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Rationing Under Sticky Prices 
Tom D. Holden, Deutsche Bundesbank* 09/01/2025 

Abstract: Following the Covid pandemic, the Suez Canal blockage and the 
Ukrainian war, many goods experienced stockouts and delivery delays. But if 

prices are flexible, then production cost increases pass through to prices, and 
all goods remain available. Only if prices are sticky might firms ration demand 

through stockouts or delivery delays, to avoid selling goods at a price below 
marginal cost. However, the standard assumption in solving sticky price models 

is that firms sell the entire quantity demanded at their price. This paper 
investigates the consequences of allowing firms to ration under sticky prices, in 

a continuous time model with idiosyncratic demand shocks and endogenous 
price rigidity. Rationing helps the model match empirical results from both 

micro & macro data. It produces a convex, backward bending Phillips curve, 
yet lower monetary non-neutrality and significantly higher optimal inflation. 
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1 Introduction 
Economies worldwide ground to a halt under supply constraints in the early 

2020s. Covid restrictions prevented many people from working. The Suez Canal 

was blocked by the ship Ever Given, preventing goods from reaching Europe 
from Asia. The Russian invasion of Ukraine led to the end of Russia’s gas 

exports to Europe. These supply constraints were accompanied by high 
inflation, stockouts in some consumer goods (Cavallo & Kryvtsov 2023) and 

delivery delays for goods such as cars.1  
Stockouts and delivery delays are both forms of rationing, as they are both 

ultimately a choice of the supplier. While supply disruptions increase marginal 
costs, still marginal costs remain finite. If a firm desperately wanted a 

production input while the Suez Canal was blocked, they could have put it in 
an airplane instead. If car manufacturers really wanted microchips delivered in 

2022 rather than 2023, they could have offered semiconductor manufacturers 
high enough prices to get them to switch from producing chips for GPUs and 

mobile phones. Instead, they sold consumers the substitute good “car-in-2023” 
instead of the good “car-in-2022” they were ideally looking for. 

Firms had another choice though. They could have raised prices. If prices 
had risen with the increase in marginal costs, then all goods would have 

remained available. Consumers who were prepared to pay could still have 
obtained the goods they wanted. Thus, sticky prices are essential for supply 

disruptions to lead to stockouts or other forms of rationing. 
Rationing is also common in normal times. Over 10% of all consumer goods 

are out of stock in normal times in the U.S., according to the evidence of Cavallo 
& Kryvtsov (2023). This paper builds a dynamic model of rationing under 
sticky prices to understand the implications of rationing for monetary policy 
and the broader macroeconomy. 

Unfortunately, prior dynamic models of sticky prices have all been solved 

 
1 See e.g. https://www.thedrive.com/news/new-cars-piling-up-at-german-port-will-mean-longer-wait-
for-us-buyers, https://www.cnbc.com/2021/05/07/chip-shortage-is-starting-to-have-major-real-world-
consequences.html, or https://www.thisismoney.co.uk/money/cars/article-11831443/How-long-wait-

new-car-delivered-revealed.html.  

https://www.thedrive.com/news/new-cars-piling-up-at-german-port-will-mean-longer-wait-for-us-buyers
https://www.thedrive.com/news/new-cars-piling-up-at-german-port-will-mean-longer-wait-for-us-buyers
https://www.cnbc.com/2021/05/07/chip-shortage-is-starting-to-have-major-real-world-consequences.html
https://www.cnbc.com/2021/05/07/chip-shortage-is-starting-to-have-major-real-world-consequences.html
https://www.thisismoney.co.uk/money/cars/article-11831443/How-long-wait-new-car-delivered-revealed.html
https://www.thisismoney.co.uk/money/cars/article-11831443/How-long-wait-new-car-delivered-revealed.html
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under the simplifying assumption that firms satisfy all demand at their posted 

price, even if that results in them selling at a price below marginal cost. This is 
true for both Calvo, Rotemberg and menu-cost approaches to modelling price 

rigidities. While tractable, this seems deeply implausible. 
If a firm cannot adjust their nominal price, then their real price will be 

declining over time. A lower real price implies higher demand for their good, 
and so higher sales. With short-run decreasing returns to scale, higher sales in 

turn means higher real marginal costs. So, the firm’s real price is declining, 
while their real marginal cost is increasing. If the price remains fixed, eventually 

the firm’s marginal cost will equal or exceed its price. No firm would want to 
continue to sell their good in this state. Instead, they would ration demand, only 

selling up to the quantity at which price equals marginal cost. 
Does rationing really matter in practice? I will present new retail scanner 

data evidence that supports the ubiquity of rationing, but a simple back of the 
envelope calculation is also instructive. Perhaps one reason the prior literature 

has been happy to rule out rationing is that they have had a misleading 
calculation in mind: “Mark-ups are 10%, inflation is 2%, prices are updated at least 

once per year, real prices will not hit marginal cost.” But this is not the right 
calculation when firms face short-run decreasing returns to scale. The estimates 

of Abraham et al. (2024) using data from Belgian firms imply that around 13 of 
all labour and intermediate inputs are fixed at annual frequency, implying a 

total share of fixed inputs in production, 𝛼𝛼, of around 5
9.2 Thus, firm marginal 

costs are roughly proportional to 𝑦𝑦
𝛼𝛼

1−𝛼𝛼 = 𝑦𝑦
5
4, where 𝑦𝑦 is their output. Meanwhile, 

firms face demand proportional to �𝑝𝑝
𝑃𝑃�

−𝜖𝜖
, where 𝑝𝑝 is their nominal price, 𝑃𝑃 is 

the price level, and 𝜖𝜖 ≈ 10 in standard calibrations. So, if the price level 

increases by 2% (over a year, say), but the firm’s nominal price stays fixed, then 

 
2 From Table 3, column (3) or (4) of Abraham et al. (2024), we see that we cannot reject that the share of 
all capital inputs that are fixed is 100% at a 1% (or lower) significance level, and we cannot reject that the 
shares of all labour or intermediate inputs includes that are fixed are both 33% at a 10% (or lower) 
significance level. Ignoring intermediates, with a capital share of 1

3, this gives a total fixed share in 
production of 1 × 1

3 + 1
3 × 2

3 = 5
9. Boehm, Flaaen & Pandalai-Nayar (2019) find that intermediates are perfect 

complements to other inputs, so given their fixed share 13 is less than 59, we are justified in taking 59 as the 

overall fixed share. 
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firm sales increase by 2% × 10 = 20%, which means marginal costs increase by 
5
4 × 20% = 25%. A 25% rise in marginal costs is more than enough to erode 
standard calibrations of firm level mark-ups. Thus, we should expect firms with 

one year old prices to be rationing. 
This simple calculation is likely to understate firms’ incentives to ration. 

Firstly, firms face high frequency fluctuations in demand. At times of high 
demand, marginal costs will be high, making rationing more tempting. 

Secondly, inflation can be much higher than 2%. It was 9% over the period from 
June 2021 to June 2022 in the U.S..3 With 9% inflation and a fixed nominal price, 

it would take less than a quarter for marginal costs to have risen by 25%. Thirdly, 
demand is also growing over time due to aggregate income growth. Even 

holding wages fixed, 2% demand growth implies 2.5% increase in marginal 
costs. Finally, marginal costs are increasing over time due to irregular 

replacement of broken machines, and imperfect maintenance. Firms face non-
convex adjustment costs in new investment (Cooper & Haltiwanger 2006; Khan 

& Thomas 2008) and maintenance rates are below depreciation rates (Kabir, 
Tan & Vardishvili 2024).4 Thus, in between installations of new machines, 

capital stocks will be declining and marginal costs will be increasing.5 
A natural question is why firms with price near marginal cost do not just 

 
3 https://fred.stlouisfed.org/series/CPIAUCSL.  
4 Kabir, Tan & Vardishvili (2024) find that annual maintenance expenditure is around 6.2% of the value 
of the capital stock, while their (caveated) estimate of annual depreciation is around 9.4% of the value of 

the capital stock. 
5 How much on average capital stocks are decreasing over the life of a price will depend on just how often 
firms make significant capital investments, and how correlated these times are with price change times. It 
seems natural to suppose that any firm going to the significant trouble of installing new machines would 
also take the much smaller step of updating its price at the same time. Using data extracted from Figure 
1 of Cooper & Haltiwanger (2006) reveals that in any year, around 57% of all firms do not invest enough 

to cover depreciation (6.9% in their data) plus 2% growth, and 49% of all firms do not invest enough to 
cover just depreciation. This suggests that firms increase their capital stock less often than they update 
prices. (The price adjustment estimates of Blanco et al. (2024b) imply around 24% of firm prices last for 
at least a year.) This is consistent with net investments being accompanied by price changes. 
Adam & Weber (2019) stress declining firm marginal costs over the firm life cycle. This is not inconsistent 
with rising marginal costs over the life of a price if productivity improvements (perhaps brought about 

by the installation of new machines) are accompanied by price changes. 

https://fred.stlouisfed.org/series/CPIAUCSL
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update their price to restore their mark-up.6 In a Golosov Lucas (2007) menu 

cost economy, with constant returns and no micro or macro uncertainty, it is 
clear that paying the menu cost is always optimal for a firm with price equal to 

marginal cost. Waiting 𝑡𝑡 weeks to change prices is dominated by changing 
prices now but setting a higher price such that in 𝑡𝑡 weeks your real price is what 

you would have set had you waited. 
However, any micro or macro uncertainty can destroy this result. Once there 

is uncertainty, it can be optimal to tolerate rationing or a price below marginal 
cost in order to avoid repeated price changes. For example, suppose your price 

is currently too low, but you expect aggregate or idiosyncratic productivity to 
improve soon (perhaps due to mean reversion), at which time your current 

price will be comfortably above marginal cost. Modern menu cost models rely 
on random menu costs (Dotsey, King & Wolman 1999) and free price change 

opportunities (Nakamura & Steinsson 2010) to match the micro data, so in 
these models there is an even greater incentive to temporarily tolerate rationing 

or a price below marginal cost. Maybe now the menu cost is high, but next 
period it could be much lower. At the risk of oversimplifying, modern menu 

cost models work hard to look more like a Calvo model, and in a Calvo model, 
many firms get stuck with price below marginal cost. For example, price change 

hazard functions appear flat (Klenow & Kryvtsov 2008; Nakamura & Steinsson 
2008; Klenow & Malin 2010), so old prices (with a higher probability of being 

lower than marginal cost) are no more likely to be adjusted than new prices. 
This also means that models that allow for rationing will be consistent with 

much lower price adjustment frictions than models that do not. In a model 
without rationing, firms risk substantial losses if they do not adjust their price. 

To match the data in which they do not adjust their price despite this, the price 
adjustment frictions must be large. In a model with rationing though, the firm 

can always guarantee weekly positive profits no matter how old its price is, thus 
smaller adjustment frictions are needed to match the observed low frequency 
of price adjustment. If your prior is that adjustment frictions, like menu costs, 
are small, then you should place greater posterior weight on models with 

 
6 A version of this point was made in Barro (1977). 
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rationing, such as the one I present in this paper in Section 3. 

My basic model is in continuous time, with Calvo-type price rigidity.7 In my 
preferred variant of the model, firms are owned by conglomerates, who can 

choose the arrival rate of price adjustment opportunities for the firms they 
manage, following Blanco et al. (2024b). This provides aggregate state 

dependence, while matching the flat adjustment hazard functions found by 
Klenow & Kryvtsov (2008), Nakamura & Steinsson (2008) and Klenow & Malin 

(2010) 
At all points in time, firms can freely choose their sales. Optimally, they will 

meet demand if they can do so with price above marginal cost, otherwise they 
will just produce up to the point at which price equals marginal cost, rationing 

demand. To smooth out the kink introduced by this decision, I assume that 
firms face demand shocks that are independent both across firms and over time. 

With a carefully chosen density, the model then admits aggregation with a finite 
dimensional state vector, permitting analytic results and easy simulation. 

Whereas the standard model without rationing is unstable at high inflation 
levels, the model with rationing is robustly stable, with reasonable behaviour 

even under extreme shocks. 
I show that the model generates a convex, backward bending Phillips curve, 

in line with the evidence surveyed in the next section. The convexity emerges 
from the fact that high demand leads to high rationing. For the same reason, 

allowing rationing reduces the overall degree of monetary non-neutrality. The 
model also generates a robustly positive output maximizing inflation level, 

around 1%, far higher than the near 0% level in the absence of rationing. This 
result is driven by the low efficiency costs of inflation under rationing. 

Intuitively, rationing prevents firms with old, highly distorted prices from 
selling huge quantities, reducing overall misallocation. I provide further 

intuition for the relatively high productivity of economies with rationing in 
Section 4 when presenting the results.  

The model also matches a range of further empirical evidence presented in 
 

7 Early continuous time New Keynesian models were developed by Posch, Rubio-Ramírez & Fernández-

Villaverde (2011), (2018). 
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the next section, despite only introducing one new parameter in the basic 

variant. This evidence includes new evidence from supermarket scanner data 
on sales over the life of a price, which supports the ubiquity of rationing. Section 

5 of the paper considers various extensions of the base model, both to 
demonstrate robustness of the key conclusions, and to build a quantitative 

model with which to examine the broader empirical implications of rationing, 
particularly following supply shocks.  

Prior literature.  Important early work examining rationing with sticky 
prices includes Barro & Grossman (1971), Drèze (1975) and Svensson (1984). 

