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Rationing Under Sticky Prices 
Tom D. Holden, Deutsche Bundesbank* 20/05/2025 

Abstract: If prices are sticky, following large shocks, firms would like to ration 
demand to avoid selling goods at a price below marginal cost. However, the 

standard assumption in solving sticky price models is that firms sell the entire 
quantity demanded at their price. This paper investigates the consequences of 

allowing firms to ration under sticky prices, in a continuous time model with 
idiosyncratic demand shocks and endogenous price rigidity. Allowing 

rationing massive reduces the welfare costs of positive trend inflation. The loss 
of variety caused by rationing becomes the main welfare cost of variations in 

inflation. Rationing helps the model match empirical results from both micro & 
macro data. It produces a convex, backwards-bending Phillips curve. While 

expansionary monetary policy increases observed real GDP, it decreases the 
welfare relevant output aggregator. 
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1 Introduction 
Economies worldwide ground to a halt under supply constraints in the early 

2020s. Covid restrictions prevented many people from working. The Suez Canal 

was blocked by the ship Ever Given, preventing goods from reaching Europe 
from Asia. The Russian invasion of Ukraine led to the end of Russia’s gas 

exports to Europe. These supply constraints were accompanied by high 
inflation, stockouts in some consumer goods (Cavallo & Kryvtsov 2023) and 

delivery delays for goods such as cars.1 As I write this in May 2025, it looks like 
we are heading for yet another supply crunch in the U.S., caused by Trump’s 

tariffs. This will inevitably be accompanied by increased stockouts again. 
Stockouts and delivery delays are both forms of rationing, as they are 

ultimately a choice of the supplier. While supply disruptions increase marginal 
costs, still marginal costs remain finite. If a firm desperately wanted a 

production input while the Suez Canal was blocked, they could have put it in 
an airplane instead. If car manufacturers really wanted microchips delivered in 

2022 rather than 2023, they could have offered semiconductor manufacturers 
high enough prices to get them to switch from producing chips for GPUs and 

mobile phones. Instead, they sold consumers the substitute good “car-in-2023” 
instead of the good “car-in-2022” they were ideally looking for. 

Firms had another choice though. They could have raised prices. If prices 
had risen with the increase in marginal costs, then all goods would have 

remained available. Consumers who were prepared to pay could still have 
obtained the goods they wanted. Thus, sticky prices seem essential for supply 

disruptions to lead to stockouts or other forms of rationing. 
Rationing is also common in normal times. Over 10% of all consumer goods 

are out of stock in normal times in the U.S., according to the evidence of Cavallo 
& Kryvtsov (2023). This paper builds a dynamic model of rationing under 

sticky prices to understand the implications of rationing for monetary policy 

 
1 See e.g. https://www.thedrive.com/news/new-cars-piling-up-at-german-port-will-mean-longer-wait-
for-us-buyers, https://www.cnbc.com/2021/05/07/chip-shortage-is-starting-to-have-major-real-world-
consequences.html, or https://www.thisismoney.co.uk/money/cars/article-11831443/How-long-wait-

new-car-delivered-revealed.html.  

https://www.thedrive.com/news/new-cars-piling-up-at-german-port-will-mean-longer-wait-for-us-buyers
https://www.thedrive.com/news/new-cars-piling-up-at-german-port-will-mean-longer-wait-for-us-buyers
https://www.cnbc.com/2021/05/07/chip-shortage-is-starting-to-have-major-real-world-consequences.html
https://www.cnbc.com/2021/05/07/chip-shortage-is-starting-to-have-major-real-world-consequences.html
https://www.thisismoney.co.uk/money/cars/article-11831443/How-long-wait-new-car-delivered-revealed.html
https://www.thisismoney.co.uk/money/cars/article-11831443/How-long-wait-new-car-delivered-revealed.html
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and the broader macroeconomy. 

Unfortunately, prior dynamic models of sticky prices have all been solved 
under the simplifying assumption that firms satisfy all demand at their posted 

price, even if that results in them selling at a price below marginal cost. This is 
true for both Calvo, Rotemberg and menu-cost approaches to modelling price 

rigidities. While tractable, this seems deeply implausible. 
If a firm cannot adjust their nominal price, then their real price will be 

declining over time. A lower real price implies higher demand for their good, 
and so higher sales. With short-run decreasing returns to scale, higher sales in 

turn means higher real marginal costs. So, the firm’s real price is declining, 
while their real marginal cost is increasing. If the price remains fixed, eventually 

the firm’s marginal cost will equal or exceed its price. No firm would want to 
continue to sell their good in this state. Instead, they would ration demand, only 

selling up to the quantity at which price equals marginal cost. 

Does rationing really matter in practice?  I will present new retail 

scanner data evidence that supports the ubiquity of rationing, but a simple back 
of the envelope calculation is also instructive. Perhaps one reason the prior 

literature has been happy to rule out rationing is that they have had the 
following misleading calculation in mind: “Mark-ups are 10%, inflation is 2%, 

prices are updated at least once per year, real prices will not hit marginal cost.” But this 
is not the right calculation when firms face short-run decreasing returns to 

scale. The estimates of Abraham et al. (2024) using data from Belgian firms 
imply that around 2

5 of all labour and intermediate inputs are fixed at annual 

frequency, implying a total share of fixed inputs in production, 𝛼𝛼, of around 35.2 
Thus, firm marginal costs are roughly proportional to 𝑦𝑦

𝛼𝛼
1−𝛼𝛼 = 𝑦𝑦

3
2, where 𝑦𝑦 is their 

 
2 From Table 3, column (3) or (4) of Abraham et al. (2024), we see that we cannot reject that the share of 

all capital inputs that are fixed at annual frequency is 100% at a 1% (or lower) significance level, and we 
cannot reject that the shares of all labour or intermediate inputs includes that are fixed at annual frequency 
are both 40% at a 5% (or lower) significance level. (I err on the side of high fixed shares as fixed shares 
would be higher in higher frequency data.) Ignoring intermediates, with a capital share of 13, this gives a 
total fixed share in production of 1 × 1

