝑡𝑡 = 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡� + 𝑦𝑦𝑡𝑡. (4) 

Despite its simplicity (we have just added and subtracted a term), this result is important. It 

states that the value of the bounded variable is given by its value with the constraint removed 

(but given other endogenous variables), plus an additional positive “forcing” term capturing 

the effect of the constraint. Furthermore, by construction, if 𝑖𝑖𝑡𝑡 > 0, then 𝑦𝑦𝑡𝑡 = 0 and if 𝑦𝑦𝑡𝑡 > 0, 

then 𝑖𝑖𝑡𝑡 = 0 . Thus, for all 𝑡𝑡 , the bounded variable 𝑖𝑖𝑡𝑡  and the forcing term 𝑦𝑦𝑡𝑡  satisfy the 

complementary slackness condition, 𝑖𝑖𝑡𝑡𝑦𝑦𝑡𝑡 = 0 . For further intuition, note that when the 

constraint originally came from the KKT conditions 𝑖𝑖𝑡𝑡 ≥ 0 , 𝜆𝜆𝑡𝑡 ≥ 0 , 𝑖𝑖𝑡𝑡𝜆𝜆𝑡𝑡 = 0 , so 𝑖𝑖𝑡𝑡 =

max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} , then 𝑦𝑦𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} − 𝑖𝑖𝑡𝑡 + 𝜆𝜆𝑡𝑡 = 𝜆𝜆𝑡𝑡 , meaning 𝑦𝑦𝑡𝑡  recovers the original 

KKT multiplier. Finally, note there must be some period 𝑇𝑇 such that for all 𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0, since 

we are assuming the model returns to a steady state where 𝑖𝑖𝑡𝑡 > 0. 

In the previous section, we analysed models with OBCs via companion “news shock” 
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models which removed the OBC but added an exogenous forcing process to the equation 

defining 𝑖𝑖𝑡𝑡. We used this to calculate the 𝑀𝑀 matrix for the simple models analysed there. We 

can do this for our general model by replacing equation (3) with equation (4), but where we 

now treat 𝑦𝑦𝑡𝑡 as an exogenous forcing process. Since we are working under perfect foresight, we 

assume the entire path of 𝑦𝑦𝑡𝑡 is known in period one. We also assume there exists some period 

𝑇𝑇 such that for 𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0, as this always holds when 𝑦𝑦𝑡𝑡 arises endogenously from an OBC. 

We now make the following key definitions: 

Definition 1 (𝒚𝒚, 𝒒𝒒, 𝑴𝑴) Under the setup of the preceding text: 

• 𝑦𝑦 ≔ �𝑦𝑦1, … , 𝑦𝑦𝑇𝑇�′ is a vector giving the path of the forcing variable. 

• 𝑖𝑖: ℝ𝑇𝑇 → ℝ𝑇𝑇 is a function, where for all 𝑦𝑦, 𝑖𝑖�𝑦𝑦� is a vector containing the first 𝑇𝑇 elements 

of the path of 𝑖𝑖𝑡𝑡, for the given path of the forcing variable 𝑦𝑦, as determined by equation (4). 

• 𝑞𝑞 ≔ 𝑖𝑖(0) is a vector giving the first 𝑇𝑇 elements of the path of 𝑖𝑖𝑡𝑡 when 𝑦𝑦𝑡𝑡 = 0 for all 𝑡𝑡, i.e. 𝑞𝑞 

gives the path 𝑖𝑖𝑡𝑡 would follow were there no bound or forcing process in the model. 

• 𝑀𝑀 is a 𝑇𝑇 × 𝑇𝑇 matrix where the first column equals 𝜕𝜕𝜕𝜕�𝑦𝑦�
𝜕𝜕𝑦𝑦1

�
𝑦𝑦=0

, the second equals 𝜕𝜕𝜕𝜕�𝑦𝑦�
𝜕𝜕𝑦𝑦2

�
𝑦𝑦=0

, 

and so on. 

Then, by Taylor’s theorem 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑦𝑦 + Ο�𝑦𝑦′𝑦𝑦� for small 𝑦𝑦. Henceforth, we restrict 𝑓𝑓  and 

𝑔𝑔 to be linear, in which case this approximation is exact and 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑦𝑦, with only 𝑞𝑞, not 

𝑀𝑀, depending on the initial state. We prove this and establish expressions for the elements of 

𝑀𝑀  in Appendix D. The proof proceeds by backwards induction, starting from the known 

transition matrix in period 𝑇𝑇 + 1 from which point on the economy is away from the bound. 

Note that with 𝑓𝑓   and 𝑔𝑔  linear, the first column of 𝑀𝑀  gives the impulse response to a 

contemporaneous shock to 𝑖𝑖𝑡𝑡, the second column of 𝑀𝑀 gives the impulse response to a one 

period ahead news shock to 𝑖𝑖𝑡𝑡, and so on. 5 This is how we defined the 𝑀𝑀 matrix in the previous 

section. The result 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑦𝑦 means the path of 𝑖𝑖𝑡𝑡 is its path without the OBC or forcing 

process, plus a linear combination of impulse responses to the “news” contained in 𝑦𝑦. 

 
5 The idea of imposing an OBC by adding news shocks is also present in Holden (2010), Hebden, Lindé & Svensson (2011), 

Holden & Paetz (2012) and Bodenstein, Guerrieri & Gust (2013). Laséen & Svensson (2011) use a similar technique to impose 

a path of nominal interest rates, in a non-ZLB context. None of these papers formally establish our equivalence result. News 

shocks were introduced by Beaudry & Portier (2006). 
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When 𝑦𝑦 arises endogenously from an OBC, 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑦𝑦 still holds (shown in Appendix 

D). In effect, the OBC provides “endogenous news” that in periods when the bound is hit, 𝑖𝑖𝑡𝑡 

will be higher than it would be without the bound. Given the complementary slackness 

conditions for 𝑦𝑦𝑡𝑡 already established, and the positivity of the path of the bounded variable 𝑖𝑖𝑡𝑡, 

we have that 𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0 and 𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 0. These conditions mean that 𝑦𝑦 solves the 

following linear complementarity problem: 

Definition 2 (LCP) We say 𝑦𝑦 ∈ ℝ𝑇𝑇 solves the LCP �𝑞𝑞, 𝑀𝑀� if and only if 𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0 

and 𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 0. 

Recall that we needed to solve a scalar LCP to find the solution to the simple models in the 

last section. We now see that LCPs appear in the solution to models with OBCs more generally. 

In fact, the LCP �𝑞𝑞, 𝑀𝑀� completely characterises the solution of the OBC model, as shown in 

the following key theorem: 

Theorem 1  

1) Suppose 𝑥𝑥𝑡𝑡 is a solution to the model without an OBC in which equation (3) is replaced 

with equation (4), with 𝑦𝑦𝑡𝑡 exogenous. Suppose there is some 𝑇𝑇 ≥ 0 such that for all 𝑡𝑡 > 𝑇𝑇, 

𝑦𝑦𝑡𝑡 = 0. Then 𝑥𝑥𝑡𝑡 is also a solution to the original model with an OBC if and only if 𝑦𝑦 ∈ ℝ𝑇𝑇 

solves the LCP �𝑞𝑞, 𝑀𝑀� and for all 𝑡𝑡 > 𝑇𝑇, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡� ≥ 0. 

2) Suppose 𝑥𝑥𝑡𝑡 is a solution to the model with an OBC which eventually escapes the bound. 

Then there exists 𝑇𝑇 ≥ 0 such that for all 𝑡𝑡 > 𝑇𝑇, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝜀𝜀𝑡𝑡� ≥ 0. Furthermore, there 

exists a unique vector 𝑦𝑦 ∈ ℝ𝑇𝑇 solving the LCP �𝑞𝑞, 𝑀𝑀�, such that 𝑥𝑥𝑡𝑡 is the unique solution 

to the model without an OBC in which equation (3) is replaced with equation (4), with 𝑦𝑦𝑡𝑡 

exogenous. 

The proof (in Appendix D) again relies on backward induction arguments. This theorem shows 

that to solve a model with OBCs under perfect foresight, we just need to guess a sufficiently 

high 𝑇𝑇, then find a forcing process 𝑦𝑦 solving the LCP �𝑞𝑞, 𝑀𝑀�. 

LCPs have been extensively studied in mathematics. See Cottle (2009) for a brief 

introduction, and Cottle, Pang & Stone (2009a) for a definitive survey. LCPs can be solved via 

mixed-integer linear programming (MILP), for which optimised solvers exist. This approach is 
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developed into a solution algorithm for models with OBCs in Holden (2016). 

Note that if 𝑦𝑦 solves the LCP �𝑞𝑞, 𝑀𝑀�, then for any 𝜅𝜅 > 0, 𝜅𝜅𝑦𝑦 solves the LCP �𝜅𝜅𝑞𝑞, 𝑀𝑀�. Thus, 

the properties (existence, uniqueness, difficulty, etc.) of an LCP cannot depend on the 

magnitude of 𝑞𝑞. Recall that 𝑞𝑞𝑡𝑡 gives the value of 𝑖𝑖𝑡𝑡 without the bound or the forcing process 𝑦𝑦𝑡𝑡. 