Barro & Grossman look at outcomes in a one period model when both 
aggregate output and aggregate labour may be rationed. Drèze examines at 

equilibrium existence with the possibility of rationing in an Arrow-Debreu 
setup with price inequality constraints. Svensson looks at rationing in a 

dynamic monetary model with a single good. A little more recently, Corsetti & 
Pesenti (2005) worked in a proto-New Keynesian framework with prices set one 

period in advance, and were careful to restrict their model’s shocks to ensure 
the absence of rationing. 

I am aware of three papers that look at rationing in a modern (New 
Keynesian) setting. Huo & Ríos-Rull (2020) and Gerke et al. (2023) look at the 

rationing of labour supply that comes from sticky wages, but omit rationing on 
the price side. These papers both have infinite dimensional state vectors, which 

makes it challenging to understand all the details of their mechanics. Hahn 
(2022) looks at rationing under price rigidity in the steady state of a New 

Keynesian model with Calvo price frictions. While he is able to derive some 
interesting comparative statics results, his approach is not tractable for looking 

at dynamics, so he provides no dynamic results. Without idiosyncratic shocks, 
he also cannot hope to produce an empirically reasonable path of output over 

the life of a price, even in steady state, as we will see in Subsection 2.1. 
Another relevant strand of the literature looks at stockouts in models of 

inventories. Contributions include Alessandria, Kaboski & Midrigan (2010), 
Kryvtsov & Midrigan (2013) and Bils (2016). They demonstrate the importance 

of inventory dynamics for a variety of macro questions. However, in all of these 
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papers, firms always meet demand if they have stock available, even if the 

marginal value of that stock to the firm is greater than the price at which they 
can sell the good. Thus, in these models too, firms would like to ration in some 

circumstances. For the sake of tractability, my model will not feature 
inventories, but combining inventories and rationing is a promising avenue for 

future research. 

2 Empirical evidence for rationing 
The previous arguments suggest rationing should be widespread. In line 

with this, Cavallo & Kryvtsov (2023) found that around 11% of all goods in 

their data were out of stock in 2019, using daily web-scraped data from 17 large 
retailers in the U.S..8 This may understate the true prevalence of rationing, since 

retailers can encourage consumers to substitute away from particular goods by, 
for example, lowering their ranking in search results, worsening their position 

on physical shelves, or by reducing advertising. Encouraging such substitution 
helps reduce stockouts, which may provide a reputational benefit for the store. 

“Shrinkflation” may also mask rationing. If I want 400 grams of cereal, but it is 
now in sold in 375-gram boxes, I am unlikely to buy two boxes. 

Unsurprisingly, Cavallo & Kryvtsov (2023) found that stockouts increased 
massively during the Covid pandemic. More interestingly though, they found 

that in 2022 (January to August), still 23% of goods were out of stock.9 By 2022 
many of the direct effects of Covid had subsided, but inflation was picking up 

worldwide. Thus, in line with the story of the model I will present, it appears 
that high inflation leads to large amounts of rationing. 

I will shortly present further micro-evidence on the prevalence of rationing. 
In particular, using retail scanner data, I show that quantities sold are concave 

in the age of a price. Thus, goods with young prices experience relatively high 
output growth, while goods with older prices experience relatively low output 

growth. This fits with quantities lying on the demand curve for young prices, 
with inflation driving real price declines and hence sales increases, and 
quantities lying on the supply curve for older prices, with increasing marginal 

 
8 The number 11% was extracted from Figure 2 of Cavallo & Kryvtsov (2023). 
9 The number 23% was extracted from Figure 2 of Cavallo & Kryvtsov (2023). 
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costs driving ever tighter rationing. 

Rationing will also help to explain two important sets of macro facts. Firstly, 
rationing will help to explain the observed convexity of the Phillips curve. For 

pre-Covid evidence on this, see, for example, Kumar & Orrenius (2016), Babb 
& Detmeister (2017) or Forbes, Gagnon & Collins (2022). The fact that the 

inflation of 2022 was not accompanied by huge output booms provides “natural 
experiment” evidence in further support of such convexity. Under rationing, 

such convexity emerges naturally. When demand is already high, further 
demand increases just lead to increased rationing, rather than increased output. 

As firms with sufficiently high prices will not ration, increases in rationing tilt 
the welfare relevant price index towards such highly priced firms, increasing 

the aggregate price level. 

Secondly, recent estimates of the response to monetary shocks from 
Miranda-Agrippino & Ricco (2021) and Bauer & Swanson (2023) suggest that 

monetary shocks cause an immediate jump in both the price level and output. 
For reference, Figure 1 plots the impulse response to a monetary policy shock 
following the informationally robust specification from Figure 3 of Miranda-
Agrippino & Ricco (2021), but estimated using PCEPI in place of CPI. Calvo or 

Rotemberg type models of price rigidity can never generate a jump in the price 
level following a shock, as the price level is a state variable in these models. By 

contrast, in a model with rationing the price level is no longer a state variable, 
since jumps in levels of rationing cause jumps in the aggregate price index. 

Figure 1: Impulse response to a monetary policy shock. Informationally robust specification from 

Figure 3 of Miranda-Agrippino & Ricco (2021), but estimated using PCEPI in place of CPI. 

95% credible bands highlighted.  
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Jumps in rationing cause jumps in the aggregate price level, since they lead the 

weight placed on goods with relatively higher prices to jump up, due to 
rationing of lower price goods. 

One challenge to this explanation is that Miranda-Agrippino & Ricco (2021) 
and Bauer & Swanson (2023) measure the price level with the CPI index, which 

in the absence of missing data would use essentially fixed weights.10 In 
continuous time, a fixed weight index can only jump if a positive measure of 

firms adjust their price, which never happens in Calvo type models. However, 
in practice, the CPI data collectors have to deal with many missing prices, for 

which they then use imputation based on price growth of other items. Stockouts 
(from rationing) are a major source of missing prices. Thus, the CPI imputation 

procedure ascribes average price changes from non-rationed goods to rationed 
goods. Since rationed goods are less likely to have changed price, this produces 

greater aggregate inflation than the true fixed weight index after an inflationary 
shock, bringing the CPI index closer to the welfare relevant price index. 

While menu cost models can also potentially generate a jump in prices after 
a shock without rationing, cleanly identified monetary policy shocks are small, 

and so are unlikely to lead to large amounts of price resetting. For example, 
Blanco et al. (2024a) calibrate a menu cost model to match both micro price 

data and the aggregate response of the price change frequency to inflation, and 
find that 1% increases in the money supply are mostly absorbed by output, not 

prices, in the short run. 
Let me end this section by stressing that this paper is not about a 

fundamentally different model of price rigidity. Rather, it is about relaxing a 
simplifying assumption previously used in solving such models. As such, 
whatever evidence supports your favourite sticky price model will probably 
also support the same model extended to allow for rationing. 

2.1 Evidence from scanner data 
I will now present new evidence from micro scanner data to support 

rationing being widespread. By looking directly at quantities sold, I can 

 
10 Pre-2023 weights were updated biennially, since 2023 they are updated annually. 
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measure not only stockouts, but also less direct forms of rationing, such as 

changes in product placement. I use data from a former chain of Chicago 
supermarkets called “Dominick’s Finer Foods”, made freely available by the 

Kilts Center for Marketing at Chicago Booth.11 The data covers the period 1989 
to 1994, during which time annual PCEPI inflation was between around 2% and 

around 5%.12 While newer data is always preferable, supermarket practices 
have not changed so dramatically in the last thirty years, and the use of open 

data ensures replicability. 
The data records the prices and quantities sold of products from 29 broad 

categories,13 from 93 stores, over 399 weeks. The 29 broad categories are further 
refined into 92 narrower categories.14 Where possible, I use the item code 

information provided by the supermarket to match goods which are newer 
versions of former products. I treat goods at different stores as being distinct. 

For each good, at each store, I drop the following observations: 
• Those with price equal to the first price observed for the good. (We do not 

observe the start of the first price spell, so we cannot construct price age for 
those observations.) 

• Those with price equal to the final price observed for the good. (Maybe the 
good disappeared due to changing tastes, in which case the concavity in 

sales over the span of the final price could reflect demand, not supply.) 
• Those with price less than the cumulative maximum price for the good at 

that store. (This ensures we are only looking at sales after a price rise, not a 

 
11 https://www.chicagobooth.edu/research/kilts/research-data/dominicks.  
12 https://fred.stlouisfed.org/series/PCEPI.  
13 Analgesics, Bath Soap, Bathroom Tissues, Beer, Bottled Juices, Canned Soup, Canned Tuna, Cereals, 
Cheeses, Cigarettes, Cookies, Crackers, Dish Detergent, Fabric Softeners, Front-end-candies, Frozen 
Dinners, Frozen Entrees, Frozen Juices, Grooming Products, Laundry Detergents, Oatmeal, Paper Towels, 

Refrigerated Juices, Shampoos, Snack Crackers, Soaps, Soft Drinks, Toothbrushes, Toothpastes. 
14 The split into narrower categories was unavailable for “Refrigerated Juices”, so I allocated goods in this 
category into the following eleven narrower categories based on their description field: Orange Juice, 
Orange Drinks, Apple Juice and Cider, Cranberry Juices and Cranberry Juice Blends, Other 
Fruit/Vegetable Juices, Fruit Punch and Mixed Fruit Drinks, Lemonade, Iced Tea, Dairy-based Drinks and 
Shakes, Puddings, Colored Easter Eggs. The CSV file giving the allocation of items to categories is 

contained in the replication materials for this paper. 

https://www.chicagobooth.edu/research/kilts/research-data/dominicks
https://fred.stlouisfed.org/series/PCEPI
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price cut. It would be unsurprising if sales initially increased after a price 

cut. We want to pick up the increase in sales after a price rise coming from 
inflation eroding real prices. This filter also takes out sales during which 

demand may be distorted by different advertising levels.) 
• Those occurring at the same time as a change in price, or the week after a 

missing observation (which could have hidden a change in price). (Keeping 
observations the period of a price change could be a source of endogeneity, 

due to the same demand shock influencing both quantities sold and the 
decision to change prices.) 

• Those with a price age greater than four years. (There are relatively few 
prices that ever last so long. Including them would reduce estimation 

reliability due to the use of average output over the life of a price in my 
regression specification.) 
I estimate the following linear model for quantity sold as a function of the 

age of the price: 
𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 − 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡−1

𝑦𝑦�̅�𝑖,𝑗𝑗
= 𝛽𝛽𝐴𝐴�𝑖𝑖,𝑗𝑗,𝑡𝑡� + 𝛾𝛾𝑖𝑖,𝑡𝑡 + 𝜎𝜎𝑖𝑖,𝐴𝐴�𝑖𝑖,𝑗𝑗,𝑡𝑡�

(1) 𝜎𝜎𝑖𝑖,𝑗𝑗
(2)𝜎𝜎𝑖𝑖,𝑡𝑡

(3)𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡. 

Here, 𝑖𝑖 indexes narrow category-store pairs (92 narrow categories × 93 stores = 
8,556 narrow category, store pairs). 𝑗𝑗 indexes product-price pairs, of which 

there are 947,660 (the same product receives a different 𝑗𝑗 in two periods if its 
price differs). 𝑡𝑡 indexes time in weeks. 𝐴𝐴�𝑖𝑖, 𝑗𝑗, 𝑡𝑡� is the age in weeks of the 𝑗𝑗th 

product-price from category-store 𝑖𝑖 at 𝑡𝑡,15 and 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 is the number of units sold 
of this item, that week. 𝑦𝑦�̅�𝑖,𝑗𝑗 is the average of 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 over the life of the price. 

The left-hand side of this specification gives a measure of sales growth that 
is robust to the presence of zeros in 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡. Working in differences, not levels, 

ensures consistency even when products experience 𝐼𝐼(1) demand shocks, due 
to entry or exit of substitute products, for example. On the right-hand side, 

𝛽𝛽𝐴𝐴�𝑖𝑖,𝑗𝑗,𝑡𝑡� gives age fixed effects, our prime variable of interest. 𝛾𝛾𝑖𝑖,𝑡𝑡 gives category-
store-time fixed effects to mop up changes in demand for specific category types 

 
15 For goods without missing observations, new prices start with age one (assuming that the price change 
occurred at the end of the previous week), so the first observed age will be two, as one week is dropped 
due to the price change. For goods with some missing observations, we renormalize ages so that the first 

included observation is age two. 
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in specific locations at specific times (think of the demand for candy around 

Halloween, concentrated in family neighbourhoods). I model 
heteroskedasticity in the residual by category-store combined (separately) with 

age, product-price and time. This substantially improves the efficiency of my 
estimates. 

 

After differencing, I am left with 21,474,126 observations. Estimating the 
model on these observations by feasible generalized least squares gives the 

estimates summarized in Figure 2. This figure plots 100 ∑ 𝛽𝛽𝑎𝑎
AGE
𝑎𝑎=3  as a function 

of AGE in the black solid line. I.e., it plots the average level of sales over the life 
of a price. Due to the category-store-time fixed effects, this is only identified up 
to a linear trend, so the plot is normalized so that the impact is zero for age 2 

and age 100. The dashed lines give 99% confidence bands, constructed with 
three-way clustered standard errors (Cameron, Gelbach & Miller 2011), with 

groups indexed by category-store combined (separately) with age, product-

 
16 In the notation of equation (3) from Section 3 this is 100 log 𝑦𝑦𝜏𝜏,𝑡𝑡, detrended to be 0 at 2 and 100 weeks. 

Figure 2: Average output over the life of a price (𝟏𝟏𝟏𝟏𝟏𝟏 ∑ 𝜷𝜷𝒂𝒂
AGE
𝒂𝒂=𝟑𝟑 ). 