3 + 2
5 × 2

3 = 3
5. Boehm, Flaaen & Pandalai-Nayar (2019) find that 

intermediates are perfect complements to other inputs, so given their fixed share 2
5 is less than 3

5, I am 

justified in taking 35 as the overall fixed share. 
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output. Meanwhile, firms face demand proportional to �𝑝𝑝
𝑃𝑃�

−𝜖𝜖
, where 𝑝𝑝 is their 

nominal price, 𝑃𝑃 is the price level, and 𝜖𝜖 ≈ 10 in standard calibrations. So, if the 
price level increases by 2% (over a year, say), but the firm’s nominal price stays 

fixed, then firm sales increase by 2% × 10 = 20%, which means marginal costs 
increase by 3

2 × 20% = 30%. A 30% rise in marginal costs is more than enough 

to erode standard calibrations of firm level mark-ups. Thus, we should expect 
firms with one year old prices to be rationing. 

This simple calculation is likely to understate firms’ incentives to ration. 
Firstly, firms face high frequency fluctuations in demand. At times of high 

demand, marginal costs will be high, making rationing more tempting. 
Secondly, inflation can be much higher than 2%. It was 7% over the period from 

June 2021 to June 2022 in the U.S..3 With 7% inflation and a fixed nominal price, 
it would take less than a quarter for marginal costs to have risen by 25%. Thirdly, 

demand is also growing over time due to aggregate income growth. Even 
holding wages fixed, 2% demand growth implies a 3% increase in marginal 

costs over a year. Finally, marginal costs are increasing over time due to 
irregular replacement of broken machines, and imperfect maintenance. Firms 

face non-convex adjustment costs in new investment (Cooper & Haltiwanger 
2006; Khan & Thomas 2008) and maintenance rates are below depreciation 

rates (Kabir, Tan & Vardishvili 2024).4 Thus, in between installations of new 
machines, capital stocks will be declining and marginal costs will be 

increasing.5 
 

3 https://fred.stlouisfed.org/series/PCEPI, 100 × change in logarithms over a year.  
4 Kabir, Tan & Vardishvili (2024) find that annual maintenance expenditure is around 6.2% of the value 
of the capital stock, while their (caveated) estimate of annual depreciation is around 9.4% of the value of 
the capital stock. 
5 How much on average capital stocks are decreasing over the life of a price will depend on just how often 

firms make significant capital investments, and how correlated these times are with price change times. It 
seems natural to suppose that any firm going to the significant trouble of installing new machines would 
also take the much smaller step of updating its price at the same time. Using data extracted from Figure 
1 of Cooper & Haltiwanger (2006) reveals that in any year, around 57% of all firms do not invest enough 
to cover depreciation (6.9% in their data) plus 2% growth, and 49% of all firms do not invest enough to 
cover just depreciation. This suggests that firms increase their capital stock less often than they update 

prices. (The price adjustment estimates of Blanco et al. (2024b) imply around 24% of firm prices last for 
at least a year.) This is consistent with net investments being accompanied by price changes. 
 

https://fred.stlouisfed.org/series/PCEPI
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Price adjustment.  A natural question is why firms with price near marginal 

cost do not just update their price to restore their mark-up.6 In a Golosov Lucas 
(2007) menu cost economy, with constant returns and no micro or macro 

uncertainty, it is clear that paying the menu cost is always optimal for a firm 
with price equal to marginal cost. Waiting 𝑡𝑡 weeks to change prices is 

dominated by changing prices now but setting a higher price such that in 𝑡𝑡 
weeks your real price is what you would have set had you waited. 

However, any micro or macro uncertainty can destroy this result. Once there 
is uncertainty, it can be optimal to tolerate rationing or a price below marginal 

cost in order to avoid repeated price changes. For example, suppose your price 
is currently too low, but you expect aggregate or idiosyncratic productivity to 

improve soon (perhaps due to mean reversion), at which time your current 
price will be comfortably above marginal cost. Modern menu cost models rely 

on random menu costs (Dotsey, King & Wolman 1999) and free price change 
opportunities (Nakamura & Steinsson 2010) to match the micro data, so in 

these models there is an even greater incentive to temporarily tolerate rationing 
or a price below marginal cost. Maybe now the menu cost is high, but next 

period it could be much lower. At the risk of oversimplifying, modern menu 
cost models work hard to look more like a Calvo model, and in a Calvo model, 

many firms get stuck with price below marginal cost. For example, price change 
hazard functions appear flat (Klenow & Kryvtsov 2008; Nakamura & Steinsson 

2008; Klenow & Malin 2010), so old prices (with a higher probability of being 
lower than marginal cost) are no more likely to be adjusted than new prices. 

Moreover, models that allow for rationing will be consistent with much 
lower price adjustment frictions than models that do not. In a model without 

rationing, firms risk substantial losses if they do not adjust their price. To match 
the data in which despite this, they do not adjust their price, the price 

adjustment frictions must be large. In a model with rationing though, the firm 

 
Adam & Weber (2019) stress declining firm marginal costs over the firm life cycle. This is not inconsistent 
with rising marginal costs over the life of a price if productivity improvements (perhaps brought about 
by the installation of new machines) are accompanied by price changes. 
6 A version of this point was made in Barro (1977). 
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can always guarantee weekly positive profits no matter how old its price is, thus 

smaller adjustment frictions are needed to match the observed low frequency 
of price adjustment. If your prior is that adjustment frictions, like menu costs, 

are small, then you should place greater posterior weight on models with 
rationing, such as the one I present in this paper. 

My model.  My basic model is in continuous time, with Calvo-type price 
rigidity,7 but I endogenize the price change arrival rate to capture the varying 

price adjustment rates we see in the data. Firms in the model are owned by 
conglomerates, who can choose the arrival rate of price adjustment 

opportunities for the firms they manage, following Blanco et al. (2024b). This 
provides aggregate state dependence, while matching the flat adjustment 

hazard functions found by Klenow & Kryvtsov (2008), Nakamura & Steinsson 
(2008) and Klenow & Malin (2010). 