Hence, for large 𝑡𝑡, 𝑞𝑞𝑡𝑡 will be close to the steady-state level of 𝑖𝑖𝑡𝑡. For example, in models with a 

ZLB, raising the inflation target will tend to shift 𝑞𝑞 upwards. Under Calvo-type models with 

full price and wage indexation, 𝑀𝑀 is unaffected by the raised inflation target. Thus, the scale 

invariance of LCPs implies that the rise in 𝑞𝑞 will not affect existence or uniqueness in this case. 

Without full indexation, the higher inflation target will alter model dynamics and so change 

𝑀𝑀, but these indirect effects are unlikely to increase the chance of uniqueness. For one, even 

without the ZLB, higher inflation targets increase the likelihood of indeterminacy (see e.g. 

Coibion & Gorodnichenko 2011). Furthermore, while the basic three equation NK model with 

a zero inflation target has a unique perfect foresight solution (see Subsection 4.3), there is 

multiplicity under a positive inflation target (see Appendix E.2). Thus, raising the inflation 

target is unlikely to prevent self-fulfilling jumps to the ZLB. 

4. Existence and uniqueness results 

We now present our main results on the existence and uniqueness of perfect foresight 

solutions to models that are linear apart from an OBC. Our results exploit the bijection between 

solutions of the model with an OBC and solutions to the LCP. This permits us to import the 

conclusions of the LCP literature. The LCP results all rest on the properties of the 𝑀𝑀 matrix. 

Here we will focus on just two: that of being a P-matrix and that of being an S-matrix. The 

former will be key for uniqueness, and the latter for existence. We apply the conditions we 

derive to New Keynesian models. Supplemental results are contained in Appendices C and G. 

We want to establish conditions under which there is a unique solution for any possible 

initial state 𝑥𝑥0 and shocks (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞ . This guarantees that we will always be able to find a unique 

solution to the generalized perfect foresight exercise of finding a path for the model’s variables 

given an initial state and a known sequence of current and future shocks. This is a common 

exercise due to the interest in “news shocks” and anticipated policy changes. Without an OBC, 
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the Blanchard & Kahn (1980) conditions are necessary and sufficient for there to be a unique 

solution to this generalized perfect foresight exercise. 

Another reason to be interested in finding the perfect foresight path with anticipated shocks 

is that this gives one way to approximate the solution under rational expectations. This is the 

basis of the original stochastic extended path algorithm of Adjemian & Juillard (2013). This 

algorithm draws multiple samples of future shocks for periods 1, … , 𝑆𝑆, calculates the perfect-

foresight paths conditional on those future shocks, then averages over these realised paths.6 This 

suggests that the conditions under which there is a (unique) perfect foresight solution for any 

possible sequence of future shocks are likely to be close to the conditions for existence (and 

uniqueness) under rational expectations. Indeed, our proof of existence under rational 

expectations requires existence of a perfect foresight solution for all sufficiently small 

anticipated forcing processes. 

How do we relate existence or uniqueness for any possible initial state 𝑥𝑥0  and shocks 

(𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  to the prior LCP literature? Note that by linearity, for any 𝑇𝑇 ≥ 1, there exists a vector 

𝑞𝑞0 ∈ ℝ𝑇𝑇 and matrices 𝑄𝑄𝑥𝑥, 𝑄𝑄1, 𝑄𝑄2, …, each with 𝑇𝑇 rows, such that for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞ : 

𝑞𝑞 = 𝑞𝑞0 + 𝑄𝑄𝑥𝑥𝑥𝑥0 + � 𝑄𝑄𝑡𝑡𝜀𝜀𝑡𝑡

∞

𝑡𝑡=1
, 

where 𝑞𝑞 ∈ ℝ𝑇𝑇  is as defined in Definition 1. If for some 𝑆𝑆 ≥ 0 , the 𝑇𝑇 -row matrix 

[𝑄𝑄𝑥𝑥, 𝑄𝑄1, … , 𝑄𝑄𝑆𝑆] is rank 𝑇𝑇, then the vector 𝑞𝑞 will be completely unrestricted: for any possible 

𝑞𝑞, there will be some initial state 𝑥𝑥0 and shocks 𝜀𝜀1, … , 𝜀𝜀𝑆𝑆 that will result in the given 𝑞𝑞. This 

fits perfectly with the prior LCP literature, which considers existence and uniqueness for any 

possible 𝑞𝑞 ∈ ℝ𝑇𝑇. 

To simplify the statements of our main results, we make the following definition: 

Definition 3 (Sequential Radius) We say the sequential radius of the model is at least 𝑻𝑻  if 

there exists 𝑆𝑆 ≥ 0  such that the 𝑇𝑇 -row matrix [𝑄𝑄𝑥𝑥, 𝑄𝑄1, … , 𝑄𝑄𝑆𝑆]  is rank 𝑇𝑇 . We say the 

sequential radius of the model is infinite if the sequential radius is at least 𝑇𝑇 for any 𝑇𝑇 ≥ 1. 

 
6 This is not fully rational, as it is equivalent to assuming that agents act as if the uncertainty in all future periods would be 

resolved next period. However, this appears to be a close approximation to full rationality, as demonstrated by Holden (2016). 

The authors of the stochastic path method now have a version fully consistent with rationality (Adjemian & Juillard 2016). 
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Some of our results will require the model’s sequential radius to be sufficiently large. Others 

will assume an infinite sequential radius. Even this is an incredibly weak assumption, providing 

there is at least one shock. For the model of Subsection 2.1, this assumption holds with just a 

real rate shock (as without the bound 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡), or with just a monetary policy shock (shown in 

Subsection 2.4). In fact, the assumption always holds for a generic model with at least one 

shock. This means if you draw a model from an absolutely continuous distribution over the 

space of all 𝑛𝑛-dimensional linear models with at least one shock, then the model’s sequential 

radius will be infinite. Informally, in almost all models, all shocks have at least some effect on 

all variables. Under the mild assumption of infinite sequential radius, 𝑞𝑞  is completely 

unrestricted. Thus, existence and uniqueness results on LCPs that hold for all possible 𝑞𝑞 will 

translate into results for OBCs that hold for all possible initial states 𝑥𝑥0 and shocks (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞ . 

If the reader is uninterested in results that hold for all possible sequences of future shocks, 

and instead only wishes to consider current shocks, then they should work with a modified 

“sequential radius at least 𝑇𝑇” definition, which only looks at the rank of the matrix [𝑄𝑄𝑥𝑥, 𝑄𝑄1]. 

4.1. General uniqueness results 

We now present our main uniqueness results. The principal definition follows: 

Definition 4 (P-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is a P-matrix if and only if for all 𝑧𝑧 ∈ ℝ𝑇𝑇×1 

with 𝑧𝑧 ≠ 0, there exists 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, such that 𝑧𝑧𝑡𝑡(𝑀𝑀𝑧𝑧)𝑡𝑡 > 0. Equivalently, 𝑀𝑀 is a P-matrix 

if and only if all of the principal sub-matrices of 𝑀𝑀 have positive determinants.  (Cottle, Pang 

& Stone 2009b) 

Clearly, all symmetric positive definite matrices are P-matrices, so this definition captures a 

broader notion of positivity for an arbitrary matrix. Additionally, the diagonal of any P-matrix 

must be positive. In the context of models with a ZLB, this means that if 𝑀𝑀 is a P-matrix then 

positive monetary policy shocks must increase nominal interest rates. Additionally, news about 

future positive monetary shocks must lead to higher nominal interest rates in the period the 

shock actually hits. Recall that in Subsection 2.3 we found that multiplicity was driven by 

positive monetary policy shocks having negative effects. Thus, it is unsurprising that some type 

of positivity of the responses of the bounded variable to shocks is key for uniqueness. In fact: 
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Theorem 2 The LCP �𝑞𝑞, 𝑀𝑀�  has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if and only if 𝑀𝑀  is a P-

matrix. If 𝑀𝑀 is not a P-matrix, then for some 𝑞𝑞 the LCP �𝑞𝑞, 𝑀𝑀� has multiple solutions. 

(Samelson, Thrall & Wesler 1958; Cottle, Pang & Stone 2009b) 

To see why being a P-matrix is the correct notion of positivity, suppose that 𝑦𝑦 and 𝑦𝑦 ̃both 

solved the LCP �𝑞𝑞, 𝑀𝑀�. Thus, for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 0 = 𝑦𝑦𝑡𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�𝑡𝑡 = 𝑦𝑦�̃�𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃𝑡𝑡, so: 

�𝑦𝑦 − 𝑦𝑦�̃𝑡𝑡�𝑀𝑀�𝑦𝑦 − 𝑦𝑦�̃�𝑡𝑡 = �𝑦𝑦 − 𝑦𝑦�̃𝑡𝑡��𝑞𝑞 + 𝑀𝑀𝑦𝑦� − �𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃�𝑡𝑡 

= 𝑦𝑦𝑡𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�𝑡𝑡 + 𝑦𝑦�̃�𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃𝑡𝑡 − 𝑦𝑦𝑡𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃𝑡𝑡 − 𝑦𝑦�̃�𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�𝑡𝑡 ≤ 0 

as 𝑦𝑦𝑡𝑡, 𝑦𝑦�̃�𝑡, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ̃must all be non-negative. Hence, if we define 𝑧𝑧 = 𝑦𝑦 − 𝑦𝑦,̃ then 

we have that for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑧𝑧𝑡𝑡(𝑀𝑀𝑧𝑧)𝑡𝑡 ≤ 0. If 𝑀𝑀 is a P-matrix, this implies that 𝑧𝑧 = 0 so 

𝑦𝑦 = 𝑦𝑦 ̃, meaning the solution is unique.7  Informally, 𝑀𝑀  being a P-matrix guarantees positive 

shocks to 𝑖𝑖𝑡𝑡 increase 𝑖𝑖𝑡𝑡 enough on average that one cannot have the kinds of self-fulfilling jumps 

to the bound we saw in Section 2.  