The effect is identified up to a linear trend, so I normalize to zero at ages 2 and 100. 
The black solid line gives the estimates. The dashed lines give 99% confidence bands. 

The red line gives the prediction of the model from Section 3.16 
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price and time, so with indices �𝑖𝑖, 𝐴𝐴�𝑖𝑖, 𝑗𝑗, 𝑡𝑡��, (𝑖𝑖, 𝑡𝑡) and �𝑖𝑖, 𝑗𝑗�. The first grouping 

allows for heterogeneity in the effects of age across categories and stores. The 
second allows for time-varying correlation between the residuals of all 

products in a category and store. The third allows for arbitrary correlation 
across time for the residuals from any particular product and price. 

We see that relative to the normalization, sales grow for around 30 weeks, 
before starting to decline. This is consistent with firms rationing demand for 

products with old prices. While a good’s nominal price is fixed, its real price is 
declining, leading to higher sales. But with decreasing returns, higher sales 

mean higher marginal costs. Eventually, marginal costs are higher than prices, 
so the firm rations demand. Under rationing, sales are a decreasing function of 

real price (due to decreasing returns again), so sales are then declining in price 
age. The result is that sales are a concave function of price age, as we see here. 

Without any rationing, log-sales would be linear in firm age (as long as demand 
is roughly isoelastic), so after normalizing we would not find any statistically 

significant difference from zero.17 
The red line in Figure 2 plots the prediction of the basic model I will present 

in Section 3. This is not a calibration target of the model, so it is reassuring how 
well the model performs. You might be surprised by the small size of the 

predicted effect of price age on sales, though. After all, if the price elasticity of 
demand is −10, then with 2% inflation, over 30 weeks sales should have 

increased by over 11% without rationing. If firms started rationing from week 
30 on, then that would still imply a normalized peak impact of over 7.5%.18 

However, my model is one in which firms face idiosyncratic demand shocks 
that are independent across time. These shocks mean that for any price age, a 

firm’s expected sales is a mix of their sales when their demand shock is high, 
so they ration, and their sales when their demand shock is low, so they meet 
demand. This reduces the sensitivity of average sales to price age, matching the 
data. A model without idiosyncratic demand shocks would predict implausibly 

 
17 Standard calibrations of Kimball (1995) demand can generate concavity in sales over the life of a price, 
without any rationing. 
18 Something like this would be true in the Hahn (2022) model, for example. 
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high average sales growth for young prices. 

3 The basic model 
I will now present my basic model of rationing under sticky prices. 

Throughout the paper, I stick to the convention that upper case letters denote 
aggregate variables, while lowercase Latin letters denote firm specific variables. 

The model is in continuous time, with time measured in years throughout. 
Letters without time subscripts denote steady-state values. For simplicity, there 

is no aggregate uncertainty: I will only look at the impact of prior probability 
zero “MIT” shocks. 

3.1 Firms and aggregators 
The model will feature a continuum of firms of measure one. Firms are only 

able to adjust their price when they are hit by a shock from a non-homogenous 
Poisson process. In particular, price change opportunities arrive at time 𝑡𝑡 with 

rate 𝜆𝜆𝑡𝑡 > 0, where ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
−∞ = ∞ for all 𝑡𝑡. As a result, the time 𝑡𝑡 density of firms 

that last adjusted their price at time 𝜏𝜏 is given by 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 . Note that, as 

required ∫ 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑑𝑑𝜏𝜏𝑡𝑡

−∞ = ∫ d
d𝜏𝜏 𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

𝜏𝜏 𝑑𝑑𝜏𝜏𝑡𝑡
−∞ = 1 − 𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

−∞ = 1. I index 
firms with the time at which they last updated their price 𝜏𝜏, so this density will 

appear frequently. 
Firms will face demand shocks that are independent both across firms, and 

across time 𝑡𝑡. This means that over even an arbitrarily small interval of time, a 
firm will face all possible values of the demand shock. I write 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 for the 

output of a firm at time 𝑡𝑡, that last updated their price at time 𝜏𝜏, that is hit by a 
demand shock of level 𝜁𝜁 ∈ [0,1]. Demand shocks 𝜁𝜁  will be drawn from a 

Beta(𝜃𝜃, 1) distribution, where 𝜃𝜃 > 0, meaning they have probability density 
function 𝑔𝑔(𝜁𝜁) = 𝜃𝜃𝜁𝜁𝜃𝜃−1. This implies the mean of the demand shock is 𝜃𝜃

𝜃𝜃+1 and 

the variance of the demand shock is 𝜃𝜃
(𝜃𝜃+1)2(𝜃𝜃+2) ≈ 1

𝜃𝜃2. Demand shocks are 
essential for tractability as they smooth out the kink introduced by the rationing 

decision. This particular distribution for the demand shocks is needed for the 
model to have a finite dimensional state. 𝜃𝜃 is the only non-standard parameter 

in the entire model. I will calibrate it to match the evidence from Cavallo & 
Kryvtsov (2023) that around 11% of all goods are rationed in normal times. 
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The aggregate good 𝑌𝑌𝑡𝑡 is produced by a competitive industry of 

“aggregators” with access to the technology: 

𝑌𝑌𝑡𝑡 = 𝐷𝐷− 𝜖𝜖
𝜖𝜖−1 �� 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

𝜏𝜏 � 𝜁𝜁  𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡

𝜖𝜖−1
𝜖𝜖  𝑔𝑔(𝜁𝜁) d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞
�

𝜖𝜖
𝜖𝜖−1

. (1) 

Here, 𝜖𝜖 > 1 is the elasticity of substitution across varieties, and 𝐷𝐷 = 𝜃𝜃
𝜃𝜃+1 is a scale 

factor chosen to ensure that if 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 is one for all 𝜁𝜁  and 𝜏𝜏, then 𝑌𝑌𝑡𝑡 = 1. This 

aggregator is essentially the standard Dixit-Stiglitz one. The only changes are 
the weighting by the density of firms that last updated at time 𝜏𝜏, and the inner 

integral over the possible draws of the demand shock. Demand is higher for 
varieties receiving a higher draw of 𝜁𝜁 . To understand the inner integral, you 

should think of there being a positive measure of firms that last updated their 
price at time 𝜏𝜏. Of these infinitely many firms, a density 𝑔𝑔(𝜁𝜁) will receive 

demand shock 𝜁𝜁  at time 𝑡𝑡. 
Like normal, aggregators choose their input quantities to maximize their 

profits: 

𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡 − � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑝𝑝𝜏𝜏 � 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞
, 

where 𝑃𝑃𝑡𝑡 is the aggregate price, and 𝑝𝑝𝜏𝜏  is the price of all varieties that last 
updated their price at time 𝜏𝜏.19 In doing so, they face the supply constraints 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 ≤ 𝑦𝑦�̅�𝜁 ,𝜏𝜏,𝑡𝑡 for all 𝜁𝜁 , 𝜏𝜏 and 𝑡𝑡. The sales limits 𝑦𝑦�̅�𝜁,𝜏𝜏,𝑡𝑡 will be chosen by firms. The 
first order conditions of this problem imply that firms face the demand 

constraint: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 ≤ �
𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡. (2) 

Demand places an upper bound on firm sales, not a lower bound. 
Unlike in a standard model, aggregators will make profits when rationing 

is allowed. The presence of sales limits mean that the aggregators face 
decreasing returns to scale, and so positive aggregator profits are consistent 

with perfect competition. Another way to see this is to note that the true price 
index would integrate over a sum of the actual price of goods, and the Lagrange 

multipliers on the sales limits, but aggregators do not “pay” the Lagrange 

 
19 We are assuming here that all firms updating their price at the same time will choose the same price. 

This will be true in equilibrium. 



 

Page 17 of 51 

multipliers, resulting in profit. 

Firms produce output using the decreasing returns to scale production 
function: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 = 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
1−𝛼𝛼 ,   where  𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑙𝑙𝜁𝜁,𝜏𝜏,𝑡𝑡. 

Here, 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 is their effective labour input, 𝑙𝑙𝜁𝜁,𝜏𝜏,𝑡𝑡 is their actual labour input, 𝐴𝐴𝑡𝑡 >
0 is aggregate productivity and 𝛼𝛼 ∈ (0,1) is the fixed share in production. The 
use of letter 𝑣𝑣 for the effective labour input anticipates the extended model in 

which 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 will be a bundle of variable inputs. Labour will be supplied at the 
aggregate wage 𝑊𝑊𝑡𝑡. For convenience, we define the wage of effective labour by 

𝑊𝑊�𝑡𝑡 ≔ 𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡

. 
Firms’ flow of real production profits is given by: 

𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 =
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 − 𝑊𝑊�𝑡𝑡𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 =
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
1−𝛼𝛼 − 𝑊𝑊�𝑡𝑡𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡. 

I assume firms can choose how much to produce at all points in time, after 

learning their demand shock. Thus, 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 (or 𝑙𝑙𝜁𝜁,𝜏𝜏,𝑡𝑡) is a choice variable for the 
firm. Note that no matter the price 𝑝𝑝𝜏𝜏 , 𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 = 0 if 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 = 0, but: 

d𝑜𝑜�̃�𝜁,𝜏𝜏,𝑡𝑡

d𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
= (1 − 𝛼𝛼)

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
−𝛼𝛼 − 𝑊𝑊�𝑡𝑡 → ∞ 

as 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 → ∞. Thus, the firm can always ensure positive production profits by 

choosing a small enough 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡. A small enough 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 will also satisfy the firm’s 
demand constraint, (2), and hence the firm will always make strictly positive 

profits, and will always choose 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 > 0 so 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 > 0. 
Firms choose 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 to maximize 𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 subject to the demand constraint, (2). 

In Appendix A I show that this leads them to choose: 

𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 = min
⎩�
⎨
�⎧

��
𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡�
1

1−𝛼𝛼
, �

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1
𝛼𝛼

⎭�
⎬
�⎫

, 

so: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 = min
⎩�
⎨
�⎧

�
𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡, �
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼

⎭�
⎬
�⎫

. 

In both of these expressions, the first term in the curly brackets gives the 
outcome without rationing, in which firms meet demand. In this case, price is 

above marginal cost, and sales are decreasing in the good’s real price. The 
second term in the curly brackets in these expressions gives the outcome with 
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rationing. In this case, price equals marginal cost, and sales are increasing in 

the good’s real price. Note that the firm can calculate their maximum output in 
advance of the realisation of the shock. Thus, rationing does not require the 

firm to possess implausible amounts of information. 
High values of 𝜁𝜁  mean higher demand, and so make rationing more likely. 

To be specific, define: 

𝜁𝜁�̅�𝜏,𝑡𝑡 ≔ 𝐷𝐷 �
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
1+1−𝛼𝛼

𝜖𝜖𝛼𝛼
�

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼
𝜖𝜖𝛼𝛼

𝑌𝑌𝑡𝑡
−1

𝜖𝜖, 

then the firm will always ration if 𝜁𝜁 > 𝜁𝜁�̅�𝜏,𝑡𝑡, and the firm will never ration if 𝜁𝜁 <
𝜁𝜁�̅�𝜏,𝑡𝑡. High values of 𝜁𝜁�̅�𝜏,𝑡𝑡 mean that rationing only takes place with extreme 
draws of the demand shock, whereas low values of 𝜁𝜁�̅�𝜏,𝑡𝑡 mean rationing is likely. 

Increases in aggregate demand 𝑌𝑌𝑡𝑡 reduce 𝜁𝜁�̅�𝜏,𝑡𝑡, increasing the chance of 
rationing. Likewise, when effective wages 𝑊𝑊�𝑡𝑡 are high, so marginal costs are 

high, rationing is likely. Finally, note that having a high real price makes 
rationing less likely. 

In the limit as 𝜆𝜆𝑡𝑡 → ∞ for all 𝑡𝑡, the model tends to one with quasi-flexible 
prices. In this limit, firms continuously adjust their prices, but still set prices at 

𝑡𝑡 before the realisation of their time 𝑡𝑡 demand shock. I show in Appendix A that 
firms still ration with positive probability in this limit (i.e., 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1), as long as 

𝜃𝜃 ≤ 𝛼𝛼𝜖𝜖−1
1−𝛼𝛼 𝜖𝜖, which will hold in any reasonable calibration. Thus, we should also 

expect 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1 when 𝜆𝜆𝑡𝑡 < ∞ and prices are sticky, meaning there is rationing 

for at least some values of the demand shock. In all numerical exercises I will 
check that 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡. 