At all points in time, firms can freely choose their sales. Optimally, they will 
meet demand if they can do so with price above marginal cost, otherwise they 

will just produce up to the point at which price equals marginal cost, rationing 
demand. To smooth out the kink introduced by this decision, I assume that 

firms face demand shocks that are independent both across firms and over time. 
With a carefully chosen density, the model then admits aggregation with a finite 

dimensional state vector, permitting analytic results and easy simulation. 
Whereas the standard model without rationing is unstable at high inflation 

levels, the model with rationing is robustly stable, with reasonable behaviour 
even under extreme shocks. 

For consumers, rationing is random. When they arrive at the shop, if they 
are lucky, the firm has recently restocked, and they can purchase their entire 
demand. If they are unlucky though, the shelves are empty and they leave 
without any units of the good. Thus, when average stockout rates are high, 

consumers will be consuming a restricted set of varieties. They find this costly 
due to their love of variety. Love of variety is both a standard feature of 

preferences in macro models, and well supported empirically (Broda & 
 

7 Early continuous time New Keynesian models were developed by Posch, Rubio-Ramírez & Fernández-

Villaverde (2011), (2018). 



 

Page 7 of 52 

Weinstein 2006; 2010). 

Random rationing seems a reasonable first approximation to the rationing 
we see in reality. As an alternative, I could have modelled sellers as capping the 

quantity they would sell to any individual consumer. (Indeed, I allow for this 
in the extended model of Section 5.) While during Covid we saw some shops 

placing quantity limits on a few items, this is clearly not the main way shops 
ration. However, I would not want to argue that there is no role for sales-capped 

rationing. For example, if goods are semi-durable, consumers shop frequently, 
and they face storage constraints preventing them from hoarding, then the 

result can look a lot like quantity-capped rationing. Without storage constraints 
though, in equilibrium the result must look a lot like random rationing, with 

the unlucky consumers finding shop shelves empty at the same time their 
pantry is also empty. The calibration of my extended model suggests that 

random rationing is the dominant form. (Sales-capped rationing generates an 
excessively steep Phillips curve.) 

I show that rationing leads to a convex, backward-bending Phillips curve 
relationship between output and inflation, in line with the evidence surveyed 

in the next section. The convexity emerges from the fact that high demand leads 
to high rationing. However, observed real GDP does not capture the gains from 

variety in consumption. When demand is high, the high rationing causes a drop 
in the range of varieties consumed, which actually reduces the welfare relevant 

measure of output. Thus, at least in the vicinity of the model’s steady state, 
stimulative policies are unambiguously bad. 

The model also matches a range of further empirical evidence presented in 
the next section, despite only introducing one new parameter over a 

comparable model without rationing. This evidence includes new evidence 
from supermarket scanner data on sales over the life of a price, as well as 

evidence on the macro response to monetary shocks. Section 5 of the paper 
considers various extensions of the base model, both to demonstrate robustness 
of the key conclusions, and to build a quantitative model with which to examine 
the broader empirical implications of rationing, particularly following supply 

shocks.  
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Prior literature.  Important early work examining rationing with sticky 

prices includes Barro & Grossman (1971), Drèze (1975) and Svensson (1984). 
Barro & Grossman look at outcomes in a one period model when both 

aggregate output and aggregate labour may be rationed. Drèze examines at 
equilibrium existence with the possibility of rationing in an Arrow-Debreu 

setup with price inequality constraints. Svensson looks at rationing in a 
dynamic monetary model with a single good. A little more recently, Corsetti & 

Pesenti (2005) worked in a proto-New Keynesian framework with prices set one 
period in advance, and were careful to restrict their model’s shocks to ensure 

the absence of rationing. 
I am aware of three papers that look at rationing in a modern (New 

Keynesian) setting. Huo & Ríos-Rull (2020) and Gerke et al. (2023) look at the 
rationing of labour supply that comes from sticky wages, but omit rationing on 

the price side. These papers both have infinite dimensional state vectors, which 
makes it challenging to understand the details of their mechanisms, and they 

rely on quantity-capped rationing rather than random rationing. Hahn (2022) 
looks at rationing under price rigidity in the steady state of a New Keynesian 

model with Calvo price frictions. While he is able to derive some interesting 
comparative statics results, his approach is not tractable for looking at 

dynamics, so he provides no dynamic results. Without idiosyncratic shocks, he 
also cannot hope to produce an empirically reasonable path of output over the 

life of a price, even in steady state, as we will see in Subsection 2.1. Finally, he 
only looks at quantity-capped rationing, not the more plausible random 

rationing specification. 
Another relevant strand of the literature looks at stockouts in models of 

inventories. Contributions include Alessandria, Kaboski & Midrigan (2010), 
Kryvtsov & Midrigan (2013) and Bils (2016). They demonstrate the importance 

of inventory dynamics for a variety of macro questions. However, in all of these 
papers, firms always meet demand if they have stock available, even if the 
marginal value of that stock to the firm is greater than the price at which they 
can sell the good. Thus, in these models too, firms would like to ration in some 

circumstances. For the sake of tractability, my model will not feature 
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inventories, but combining inventories and rationing is a promising avenue for 

future research. 

2 Empirical evidence for rationing 
The previous arguments suggest rationing should be widespread. In line 

with this, Cavallo & Kryvtsov (2023) found that around 11% of all goods in 

their data were out of stock in 2019, using daily web-scraped data from 17 large 
retailers in the U.S..8 This may understate the true prevalence of rationing, since 

retailers can encourage consumers to substitute away from particular goods by, 
for example, lowering their ranking in search results, worsening their position 

on physical shelves, or by reducing advertising. Encouraging such substitution 
helps reduce stockouts, which may provide a reputational benefit for the store. 