The direct approach to assessing whether 𝑀𝑀 is a P-matrix involves checking the positivity 

of the determinants of all 𝑀𝑀 ’s 2𝑇𝑇  principal sub-matrices. Since this is rather onerous, in 

Appendix C.1 we present both easier to verify necessary conditions, and easier to verify 

sufficient conditions. These give a fast answer one way or the other in most cases. See Appendix 

C.4 for a practical guide to checking the various conditions. Note that if 𝑀𝑀 is not a P-matrix for 

some 𝑇𝑇, then 𝑀𝑀 will not be a P-matrix for any larger 𝑇𝑇, so to show multiplicity it suffices to 

show that 𝑀𝑀 is not a P-matrix for some small 𝑇𝑇. 

Using Theorem 1, we can apply Theorem 2 to models with an OBC, giving: 

Corollary 1 Consider an otherwise linear model with an OBC. Let 𝑇𝑇 > 0. Then: 

1) If 𝑀𝑀 is a P-matrix, then for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  there exists a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  satisfying 

the model’s equations from period 1 to 𝑇𝑇 and satisfying the model’s equations without the 

OBC (i.e. with the max removed) from period 𝑇𝑇 + 1 on. 

2) [Implied by 1.] If 𝑀𝑀 is a P-matrix, and (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfies the model’s equations, with 𝑖𝑖𝑡𝑡 > 0 

for 𝑡𝑡 > 𝑇𝑇, then (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  is the unique solution for which 𝑖𝑖𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇. 

Furthermore, suppose the model’s sequential radius is at least 𝑇𝑇, then: 

 
7 This argument just follows that of Cottle, Pang & Stone (2009b). 
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3) If 𝑀𝑀  is not a P-matrix then there exists 𝑥𝑥0  and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞   (with finitely many non-zero 

elements) such that there are multiple paths (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfying the model’s equations from 

period 1  to 𝑇𝑇  and satisfying the model’s equations without the OBC (i.e. with the max 

removed) from period 𝑇𝑇 + 1 onwards. 

This is our most important result. Parts (1) and (2) give sufficient conditions for uniqueness. 

These do not require us to be considering anticipated shocks, or for the model to have a 

sufficiently large sequential radius. Thus, they are universal conditions, both across models and 

across different types of perfect foresight exercises. The second part is particularly powerful, 

as having solved for a perfect foresight path, we know a 𝑇𝑇 large enough such that 𝑖𝑖𝑡𝑡 > 0 for 𝑡𝑡 >

𝑇𝑇. To ensure that it is the unique such solution, we just need to check that the 𝑀𝑀 matrix for that 

𝑇𝑇  is a P-matrix. The first part is also helpful, as with large 𝑇𝑇  we expect the model to be 

permanently away from the bound by 𝑇𝑇 + 1, thanks to the model’s mean reversion without the 

OBC. Even if it is not, 𝑇𝑇 = 1000  quarters may be practically equivalent to 𝑇𝑇 = ∞ , as it 

stretches the plausibility of rational expectations to suppose outcomes today depend on 

conditions in 250 years’ time. 

Part (3) of the corollary gives a necessary condition for uniqueness, under the assumption 

that the model’s sequential radius is large enough, and that we want uniqueness for all possible 

sequences of future shocks. We have already argued that both of these assumptions are mild 

and reasonable. Given these assumptions, part (3) implies the existence of multiple perfect 

foresight paths not violating the bound for at least the first 𝑇𝑇 periods, if 𝑀𝑀 is not a P-matrix. 

For large enough 𝑇𝑇, this generally implies multiple solutions to the model with the bound. In 

any case, as before 𝑇𝑇 = 1000 (say) may be equivalent to 𝑇𝑇 = ∞ in practice. 

An added reason for relying on finite 𝑇𝑇 results is that technological changes are likely to 

make many OBCs obsolete. For example, a move to electronic cash would mean the ZLB is no 

longer a constraint. If agents believe this will happen within 250 years, then taking 𝑇𝑇 = 1000 

quarters would be appropriate. 

4.2. Uniqueness in purely forward or backward looking models 

We can derive stronger results for purely forward-looking or purely backward-looking 



21 

models. A model is purely forward-looking if it has no state variables (𝑡𝑡 − 1 dated terms) other 

than the exogenous shock processes. For example, the basic three equation NK model is purely 

forward-looking. A model is purely backward-looking if it does not contain any future (𝑡𝑡 + 1) 

dated or expectational terms. Models in which agents have adaptive, not rational expectations, 

are purely backward-looking. Additionally, some indeterminate models may be transformed 

into determinate backward-looking models with an extra “sunspot” shock, via the method of 

Farmer, Khramov & Nicolò (2015). See Appendix E.4 for an example. 

For purely forward-looking models, the 𝑀𝑀  matrix will always be upper triangular: 

anticipated shocks to the bounded equation have effects even before they hit, but the period 

after they hit the economy is back to steady state. For purely backward-looking models, the 𝑀𝑀 

matrix will always be lower triangular: anticipated shocks have no effect until the period they 

hit but may continue having effects after this. Since the determinant of a triangular matrix is 

the product of its diagonal entries, and principal sub-matrices of triangular matrices are 

triangular, this simplifies checking whether 𝑀𝑀 is a P-matrix. 

Furthermore, both for purely forward-looking models and for purely backward-looking 

models, the diagonal of the 𝑀𝑀 matrix is constant. Every element of 𝑀𝑀’s diagonal just gives the 

contemporaneous response of the bounded variable, 𝑖𝑖𝑡𝑡, to a (hypothetical) shock to the equation 

that defines it. So, in a ZLB context, each element of the diagonal of the 𝑀𝑀 matrix is equal to 

the contemporaneous response of nominal interest rates to a unit, i.i.d, monetary policy shock 

(ignoring the bound). This further simplification enables results that just depend on 𝑀𝑀1,1: 

Corollary 2 Consider a purely forward-looking otherwise linear model with an OBC. Then: 

1) If 𝑀𝑀1,1 > 0, then for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  with 𝜀𝜀𝑡𝑡 → 0 as 𝑡𝑡 → ∞, there exists a unique path 

(𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfying the model’s equations and eventually escaping the bound.8 

Furthermore, suppose the model has at least one 𝑡𝑡-dated shock with a non-zero impact on 𝑖𝑖𝑡𝑡 (if 

the model has a shock to the bounded equation, then 𝑀𝑀1,1 ≠ 0 is sufficient for this), then: 

2) If 𝑀𝑀1,1 ≤ 0, then for any 𝑥𝑥0, there exists (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  with 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1 and with multiple 

paths (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfying the model’s equations and eventually escaping the bound. 

 
8 Existence of a path escaping the bound comes from the fact that if we only impose the bounds for 𝑇𝑇 periods, then 𝑖𝑖𝑇𝑇+1 is 

linear in the shock, and the shock is converging to 0, meaning 𝑖𝑖𝑇𝑇+1 must be away from the bound for large enough 𝑇𝑇. 
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We give a weaker result for purely backward-looking models in Appendix E.4. 

Corollary 2 gives an alternative proof that the model of Subsection 2.1 has multiple 

solutions. It is a model for which 𝑀𝑀1,1 = 0, since in the model, monetary policy shocks have 

no contemporaneous effect on interest rates when the ZLB is removed. With the real interest 

rate shock included, it then satisfies the conditions for the corollary’s second result. 