Returning to the general case with 𝜆𝜆𝑡𝑡 < ∞, and assuming that 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1, a 
firm’s expected output before the demand shock is realized is:20 

𝑦𝑦𝜏𝜏,𝑡𝑡 ≔ � 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁
1

0
 

= �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
−

𝜖𝜖
𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖 �

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
�

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
𝜃𝜃+𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
. (3) 

This has a part that is increasing in the good’s real price and a part that is 

decreasing. The combination of the two gives log-concavity in 𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

, generating the 

 
20 See Appendix A for derivations of this and subsequent results. 
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concave log-sales over the life of a price that we already plotted in the red line 

of Figure 2.21 
Again, assuming that 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1,22 a firm’s expected profits before the 

realization of the demand shock is given by: 

𝑜𝑜𝜏𝜏,𝑡𝑡 ≔ � 𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁
1

0
 

= 𝛼𝛼 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
�

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
1
𝛼𝛼
 

−
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝜖𝜖𝛼𝛼

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖 �

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
𝜃𝜃+1

𝛼𝛼+𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼

. (4) 

This is also log-concave in 𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

.23  

3.2 State dynamics and the short-run Phillips curve 
The basic model will have three state variables, though calculating excess 

demand will require a fourth. However, all these state variables will take the 

same form: 

𝑋𝑋𝑗𝑗,𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑝𝑝𝜏𝜏

𝜒𝜒𝑗𝑗,1 d𝜏𝜏
𝑡𝑡

−∞
, 

where 𝑗𝑗 ∈ ℕ and 𝜒𝜒𝑗𝑗,1 is a constant to be defined.24 This implies that: 
�̇�𝑋𝑗𝑗,𝑡𝑡 = 𝜆𝜆𝑡𝑡�𝑝𝑝𝑡𝑡

𝜒𝜒𝑗𝑗,1 − 𝑋𝑋𝑗𝑗,𝑡𝑡�, 

where, as usual, dots above variables denote time derivatives. 
Total demand for the variable production input, effective labour, is given by: 

𝑉𝑉𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 � 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞
. 

Assuming 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡, I show in Appendix A that: 

𝑉𝑉𝑡𝑡 = −
𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1
𝛼𝛼+𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 + �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1
𝛼𝛼

𝑃𝑃𝑡𝑡
−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡, (5) 

where 𝜒𝜒1,1 ≔ 𝜃𝜃 + 1
𝛼𝛼 + 𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼  and 𝜒𝜒2,1 ≔ 1
𝛼𝛼. Labour market clearing implies 𝑉𝑉𝑡𝑡 =

𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡, where 𝐿𝐿𝑡𝑡 is the household’s labour supply. 

Next, evaluating the integrals in the definition of the aggregator 𝑌𝑌𝑡𝑡, 

 
21 To see log-concavity in price, write this expression as 𝐴𝐴𝑥𝑥𝑎𝑎 − 𝐵𝐵𝑥𝑥𝑎𝑎+𝑏𝑏, where 𝑥𝑥 = 𝑝𝑝𝜏𝜏

𝑃𝑃𝑡𝑡
, 𝐴𝐴, 𝑎𝑎, 𝐵𝐵, 𝑏𝑏 > 0 and 𝐴𝐴 −

𝐵𝐵𝑥𝑥𝑏𝑏 > 0 (as 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1). Then the second derivative of its logarithm is − 𝑎𝑎
𝑥𝑥2 − 𝑥𝑥−2�𝐴𝐴 − 𝐵𝐵𝑥𝑥𝑏𝑏�−2𝐵𝐵𝑏𝑏𝑥𝑥𝑏𝑏�(𝑏𝑏 − 1)𝐴𝐴 +

𝐵𝐵𝑥𝑥𝑏𝑏�. As long as 𝜃𝜃 > 1, 𝑏𝑏 > 1, so this is negative. 
22 I cover the 𝜁𝜁�̅�𝜏,𝑡𝑡 > 1 case in Appendix A. 
23 By an identical argument to that of Footnote 21. 
24 The subscript “, 1” anticipates the fact that other powers will enter this integral in the extended model. 
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equation (1), implies: 

1 = −
𝜃𝜃

𝜃𝜃 + 1
𝜖𝜖 − 1
𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃+𝜖𝜖
𝜖𝜖 𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 

+
𝜃𝜃

𝜃𝜃 + 1 𝐷𝐷−1 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜖𝜖−1

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜖𝜖−1
𝜖𝜖 𝑃𝑃𝑡𝑡

−𝜒𝜒3,1𝑋𝑋3,𝑡𝑡, (6) 

where 𝜒𝜒3,1 ≔ 𝜖𝜖−1
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 , and where I again assume 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡.25  

Holding fixed the values of the three states, 𝑋𝑋1,𝑡𝑡, 𝑋𝑋2,𝑡𝑡 and 𝑋𝑋3,𝑡𝑡, equations (5) 

and (6) can be combined with labour market clearing (𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡) and the 
household’s labour first order condition (to be given) to produce four equations 

in five unknowns (𝑉𝑉𝑡𝑡, 𝐿𝐿𝑡𝑡, 𝑊𝑊�𝑡𝑡, 𝑌𝑌𝑡𝑡 and 𝑃𝑃𝑡𝑡). Plotting the set of points satisfying 
these equations in (𝑌𝑌𝑡𝑡, 𝑃𝑃𝑡𝑡)-space gives the model’s short-run Phillips curve. I 

do this in Figure 3, under the model’s baseline calibration which I will describe 
shortly. This figure answers the following question. Suppose that for all 𝑡𝑡 < 0, 
𝑃𝑃𝑡𝑡 = exp(𝜋𝜋𝑡𝑡), meaning inflation was constant at 𝜋𝜋, and suppose all state 
variables were at steady state at time 0. Then, suppose that at time 0, an 

 
25 Again, proven in Appendix A. 

Figure 3: The model’s short-run Phillips curve (solid line), and the short-run Phillips curve without 

rationing (dashed line). Percent deviation from steady state. 

If 𝑃𝑃𝑡𝑡 = exp(𝜋𝜋𝑡𝑡) for 𝑡𝑡 < 0, with all state variables at steady state at time 0, how does 𝑌𝑌0 vary with a jump 
in 𝑃𝑃0, assuming inflation continues at 𝜋𝜋 after time 0? 
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unexpected monetary expansion/contraction caused the price level to jump to 

𝑃𝑃0 from 1, where it would have been had no shock arrived. How does 𝑌𝑌0 vary 
with 𝑃𝑃0, assuming that 𝑃𝑃𝑡𝑡 = 𝑃𝑃0 exp(𝜋𝜋𝑡𝑡) for 𝑡𝑡 ≥ 0? 

We see that the model’s short-run Phillips curve is convex and backwards-
bending. Expansionary monetary policy can produce a jump in prices by 

generating a jump in rationing, which tilts the weights of the welfare relevant 
price index away from goods with old (low) prices which are likely to ration. 

Large enough monetary expansions generate so much rationing that output 
falls. This result is completely independent of price setting, as it is an impact 

result, before prices have adjusted. 
The slope of this Phillips curve around the point (0,0) is 0.53 in my 

calibration. This is not a calibration target, yet it almost exactly matches the 
slope of the short-run Phillips curve derived from Figure 1, 0.52. This estimate 

was produced by taking the ratio of the initial jump in prices following a 
monetary shock to the initial jump in industrial production, multiplied by the 

ratio of the monthly standard deviation of Brave-Butters-Kelley monthly Real 
Gross Domestic Product growth (Brave, Cole & Kelley 2019; Brave, Butters & 

Kelley 2019) to the monthly standard deviation of Industrial Production.26 
Thus, my model appears to match well the short-run Phillips curve we see in 

the data. 
The convexity and backward-bending of the short-run Phillips curve can be 

seen analytically from equation (6) in the special case in which wages are fixed 
in the short-run. With wages fixed, totally differentiating equation (6) implies 

that: 
d log 𝑃𝑃𝑡𝑡
d log 𝑌𝑌𝑡𝑡

=
1
𝜖𝜖

𝜖𝜖 − 1 − (𝜃𝜃 + 1)𝒜𝒜𝑡𝑡
�𝜒𝜒1,1 − 𝜒𝜒3,1�𝒜𝒜𝑡𝑡 − 𝜒𝜒3,1

, (7) 

where: 

𝒜𝒜𝑡𝑡 ≔
𝜃𝜃

𝜃𝜃 + 1
𝜖𝜖 − 1
𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃+𝜖𝜖
𝜖𝜖 𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡. 

When 𝒜𝒜𝑡𝑡 is very small, corresponding to a large monetary expansion, the 

 
26 Over the same sample as used by Miranda-Agrippino & Ricco (2021), from January 1979 to December 

2014, with both series converted to continuously compounded growth rates. 
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numerator of (7) is positive while the denominator is negative, implying 
d log 𝑃𝑃𝑡𝑡
d log 𝑌𝑌𝑡𝑡

< 0, meaning the Phillips curve is backward bending. For larger 𝒜𝒜𝑡𝑡, 
corresponding to a monetary contraction or a smaller expansion, the 

denominator of (7) is positive, so then d log 𝑃𝑃𝑡𝑡
d log 𝑌𝑌𝑡𝑡

 is decreasing in 𝒜𝒜𝑡𝑡. Thus, larger 
monetary expansions mean lower 𝒜𝒜𝑡𝑡 and higher d log 𝑃𝑃𝑡𝑡

d log 𝑌𝑌𝑡𝑡
, i.e. a steeper Phillips 

curve. 

3.3 Price setting 
Just as all of the model’s state variables take a similar form, so to do all of 

the forward-looking expressions that appear in the first order condition for 

firms’ optimal price. In particular, they all take the form: 

𝑧𝑧𝑗𝑗,𝜏𝜏 ≔ 𝐷𝐷𝜔𝜔𝑗𝑗,6 � 𝑒𝑒− ∫ (𝜆𝜆𝜐𝜐+𝑟𝑟𝜐𝜐) d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑊𝑊�𝑡𝑡

𝜔𝜔𝑗𝑗,2𝑌𝑌𝑡𝑡
𝜔𝜔𝑗𝑗,3𝑃𝑃𝑡𝑡

𝜔𝜔𝑗𝑗,4 d𝑡𝑡
∞

𝜏𝜏
, 

for 𝑗𝑗 ∈ ℕ, and constants 𝜔𝜔𝑗𝑗,2, 𝜔𝜔𝑗𝑗,3, 𝜔𝜔𝑗𝑗,4 and 𝜔𝜔𝑗𝑗,6 to be defined. (The eccentric 
numbering here will seem more reasonable once I present the extended model 

in Section 5!) Here, 𝑟𝑟𝑡𝑡 is the real interest rate at 𝑡𝑡. Differentiating the definition 
of 𝑧𝑧𝑗𝑗,𝑡𝑡 implies it satisfies the following differential equation: 

𝑧𝑧�̇�𝑗,𝜏𝜏 = −𝑊𝑊�𝜏𝜏
𝜔𝜔𝑗𝑗,2𝑌𝑌𝜏𝜏

𝜔𝜔𝑗𝑗,3𝑃𝑃𝜏𝜏
𝜔𝜔𝑗𝑗,4𝐷𝐷𝜔𝜔𝑗𝑗,6 + (𝜆𝜆𝜏𝜏 + 𝑟𝑟𝜏𝜏)𝑧𝑧𝑗𝑗,𝜏𝜏. 

Firms updating their price at a time 𝜏𝜏 choose 𝑝𝑝𝜏𝜏  to maximize their value 

over the life of the price: 

𝑜𝑜𝜏𝜏 ≔ � 𝑒𝑒− ∫ (𝜆𝜆𝜐𝜐+𝑟𝑟𝜐𝜐) d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑜𝑜𝜏𝜏,𝑡𝑡 d𝑡𝑡

∞

𝜏𝜏
 

= −
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝛼𝛼𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 (1 − 𝛼𝛼)−𝜔𝜔1,2𝑝𝑝𝜏𝜏
−𝜔𝜔1,4𝑧𝑧1,𝜏𝜏 + 𝛼𝛼(1 − 𝛼𝛼)−𝜔𝜔2,2𝑝𝑝𝜏𝜏

−𝜔𝜔2,4𝑧𝑧2,𝜏𝜏, 

where 𝜔𝜔1,2 ≔ − 𝜃𝜃+𝜖𝜖
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 , 𝜔𝜔1,3 ≔ − 𝜃𝜃

𝜖𝜖, 𝜔𝜔1,4 ≔ −𝜒𝜒1,1 = −�𝜃𝜃 + 1
𝛼𝛼 + 𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼 �, 𝜔𝜔1,6 ≔ 𝜃𝜃, 
𝜔𝜔2,2 ≔ − 1−𝛼𝛼

𝛼𝛼 , 𝜔𝜔2,3 ≔ 0, 𝜔𝜔2,4 ≔ − 1
𝛼𝛼, 𝜔𝜔2,6 ≔ 0.27 Thus, firms optimally set 𝑝𝑝𝜏𝜏  such 

that: 

𝜖𝜖 �
𝜖𝜖

𝜃𝜃(1 − 𝛼𝛼) + 𝜖𝜖 −
𝜖𝜖 − 1
𝜃𝜃 + 𝜖𝜖� (1 − 𝛼𝛼)

𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 𝑝𝑝𝜏𝜏

𝜃𝜃+𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 𝑧𝑧1,𝜏𝜏 = 𝑧𝑧2,𝜏𝜏. 

In the quasi-flexible price limit with 𝜆𝜆𝜏𝜏 → ∞, this implies they would set the 
price 𝑝𝑝𝜏𝜏

QF with: 

𝑝𝑝𝜏𝜏
QF

𝑃𝑃𝜏𝜏
=

⎣
⎢
⎡�

𝜖𝜖2

𝜃𝜃(1 − 𝛼𝛼) + 𝜖𝜖 − 𝜖𝜖
𝜖𝜖 − 1
𝜃𝜃 + 𝜖𝜖�

−𝛼𝛼𝜖𝜖
𝜃𝜃

𝐷𝐷−𝛼𝛼𝜖𝜖𝑌𝑌𝜏𝜏
𝛼𝛼 �

𝑊𝑊�𝜏𝜏
1 − 𝛼𝛼�

1−𝛼𝛼

⎦
⎥
⎤

1
1+(𝜖𝜖−1)𝛼𝛼

. 