“Shrinkflation” may also mask rationing. If I want 400 grams of cereal, but it is 
now in sold in 375-gram boxes, I am unlikely to buy two boxes.9 

Unsurprisingly, Cavallo & Kryvtsov (2023) found that stockouts increased 
massively during the Covid pandemic. More interestingly though, they found 

that in 2022 (January to August), still 23% of goods were out of stock in the 
U.S..10 By 2022 many of the direct effects of Covid had subsided, but inflation 

was picking up worldwide. Thus, in line with the story of the model I will 
present, it appears that high inflation leads to increased rationing. 

I will shortly present further micro-evidence on the prevalence of rationing. 
In particular, using retail scanner data, I show that quantities sold are concave 

in the age of a price. Thus, goods with young prices experience relatively high 
output growth, while goods with older prices experience relatively low output 

growth. This fits with quantities lying on the demand curve for young prices, 
with inflation driving real price declines and hence sales increases, and 
quantities lying on the supply curve for older prices, with increasing marginal 
costs driving ever tighter rationing. 

Rationing will also help to explain two important sets of macro facts. Firstly, 
rationing will help to explain the observed convexity of the Phillips curve. For 

 
8 The number 11% was extracted from Figure 2 of Cavallo & Kryvtsov (2023). 
9 All of this can have effects more like quantity-capped rationing than random rationing. 
10 The number 23% was extracted from Figure 2 of Cavallo & Kryvtsov (2023). 
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pre-Covid evidence on this, see, for example, Kumar & Orrenius (2016), Babb 

& Detmeister (2017) or Forbes, Gagnon & Collins (2022). The fact that the 
inflation of 2022 was not accompanied by huge output booms provides “natural 

experiment” evidence in further support of such convexity. Under rationing, 
such convexity emerges naturally. When demand is already high, further 

demand increases just lead to increased rationing, rather than increased output. 
As firms with sufficiently high prices will not ration, increases in rationing tilt 

the welfare relevant price index towards such highly priced firms, increasing 
the aggregate price level. 

Secondly, recent estimates of the response to monetary shocks from 

Miranda-Agrippino & Ricco (2021) and Bauer & Swanson (2023) suggest that 
monetary shocks cause an immediate jump in both the price level and output. 

For reference, Figure 1 plots the impulse response to a monetary policy shock 
following the informationally robust specification from Figure 3 of Miranda-

Agrippino & Ricco (2021), but estimated using the PCE price index in place of 
CPI, and using the Brave-Butters-Kelley monthly real GDP series (Brave, Cole 

& Kelley 2019; Brave, Butters & Kelley 2019) in place of industrial production. 
I have also added the cumulation of the median rate of price changes, excluding 

sales, estimated by Montag & Villar (2025) to the VAR, in order to assess the 

 
11 Let 𝑓𝑓𝑡𝑡 be the weighted median frequency of price changes across “Entry Level Item” (ELI) after adjusting 
for sales, at 𝑡𝑡 (using each ELI’s CPI weight). Then this series is − ∑ log�1 − 𝑓𝑓𝑡𝑡�

𝑡𝑡
𝑠𝑠=0 . Using the median 

frequency gives robustness to cross-sectional heterogeneity, and is in line with standard practice. The data 

construction is detailed in Montag & Villar (2025), following Nakamura et al. (2018). 

Figure 1: Impulse response to a monetary policy shock. Informationally robust specification from 

Figure 3 of Miranda-Agrippino & Ricco (2021), but estimated using PCEPI in place of CPI, and 

Brave-Butters-Kelley RGDP in place of industrial production, and with the cumulated median rate of 

price changes, excluding sales (Montag & Villar 2025),11 also in the VAR. 

95% credible bands highlighted.  
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effects of monetary shocks on price adjustment rates.12 

Calvo or Rotemberg type models of price rigidity can never generate a jump 
in the price level following a shock, as the price level is a state variable in these 

models. By contrast, in a model with rationing the welfare relevant price level 
is no longer a state variable, since jumps in the level of rationing cause jumps in 

the weight placed on goods with relatively higher prices, due to rationing of 
lower price goods. 

One caveat is in order though. At the most disaggregated level, the PCEPI 
index uses price indices constructed by the BLS (for the CPI), which are a 

geometric mean of gross product price growth for most goods.13 Thus, the 
continuous time counterpart of PCEPI or CPI can only jump if a positive 

measure of firms adjust their price, which never happens in Calvo type models, 
and will not even happen under our model of endogenous price flexibility. 

However, there are many reasons for scepticism about the accuracy of monthly 
macro data, so I will target movements three months from the initial shock in 

my calibration. The fact that the welfare relevant price index does jump will 
increase the rate of change of measured PCEPI, as firms pass through cost 

increases. 
Additionally, in practice, the BLS data collectors have to deal with many 

missing prices, for which they then use imputation based on price growth of 
other items. Stockouts (from rationing) are a major source of missing prices. 

Thus, the BLS-CPI imputation procedure ascribes average price changes from 
non-rationed goods to rationed goods. Since rationed goods are less likely to 

have changed price, this produces greater aggregate inflation than under a 
fixed weight index after an inflationary shock, bringing the CPI and PCEPI 

indices closer to the welfare relevant price index. 
While menu cost models can potentially generate a jump in prices after a 

shock without rationing, cleanly identified monetary policy shocks are small 

 
12 I thank Hugh Montag and Daniel Villar Vallenas for sharing this data with me. See the previous footnote 
for further details. 
13 https://www.bls.gov/opub/hom/cpi/calculation.htm#price-relatives. Only a few goods use a 

Laspeyres formula. 

https://www.bls.gov/opub/hom/cpi/calculation.htm#price-relatives
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and so are unlikely to lead to large amounts of price resetting. For example, 

Blanco et al. (2024a) calibrate a menu cost model to match both micro price 
data and the aggregate response of the price change frequency to inflation, and 

find that 1% increases in the money supply are mostly absorbed by output, not 
prices, in the short run. Similarly, in Figure 1 we saw that below 5% of firms 

change prices immediately following a hypothetical 1% monetary shock. For 
those price changes to generate the observed 0.3% rise in the price level, the 

adjusting firms would have to be increasing prices by over 50%.  
Let me end this section by stressing that this paper is not about a 

fundamentally different model of price rigidity. Rather, it is about relaxing a 
simplifying assumption previously used in solving such models. As such, 

whatever evidence supports your favourite sticky price model will probably 
also support the same model extended to allow for rationing. 