4.3. Uniqueness and multiplicity in New Keynesian models 

The most important consequence of Corollary 2 is that it implies the three equation NK 

model always has a unique solution when the Taylor principle is satisfied. Including a monetary 

policy shock 𝜈𝜈𝑡𝑡, but no other shocks, the model is given by: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅𝑦𝑦𝑡𝑡 + 𝛽𝛽𝜋𝜋𝑡𝑡+1, 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡+1 − 𝜎𝜎−1�𝑖𝑖𝑡𝑡 − 𝜋𝜋𝑡𝑡+1 + log 𝛽𝛽�, (5) 

𝑖𝑖𝑡𝑡 = max�0, − log 𝛽𝛽 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜈𝜈𝑡𝑡�, 

where 𝜋𝜋𝑡𝑡 is inflation, with a zero inflation target, 𝑦𝑦𝑡𝑡 is the output gap and 𝑖𝑖𝑡𝑡 is the nominal rate, 

and where the parameters 𝛽𝛽, 𝜅𝜅, 𝜎𝜎 , 𝜙𝜙𝜋𝜋 and 𝜙𝜙𝑦𝑦 are all finite and non-negative. See e.g. Woodford 

(2003) for further details on the model. We assume 𝜅𝜅�𝜙𝜙𝜋𝜋 − 1� + �1 − 𝛽𝛽�𝜙𝜙𝑦𝑦 > 0  to ensure 

determinacy without the ZLB (Bullard & Mitra 2002). To verify the conditions of Corollary 2 

we just need to check the sign of 𝑑𝑑𝜕𝜕1
𝑑𝑑𝜈𝜈1

, ignoring the ZLB, when 𝜈𝜈𝑡𝑡 = 0 for all 𝑡𝑡 ≠ 1. Standard 

calculations give: 

𝑑𝑑𝑖𝑖1
𝑑𝑑𝜈𝜈1

=
𝜎𝜎

𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦
∈ (0,1), 

thus 𝑀𝑀1,1 > 0 for this model, implying uniqueness by Corollary 2. 

Superficially, this may look like robust determinacy. 𝑀𝑀 would remain a P-matrix even if 

we reduced all of the elements of its diagonal by some small amount. But recall that the 

determinant of a triangular matrix is the product of its diagonal entries. For this model, with an 

𝑀𝑀 matrix of size 𝑇𝑇, this gives det 𝑀𝑀 = � 𝜎𝜎
𝜎𝜎+𝜅𝜅𝜙𝜙𝜋𝜋+𝜙𝜙𝑦𝑦

�
𝑇𝑇

, which tends to 0 as 𝑇𝑇 → ∞. So, while 

𝑀𝑀 is a P-matrix no matter its size, as 𝑀𝑀 gets larger, it gets arbitrarily close to not being a P-

matrix. Thus, the determinacy here is still a knife-edge result: for large 𝑇𝑇, a small change in the 

elements of 𝑀𝑀 can be enough to push 𝑀𝑀’s determinant below zero. 

In particular, we prove in Appendix H.3 that for any small 𝜀𝜀 > 0, for sufficiently large 𝑇𝑇, 
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increasing or decreasing a single element of 𝑀𝑀 by 𝜀𝜀 is sufficient to make the determinant of the 

resulting matrix negative. The proof relies on the following property of the model without the 

ZLB: if 𝜈𝜈𝑠𝑠 = 1 and 𝜈𝜈𝑡𝑡 = 0 for all 𝑡𝑡 ≠ 𝑠𝑠, then for sufficiently large 𝑠𝑠, ∑ �𝑖𝑖𝑡𝑡 + log 𝛽𝛽�∞
𝑡𝑡=1 < 0 and 

this inequality remains strict in the limit as 𝑠𝑠 → ∞ . In other words: the sum of the IRF of 

interest rates to a distant, positive monetary “news shock” is actually negative and bounded 

away from zero. The cumulated endogenous response of the policy rate to the contraction 

caused by the bad news is actually larger than the shock that caused the contraction. This is 

another example of problems caused by positive shocks to the bounded equation having a 

negative effect. 

How do things change if we include a response to the price level in the monetary rule? In 

particular, we consider adding a “+𝜒𝜒𝑝𝑝𝑡𝑡” term to the rule, where 𝑝𝑝𝑡𝑡 is the log price level and 

𝑝𝑝0 = 0. This implies a zero target for log prices. By the determinant’s continuity, for a small 

enough response to the price level, 𝜒𝜒, 𝑀𝑀 must remain a P-matrix for any finite 𝑇𝑇. Now note the 

Euler equation (5) may be rewritten in terms of the price level as: 

𝑖𝑖𝑡𝑡 + log 𝛽𝛽 = �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� + 𝜎𝜎�𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡�. 

Taking the sum of both sides over time, much as in Subsection 2.5, then gives: 

��𝑖𝑖𝑡𝑡 + log 𝛽𝛽�
∞

𝑡𝑡=1
= ��𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡�

∞

𝑡𝑡=1
+ 𝜎𝜎 ��𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡�

∞

𝑡𝑡=1
 

= −𝑝𝑝1 − 𝜎𝜎𝑦𝑦1 + lim
𝑡𝑡→∞

𝑝𝑝𝑡𝑡 + lim
𝑡𝑡→∞

𝑦𝑦𝑡𝑡 = −𝑝𝑝1 − 𝜎𝜎𝑦𝑦1, 

Hence, the only way we could have ∑ �𝑖𝑖𝑡𝑡 + log 𝛽𝛽�∞
𝑡𝑡=1 < 0 would be if 𝑝𝑝1 + 𝜎𝜎𝑦𝑦1 > 0. But as 

the period of the anticipated shock, 𝑠𝑠 → ∞, we must have that 𝑝𝑝1 → 0 and 𝑦𝑦1 → 0, since for 

determinate models, the current response to distant news decays to zero as the time to the 

shock’s realisation goes to infinity (see Appendix H.4). Hence, with any response to the price 

level, ∑ �𝑖𝑖𝑡𝑡 + log 𝛽𝛽�∞
𝑡𝑡=1 → 0 as the period of the anticipated shock, 𝑠𝑠 → ∞, unlike in the case 

with a standard monetary rule. Thus, a response to the price level produces more robust 

uniqueness than a standard monetary rule.  

This is confirmed by our numerical findings from a variety of richer models in Appendix 

E. For example, if we augment the Smets & Wouters (2007) model with a ZLB on nominal 

interest rates,9 and set its parameters to their estimated posterior-modes, then for 𝑇𝑇 ≥ 9, 𝑀𝑀 is 



24 

not a P-matrix, so the model will possess multiple solutions. However, with a monetary rule 

including a response to the price level,10 𝑀𝑀 is a P-matrix even with 𝑇𝑇 = 1000. Hence, there is 

a unique solution conditional on escaping the bound after at most 250 years. 

As an example of multiplicity in the Smets & Wouters (2007) model, Figure 3 plots two 

different solutions following the combination of shocks that are most likely to produce negative 

interest rates for a year without the ZLB.11 This combination is dominated by expansionary 

supply shocks, reducing prices (positive productivity and negative mark-up). For both 

solutions, the dashed line shows the response ignoring the ZLB, for reference. 
 

 

  

Figure 3: A “good” solution (left 4 panels) and a “bad” solution (right 4 panels), following a mixture of unexpected 

period-1 shocks to the Smets & Wouters (2007) model 

All variables are in logarithms. Inflation and nominal interest rates are annualized. The precise combination of shocks is 

detailed in Footnote 11. In all plots, dashed lines show the path the economy would have followed without the ZLB. 

These solutions have radically different consequences. The “good” solution remains close 

to the path the economy would have taken without the ZLB. Given the dominance of 

expansionary shocks, output and consumption expand, at least after the initial impact. However, 

 
9 The monetary rule has the form 𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝜕𝜕𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝜕𝜕�(⋯ ) + ⋯ �, where the … are as in the original paper. 

10 We use the rule 𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝜕𝜕𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝜕𝜕� log�𝑃𝑃𝑡𝑡
𝑌𝑌𝑡𝑡

𝑌𝑌𝑡𝑡−1
��, where 𝜌𝜌𝜕𝜕 is as in the original model, 𝑌𝑌𝑡𝑡 is real GDP and where 

the price level 𝑃𝑃𝑡𝑡 evolves according to log 𝑃𝑃𝑡𝑡 = log 𝑃𝑃𝑡𝑡−1 + log�Π𝑡𝑡
Π �. 

11 We find the vector 𝑤𝑤 that minimises 𝑤𝑤′𝑤𝑤 subject to 𝑟𝑟 ̅+ 𝑍𝑍𝑤𝑤 ≤ 0, where 𝑟𝑟 ̅is the steady state interest rate, and columns of 𝑍𝑍 

give four periods of the IRF of interest rates to the given shocks. This gives: productivity, 3.56 s.d.; risk premium, −2.70 s.d.; 

government, −1.63 s.d.; investment, −4.43 s.d.; monetary, −2.81 s.d.; price mark-up, −3.19 s.d.; wage mark-up, −4.14 s.d.. 



25 

in the “bad” solution, despite the identical impulse, the economy is at the ZLB for much longer. 

With the economy at the ZLB, interest rates are higher than they would be according to the 

usual monetary rule. This acts as if there were a series of anticipated contractionary monetary 

policy shocks. Consequently, demand-type dynamics dominate, and output, consumption & 

inflation all fall together. The longer ZLB spell is sustainable as there is a combination of 

anticipated contractionary monetary policy shocks that jointly lower nominal interest rates, 

since 𝑀𝑀 is not a P-matrix. 

4.4. Existence results 

We conclude this section by deriving results on solution existence without also requiring 

uniqueness. In this case, the key property is being an S-matrix: 

Definition 5 (S-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called an S-matrix if there exists 𝑦𝑦 ∈ ℝ𝑇𝑇 

such that 𝑦𝑦 > 0 and 𝑀𝑀𝑦𝑦 ≫ 0. Note: all P-matrices are S-matrices. 