 
27 See Appendix A for this derivation and those of the rest of the results in this Subsection. I continue to 

assume 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡 throughout. 
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For comparison, without rationing in the quasi-flexible price limit, firms would 

set the price 𝑝𝑝𝜏𝜏
QFNR:28 

𝑝𝑝𝜏𝜏
QFNR

𝑃𝑃𝜏𝜏
=

⎣
⎢⎡�(1 − 𝛼𝛼) �

𝜖𝜖
𝜖𝜖 − 1�

𝜃𝜃 + 𝜖𝜖
𝜃𝜃(1 − 𝛼𝛼) + 𝜖𝜖�

1−𝛼𝛼
𝐷𝐷−𝛼𝛼𝜖𝜖𝑌𝑌𝑡𝑡

𝛼𝛼 �
𝑊𝑊�𝜏𝜏

1 − 𝛼𝛼�
1−𝛼𝛼

⎦
⎥⎤

1
1+(𝜖𝜖−1)𝛼𝛼

 

The two expressions agree when 𝛼𝛼 = 𝜃𝜃+𝜖𝜖
𝜃𝜃+𝜖𝜖2. At this point, the derivatives of the 

ratio 𝑝𝑝𝜏𝜏
QFNR

𝑝𝑝𝜏𝜏
QF  with respect to 𝛼𝛼, 𝜖𝜖 or 𝜃𝜃 are all zero, and the second derivatives of the 

ratio with respect to those variables are all positive. Thus, at least locally around 
𝛼𝛼 = 𝜃𝜃+𝜖𝜖

𝜃𝜃+𝜖𝜖2, with quasi-flexible prices, firms set higher prices if they cannot ration 

than if rationing is allowed. This is intuitive. If rationing is not allowed, firms 
worry about making large losses if demand is very high. To protect against this, 

they set a higher price. 

3.4 Price adjustment rate choice 
I will present results for two variants of this basic model. In one, 𝜆𝜆𝑡𝑡 will be 

exogenously fixed at 𝜆𝜆. In the second, 𝜆𝜆𝑡𝑡 will be endogenized, broadly following 

Blanco et al. (2024b). This is important as I wish to analyse the effects of 
changing steady-state inflation, and it is not plausible to assume that 𝜆𝜆𝑡𝑡 remains 

fixed as the long-run inflation rate increases. Higher trend inflation should 
mean more frequent price adjustment. 

To endogenize 𝜆𝜆𝑡𝑡, I assume that all firms are owned by conglomerates, with 
each conglomerate owning countably many firms (still a measure zero subset 

of the set of all firms). Each conglomerate will choose the rate of price 
adjustment 𝜆𝜆𝑡𝑡 for the firms it owns, to maximize average firm value over its 

firms minus a price adjustment cost of 12 𝜅𝜅𝜆𝜆𝑡𝑡
2 labour units. This cost function has 

the reasonable property that if there is no price adjustment (𝜆𝜆𝑡𝑡 = 0) then there 

are no costs, unlike the adjustment function chosen by Blanco et al. (2024b). 
However, as a one parameter adjustment cost function I will not be able to 

calibrate it to hit the observed variability of 𝜆𝜆𝑡𝑡. (Blanco et al. (2024b) use a two-
parameter function.) It will turn out though that with this function, calibrating 

to match the observed average 𝜆𝜆𝑡𝑡 will also get close to matching the observed 
variability of 𝜆𝜆𝑡𝑡. 

 
28 See Appendix B for the model without rationing. 
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The derivation of the conglomerate’s first order condition is a little involved, 

so I confine it to Appendix A, but the first order condition itself is quite simple. 
Define the total flow of profits at 𝑡𝑡 by: 

𝑂𝑂𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑜𝑜𝜏𝜏,𝑡𝑡 d𝜏𝜏

𝑡𝑡

−∞
 

= −
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝛼𝛼𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼

𝑊𝑊�𝑡𝑡
�

𝜃𝜃+𝜖𝜖
𝜖𝜖

1−𝛼𝛼
𝛼𝛼

𝑌𝑌𝑡𝑡
−𝜃𝜃

𝜖𝜖𝑃𝑃𝑡𝑡
−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 

+𝛼𝛼 �
1 − 𝛼𝛼

𝑊𝑊�𝑡𝑡
�

1−𝛼𝛼
𝛼𝛼

𝑃𝑃𝑡𝑡
−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡. (8) 

using equation (4), and define the total value of all firms at time 𝑠𝑠 over the lives 

of their current prices by: 

𝑄𝑄𝑠𝑠
∗ ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑠𝑠

𝜏𝜏 � 𝑒𝑒− ∫ (𝜆𝜆𝜐𝜐+𝑟𝑟𝜐𝜐) d𝜐𝜐𝑡𝑡
𝑠𝑠 𝑜𝑜𝜏𝜏,𝑡𝑡 d𝑡𝑡

∞

𝑠𝑠
d𝜏𝜏

𝑠𝑠

−∞
. 

Then: 
�̇�𝑄𝑡𝑡

∗ = 𝜆𝜆𝑡𝑡𝑜𝑜𝑡𝑡 − 𝑂𝑂𝑡𝑡 + 𝑟𝑟𝑡𝑡𝑄𝑄𝑡𝑡
∗, 

and the conglomerate’s first order condition implies: 

𝜅𝜅𝜆𝜆𝑡𝑡𝑊𝑊𝑡𝑡 = 𝑜𝑜𝑡𝑡 − 𝑄𝑄𝑡𝑡
∗. 

This is easy to understand. The right-hand side is the benefit of increasing the 
price adjustment rate. Firms that update their price will have value 𝑜𝑜𝑡𝑡 (over the 

life of their new price), while those that do not update their price on average 
have value 𝑄𝑄𝑡𝑡

∗ (over the lives of their current prices). The left-hand side is the 

marginal cost of increasing the price adjustment rate. 

3.5 Households and monetary policy 
In period 𝑡𝑡 the representative household maximizes: 

� 𝑒𝑒− ∫ 𝜌𝜌𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏

⎣
⎢⎡log 𝑌𝑌𝑡𝑡 − Ψ𝑡𝑡

1
1 + 𝜈𝜈 �𝐿𝐿𝑡𝑡 +

1
2 𝜅𝜅𝜆𝜆𝑡𝑡

2�
1+𝜈𝜈

⎦
⎥⎤ d𝑡𝑡,

∞

𝜏𝜏
 

where 𝜈𝜈 > 0 and for all 𝑡𝑡, Ψ𝑡𝑡 > 0 and 𝜌𝜌𝑡𝑡 > 0, with ∫ 𝜌𝜌𝜐𝜐 d𝜐𝜐∞
𝑡𝑡 = ∞. Note that we 

have defined 𝐿𝐿𝑡𝑡 so that it just includes production labour, not labour used in 
price adjustment. In the simpler specification with exogenous 𝜆𝜆𝑡𝑡 we set 𝜅𝜅 = 0 

so households only get disutility from productive labour supply. 
The household faces the budget constraint: 

𝑌𝑌𝑡𝑡 +
�̇�𝐵𝑡𝑡

(𝑖𝑖)

𝑃𝑃𝑡𝑡
+ �̇�𝐵𝑡𝑡

(𝑟𝑟) = 𝑊𝑊𝑡𝑡𝐿𝐿𝑡𝑡 + 𝑖𝑖𝑡𝑡
𝐵𝐵𝑡𝑡

(𝑖𝑖)

𝑃𝑃𝑡𝑡
+ 𝑟𝑟𝑡𝑡𝐵𝐵𝑡𝑡

(𝑟𝑟) + Τ𝑡𝑡, 

where 𝐵𝐵𝑡𝑡
(𝑖𝑖) are their holdings of nominal bonds, which return 𝑖𝑖𝑡𝑡, 𝐵𝐵𝑡𝑡

(𝑟𝑟) are their 
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holdings of real bonds, which return 𝑟𝑟𝑡𝑡, and where Τ𝑡𝑡 contains all profits from 

owning firms and aggregators. The household’s first order conditions then 
imply: 

Ψ𝑡𝑡 �𝐿𝐿𝑡𝑡 +
1
2 𝜅𝜅𝜆𝜆𝑡𝑡

2�
𝜈𝜈

=
𝑊𝑊𝑡𝑡
𝑌𝑌𝑡𝑡

, 𝑟𝑟𝑡𝑡 = 𝜌𝜌𝑡𝑡 +
�̇�𝑌𝑡𝑡
𝑌𝑌𝑡𝑡

, 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡, 

where 𝜋𝜋𝑡𝑡 = �̇�𝑃𝑡𝑡
𝑃𝑃𝑡𝑡

. 
I assume that the central bank sets the nominal interest rate according to the 

“real rate rule” of Holden (2024), so in particular: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡
∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), 
where 𝜙𝜙 > 1 and where 𝜋𝜋𝑡𝑡

∗ is an exogenous inflation target. Combining this 
equation with the Fisher equation derived above implies 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗ for all 𝑡𝑡. 
Hence, inflation will be effectively exogenous. This is helpful as we are 
interested in the relationship between output and inflation. The clearest way to 

study this relationship is to make one of the two exogenous. Making output 
exogenous risks multiplicity due to the backward bending Phillips curve, so it 

is more sensible to make inflation exogenous, as here. I can still study monetary 
policy shocks in this environment, as the central bank can undertake 

expansionary policy by increasing 𝜋𝜋𝑡𝑡
∗, and contractionary by decreasing it. 

3.6 Other aggregates 
Since aggregators will make profits when rationing is allowed, it is useful to 

define the real value of goods sold at 𝑡𝑡, “RGDP𝑡𝑡”. This will be less than 𝑌𝑌𝑡𝑡 as 

RGDP𝑡𝑡 does not include aggregator profits. Using the definition of average 
output from equation (3), this is defined by:29 

RGDP𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑦𝑦𝜏𝜏,𝑡𝑡 d𝜏𝜏
𝑡𝑡

−∞
 

= −
𝜖𝜖

𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 + �
1 − 𝛼𝛼

𝑊𝑊�𝑡𝑡
�

1−𝛼𝛼
𝛼𝛼

𝑃𝑃𝑡𝑡
−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡. 

Thus, by equations (5) and (8): 

 
29 As ever, see Appendix A for this derivation and those of the rest of the results in this Subsection. I 

continue to assume 𝜁𝜁�̅�𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡 throughout. 
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𝑊𝑊�𝑡𝑡𝑉𝑉𝑡𝑡 + 𝑂𝑂𝑡𝑡 = − �
(1 − 𝛼𝛼)𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖

+
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝛼𝛼𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖� 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡

+ [(1 − 𝛼𝛼) + 𝛼𝛼] �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
𝑃𝑃𝑡𝑡

−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡 = RGDP𝑡𝑡. 

So, as expected, labour income plus total firm profits equals the real value of 
goods sold. 

It is also helpful to define a measure of excess demand. To do this, I first 
define 𝑌𝑌𝑡𝑡

∗ to the be the value 𝑌𝑌𝑡𝑡 would take in a counter-factual economy in 

which all firms meet demand rather than rationing, but holding the demand 
curves fixed at their curves in the “actual” economy. I.e.: 

𝑌𝑌𝑡𝑡
∗ ≔ 𝐷𝐷− 𝜖𝜖

𝜖𝜖−1

⎣
⎢⎢
⎡� 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

𝜏𝜏 � 𝜁𝜁 ��
𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡�
𝜖𝜖−1

𝜖𝜖
𝑔𝑔(𝜁𝜁) d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞ ⎦
⎥⎥
⎤

𝜖𝜖
𝜖𝜖−1

. 

Then my measure of excess demand is: 
𝑌𝑌𝑡𝑡

∗

𝑌𝑌𝑡𝑡
= �

𝜃𝜃
𝜃𝜃 + 𝜖𝜖 𝐷𝐷−𝜖𝜖𝑃𝑃𝑡𝑡

−𝜒𝜒0,1𝑋𝑋0,𝑡𝑡�
𝜖𝜖

𝜖𝜖−1
, 

where 𝜒𝜒0,1 ≔ −(𝜖𝜖 − 1). In a version of this model without any rationing 
(developed in Appendix B), 𝑋𝑋0,𝑡𝑡 also appears. 

I will call the quantity 1 − 𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡

∗ the excess demand share. It is the share of 
demand in excess of what is supplied in the total demand. It provides a simple 

measure of the probability that a random good is out of stock. If this quantity 
is zero, there is no rationing, and if it is one then no goods are sold at all. 

We also need a measure of aggregate productivity. First, imagine that a 
constrained social planner wants to maximize aggregate output at 𝑡𝑡 by choosing 
𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 for all 𝜁𝜁 ∈ [0,1] and 𝜏𝜏 ≤ 𝑡𝑡 subject to a fixed total effective labour supply, 
𝑉𝑉𝑡𝑡. Then, I show in Appendix A that their choices imply total output 𝑌𝑌𝑡𝑡 of: 

𝑌𝑌𝑡𝑡
SP ≔

⎣
⎢⎢
⎡ 𝜃𝜃 + 1

𝜃𝜃 + 𝜖𝜖
1 + 𝛼𝛼(𝜖𝜖 − 1)⎦

⎥⎥
⎤

1+𝛼𝛼(𝜖𝜖−1)
𝜖𝜖−1

�
𝜃𝜃 + 1

𝜃𝜃 𝑉𝑉𝑡𝑡�
1−𝛼𝛼

. 