2.1 Evidence from scanner data 
I will now present new evidence from micro scanner data to support 

rationing being widespread. By looking directly at quantities sold, I can 
measure not only stockouts, but also less direct forms of rationing, such as 

changes in product placement. I use data from a former chain of Chicago 
supermarkets called “Dominick’s Finer Foods”, made freely available by the 

Kilts Center for Marketing at Chicago Booth.14 The data covers the period 1989 
to 1994, during which time annual PCEPI inflation was between around 2% and 

around 5%.15 While newer data is always preferable, supermarket practices 
have not changed so dramatically in the last thirty years, and the use of open 

data ensures replicability. 
The data records the prices and quantities sold of products from 29 broad 

categories,16 from 93 stores, over 399 weeks. The 29 broad categories are further 

 
14 https://www.chicagobooth.edu/research/kilts/research-data/dominicks.  
15 https://fred.stlouisfed.org/series/PCEPI.  
16 Analgesics, Bath Soap, Bathroom Tissues, Beer, Bottled Juices, Canned Soup, Canned Tuna, Cereals, 
Cheeses, Cigarettes, Cookies, Crackers, Dish Detergent, Fabric Softeners, Front-end-candies, Frozen 
Dinners, Frozen Entrees, Frozen Juices, Grooming Products, Laundry Detergents, Oatmeal, Paper Towels, 

Refrigerated Juices, Shampoos, Snack Crackers, Soaps, Soft Drinks, Toothbrushes, Toothpastes. 

https://www.chicagobooth.edu/research/kilts/research-data/dominicks
https://fred.stlouisfed.org/series/PCEPI
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refined into 86 narrower categories.17 Where possible, I use the item code 

information provided by the supermarket to match goods which are newer 
versions of former products. For each good, at each store, I drop the following 

observations: 
• Those with price equal to the first price observed for the good. (We do not 

observe the start of the first price spell, so we cannot construct price age for 
those observations.) 

• Those with price equal to the final price observed for the good. (Maybe the 
good disappeared due to changing tastes, in which case the concavity in 

sales over the span of the final price could reflect demand, not supply.) 
• Those with price less than the cumulative maximum price for the good at 

that store. (This ensures we are only looking at sales after a price rise, not a 
price cut. It would be unsurprising if sales initially increased after a price 

cut. We want to pick up the increase in sales after a price rise coming from 
inflation eroding real prices. This filter also takes out sales during which 

demand may be distorted by different advertising levels.) 
• Those occurring at the same time as a change in price, or the week after a 

missing observation (which could have hidden a change in price). (Keeping 
observations the period of a price change could be a source of endogeneity, 

due to the same demand shock influencing both quantities sold and the 
decision to change prices.) 

• Those with a price age greater than four years. (There are relatively few 
prices that ever last so long. Including them would reduce estimation 

reliability due to the use of average output over the life of a price in my 
regression specification.) 

I estimate the following linear model for quantity sold as a function of the 
age of the price: 

 
17 The split into narrower categories was unavailable for “Refrigerated Juices”, so I allocated goods in this 
category into the following eleven narrower categories based on their description field: Orange Juice, 
Orange Drinks, Apple Juice and Cider, Cranberry Juices and Cranberry Juice Blends, Other 
Fruit/Vegetable Juices, Fruit Punch and Mixed Fruit Drinks, Lemonade, Iced Tea, Dairy-based Drinks and 
Shakes, Puddings, Colored Easter Eggs. The CSV file giving the allocation of items to categories is 

contained in the replication materials for this paper. 
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𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡 − 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡−1

𝑦𝑦𝑖̅𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙
= 𝛽𝛽𝐴𝐴�𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡� + 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝜎𝜎𝑖𝑖,𝑗𝑗,𝐴𝐴�𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡�

(1) 𝜎𝜎𝑖𝑖,𝑗𝑗,𝑘𝑘
(2) 𝜎𝜎𝑖𝑖,𝑗𝑗,𝑡𝑡

(3)𝜎𝜎𝑖𝑖,𝑘𝑘,𝑡𝑡
(4) 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡. 

Here, 𝑖𝑖 indexes the 92 narrow categories, 𝑗𝑗 indexes the 93 stores, 𝑘𝑘 indexes the 

10,166 products, 𝑙𝑙 indexes product prices (there are 947,660 total product-price 
pairs; the same product receives a different 𝑙𝑙 in two periods if its price differs, 

and 𝑡𝑡 indexes the 398 weeks. 𝐴𝐴�𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, 𝑡𝑡� is the age in weeks of the 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 price 
at 𝑡𝑡,18 and 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡 is the number of units sold of that item that week. 𝑦𝑦𝑖̅𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙 is the 

average of 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡 over the life of the price. 
The left-hand side of this specification gives a measure of sales growth that 

is robust to the presence of zeros in 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡. Working in differences, not levels, 
ensures consistency even when products experience 𝐼𝐼(1) demand shocks, due 

to entry or exit of substitute products, for example. On the right-hand side, 
𝛽𝛽𝐴𝐴�𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑡𝑡� gives age fixed effects, our prime variable of interest. This means we 

allow sales growth to be an arbitrary function of price age. 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑡𝑡 gives category-
store-time fixed effects to mop up changes in demand for specific category types 

in specific locations at specific times (think of the demand for candy around 
Halloween, concentrated in family neighbourhoods). 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 gives product-time 

fixed effects to mop up changes in demand for particular products coming from 
seasonality or changing tastes. I model heteroskedasticity in the residual by 

category-store combined (separately) with age, product and time, as well as by 
product-time. This substantially improves the efficiency of my estimates. 