Again, this captures a type of positivity of 𝑀𝑀. It is considerably weaker than the condition of 

being a P-matrix required for uniqueness. In a model with a ZLB it would be satisfied, for 

example, if raising rates today raised rates at all horizons thanks to the model’s persistence. 

(This corresponds to taking 𝑦𝑦 = [1,0,0, … ]′.) We can check whether a matrix is an S-matrix in 

time proportional to 𝑇𝑇2.37, by solving a linear programming problem (see Appendix B). This 

is identical to the computational complexity of matrix multiplication (up to a scaling factor). 

The property of being an S-matrix is closely related to the feasibility of an LCP: 

Definition 6 (Feasibility) We say 𝑦𝑦 ∈ ℝ𝑇𝑇 is feasible for the LCP �𝑞𝑞, 𝑀𝑀� if and only if 𝑦𝑦 ≥ 0 

and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0. We say a path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  is feasible for a model with an OBC given initial state 

𝑥𝑥0 and shocks (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞ , if when equation (3) is replaced by equation (4), with 𝑦𝑦𝑡𝑡 exogenous, 

there is some �𝑦𝑦𝑡𝑡�𝑡𝑡=1
∞  with 𝑦𝑦𝑡𝑡 ≥ 0 for all 𝑡𝑡, such that (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  solves the model with equation 

(4), and 𝑖𝑖𝑡𝑡 ≥ 0 for all 𝑡𝑡. 

By definition, if an LCP has a solution, then it is feasible. Likewise, if a model with an OBC 

has a solution, then it is feasible. If a monetary policy maker could make credible promises 

about (positive) future monetary policy shocks, then feasibility would be sufficient to allow the 

policy maker to ensure a solution. 
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If 𝑀𝑀 is an S-matrix then feasibility is guaranteed: 

Proposition 1 The LCP �𝑞𝑞, 𝑀𝑀� is feasible for all 𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 is an S-matrix. If the 

LCP �𝑞𝑞, 𝑀𝑀� has a solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇, 𝑀𝑀 is an S-matrix. (Cottle, Pang & Stone 2009b) 

Moreover, in most cases one encounters in practice, an LCP is solvable whenever it is feasible, 

i.e., whenever 𝑀𝑀  is an S-matrix. This has immediate practical consequences: if 𝑀𝑀  is an S-

matrix for some 𝑇𝑇, then we are likely to be able to solve all the size 𝑇𝑇 LCPs we encounter in 

simulating the model, whatever the model’s path without the bound (𝑞𝑞).  

Additionally, from Theorem 1, we have: 

Corollary 3 Let 𝑇𝑇 > 0. Consider an otherwise linear model with sequential radius of at least 

𝑇𝑇. Then if 𝑀𝑀 is not an S-matrix, there exists 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞   such that: 

1) There is no path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  with 𝑥𝑥𝑡𝑡 satisfying the model’s equations from period 1 to 𝑇𝑇 and 

satisfying the model’s equations without the OBC (i.e., with the max removed) from period 

𝑇𝑇 + 1 onwards. 

2) [Implied by 1.] There is no path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfying the model’s equations which escapes the 

bound after at most 𝑇𝑇 periods. 

Since large 𝑇𝑇 may be equivalent to 𝑇𝑇 = ∞ for all practical purposes, this result is already a 

helpful guide to the non-existence of relevant solutions. For example, for the Smets & Wouters 

(2007) model considered in the previous subsection, 𝑀𝑀 is not an S-matrix even with 𝑇𝑇 = 1000, 

so even allowing for 250 years at the bound is not enough to guarantee existence. However, 

under the price targeting rule from Footnote 9, 𝑀𝑀 is an S-matrix with 𝑇𝑇 = 1000. 

We can also directly obtain results on the existence or feasibility of solutions when the 

constraint is imposed for all periods (i.e., 𝑇𝑇 = ∞). Proposition 1 implies that the infinite LCP 

�𝑞𝑞, 𝑀𝑀� is feasible for all 𝑞𝑞 ∈ ℝℕ+ if and only if 𝜍𝜍 ≔ sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

�𝑀𝑀𝑦𝑦�𝑡𝑡 > 0. It turns out that 

we can bound this quantity, as in Appendix H.4 we prove: 

Proposition 2 Given an otherwise linear model with an OBC, there exist easy to calculate, non-

trivial bounds 𝜍𝜍, 𝜍𝜍, such that 𝜍𝜍 ≤ 𝜍𝜍 ≤ 𝜍𝜍. 

This enables us to derive existence results for models with OBCs despite the infeasible infinite 

dimensional problem that defines 𝜍𝜍. In particular: 
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Corollary 4 Suppose that 𝜍𝜍 > 0. Then for any 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞   the model with an OBC has a 

feasible path (a necessary condition for existence of a solution). Conversely, suppose 𝜍𝜍 = 0 and 

that the model’s sequential radius is infinite. Then there is some 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  with which the 

model has no solution. 

Importantly, this result gives existence conditions without any dependence on 𝑇𝑇. It answers the 

question: are there states and anticipated shocks for which there is no solution that eventually 

escapes the bound? This is true for the Smets & Wouters (2007) model for example, for which 

we have 𝜍𝜍 = 0  to numerical precision. However, under the price targeting rule considered 

previously, 𝜍𝜍 > 0.009, so the model always has a feasible path. Thus, under this rule, if the 

central bank can commit to future positive monetary policy shocks, then the central bank can 

ensure a solution exists that eventually escapes the bound. This gives “infinite 𝑇𝑇” evidence on 

the performance of price targeting to supplement the finite 𝑇𝑇 evidence of the last subsection. 

5. Multiplicity under rational expectations 

So far, we have concentrated on multiplicity under perfect foresight. Perfect foresight 

exercises allow us to analyse the model’s response to probability zero (“MIT”) shocks, 

assuming no other shocks arrive in future. If the initial shock is much larger than the regular 

shocks that hit the economy, then the relative error from ignoring future uncertainty may be 

moderate. Both the financial crisis and the Covid recession were large shocks that were 

considered very unlikely a priori, so perfect foresight analysis may be appropriate for them. 

Additionally, the extended path method of Fair & Taylor (1983) provides a way of 

approximately simulating a stochastic model by repeatedly solving perfect foresight exercises. 

A recent prominent example of its use is Christiano, Eichenbaum & Trabandt (2015). 

However, we are also interested in model dynamics that properly account for uncertainty. 

This requires examining rational expectations solutions. In this section, we show that given 

multiple perfect foresight solutions, we can construct sunspot rational expectations solutions 

that shift between them. We focus on describing the general form of these solutions, leaving 

the details of existence conditions to the full treatment in Appendix F. 
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5.1. Construction of sunspot solutions 

Our results here will apply to any non-linear dynamic model, not just otherwise linear 

models with occasionally binding constraints. Let 𝑥𝑥𝑡𝑡 be a vector of the model’s endogenous 

variables, with 𝑥𝑥𝑡𝑡 ∈ 𝒳𝒳 ⊆ ℝ𝑛𝑛 . Similarly, let 𝜀𝜀𝑡𝑡  be a vector of the model’s exogenous i.i.d. 

shocks, with 𝜀𝜀𝑡𝑡 ∈ ℰ ⊆ ℝ𝑚𝑚 , where 0 ∈ ℰ  . We assume that with probability 1 − 𝜎𝜎  , 𝜀𝜀𝑡𝑡 = 0 , 

while with probability 𝜎𝜎 , 𝜀𝜀𝑡𝑡 is drawn from a probability distribution over ℰ  with measure 𝓅𝓅 . 

This distribution may be either continuous or discrete. Thus, 𝜎𝜎 = 0 corresponds to the perfect 

foresight case, while when 𝜎𝜎 = 1 , the distribution of 𝜀𝜀𝑡𝑡  is unrestricted. We assume 𝑡𝑡  dated 

variables are known at 𝑡𝑡. There is no requirement that either 𝑥𝑥𝑡𝑡 or 𝜀𝜀𝑡𝑡 be in any sense “minimal”. 

For example, 𝜀𝜀𝑡𝑡  may contain non-fundamental shocks with no impact on the value of the 

model’s equations, except perhaps through beliefs. 

We assume that at any point in time, the economy can be in any one of a set 𝐾𝐾 of “regimes”. 

Both the policy functions, and the model’s equations may differ across these regimes. Thus, 

these regimes can capture both switching sunspot solutions (with differing policy functions but 

identical model equations) and switching model properties (with the model equations 

switching). If the model equations do not vary over 𝐾𝐾 , then in the limit as uncertainty 

disappears, these regimes will capture |𝐾𝐾| different perfect foresight solutions to the model. (𝐾𝐾 

may be finite or countably infinite.) We denote the regime in period 𝑡𝑡 by 𝑘𝑘𝑡𝑡. Within each regime, 

the policy functions and model equations may be a function of the length of time the economy 

has been in the current regime, denoted by 𝑠𝑠𝑡𝑡. 𝑠𝑠𝑡𝑡 = 1 in the first period in a new regime, 𝑠𝑠𝑡𝑡 = 2 

in the second, and so on. 