Given this, the natural measure of the economy’s productivity is 𝑌𝑌𝑡𝑡

𝑌𝑌𝑡𝑡
SP. 

Finally, we need to define an analogue to the economy’s CPI index, as CPI’s 

short-run fixed weights mean it can differ quite substantially from the welfare 
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relevant price index, which PCEPI should track better. The complication is that 

the CPI data collectors impute missing prices (such as those of rationed goods) 
by assuming they had the average price growth of observed prices. Since 

rationed goods are less likely to have had a price change, this tends to push CPI 
growth up, away from a true equal weight index. A natural way to define a true 

equal weight index would be to define 𝑃𝑃𝑡𝑡
EQUAL by: 

log 𝑃𝑃𝑡𝑡
EQUAL = � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 𝑑𝑑𝜐𝜐𝑡𝑡

𝜏𝜏 log 𝑝𝑝𝜏𝜏 𝑑𝑑𝜏𝜏
𝑡𝑡

−∞
. 

If prices were differentiable, then the growth in 𝑃𝑃𝑡𝑡
EQUAL would be the average 

price growth of individual goods. With our Calvo setting, we instead have: 
d log 𝑃𝑃𝑡𝑡

EQUAL

d𝑡𝑡 = 𝜆𝜆𝑡𝑡�log 𝑝𝑝𝑡𝑡 − log 𝑃𝑃𝑡𝑡
EQUAL�. 

To capture at least some of the effects of the imputation procedure in CPI 
though, I assume the CPI price level 𝑃𝑃𝑡𝑡

CPI instead satisfies: 
d log 𝑃𝑃𝑡𝑡

CPI

d𝑡𝑡 = 𝜆𝜆𝑡𝑡�log 𝑝𝑝𝑡𝑡 − log 𝑃𝑃𝑡𝑡
CPI� + �1 −

𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡

∗�
d log 𝑃𝑃𝑡𝑡

CPI

d𝑡𝑡 . 

This adjustment is intended to capture the fact that roughly 1 − 𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡

∗ of all goods 

would be found to be out of stock by the CPI data collectors, and thus ascribed 

price growth equal to the overall price growth. This implies: 
d log 𝑃𝑃𝑡𝑡

CPI

d𝑡𝑡 =
𝑌𝑌𝑡𝑡

∗

𝑌𝑌𝑡𝑡
𝜆𝜆𝑡𝑡 log �

𝑝𝑝𝑡𝑡

𝑃𝑃𝑡𝑡
CPI�. 

3.7 Detrended variables and stability 
For the sake of simulation, it is helpful to define detrended versions of the 

model’s variables which should be stationary. The differential equations 

followed by these detrended variables will also inform us about the model’s 
stability. 

For the state variables, I define �̂�𝑋𝑗𝑗,𝑡𝑡 ≔
𝑋𝑋𝑗𝑗,𝑡𝑡

𝑃𝑃𝑡𝑡
𝜒𝜒𝑗𝑗,1 for 𝑗𝑗 ∈ ℕ, and I define 𝑝𝑝�̂�𝑡 ≔ 𝑝𝑝𝑡𝑡

𝑃𝑃𝑡𝑡
. 

Then: 
�̇̂�𝑋𝑗𝑗,𝑡𝑡 = 𝜆𝜆𝑡𝑡𝑝𝑝�̂�𝑡

𝜒𝜒𝑗𝑗,1 − �𝜆𝜆𝑡𝑡 + 𝜒𝜒𝑗𝑗,1𝜋𝜋𝑡𝑡��̂�𝑋𝑗𝑗,𝑡𝑡. 

Given a path of 𝑝𝑝�̂�𝑡, this differential equation is stable if and only if 𝜆𝜆𝑡𝑡 + 𝜒𝜒𝑗𝑗,1𝜋𝜋𝑡𝑡 >
0, in which case when �̂�𝑋𝑗𝑗,𝑡𝑡 is high, it will be pushed back towards trend. Recall 
that with rationing, my model has the state variables 𝑋𝑋1,𝑡𝑡, 𝑋𝑋2,𝑡𝑡 and 𝑋𝑋3,𝑡𝑡, with 

𝜒𝜒1,1 = 𝜃𝜃 + 1
𝛼𝛼 + 𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼 > 0, 𝜒𝜒2,1 = 1
𝛼𝛼 > 0 and 𝜒𝜒3,1 = 𝜖𝜖−1

𝜖𝜖
1−𝛼𝛼

𝛼𝛼 > 0. Thus, as long as 
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inflation does not go too negative, all three state variables will be stable. By 

contrast, the state variable of the model without rationing is 𝑋𝑋5,𝑡𝑡 with 𝜒𝜒5,1 ≔
− 𝜖𝜖

1−𝛼𝛼 < 0 (see Appendix B). Since this is negative, if inflation gets too high then 

the state variable can explode to infinity, with output collapsing to zero. Marsal, 
Rabitsch & Kaszab (2023) and Holden, Marsal & Rabitsch (2024) show that this 

instability is a major problem for empirically plausible calibrations. It is not 
even clear that a valid global solution exists to the basic New Keynesian model. 

Luckily, all of these problems go away when rationing is allowed. 
For the forward-looking variables, I define 𝑧𝑧�̂�𝑗,𝑡𝑡 ≔

𝑧𝑧𝑗𝑗,𝑡𝑡

𝑃𝑃𝑡𝑡
𝜔𝜔𝑗𝑗,4 for 𝑗𝑗 ∈ ℕ, so: 

𝑧𝑧̂�̇�𝑗,𝑡𝑡 = −𝑊𝑊�𝑡𝑡
𝜔𝜔𝑗𝑗,2𝑌𝑌𝑡𝑡

𝜔𝜔𝑗𝑗,3 + �𝜆𝜆𝑡𝑡 + 𝑟𝑟𝑡𝑡 − 𝜔𝜔𝑗𝑗,4𝜋𝜋𝑡𝑡�𝑧𝑧�̂�𝑗,𝑡𝑡. 

Remembering that this equation is solved backwards in time, given the paths 

of other variables, “stability” requires 𝜔𝜔𝑗𝑗,4 < 0. The forward-looking variables 
with rationing were 𝑧𝑧1,𝑡𝑡 and 𝑧𝑧2,𝑡𝑡, with 𝜔𝜔1,4 = −�1

𝛼𝛼 + 𝜃𝜃 + 𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 � < 0 and 𝜔𝜔2,4 =

− 1
𝛼𝛼 < 0, so both variables are well behaved. Again, without rationing, neither 

of the two forward looking variables have this “stability” property. 

3.8 Parameterization and calibration 
I will show results for four variants of the base model. These differ by 

whether 𝜆𝜆𝑡𝑡 is endogenous or exogenous, and by whether rationing is allowed 
or not (see Appendix B for the model without rationing). I set most parameters 

to standard values across all four variants. I set 𝜌𝜌 ≔ 2% and 𝜋𝜋 ≔ 𝜋𝜋∗ ≔ 2%, 
unless otherwise stated. Following Smets & Wouters (2007), I set 𝜖𝜖 ≔ 10 and 

𝜈𝜈 ≔ 2. Following Blanco et al. (2024b) I set 𝜆𝜆 so that the fraction of firms that 
adjust their price over a quarter is 0.297 in steady state. This means 𝜆𝜆 ≔
−4 log(1 − 0.297). In the model variants with endogenous 𝜆𝜆𝑡𝑡, I set 𝜅𝜅 so that 
conglomerates endogenously choose this level of 𝜆𝜆𝑡𝑡 in steady state (with 𝜋𝜋 =
2%). At this level of 𝜅𝜅, with rationing allowed, 0.6% of all labour is used for 
price adjustment, in line with Blanco et al. (2024b). By contrast, in the variant 
of the model without rationing, but with endogenous 𝜆𝜆𝑡𝑡, 4.8% of all labour is 
used for price adjustment. This illustrates the degree to which rationing reduces 

the price adjustment frictions needed to match the data. 
I set 𝛼𝛼 ≔ 5

9 following the argument of the introduction and the evidence of 

Abraham et al. (2024). Note that 59 was the fixed share found by Abraham et al. 
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(2024) at annual frequency. At higher frequencies, perhaps even higher 

calibrations of 𝛼𝛼 would be justified. Choosing 59 is thus relatively conservative. 
I normalize units by setting 𝐴𝐴 ≔ 1 and in the variants of the model with 

exogenous 𝜆𝜆𝑡𝑡, I also normalize Ψ ≔ 1. In the variant of the model with 
endogenous 𝜆𝜆𝑡𝑡, I adjust Ψ so that the variants with endogenous 𝜆𝜆𝑡𝑡 have the 

same amount of production labour in steady state as the variants with 
exogenous 𝜆𝜆𝑡𝑡. 

This leaves 𝜃𝜃, which is the one new parameter of the model. I set 𝜃𝜃 ≔ 31, as 
at this level the model implies that in steady state the excess demand share 1 −
𝑌𝑌
𝑌𝑌∗ = 11%, matching the 11% stockouts found in 2019 by Cavallo & Kryvtsov 
(2023). (Recall that 1 − 𝑌𝑌

𝑌𝑌∗ gives a simple measure of the probability that a 

random good is out of stock.) Setting 𝜃𝜃 = 31 implies the mean of 𝜁𝜁  is 0.97 and 
its standard deviation is 0.03. This does not seem like an implausibly high level 

for an idiosyncratic demand shock. 

4 Results 
I will first present comparative static results varying the steady-state 

inflation rate. I will then provide some further intuition for why rationing 

emerges as so beneficial from these comparative statics. I then present dynamic 
results, in the form of impulse responses to monetary policy shocks. 

Before showing the comparative statics results though, let me remind you 
of two important results we have already seen. In Figure 2, I showed that the 

model can match the concavity of firm sales over the life of a price that we see 
in scanner data. Then, in Subsection 3.2, I showed that the model can match the 

slope of the short-run Phillips curve estimated from the jumps in industrial 
production and the price level in Figure 1. Thus, my one new parameter 𝜃𝜃 is 
already enough to match three facts simultaneously, including the 11% stock-
out share in normal times from Cavallo & Kryvtsov (2023) that I used as a 

calibration target. 

4.1 Comparative statics 
This Subsection will present quite a number of graphs. In all the following 

plots, black solid lines are from the model with rationing but with exogenous 
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𝜆𝜆𝑡𝑡. Black dashed lines are from the model without rationing and still with 

exogenous 𝜆𝜆𝑡𝑡. (See Appendix B for the model without rationing.) Blue solid 
lines are from the model with rationing and with endogenous 𝜆𝜆𝑡𝑡. Finally, blue 

dashed lines are from the model without rationing but with endogenous 𝜆𝜆𝑡𝑡. 
A first question to answer is how rationing varies as the rate of inflation 

varies. Figure 6 answers this question using three different measures of 
rationing. The left panel looks at the average probability of experiencing at least 

some rationing across firms. I.e. it plots the steady-state value of: 

� 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 Pr�𝜁𝜁 ≥ 𝜁𝜁�̅�𝜏,𝑡𝑡� d𝜏𝜏

𝑡𝑡

−∞
, 

as a function of inflation. This measure of rationing does not distinguish 
between firms that ration demand by a lot, and firms that barely ration at all. 

By this measure of rationing, firms ration around half the time. 
The middle panel plots my preferred measure of how much firms ration, 

the excess demand share, which measures how much less people get than they 
wanted. To recap, the excess demand share is given by 1 − 𝑌𝑌

𝑌𝑌∗. 

The rightmost panel plots the profits that are being made by aggregators, as 
a share of total output. If there was no rationing, this profit share would be zero. 

With rationing, aggregators make profits as they effectively face decreasing 
returns. If they wish to double output, they cannot just double inputs, due to 

firm rationing. Hence, aggregator profits also measure the amount of rationing. 
All three measures are increasing in the steady-state inflation rate. This is 

driven by the fact that when inflation is high, mark-ups are eroded quickly, 
leading to greater rationing. 

Figure 7 examines this mechanism in more detail. The leftmost plot shows 
the probability of being rationed (at least a little) at a firm that has just updated 
their price. This is actually decreasing in the trend inflation rate. This is because 
when inflation is high, firms resetting their price choose a high initial mark-up, 

to protect themselves against future mark-up erosion. The other two panels plot 
how the probability of being rationed at a firm varies over the life of a price, as 

a function of the long-run inflation level. The dark blue lines show that if the 
steady-state inflation rate is 0%, then the probability of being rationed is 

constant over the life of a price. However, if the steady-state inflation rate is 4%, 
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then the probability of being rationed increases sharply over the life of a price, 

as shown by the dark red lines. It turns out that the fact that rationing is 
increasing in the trend inflation level for old prices dominates, producing the 

results we already saw in Figure 6. 
Figure 8 shows how output and welfare change with the long-run level of 

inflation. With rationing and exogenous 𝜆𝜆𝑡𝑡, the output maximizing level of 
inflation is around 1%, and welfare is increasing in inflation over all of the range 

considered here. (For high enough inflation, firms with new prices no longer 
ration with positive probability, and welfare starts to decline.) Without 

rationing, output and welfare are lower at all levels of inflation. The gap is 
particularly stark at high levels of inflation. Inflation is bounded above in the 

model without rationing, and output falls to zero as inflation approaches this 
level. Allowing conglomerates to choose price adjustment rates improves 

outcomes for low levels of inflation but renders positive inflation 
unambiguously worse than zero inflation. At higher levels of trend inflation, a 

substantial amount of labour goes to price adjustment, which is costly. 
Figure 9 looks in more detail at how rationing might be improving welfare 

relative to economies without rationing. It shows that when rationing is 
allowed, productivity (measured by log 𝑌𝑌

𝑌𝑌SP) is increasing in inflation. Higher 

level of inflation are actually reducing misallocation across firms! 
Figure 9 also shows that while aggregate mark-ups (measured by (1−𝛼𝛼)𝑌𝑌

𝑊𝑊𝑊𝑊 ) are 

increasing in the trend inflation rate when rationing is allowed, and higher than 
without rationing, still firms’ excess profit shares (𝑂𝑂

𝑌𝑌 − 𝛼𝛼) are decreasing in 

inflation, and lower than without rationing. This is explained by the increase in 
aggregator profits as inflation increases under rationing. Aggregator profits 

equal output minus labour income, minus firm profits. So, aggregator profits 
appear as an increase in the inverse labour share measure of aggregate mark-
ups. However, since they reflect the effective decreasing returns faced by 
aggregators, they do not reflect a monopoly distortion. Firm excess profits do 

measure a monopoly distortion, but they are decreasing in inflation, as inflation 
erodes mark-ups. Excess firm profits are lower when rationing is allowed than 

when it is not allowed, since in the absence of rationing firms set a high initial 
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mark-up to guard against future negative profits. 