After differencing, I am left with 21,474,126 observations. Estimating the 
model on these observations by feasible generalized least squares gives the 

estimates summarized in Figure 2. This figure plots 100 ∑ 𝛽𝛽𝑎𝑎
AGE
𝑎𝑎=3  as a function 

of AGE in the black solid line. I.e., it plots the average level of sales over the life 

of a price. Due to the fixed effects, this is only identified up to a linear trend, so 
the plot is normalized so that the impact is zero for age 2 and age 100. The 
shaded area gives a 95% confidence band, and the dotted lines give a 99% band. 
These are constructed with four-way clustered standard errors (Cameron, 

 
18 For goods without missing observations, new prices start with age one (assuming that the price change 
occurred at the end of the previous week), so the first observed age will be two, as one week is dropped 
due to the price change. For goods with some missing observations, I renormalize ages so that the first 

included observation is age two. 
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Gelbach & Miller 2011), with clusters indexed by category-store combined 

(separately) with age, product and time, as well as by product-time. Hence, the 
clusters have indices �𝑖𝑖, 𝑗𝑗, 𝐴𝐴�𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, 𝑡𝑡��, �𝑖𝑖, 𝑗𝑗, 𝑘𝑘�, �𝑖𝑖, 𝑗𝑗, 𝑡𝑡� and (𝑖𝑖, 𝑘𝑘, 𝑡𝑡) respectively. 

The first grouping allows for heterogeneity in the effects of age across categories 
and stores. The second allows for arbitrary correlation across time for the 

residuals from any particular product in a particular store. The third allows for 
time-varying correlation between the residuals of all products in a category and 

store, capturing substitution across products within a category for example. 
The fourth allows for time-varying correlation between the residuals of the 

same product at different stores, capturing substitution between stores. 

We see that relative to the normalization, sales grow for around 30 weeks, 

before starting to decline. This is consistent with firms rationing demand for 
 

19 In the notation of equation (3) from Section 3 this is 100 log 𝑦𝑦𝜏𝜏,𝑡𝑡, detrended to be 0 at 2 and 100 weeks. 

Figure 2: Average output over the life of a price (𝟏𝟏𝟏𝟏𝟏𝟏 ∑ 𝜷𝜷𝒂𝒂
AGE
𝒂𝒂=𝟑𝟑 ). 

The effect is identified up to a linear trend, so I normalize to zero at ages 2 and 100. 
The black solid line gives the estimates. The black dashed line is at zero for reference. 

The shaded area gives a 95% confidence band, and the dotted lines give a 99% band. 
The red line gives the prediction of the model from Section 3.19 
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products with old prices. While a good’s nominal price is fixed, its real price is 

declining, leading to higher sales. But with decreasing returns, higher sales 
mean higher marginal costs. Eventually, marginal costs are higher than prices, 

so the firm rations demand. Under rationing, sales are a decreasing function of 
real price (due to decreasing returns again), so sales are then declining in price 

age. The result is that sales are a concave function of price age, as we see here. 
Without any rationing, log-sales would be linear in firm age (as long as demand 

is roughly isoelastic), so after normalizing we would not find any statistically 
significant difference from zero.20 

The red line in Figure 2 plots the prediction of the model I will present in 
Section 3. This is not a calibration target of the model, so it is reassuring that the 

model broadly matches the data. You might be surprised by the small size of 
the predicted effect of price age on sales, though. After all, if the price elasticity 

of demand is −10, then with 2% inflation, over 30 weeks sales should have 
increased by over 11% without rationing. If firms started rationing from week 

30 on, then that would still imply a normalized peak impact of over 7.5%.21 
However, my model is one in which firms face idiosyncratic demand shocks 

that are independent across time. These shocks mean that for any price age, a 
firm’s expected sales is a mix of their sales when their demand shock is high, 

so they ration, and their sales when their demand shock is low, so they meet 
demand. This reduces the sensitivity of average sales to price age, matching the 

data. A model without idiosyncratic demand shocks would predict implausibly 
high average sales growth for young prices. 

3 The model 
I will now present my base model of rationing under sticky prices. 

Throughout the paper, I stick to the convention that upper case letters denote 
aggregate variables, while lowercase Latin letters denote firm specific variables. 
The model is in continuous time, with time measured in years throughout. 
Letters without time subscripts denote steady-state values. For simplicity, there 

 
20 Standard calibrations of Kimball (1995) demand can also generate concavity in sales over the life of a 
price, without any rationing. 
21 Something like this would be true in the Hahn (2022) model, for example. 
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is no aggregate uncertainty: I will only look at the impact of prior probability 

zero “MIT” shocks. 

3.1 Firms and aggregators 
The model will feature a continuum of firms of measure one. Firms are only 

able to adjust their price when they are hit by a shock from a non-homogenous 

Poisson process. In particular, price change opportunities arrive at time 𝑡𝑡 with 
rate 𝜆𝜆𝑡𝑡 > 0, where ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

−∞ = ∞ for all 𝑡𝑡. As a result, the time 𝑡𝑡 density of firms 

that last adjusted their price at time 𝜏𝜏 is given by 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 . Note that, as 

required for this to be a density, ∫ 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑑𝑑𝜏𝜏𝑡𝑡

−∞ = ∫ d
d𝜏𝜏 𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

𝜏𝜏 𝑑𝑑𝜏𝜏𝑡𝑡
−∞ = 1 −

𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
−∞ = 1. I index firms with the time at which they last updated their price 

𝜏𝜏, so this density will appear frequently. 