At the start of each period a binary “transition shock” is realised. With probability 1 − 𝛿𝛿, 

the transition shock does not hit, and the economy will remain in the regime it was in last 

period. However, with probability 𝛿𝛿 , the economy is hit with the transition shock, and 

transitions to another regime according to the period 𝑡𝑡  Markov transition matrix Ω𝑡𝑡 ≔

�𝜔𝜔𝑘𝑘,𝑙𝑙
(𝑡𝑡)�

𝑘𝑘,𝑙𝑙∈𝐾𝐾
. 𝜔𝜔𝑘𝑘,𝑙𝑙

(𝑡𝑡) ∈ [0,1] gives the probability of transitioning from regime 𝑘𝑘 to regime 𝑙𝑙 at the 

start of period 𝑡𝑡, conditional on the transition shock hitting. Rows of Ω𝑡𝑡 sum to 1. If 𝜔𝜔𝑘𝑘,𝑘𝑘
(𝑡𝑡) ≠ 0 

for some 𝑘𝑘, then if 𝑘𝑘𝑡𝑡−1 = 𝑘𝑘, there is a 𝛿𝛿𝜔𝜔𝑘𝑘,𝑘𝑘
(𝑡𝑡)  chance of remaining in regime 𝑘𝑘 at 𝑡𝑡 but with the 

“clock” reset, as if the economy had just arrived at regime 𝑘𝑘. We assume that for all 𝑡𝑡 ∈ ℤ, 
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𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾 , 𝜔𝜔𝑘𝑘,𝑙𝑙
(𝑡𝑡) = 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡

(𝑥𝑥𝑡𝑡−1)  where 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒: 𝒳𝒳 → [0,1]  for all 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+  and 𝑒𝑒 ∈ ℰ  . 

This allows transition probabilities to be deterministic functions of the current state and shock. 

We assume that the model’s equations (first order conditions, laws of motion, etc.) are in 

the general form: 

0 = 𝔼𝔼𝑡𝑡𝒻𝒻𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡
�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1�, 

where 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒: 𝒳𝒳3 → ℝ𝑛𝑛  for all 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  . We impose no stability requirement 

beyond 𝑥𝑥𝑡𝑡 ∈ 𝒳𝒳 . The rational expectations solutions we find will be near to a corresponding 

perfect foresight one, so by limiting the perfect foresight equilibria considered, we can rule out 

explosive equilibria. Such equilibria could also be ruled out by bounding 𝒳𝒳 . 

Given some 𝜎𝜎  and 𝛿𝛿, we write ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿): 𝒟𝒟𝑘𝑘,𝑠𝑠 → 𝒳𝒳  for the (unknown) policy function in the 

𝑠𝑠th period in regime 𝑘𝑘 with shock 𝑒𝑒, meaning that for all 𝑡𝑡, 𝑥𝑥𝑡𝑡 = ℊ𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡

(𝜎𝜎,𝛿𝛿) (𝑥𝑥𝑡𝑡−1). 𝒟𝒟𝑘𝑘,𝑠𝑠 ⊆ 𝒳𝒳  is the 

𝑥𝑥-domain of definition of the policy functions, taken to be independent of 𝜎𝜎  and 𝛿𝛿. This may 

be less than then entire space due to non-existence in some areas. 

Our goal is to establish existence of the policy function for some 𝜎𝜎 > 0 and 𝛿𝛿 > 0. To be 

a solution, for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠, these policy functions must satisfy: 

0 = (1 − 𝛿𝛿)(1 − 𝜎𝜎)𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 

+(1 − 𝛿𝛿)𝜎𝜎 � 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ
 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑙𝑙,1,0

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)��

𝑙𝑙∈𝐾𝐾
 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑙𝑙,1,𝜀𝜀

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ𝑙𝑙∈𝐾𝐾
. (6) 

This equation just encodes the rules for transitioning between regimes already discussed. 

When 𝜎𝜎 = 0  and 𝛿𝛿 = 0 , all future uncertainty disappears, and we are left with perfect 

foresight solutions. Setting 𝜎𝜎 = 0 and 𝛿𝛿 = 0 in equation (6) gives: 

0 = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(0,0)(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0

(0,0) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(0,0)(𝑥𝑥)�� . (7) 

These are the standard equations defining perfect foresight policy functions. In this case, the 

regime never changes from its initial value, and so “clock time”, 𝑠𝑠, gives actual time, 𝑡𝑡. The 

perfect foresight iteration 𝑥𝑥𝑡𝑡 = ℊ𝑘𝑘,𝑡𝑡,𝜀𝜀1𝟙𝟙[𝑡𝑡=1]
(0,0) (𝑥𝑥𝑡𝑡−1) may converge to a different steady state in 

different regimes, or for different initial states 𝑥𝑥0 and first period shocks 𝜀𝜀1. It may also cycle 

rather than converging. We assume these perfect foresight policy functions are known. 
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Under further technical conditions, outlined in Appendix F, we then have the following: 

Theorem 3 Under the conditions outlined in the text above and in Appendix F, there exists 𝛾𝛾 >

0  and 𝜉𝜉 ∈ (0,1)  such that for all 𝜎𝜎 < 𝜉𝜉   and 𝛿𝛿 < 𝜉𝜉  , there exists a policy function 

�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)�

𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ
 that solves the model (equation (6)). Moreover: 

sup
𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ,𝑥𝑥∈𝒟𝒟𝑘𝑘,𝑠𝑠

�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

(0,0)(𝑥𝑥)�
2

≤ 𝛾𝛾 max{|𝜎𝜎|, |𝛿𝛿|}. 

We prove this in Appendix H.6. Note that the proof is constructive, so this could form the basis 

of an effective algorithm for computing global solutions to non-linear rational expectations 

models. Theorem 3 is a powerful tool for proving the existence of rational expectations 

equilibria for general non-linear models. It implies that if there are multiple solutions under 

perfect foresight (so |𝐾𝐾| > 1), then there are generally a continuum of solutions under rational 

expectations, parameterized by the 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒 functions. Even if |𝐾𝐾| = 1, then there can still be a 

continuum of solutions under rational expectations if the one perfect-foresight solution is not 

time invariant, as in the example from Subsection 2.6. 

One immediate corollary of Theorem 3 is that if ℰ  is compact, |𝐾𝐾| is finite and for all 𝑘𝑘, 𝑙𝑙 ∈

𝐾𝐾 , 𝑠𝑠 ∈ ℕ+  and 𝑒𝑒 ∈ ℰ  , 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒  is linear, independent of 𝑠𝑠  and also linear in 𝑒𝑒 , and 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒  is 

Lipschitz, then providing each regime has a non-explosive solution, there is a solution under 

rational expectations for small enough 𝜎𝜎  and 𝛿𝛿. This gives existence for endogenous regime 

switching linear models under weaker assumptions than in e.g. Barthélemy & Marx (2017), 

though the stronger conditions in that paper are also sufficient for local uniqueness. 

5.2. Application to otherwise linear models with an OBC 

We now apply Theorem 3 to otherwise linear models with an OBC. We restrict attention 

to models that always have a unique solution to obtain clean results. However, Theorem 3 

applies more broadly to models with OBCs under more involved conditions. For example, it 

applies to the model of Subsection 2.2, confirming the results of Subsection 2.6. 

Suppose then that we have an otherwise linear model with an OBC, and that for any 𝑇𝑇 >

0, the associated 𝑇𝑇 × 𝑇𝑇 𝑀𝑀 matrix is a P-matrix. Suppose we are given a closed and bounded 

set ℰ ⊆ ℝ𝑚𝑚 giving the support of the shock distribution, with 0 ∈ ℰ, and a non-empty, closed 

and bounded set 𝒳𝒳̃ ⊆ ℝ𝑛𝑛 such that 𝑥𝑥𝑡𝑡 should be supported at least on 𝒳𝒳̃, but may have larger 
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support. 𝒳𝒳̃ could capture the space of economically relevant conditions. We suppose that for 

any initial state 𝑥𝑥0 ∈ ℝ𝑛𝑛 , and initial shock 𝜀𝜀1 ∈ ℰ  , with 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1 , there is a perfect 

foresight solution under those conditions that eventually escapes the bound and returns to the 

given steady state. Other than this restriction, the bounds may be arbitrarily large, so may not 

be overly restrictive in practice. Then we prove the following result in Appendix H.7: 

Corollary 5 Under the conditions of the preceding text, there exists a compact set 𝒳𝒳 ⊆ ℝ𝑛𝑛 with 

𝒳𝒳̃ ⊆ 𝒳𝒳 , and there exists 𝑇𝑇∗ ∈ ℕ, such that for any initial state 𝑥𝑥0 ∈ 𝒳𝒳  and initial shock 𝜀𝜀1 ∈

ℰ , with 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1, there is a unique perfect foresight solution satisfying 𝑖𝑖𝑡𝑡 > 0 for 𝑡𝑡 >

𝑇𝑇∗ , and this solution remains within 𝒳𝒳  . Furthermore, if the distribution of the shock has 

sufficient mass at 0, then the model also has a rational expectations solution that remains within 

the set 𝒳𝒳 . As the mass at 0 converges to 1, the rational expectations policy function converges 

to the perfect-foresight one. 