4.2 Why might rationing be desirable? 
The results of the previous subsection imply welfare is higher in economies 

with rationing than in those without rationing.30 This may be surprising. Is 
rationing not a bad thing? 

Rationing’s welfare benefits are primarily a consequence of the fact that in 
standard models, the firms with the most distorted prices are selling a lot, since 

the most distorted prices are very old and hence very low. High production by 
these firms with old prices pushes up marginal costs for all firms, in turn 

reducing output for firms with relatively undistorted prices. Thus, without 
rationing, demand is shifted from firms with undistorted prices to firms with 

distorted prices. By contrast, if rationing is allowed, then these firms with old, 
highly distorted, prices will limit sales through rationing. With relatively low 

production of goods with old prices, there will be less pressure on marginal 
costs for firms with new prices, so those firms will produce more. Demand is 

shifted from firms with distorted prices to firms with undistorted ones, at least 
relative to the no rationing benchmark. 

We also saw that excess firm profits were lower with rationing allowed, as 
firms do not need to set high initial mark-ups to guard against future losses. 

Thus, with rationing, prices are closer to the efficient level, resulting in lower 
aggregate distortion. The lower excess firm profits with rationing is all the more 

surprising since, without rationing, firms with old prices are making losses, not 
profits. For average firm profits to be higher without rationing, firms with new 

prices must be setting very high mark-ups when they cannot ration. 
Furthermore, note that if a firm could adjust their price after observing their 

demand shock, they would choose a price that is increasing in 𝜁𝜁 . Thus, fully 
flexible prices lead to reduced sales when 𝜁𝜁  is high compared to the sticky or 

quasi-flexible benchmarks without rationing. Rationing also limits sales when 
𝜁𝜁  is high, so it is intuitive that increased rationing can bring the economy closer 
to the fully flexible benchmark. 

 
30 See also the results and discussion in Hahn (2022), who also examined static outcomes under rationing 

with sticky prices, but without idiosyncratic demand shocks. 
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At the micro level (looking at demand and supply of a single good), with 

arbitrary demand and cost curves and a fixed price, it is ambiguous whether 
welfare is higher with rationing or with production of the full quantity 

demanded. But, in reality, we expect the demand curve (𝑝𝑝
𝑃𝑃 ∝ 𝑦𝑦−1

𝜖𝜖 ≈ 𝑦𝑦− 1
10) to be 

flatter than the marginal cost curve (MC ∝ 𝑦𝑦
𝛼𝛼

1−𝛼𝛼 ≈ 𝑦𝑦
5
4). In this case, we can see 

graphically that welfare should be higher when rationing is allowed than when 
firms are forced to satisfy demand, as shown in Figure 4. While the graphical 

argument of Figure 4 strictly only applies with linear marginal costs and linear 
demand, this result is more general. In Appendix C.1 I show that 

microeconomic welfare is higher with rationing with general isoelastic demand 
and marginal costs. 

 

The benefits of rationing are even clearer if supply constraints really do 

mean that marginal costs go to infinity at some finite output level 𝑦𝑦 ̅ for some 
product, as depicted in Figure 5. Then, if the quantity demanded at the current 
price is greater than 𝑦𝑦,̅ there is no way the micro market can clear without 

Figure 4: The microeconomics of rationing. 

With rationing allowed, production is given by the orange line, and welfare is 𝐴𝐴 + 𝐵𝐵. 
Without rationing, production is given by the grey line, and welfare is 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 − 𝐸𝐸. 

With demand flatter than marginal costs, 𝐸𝐸 > 𝐶𝐶, and so welfare is higher with rationing. 
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rationing, holding macro quantities fixed. Instead, as the firm increases 

production to try to satisfy demand, more and more of the economy’s resources 
are devoted to this one micro market. This decreases aggregate production, 

pushing down demand for all products, including the current one, until 
demand for it is below 𝑦𝑦.̅ Thus, without rationing, macro quantities may have 

to move to clear a micro market, producing substantial distortions. With 
rationing, the micro equilibrium is given by the point at which price equals 

marginal cost, as standard. 

 

Figure 5: The microeconomics of rationing with supply constraints. 

With rationing allowed, production is given by the orange line. 
Without rationing, production should be given by the grey line, but it is impossible to ever produce this 

much, as maximum output is 𝑦𝑦,̅ the dashed green line. 
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4.3 Results figures 

 
Average probability across goods that at least some 

demand is rationed (percent). 

 
Excess demand share: 1 − 𝑌𝑌

𝑌𝑌∗ (percent). 
 

Aggregator profit share of output: 1 − RGDP
𝑌𝑌  

(percent). 
 

Figure 6: Measures of rationing as a function of inflation (percent). 

Black solid lines are the model with rationing, with exogenous 𝜆𝜆𝑡𝑡. Blue solid lines are the model with rationing, with endogenous 𝜆𝜆𝑡𝑡. 
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Probability of rationing with new prices (percent) as 

a function of inflation (percent). 
Black solid lines are the model with rationing, with 
exogenous 𝜆𝜆𝑡𝑡. Blue solid lines are the model with 

rationing, with endogenous 𝜆𝜆𝑡𝑡. 

 
Time since price adjustment (years). 

Model with exogenous 𝜆𝜆𝑡𝑡. 
Dashed line marks the mean life of a price. 

Dark blue corresponds to 0% inflation. 

Dark red corresponds to 4% inflation. 

 
Time since price adjustment (years). 

Model with endogenous 𝜆𝜆𝑡𝑡. 
Lines become dashed after the mean life of a price. 

Dark blue corresponds to 0% inflation. 

Dark red corresponds to 4% inflation. 
 

Figure 7: Which firms ration? 
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Relative output: log 𝑌𝑌 (percent). 

 
Welfare: 100 �log 𝑌𝑌 − Ψ 1

1+𝜈𝜈 �𝐿𝐿 + 1
2 𝜅𝜅𝜆𝜆2�

1+𝜈𝜈
�. 

 
 

  
Figure 8: Output and welfare as a function of inflation (percent). 

Black solid lines are the model with rationing, with exogenous 𝜆𝜆𝑡𝑡. Black dashed lines are the model without rationing, with exogenous 𝜆𝜆𝑡𝑡. 
Blue solid lines are the model with rationing, with endogenous 𝜆𝜆𝑡𝑡. Blue dashed lines are the model without rationing, with endogenous 𝜆𝜆𝑡𝑡. 

Top plots only include the results with rationing. Bottom plots include all four. 
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TFP loss from efficient benchmark: log 𝑌𝑌

𝑌𝑌SP (percent). 
 

Aggregate mark-ups: log (1−𝛼𝛼)𝑌𝑌
𝑊𝑊𝑊𝑊  

(percent). 

 
Excess firm profit share of output: 𝑂𝑂𝑌𝑌 − 𝛼𝛼 

 (percent). 

   
Figure 9: Measures of rationing as a function of inflation (percent). 

Black solid lines are the model with rationing, with exogenous 𝜆𝜆𝑡𝑡. Black dashed lines are the model without rationing, with exogenous 𝜆𝜆𝑡𝑡. 
Blue solid lines are the model with rationing, with endogenous 𝜆𝜆𝑡𝑡. Blue dashed lines are the model without rationing, with endogenous 𝜆𝜆𝑡𝑡. 

Top plots only include the results with rationing. Bottom plots include all four. 
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Driving inflation shocks (percent) as a function of 

time (years). 

 
CPI inflation (percent) as a function of time (years). 

 
Output (percent) as a function of time (years). 

 

Figure 10: Impulse responses to monetary shocks without rationing, with exogenous 𝝀𝝀𝒕𝒕. 

Colours are consistent across subplots. All responses are relative to steady state. 
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Driving inflation shocks (percent) as a function of 

time (years). 
 

CPI inflation (percent) as a function of time (years). 

 
Output (percent) as a function of time (years). 

 
Excess demand share (percent) as a function of time 

(years). 
Figure 11: Impulse responses to monetary shocks with rationing, with exogenous 𝝀𝝀𝒕𝒕. 

Colours are consistent across subplots. Inflation and output responses are relative to steady state. 
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Driving inflation shocks (percent) as a function of 

time (years). 
 

CPI inflation (percent) as a function of time (years).  
Quarterly price adjustment probability (percent) as 

a function of time (years). 

 
Output response (percent) as a function of time 

(years). 

 
Excess demand share (percent) response as a 

function of time (years). 

 

Figure 12: Impulse responses to monetary shocks with rationing, with endogenous 𝝀𝝀𝒕𝒕. 

Colours are consistent across subplots. Inflation and output responses are relative to steady state. 
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Driving inflation shocks (percent) as a function of 

time (years). 
 

Output (percent) as a function of time (years), 
without rationing, with exogenous 𝜆𝜆𝑡𝑡.  

 
Output (percent) as a function of time (years), 

with rationing, with exogenous 𝜆𝜆𝑡𝑡. 

 
Output (percent) as a function of time (years), 

with rationing, with endogenous 𝜆𝜆𝑡𝑡. 
Figure 13: Impulse responses to monetary shocks with varying persistence. 

Colours are consistent across subplots. Responses are relative to steady state. All shocks increase 𝑃𝑃∞ by 1%. 
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4.4 Dynamics 
I now examine the behaviour of the model in response to unexpected 

monetary policy shocks which vary 𝜋𝜋𝑡𝑡
∗ and hence 𝜋𝜋𝑡𝑡. I assume these shocks 

have prior probability zero, “MIT shock” style, and I assume the economy 
begins in steady state. In this simple model, other potential shocks are of limited 

interest due to divine coincidence.31 (In the extended model of Section 5, I look 
at supply shocks, modelled as shocks to the intermediate input share in 

production.) 
In all but the final exercise I consider, the driving shocks will take the form: 

𝜋𝜋𝑡𝑡
∗ = 2% + shock × exp(−2𝑡𝑡), 

for 𝑡𝑡 ≥ 0, where “shock” varies from +7% to −7%. In the plots, the +7% shock 

will be in dark red, while the −7% shock will be in dark blue, with intermediate 
shocks in intermediary colours of the rainbow. A +7% inflation shock is 

intended to capture something like the 2022 inflation, where CPI inflation at 
least hit 9%. 

Figure 10 plots the impulse responses to these shocks in an economy 
without rationing and with exogenous 𝜆𝜆𝑡𝑡. (See Appendix B for details of the 

model without rationing.) The +7% shock to inflation increases output by 
about 35%, whereas the −7% shock decreases output by less than 10%. Thus, 

we see that positive inflation shocks are amplified, while negative inflation 
shocks are dampened. This is counter factual. It corresponds to a concave 

Phillips curve, not a convex one as in the data. 
This concavity comes from the fact that without rationing, the definition of 

aggregate output implies that firms that can update their price must choose a 
𝑝𝑝0̂ = 𝑝𝑝0

𝑃𝑃0
 that is log-convex in 𝜋𝜋0,32 as the fact consumers substitute away from 

expensive goods means that new prices have to increase more than 
proportionally to hit a given level of aggregate inflation. The only way this can 

 
31 Shocks to productivity, 𝐴𝐴𝑡𝑡, and to the disutility of labour supply, Ψ𝑡𝑡, have identical effects to their effects 
under quasi-flexible prices if monetary policy holds inflation constant. Shocks to 𝜌𝜌𝑡𝑡 have very slightly 
different impacts to their effects under quasi-flexible prices, due to the presence of trend inflation.  
32 Without rationing, we have that log 𝑝𝑝�̂�𝑡 = − 1

𝜖𝜖−1 log ��̂�𝑋0,𝑡𝑡�1 − (𝜖𝜖 − 1) 𝜋𝜋𝑡𝑡
𝜆𝜆𝑡𝑡

��, where �̂�𝑋0,𝑡𝑡 is actually constant 

in equilibrium. 
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be an optimal choice for firms is if 𝑌𝑌0 is also log-convex in 𝜋𝜋0,33 else they would 

be better off reducing their prices a little when 𝜋𝜋0 is high to capture more sales. 
Figure 10 also plots my approximation to CPI inflation for the model 

without rationing. The response of CPI inflation is also convex in true inflation, 
however it is not convex enough for the output-CPI Phillips curve of the model 

to end up convex. 
Figure 11 performs the same exercise in the model with rationing, still with 

exogenous 𝜆𝜆𝑡𝑡. The first thing to note is that now the impact on output is heavily 
muted. With rationing, monetary non-neutralities are smaller. This is because 

changes in rationing give the model another margin of adjustment, rather than 
forcing aggregate output to respond. Positive shocks lead to increases in 

rationing, dampening the output impact. Negative shocks reduce rationing, 
cushioning the output impact. This is clear from the bottom right subplot, 

which shows the impact on the excess demand share. Note that the excess 
demand share hits about 21% in response to the +7% shock, close to the 23% 

stockout level Cavallo & Kryvtsov (2023) found for 2022. (A fourth moment 
approximately hit with my one new parameter, 𝜃𝜃!) 