Firms will face demand shocks that are independent both across firms, and 
across time 𝑡𝑡. This means that over even an arbitrarily small interval of time, a 

firm will face all possible values of the demand shock.22 I write 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 for the 
output of a firm at time 𝑡𝑡, that last updated their price at time 𝜏𝜏, that is hit by a 

demand shock of level 𝜁𝜁 ∈ [0,1]. Demand shocks 𝜁𝜁  will be drawn from a 
Beta(𝜃𝜃, 1) distribution, where 𝜃𝜃 > 0, meaning they have probability density 

function 𝑔𝑔(𝜁𝜁) = 𝜃𝜃𝜁𝜁𝜃𝜃−1. This implies the mean of the demand shock is 𝜃𝜃
𝜃𝜃+1 ≈ 1 −

1
𝜃𝜃 and the variance of the demand shock is 𝜃𝜃

(𝜃𝜃+1)2(𝜃𝜃+2) ≈ 1
𝜃𝜃2. Demand shocks are 

essential for tractability as they smooth out the kink introduced by the rationing 
decision. This particular distribution for the demand shocks is needed for the 

model to have a finite dimensional state. 𝜃𝜃 is the only non-standard parameter 
in the entire model, apart from the two parameters determining the costs of 

price adjustment (to be introduced shortly). I will calibrate 𝜃𝜃 to match the 
evidence from Cavallo & Kryvtsov (2023) that around 11% of all goods are 

rationed in normal times. 
I also introduce purchaser-good-time-specific shocks denoted by 𝜓𝜓 ∈ [0,1] 

that control whether a given purchaser can buy a given good. I write 𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡 for 
the consumption of a buyer with shock 𝜓𝜓, at time 𝑡𝑡, of the good produced by a 

 
22 This is no more mathematically problematic than having shocks that are independent across a 
continuous measure of firms in a discrete time model. Obviously, I will be careful not to attempt to 

measure any unmeasurable quantity! 
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firm that last updated their price at time 𝜏𝜏, that is hit by a demand shock of 

level 𝜁𝜁 . I will focus on the special case in which 𝜓𝜓 is uniformly distributed and: 

𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡 = �
𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡

∗ , 𝜓𝜓 ≤ 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡

0, 𝜓𝜓 > 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡
, 

where 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡
∗  is the buyer’s purchase when not rationed, and 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡 gives their 

probability of not being rationed. In this special case, total output of a given 

firm will satisfy: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 = � 𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡 d𝜓𝜓
1

0
= 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡

∗ 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡. 

We can either think of firms as choosing their total sales, with 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡 adjusting 
to ensure 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 = 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡

∗ 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡, or we can think of firms as choosing the 

probability that a consumer will not be rationed, 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡, with total sales 
adjusting. The former will be more convenient in practice. 

The aggregate good 𝑌𝑌𝑡𝑡 is produced by a competitive industry of 
“aggregators” with access to the technology: 

𝑌𝑌𝑡𝑡 = 𝐷𝐷− 𝜖𝜖
𝜖𝜖−1 �� 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡

𝜏𝜏 � 𝜁𝜁𝜁𝜁(𝜁𝜁) � 𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡

𝜖𝜖−1
𝜖𝜖 d𝜓𝜓

1

0
d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞
�

𝜖𝜖
𝜖𝜖−1

. (1) 

Here, 𝜖𝜖 > 1 is the elasticity of substitution across varieties, and 𝐷𝐷 = 𝜃𝜃
𝜃𝜃+1 is a scale 

factor chosen to ensure that if 𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡 is one for all 𝜓𝜓, 𝜁𝜁  and 𝜏𝜏, then 𝑌𝑌𝑡𝑡 = 1. This 

aggregator is essentially the standard Dixit-Stiglitz one. The only changes are 
the weighting by the density of firms that last updated at time 𝜏𝜏, and the inner 

integrals over the possible draws of the demand shock and the rationing shock. 
Demand is higher for varieties receiving a higher draw of 𝜁𝜁 . To understand the 

𝜁𝜁  integral, you should think of there being a positive measure of firms that last 
updated their price at time 𝜏𝜏. Of these infinitely many firms, a density 

proportional to 𝑔𝑔(𝜁𝜁) of them will receive demand shock 𝜁𝜁  at time 𝑡𝑡. The 
interpretation of the 𝜓𝜓 integral is similar. 

Like normal, aggregators choose their input quantities to maximize their 
profits: 

𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡 − � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑝𝑝𝜏𝜏 �  𝑔𝑔(𝜁𝜁) � 𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡 d𝜓𝜓

1

0
d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞
, 

where 𝑃𝑃𝑡𝑡 is the aggregate price, and 𝑝𝑝𝜏𝜏  is the price of all varieties that last 
updated their price at time 𝜏𝜏.23 In doing so, they face the supply constraints 

 
23 I am assuming here that all firms updating their price at the same time will choose the same price. This 
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𝑦𝑦𝜓𝜓,𝜁𝜁,𝜏𝜏,𝑡𝑡 ≤ 0 for all 𝜓𝜓, 𝜁𝜁 , 𝜏𝜏 and 𝑡𝑡 with 𝜓𝜓 > 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡. The first order conditions of this 

problem imply that firms face the demand constraint: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 ≤ 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡
∗ ≔ �

𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡. (2) 

Demand places an upper bound on firm sales, not a lower bound. 
From inspecting this problem, it may not be obvious whether aggregators 

make zero profits in equilibrium. It turns out that with this random rationing 
specification, aggregators do indeed make zero profits. This is because the 

aggregator has constant returns to scale conditional on 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡. However, we will 
see in Section 5 that the presence of quantity-capped rationing leads 

aggregators to make profits. In that case, the presence of sales limits mean that 
the aggregators face decreasing returns to scale, and so positive aggregator 

profits are consistent with perfect competition. Another way to see this is to 
note that the true price index would integrate over a sum of the actual price of 

goods, and the Lagrange multipliers on the sales limits, but aggregators do not 
“pay” the Lagrange multipliers, resulting in profit. 

Firms produce output using the decreasing returns to scale production 
function: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 = 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
1−𝛼𝛼 ,   where  𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑙𝑙𝜁𝜁,𝜏𝜏,𝑡𝑡. 