Any purely forward looking otherwise linear model with an OBC and 𝑀𝑀11 > 0 satisfies 

the conditions of this corollary, by Corollary 2. Thus, Corollary 5 applies to the three equation 

New Keynesian model presented in Subsection 4.3. This proves the existence of a rational 

expectations solution to this model, providing the shocks are bounded with sufficient mass at 

0. This equilibrium remains close to the perfect foresight one escaping the bound, so it does 

not get stuck in the deflationary steady state. While equilibria of this model have been exhibited 

computationally in prior work, it is reassuring to have a theoretical guarantee of their existence. 

It can be hard to distinguish numerically between non-existence and mere approximation error. 

6. Further discussion 

To see the broader relevance of our various results, in this section we further examine them 

in the context of the prior literature. We start by providing further justification for our 

imposition of a fixed terminal condition under perfect foresight. We then look at our assumption 

that the model is linear apart from the OBC and discuss our uniqueness and multiplicity results. 

We go on to provide additional context for our results on existence. We finish with a discussion 

of the benefits of price level targets. 
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6.1. Our terminal condition 

Our perfect foresight results are conditional on the economy returning to a given steady 

state about which the economy is locally determinate. For ZLB models, this means the steady 

state with positive inflation, unless the model is augmented with a sunspot equation following 

Farmer, Khramov & Nicolò (2015) (see Appendix E.4). This is in contrast to the prior literature, 

beginning with Benhabib, Schmitt-Grohé & Uribe (2001a; 2001b), and developed by Schmitt-

Grohé & Uribe (2012), Mertens & Ravn (2014) and Aruoba, Cuba-Borda & Schorfheide 

(2018), amongst others. In this literature, indeterminacy comes from the fact that agents place 

positive probability on the economy converging towards the deflationary steady state. 

A priori, it is unclear whether agents should place positive probability on the economy 

converging to deflation. Firstly, the central banks of most major economies have announced 

(positive) inflation targets. Thus, convergence to a deflationary steady state would represent a 

spectacular failure to hit the target. As argued by Christiano and Eichenbaum (2012), a central 

bank may rule out the deflationary equilibria in practice by switching to a money growth rule 

following severe deflation, along the lines of Christiano & Rostagno (2001) and Christiano & 

Takahashi (2018). Furthermore, Richter & Throckmorton (2015) and Gavin et al. (2015) 

present evidence that the rational expectations deflationary equilibrium is unstable (under 

policy function iteration) if shocks are large enough, making it much harder for agents to 

coordinate upon it. Finally, a belief that inflation will eventually return to the vicinity of its 

target appears to be in line with the empirical evidence of Gürkaynak, Levin & Swanson (2010). 

It is thus an important question whether there are still multiple equilibria when agents believe 

the economy will eventually return to the standard steady state. 

In addition, our results have important implications even without assuming a return to the 

standard steady state. Our examples in Subsection 4.4 and Appendix E show that for standard 

NK models with endogenous state variables, there is a positive probability of arriving in a state 

of the world from which there is no perfect foresight path returning to the non-deflationary 

steady state.12 Hence, if we suppose that in the presence of risk, agents deal with uncertainty 
 

12 If the LCP �𝑞𝑞, 𝑀𝑀� is not feasible, then for any 𝑞𝑞 ̂ ≤ 𝑞𝑞 the LCP �𝑞𝑞,̂ 𝑀𝑀� will also not be feasible. Consequently, if 𝑞𝑞 is a draw 
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by integrating over the space of possible future shock sequences, as in the original stochastic 

extended path algorithm of Adjemian & Juillard (2013),6 then such agents would likely place 

positive probability on tending to the “bad” steady state.13 This rationalises the beliefs needed 

to sustain multiplicity in the prior literature. 

As switching to a price level target would remove the non-existence problem, it could also 

help ensure beliefs about long-run inflation remain positive, removing this source of 

indeterminacy. Given a credible central bank, it seems natural that agents should expect a return 

to the standard steady state if it is possible, as it always is under a price level target. This 

suggests that a price level target will succeed in producing a unique outcome, despite the 

existence of a deflationary steady state. 

6.2. Other non-linearities, and our uniqueness and multiplicity results 

A limitation of our results is that they only apply to otherwise linear models, excluding 

other non-linearities. We argue here for the importance of these results despite this limitation. 

We also discuss how the tools of this paper could be applied to non-linear models. 

Bodenstein (2010) showed that linearization can exclude equilibria. Additionally, Boneva, 

Braun & Waki (2016) show that there may be multiple solutions to a non-linear NK model with 

ZLB, converging to the standard steady state, even though the linearized version of their model 

(with a ZLB) has a unique equilibrium. Thus, any multiplicity we find is strictly in addition to 

the type found by those authors. Moreover, note the multiplicity found in a simple linearized 

model in Brendon, Paustian & Yates (2013) is also found in the equivalent non-linear model in 

Brendon, Paustian & Yates (2019). This is suggestive evidence for the continued relevance of 

our results in the fully non-linear case. 

In fact, the tools of this paper can be used to analyse the properties of perfect-foresight 

models with nonlinearities other than an occasionally binding constraint. Recall that we showed 

𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑦𝑦 + Ο�𝑦𝑦′𝑦𝑦� as 𝑦𝑦′𝑦𝑦 → 0, where 𝑀𝑀 is defined in terms of partial derivatives of the 

 

from an absolutely continuous distribution, then if there are some 𝑞𝑞 for which the model has no solution satisfying the terminal 

condition, then there is no solution with positive probability. 

13 The lack of a solution tending to the standard steady state does not imply the existence of a solution tending to the deflationary 

one. However, given the indeterminacy of the deflationary steady state, it is easier to find a solution returning there in general. 
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path (see Definition 1). We did not need to impose linearity to derive the complementary 

slackness constraints on 𝑦𝑦. Thus, in a fully non-linear perfect foresight context, we can still use 

the tools we develop here to look at the (first order approximate) properties of perfect foresight 

problems in which 𝑦𝑦 does not become too large in the solution (which usually means that 𝑞𝑞 

does not go too negative). In particular, we do not need to linearize before deriving 𝑞𝑞 or 𝑀𝑀, so 

we can preserve accuracy even though only large shocks might drive us to the bound. In this 

fully non-linear case, 𝑀𝑀 will be a function of the initial state. 

Furthermore, studying multiplicity in otherwise linear models is an independently 

important exercise. Firstly, macroeconomists have long relied on existence and uniqueness 

results based on linearization of models without occasionally binding constraints, even though 

this may produce spurious uniqueness in some circumstances. 14  Secondly, it is nearly 

impossible to find all perfect foresight solutions in general non-linear models, as this is 

equivalent to finding all the solutions to a huge system of non-linear equations. Even finding 

all the solutions to large systems of quadratic equations is computationally intractable. At least 

if we have the full set of solutions to the otherwise linear model, we may use homotopy 

continuation methods to map these solutions into solutions of the non-linear model. 

Furthermore, finding all solutions under uncertainty is at least as difficult in general, as the 

policy functions are also defined by a large system of non-linear equations. The proof of 

Theorem 3 gives one way to map perfect foresight policy functions into rational expectations 

ones, via certain fixed-point iterations. Thirdly, Christiano and Eichenbaum (2012) argue that 

the additional equilibria of Boneva, Braun & Waki (2016) may be mere “mathematical 

curiosities” due to their non-e-learnability. This suggests that the equilibria that exist in the 

linearized model are of independent interest, whatever one’s view on this debate. Finally, our 

main results for NK models imply non-uniqueness, so concerns of spurious uniqueness under 

linearization will not be relevant in these cases. 

Indeed, our choice to focus on otherwise-linear models under perfect-foresight, with fixed 

terminal conditions, has biased our results in favour of uniqueness for three distinct reasons. 
 

14 Perturbation solutions are only valid within some domain of convergence, so even the results of e.g. Lan & Meyer-Gohde 

(2013; 2014) do not mean that first order determinacy implies global determinacy. 
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Firstly, because there are many more solutions under rational expectations than under perfect 

foresight, as we showed in Section 5 (under mild conditions). Secondly, because there are 

potentially other solutions returning to alternate steady states. Thirdly, because the original 

fully non-linear model may have yet more solutions. It is thus even more surprising that we still 

find multiplicity under perfect foresight in otherwise linear NK models with a ZLB. 

However, we are certainly not the first to look at multiplicity in otherwise linear models 

with OBCs. Hebden, Lindé & Svensson (2011) propose a simple way to find multiplicity: hit 

the model with a large shock, and see if one can find more than one set of periods such that 

being at the bound during those periods is an equilibrium. In practice, this suggests first seeing 

if there is a solution that finally escapes the bound after one period, then seeing if there is one 

that finally escapes the bound after two periods, and so on.15 This procedure may succeed in 

finding an example of multiplicity, and thus proving that the original model does not possess a 

unique solution. However, it cannot work completely generally as the multiplicity may only 

arise in very particular states, or may feature multiple spans at the bound. 