The dampening is particularly powerful for positive shocks, which produce 
big increases in firm marginal costs, and hence large amounts of rationing. As 

a result, now positive inflation shocks have a smaller impact on output than 
negative inflation shocks. Thus, as in the data, the model’s Phillips curve is 

convex. 
In Figure 12, I repeat the experiment in a model with rationing in which the 

price adjustment rate 𝜆𝜆𝑡𝑡 is endogenized. Now, positive shocks have almost no 
impact. At least in the vicinity of steady state, this appears to be a model in 

which monetary policy can do harm but not good! This additional asymmetry 
is because trend inflation is positive. With positive trend inflation, following a 
positive shock, conglomerates can pull forward the future positive price 
adjustments they would have made anyway. This reduces their total cost of a 

faster price adjustment. By contrast, a negative inflation shock will be undone 
by future trend inflation, reducing the conglomerate’s incentive to perform 

 
33 This may be easily proven in the limit as 𝜌𝜌 → ∞. 
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price adjustment. Still, for sufficiently large negative shocks, the conglomerate 

still increases the rate of adjustment on impact, dampening these really large 
negative shocks. Blanco et al. (2024) find that the quarterly price adjustment 

probability peaked at about 42% in 1980, when PCEPI inflation was around 
12%, and this probability peaked at about 55% in 2022, when PCEPI inflation 

was around 7%. My +7% shock pushes the quarterly price adjustment 
probability to around 43%, roughly in the middle of these two data points. This 

success is despite the fact that my price adjustment cost function only has one 
parameter, while the Blanco et al. (2024) one has two. 

As a final exercise, in Figure 13, I show how the impulse response to an 
inflation shock varies with the persistence of the driving shock. As I vary the 

persistence of the shock, I also vary its magnitude so that all shocks produce a 
1% increase in the price level at time infinity. Without rationing, this 1% increase 

in the price level pushes output up 70% with the least persistent shock plotted. 
This implausibly large response reflects the fact that the price level is a state 

variable in the model without rationing, so the short-run Phillips curve is 
horizontal. Once rationing is allowed, the impact is over one hundred times 

smaller, reflecting the existence of a true short-run Phillips curve in the model 
with rationing. Allowing for an endogenous rate of price adjustment halves the 

impact again, as conglomerates pull forward future price adjustments. The 
model with rationing behaves far more reasonably than the standard model 

without. 

5 Extensions 
TODO: WRITE UP. 

5.1 Costs of rationing 
TODO: WRITE UP. 

5.2 Intermediates in production 
TODO: WRITE UP. 

5.3 Firm specific capital and other partially fixed inputs 
TODO: WRITE UP. 
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5.4 Results from the extended model 
TODO: WRITE UP. 

6 Conclusion 
In this paper I have shown how relaxing one small simplifying assumption 

from the workhorse model of sticky prices drastically alters the conclusions of 

that model. Allowing firms to ration removes the welfare costs of moderate 
inflation and cuts the impact of monetary shocks by two orders of magnitude. 

The model with rationing also matches the data remarkably well. With just one 
new parameter, the model roughly matches the amount of stockouts pre-Covid, 

the amount of stockouts in the high inflation of 2022, the concavity of output 
over the life of a price and the slope of the short-run Phillips curve derived from 

high frequency monetary shocks. The model also produces a convex Phillips 
curve, as we see in the data. Allowing rationing appears essential to 

understanding the relationship between inflation and output. 
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Appendix A The full extended model 
TODO: WRITE UP. 

Appendix B The full extended model without rationing 
TODO: WRITE UP. 

Appendix C Further proofs 
C.1 Microeconomic welfare under rationing versus meeting 
demand 

Suppose the demand curve is 𝑝𝑝̂ = 𝐴𝐴𝑦𝑦−1
𝜖𝜖 (𝑝𝑝 ̂ is the real price, 𝐴𝐴 > 0, 𝑦𝑦 is 

quantity) and the marginal cost curve is 𝑞𝑞 ̂ = 𝐵𝐵𝑦𝑦
𝛼𝛼

1−𝛼𝛼 (𝑞𝑞 ̂is real marginal cost, 𝐵𝐵 >
0). Then the efficient quantity is �𝐴𝐴

𝐵𝐵�
1 � 𝛼𝛼

1−𝛼𝛼+1
𝜖𝜖��

 and the efficient price is 𝑝𝑝∗̂ =
𝐴𝐴

𝛼𝛼𝜖𝜖
1+𝛼𝛼(𝜖𝜖−1)𝐵𝐵

1−𝛼𝛼
1+𝛼𝛼(𝜖𝜖−1). Assume the demand curve is flatter than the marginal cost 

curve, so 1𝜖𝜖 < 𝛼𝛼
1−𝛼𝛼, i.e. 𝛼𝛼 > 1

𝜖𝜖+1. 
Welfare is the difference between the integral under the demand curve and 

the integral under the marginal cost curve, which is: 
𝜖𝜖

𝜖𝜖 − 1 𝐴𝐴𝑦𝑦
𝜖𝜖−1

𝜖𝜖 − (1 − 𝛼𝛼)𝐵𝐵𝑦𝑦
1

1−𝛼𝛼. 

Suppose that 𝑝𝑝̂ < 𝑝𝑝∗̂. Then output under rationing is ��̂�𝑝
𝐵𝐵�

1−𝛼𝛼
𝛼𝛼  and output without 

rationing is ��̂�𝑝
𝐴𝐴�

−𝜖𝜖
. Thus, the welfare gain of rationing over producing the full 

quantity demanded is: 

𝜖𝜖
𝜖𝜖 − 1 𝐴𝐴 �

𝑝𝑝̂
𝐵𝐵�

1−𝛼𝛼
𝛼𝛼

𝜖𝜖−1
𝜖𝜖

− (1 − 𝛼𝛼)𝐵𝐵 �
𝑝𝑝̂
𝐵𝐵�

1
𝛼𝛼

−
𝜖𝜖

𝜖𝜖 − 1 𝐴𝐴 �
𝑝𝑝̂
𝐴𝐴�

−(𝜖𝜖−1)
+ (1 − 𝛼𝛼)𝐵𝐵 �

𝑝𝑝̂
𝐴𝐴�

− 𝜖𝜖
1−𝛼𝛼

 

=
𝜖𝜖

𝜖𝜖 − 1 𝐴𝐴𝐵𝐵−1−𝛼𝛼
𝛼𝛼

𝜖𝜖−1
𝜖𝜖 𝑝𝑝̂

1−𝛼𝛼
𝛼𝛼

𝜖𝜖−1
𝜖𝜖 − (1 − 𝛼𝛼)𝐵𝐵−1−𝛼𝛼

𝛼𝛼 𝑝𝑝̂
1
𝛼𝛼 −

𝜖𝜖
𝜖𝜖 − 1 𝐴𝐴𝜖𝜖𝑝𝑝−̂(𝜖𝜖−1)

+ (1 − 𝛼𝛼)𝐴𝐴
𝜖𝜖

1−𝛼𝛼𝐵𝐵𝑝𝑝̂−
𝜖𝜖

1−𝛼𝛼 

= (1 − 𝛼𝛼)𝐴𝐴
𝜖𝜖

1+𝛼𝛼(𝜖𝜖−1)𝐵𝐵
−(1−𝛼𝛼)(𝜖𝜖−1)

1+𝛼𝛼(𝜖𝜖−1)

⎣
⎢⎢
⎡ 1

1 − 𝛼𝛼
𝜖𝜖

𝜖𝜖 − 1 ⎣
⎢
⎡�

𝑝𝑝̂
𝑝𝑝∗̂�

1−𝛼𝛼
𝛼𝛼

𝜖𝜖−1
𝜖𝜖

− �
𝑝𝑝̂
𝑝𝑝∗̂�

−(𝜖𝜖−1)

⎦
⎥
⎤

−
⎣
⎢
⎡�

𝑝𝑝̂
𝑝𝑝∗̂�
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− �
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− 𝜖𝜖
1−𝛼𝛼

⎦
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. 

Let 𝑐𝑐 ≔ (1 − 𝛼𝛼) 𝜖𝜖−1
𝜖𝜖 ∈ (0,1), 𝑎𝑎 ≔ 1

𝛼𝛼 > 1, 𝑏𝑏 ≔ 𝜖𝜖
1−𝛼𝛼 > 1, 𝑧𝑧 ≔ �̂�𝑝

�̂�𝑝∗ ∈ (0,1) and let 
𝑓𝑓 : (0,1] → ℝ be defined by: 

𝑓𝑓 (𝑥𝑥) =
𝑧𝑧𝑎𝑎𝑥𝑥 − 𝑧𝑧−𝑏𝑏𝑥𝑥

𝑥𝑥 − �𝑧𝑧𝑎𝑎 − 𝑧𝑧−𝑏𝑏�, 



 

Page 51 of 51 
 

for all 𝑥𝑥 ∈ (0,1). Then the welfare gain of rationing is: 

(1 − 𝛼𝛼)𝐴𝐴
𝜖𝜖

1+𝛼𝛼(𝜖𝜖−1)𝐵𝐵
−(1−𝛼𝛼)(𝜖𝜖−1)

1+𝛼𝛼(𝜖𝜖−1) 𝑓𝑓 (𝑐𝑐). 
Note that since 𝛼𝛼 > 1

𝜖𝜖+1, 𝑏𝑏 > 𝑎𝑎, so 𝑧𝑧𝑏𝑏 < 𝑧𝑧𝑎𝑎 < 1 and hence for 𝑥𝑥 ∈ (0,1], 𝑧𝑧𝑎𝑎𝑥𝑥 =
(𝑧𝑧𝑎𝑎)𝑥𝑥 < 1 < �𝑧𝑧𝑏𝑏�−𝑥𝑥 = 𝑧𝑧−𝑏𝑏𝑥𝑥. 

Next, observe that 𝑓𝑓 (1) = 0, so to prove the welfare gain of rationing is 
strictly positive for 𝑥𝑥 ∈ (0,1), it is sufficient to prove that 𝑓𝑓 ′(𝑥𝑥) < 0 for all 𝑥𝑥 ∈
(0,1]. Now:1 

𝑥𝑥2𝑓𝑓 ′(𝑥𝑥) + 𝑧𝑧𝑎𝑎𝑥𝑥 − 𝑧𝑧−𝑏𝑏𝑥𝑥 = �𝑎𝑎𝑥𝑥𝑧𝑧𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑧𝑧−𝑏𝑏𝑥𝑥��log 𝑧𝑧� =
𝑎𝑎𝑧𝑧𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑧𝑧−𝑏𝑏𝑥𝑥

𝑎𝑎 + 𝑏𝑏 log�𝑧𝑧𝑎𝑎𝑥𝑥𝑧𝑧𝑏𝑏𝑥𝑥�

= �
𝑧𝑧𝑎𝑎𝑥𝑥 + 𝑧𝑧−𝑏𝑏𝑥𝑥

2 −
�𝑧𝑧𝑎𝑎𝑥𝑥 − 𝑧𝑧−𝑏𝑏𝑥𝑥�(𝑏𝑏 − 𝑎𝑎)

2(𝑎𝑎 + 𝑏𝑏) � log�𝑧𝑧𝑎𝑎𝑥𝑥𝑧𝑧𝑏𝑏𝑥𝑥�

<
𝑧𝑧𝑎𝑎𝑥𝑥 + 𝑧𝑧−𝑏𝑏𝑥𝑥

2 log�𝑧𝑧𝑎𝑎𝑥𝑥𝑧𝑧𝑏𝑏𝑥𝑥� <
𝑧𝑧𝑎𝑎𝑥𝑥 + 𝑧𝑧−𝑏𝑏𝑥𝑥

2
2�𝑧𝑧𝑎𝑎𝑥𝑥𝑧𝑧𝑏𝑏𝑥𝑥 − 1�

𝑧𝑧𝑎𝑎𝑥𝑥𝑧𝑧𝑏𝑏𝑥𝑥 + 1
= 𝑧𝑧𝑎𝑎𝑥𝑥 − 𝑧𝑧−𝑏𝑏𝑥𝑥, 

using the fact that log(𝑢𝑢) < 2(𝑢𝑢−1)
𝑢𝑢+1  for 𝑢𝑢 ∈ (0,1). Hence, 𝑓𝑓 ′(𝑥𝑥) < 0 for all 𝑥𝑥 ∈ (0,1] 

and so 𝑓𝑓 (𝑥𝑥) > 0 for all 𝑥𝑥 ∈ (0,1). Therefore, the welfare gain of rationing over 
production of the total quantity demanded is strictly positive. 

 
1 This proof follows the one given here: https://math.stackexchange.com/questions/4989707/.  

https://math.stackexchange.com/questions/4989707/
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