Like us, Jones (2015) presents a uniqueness result for models with occasionally binding 

constraints. He shows that if one knows the set of periods in which the constraint binds, then 

under standard assumptions, there is a unique path in which the constraint binds in those 

periods. However, the multiplicity for models with OBCs stems from there being multiple sets 

of periods at which the model could be at the bound. Our results are not conditional on knowing 

in advance the periods at which the constraint binds. 

Finally, uniqueness results have also been derived in the Markov switching literature. 

Examples include Davig & Leeper (2007), Farmer, Waggoner & Zha (2010; 2011) and 

Barthélemy & Marx (2019). These papers assume regime switching is exogenous. This prevents 

their application to OBCs, which generate endogenous regime switches. Determinacy results 

with endogenous switching were derived by Barthélemy & Marx (2017) assuming regime 

transition probabilities are a smooth function of the state. These results are not directly 

applicable to OBCs as OBCs produce jumps in regime transition probabilities. 
 

15 This is tractable in our context, as it is easy to constrain the MILP representation of the LCP problem to be at the bound in 

the final period. The “DynareOBC” toolkit takes this approach. See Holden (2016) for further details. 
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6.3. Existence and non-existence 

We also produced conditions for the existence of a perfect-foresight solution to an 

otherwise linear model with a terminal condition. These results provide new intuition for the 

prior literature on existence under rational expectations, which has found that NK models with 

a ZLB might have no solution at all if the variance of shocks is too high. For example, Mendes 

(2011) derived analytic results on existence as a function of the variance of a demand shock, 

and Basu & Bundick (2015) showed the quantitative relevance of such results. Existence 

conditions in a simple NK model with discretionary monetary policy and a two-state Markov 

shock were derived in close form by Nakata & Schmidt (2019). They show that the economy 

must spend a small amount of time in the low real interest rate state for the equilibrium to exist, 

which again links existence to variance. Our rational expectations existence results have a 

similar flavour, with the shock distribution required to have sufficient mass at 0. 

While most of our results are not directly related to the variance of shocks, as we work 

under perfect foresight, they are nonetheless linked. We showed that the existence of a perfect 

foresight solution depends on the path taken by nominal rates without the bound (𝑞𝑞). Many of 

our results assumed that this path was arbitrary thanks to the model’s sequential radius being 

sufficiently large. However, in a model with a small number of bounded shocks, and no “news” 

shocks, not all paths are possible for nominal rates without the bound. The more shocks are 

added, and the wider their support, the larger will be the space of paths for nominal interest 

rates ignoring the ZLB. Hence, the more likely will be solution non-existence for a positive 

measure of such paths. This helps to explain the literature’s prior results. Indeed, our proof of 

existence under rational expectations requires the existence of a perfect foresight solution for 

any sequence of sufficiently small, anticipated future shocks. 

Prior work by Richter & Throckmorton (2015) and Gavin et al. (2015; Appendix B) relates 

a kind of eductive stability (the convergence of policy function iteration) to other properties of 

the model. Non-convergence of policy function iteration is suggestive of non-existence, though 

not definitive evidence. 

It is also possible to establish existence by finding a solution to the model, perhaps 

conditional on the initial state. Under perfect foresight, the methods described in Holden (2010; 
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2016) are a possibility, and the method of Guerrieri & Iacoviello (2015) (extending Jung, 

Teranishi & Watanabe (2005)) is a prominent alternative. Under rational expectations, policy 

function iteration methods have been used by Fernández-Villaverde et al. (2015) and Richter & 

Throckmorton (2015), amongst others. However, solution algorithms cannot help us establish 

non-existence: non-convergence of a solution algorithm does not imply non-existence. 16 

Furthermore, if the problem is solved globally, there could still be an area of non-existence 

outside of the grid on which the model was solved. If we wish to guide policy makers in how 

they should act to ensure existence in any state, then there is an essential role for results on 

global existence, like those presented in this paper. 

6.4. Price level targeting 

Our results suggest that given belief in an eventual return to inflation, the central bank can 

produce a determinate equilibrium if it switches to targeting the price level, rather than the 

inflation rate. The welfare benefits of this could be substantial, given the severe recessions 

associated with prolonged ZLB episodes. See Appendix E.3 for some suggestive calculations. 

There is of course a large literature advocating price level targeting already. Vestin (2006) 

made an important early contribution by showing that its history dependence mimics the 

optimal rule, a conclusion reinforced by Giannoni (2014). Eggertsson & Woodford (2003) 

showed the particular desirability of price level targeting in the presence of the ZLB, since it 

produces inflation after the bound is escaped. A later contribution by Nakov (2008) showed that 

this result survived taking a fully global solution, and Coibion, Gorodnichenko & Wieland 

(2012) showed that it still holds in a richer model. More recently, Basu & Bundick (2015) have 

argued that a response to the price level ensures equilibria exists even when shocks have large 

variances, avoiding the problems stressed by Mendes (2011). Our argument is distinct from 

these; we showed that in the presence of the ZLB, inflation targeting rules are indeterminate, 

even conditional on an eventual return to inflation, whereas price level targeting rules produce 

determinacy, in the sense of the existence of a unique perfect-foresight path returning to the 

standard steady state. 

 
16 Holden (2016) is an exception. This algorithm always converges, either producing a solution, or a proof of non-existence. 
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Our results are also distinct from those of Adão, Correia & Teles (2011) who showed that 

if the central bank is not constrained to respect the ZLB out of equilibrium (i.e. for non-market-

clearing prices),17 and if the central bank uses a rule that responds to the right hand side of the 

Euler equation, then a globally unique equilibrium may be produced, even without ruling out 

explosive beliefs about prices. Their rule has the flavour of a (future) price-targeting rule, due 

to the presence of future prices in the right-hand side of the Euler equation. We assume though 

that the central bank must satisfy the ZLB even out of equilibrium (i.e., for all prices), which 

makes it harder to produce uniqueness. However, in line with the bulk of the NK literature, we 

maintain the standard assumption that explosive paths for inflation are ruled out, 18  an 

assumption which the rules of Adão, Correia & Teles (2011) do not require. 

Somewhat contrary to our results, Armenter (2018) shows that in a simple otherwise linear 

NK model, if the central bank pursues Markov (discretionary) policy subject to an objective 

targeting inflation, nominal GDP or the price level, then the presence of a ZLB produces 

additional equilibria quite generally. This contrast between our results and those of Armenter 

(2018) is driven by the fact that we focus on equilibria converging to the standard (non-

deflationary) steady state. We argued in Subsection 6.1 for the reasonableness of this 

assumption. Whereas under inflation targeting there are multiple paths converging to the 

standard steady state, under a price level target (PLT), the path is unique. Thus, a PLT is 

certainly ruling out many equilibria. 

Armenter (2018) points out that with a PLT there are still other perfect foresight equilibria 

that never converge to a steady state. These feature interest rates converging to zero, and a 

permanently falling price level. Since prices are an endogenous variable under a PLT, falling 

 
17 Bassetto (2004) gives a precise definition of this. The distinction is between constraints that hold for any prices (e.g., agent 

first order conditions), and constraints that hold only for the market clearing prices (e.g., market clearing conditions). The 

contention of Bassetto (2004) is that the ZLB is in the latter category—the central bank can promise negative nominal interest 

rates off the equilibrium path, which gives determinacy without negative rates actually being required. (Negative rates provide 

an infinite nominal transfer, entirely devaluing nominal wealth, so pushing up prices and preventing negative rates ever being 

called for.) Bassetto notes how dangerous it would be to rely on such infinite transfers given the possibility of misspecification. 

18 Note that the unstable solutions under price level targeting feature exponential growth in the logarithm of the price level, 

which also implies explosions in inflation rates. 



39 

prices can never be a steady state. This is already in marked contrast to the situation under an 

inflation target, in which the other equilibria feature convergence to a true deflationary steady 

state. Standard practice has been to discard the many non-bounded equilibria of NK models. 

This selection criterion would thus rule out the non-convergent equilibrium discussed by 

Armenter (2018). While Cochrane (2011) questions this selection criterion, it may be justified 

by appeal to escape clause rules (Christiano & Takahashi 2018), learning (Evans & McGough 

2018), or to infinitesimal frictions in memory or coordination (Angeletos & Lian 2021). We 

leave the application of these selection criteria to our context to future work. 

In other related work, Duarte (2016) considers how a central bank might ensure 

determinacy in a simple continuous time new Keynesian model. Like us, he finds that the Taylor 

principle is not sufficient in the presence of the ZLB. He shows that determinacy may be 

produced by using a rule that holds interest rates at zero for a history dependent amount of time, 

before switching to a max{0, … }  Taylor rule. While we do not allow for such switches in 

central bank behaviour, we find a key role for history dependence, through price targeting. 

7. Conclusion 

Determinacy conditions are crucial for understanding the behaviour of the models we work 

with in macroeconomics. This paper provides the first general theoretical results on existence 

and uniqueness for otherwise linear models with occasionally binding constraints, given 

terminal conditions. Applying our results, we showed that multiplicity is the norm in New 

Keynesian models, but that a response to the price level can restore determinacy. Our conditions 

may be easily checked numerically using the “DynareOBC” toolkit we provide.19 
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