Here, 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 is their effective labour input, 𝑙𝑙𝜁𝜁,𝜏𝜏,𝑡𝑡 is their actual labour input, 𝐴𝐴𝑡𝑡 >
0 is aggregate productivity and 𝛼𝛼 ∈ (0,1) is the fixed share in production. The 
use of letter 𝑣𝑣 for the effective labour input anticipates the extended model in 

which 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 will be a bundle of variable inputs. Labour will be supplied at the 
aggregate wage 𝑊𝑊𝑡𝑡. For convenience, I define the wage of effective labour by 

𝑊𝑊�𝑡𝑡 ≔ 𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡

. 
Firms’ flow of real production profits is given by: 

𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 =
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 − 𝑊𝑊�𝑡𝑡𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 =
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
1−𝛼𝛼 − 𝑊𝑊�𝑡𝑡𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡. 

I assume firms can choose how much to produce at all points in time, after 

learning their demand shock. Thus, 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 (or 𝑙𝑙𝜁𝜁,𝜏𝜏,𝑡𝑡) is a choice variable for the 
firm. Note that no matter the price 𝑝𝑝𝜏𝜏 , 𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 = 0 if 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 = 0, but: 

 
will be true in equilibrium. 
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d𝑜𝑜𝜁̃𝜁,𝜏𝜏,𝑡𝑡

d𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
= (1 − 𝛼𝛼)

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡
−𝛼𝛼 − 𝑊𝑊�𝑡𝑡 → ∞ 

as 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 → ∞. Thus, the firm can always ensure positive production profits by 
choosing a small enough 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡. A small enough 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 will also satisfy the firm’s 

demand constraint, (2), and hence the firm will always make strictly positive 
profits, and will always choose 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 > 0 so 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 > 0. 

Firms choose 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 to maximize 𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 subject to the demand constraint, (2). 
In Appendix A I show that this leads them to choose: 

𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 = min
⎩�
⎨
�⎧

��
𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡�
1

1−𝛼𝛼
, �

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1
𝛼𝛼

⎭�
⎬
�⎫

, 

so: 

𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 = min
⎩�
⎨
�⎧

�
𝐷𝐷
𝜁𝜁

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
−𝜖𝜖

𝑌𝑌𝑡𝑡, �
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼

⎭�
⎬
�⎫

. 

In both of these expressions, the first term in the curly brackets gives the 

outcome without rationing, in which firms meet demand. In this case, price is 
above marginal cost, and sales are decreasing in the good’s real price. The 

second term in the curly brackets in these expressions gives the outcome with 
rationing. In this case, price equals marginal cost, and sales are increasing in 

the good’s real price. Note that the firm can calculate their maximum output in 
advance of the realisation of the shock. Thus, rationing does not require the 

firm to possess implausible amounts of information. 
High values of 𝜁𝜁  mean higher demand, and so make rationing more likely. 

To be specific, define: 

𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≔ 𝐷𝐷 �
𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
1+1−𝛼𝛼

𝜖𝜖𝜖𝜖
�

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼
𝜖𝜖𝜖𝜖

𝑌𝑌𝑡𝑡
−1

𝜖𝜖, 

then the firm will ration at least some buyers if 𝜁𝜁 > 𝜁𝜁𝜏̅𝜏,𝑡𝑡, and the firm will never 

ration if 𝜁𝜁 < 𝜁𝜁𝜏̅𝜏,𝑡𝑡. In particular, in equilibrium, a buyer’s probability of not being 
rationed when visiting a firm that last updated their price at 𝜏𝜏 with demand 
shock 𝜁𝜁  is: 

𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡 = min
⎩�⎨
�⎧1, �

𝜁𝜁𝜏̅𝜏,𝑡𝑡
𝜁𝜁 �

𝜖𝜖

⎭�⎬
�⎫. 

High values of 𝜁𝜁𝜏̅𝜏,𝑡𝑡 mean that rationing only takes place with extreme draws of 



 

Page 21 of 52 

the demand shock, whereas low values of 𝜁𝜁𝜏̅𝜏,𝑡𝑡 mean rationing is likely. Increases 

in aggregate demand 𝑌𝑌𝑡𝑡 reduce 𝜁𝜁𝜏̅𝜏,𝑡𝑡, increasing the chance of rationing. 
Likewise, when effective wages 𝑊𝑊�𝑡𝑡 are high, so marginal costs are high, 

rationing is likely. Finally, note that having a high real price makes rationing 
less likely. 

In the limit as 𝜆𝜆𝑡𝑡 → ∞ for all 𝑡𝑡, the model tends to one with quasi-flexible 
prices. In this limit, firms continuously adjust their prices, but still set prices at 

𝑡𝑡 before the realisation of their time 𝑡𝑡 demand shock. I show in Appendix A that 
firms still ration with positive probability in this limit (i.e., 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1), as long as 

𝜃𝜃 ≤ 𝛼𝛼𝛼𝛼−1
1−𝛼𝛼 𝜖𝜖, which will hold in any reasonable calibration. Thus, we should also 

expect 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1 when 𝜆𝜆𝑡𝑡 < ∞ and prices are sticky, meaning there is rationing 

for at least some values of the demand shock. In all numerical exercises I will 
check that 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡. 

Returning to the general case with 𝜆𝜆𝑡𝑡 < ∞, and assuming that 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1, a 
firm’s expected output before the demand shock is realized is:24 

𝑦𝑦𝜏𝜏,𝑡𝑡 ≔ � 𝑦𝑦𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁
1

0
 

= �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
−

𝜖𝜖
𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖 �

1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
�

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
𝜃𝜃+𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
. (3) 

This has a part that is increasing in the good’s real price and a part that is 

decreasing. The combination of the two gives log-concavity in 𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

, generating the 
concave log-sales over the life of a price that I previously plotted in the red line 

of Figure 2.25 
Again, assuming that 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1,26 a firm’s expected profits before the 

realization of the demand shock is given by: 

𝑜𝑜𝜏𝜏,𝑡𝑡 ≔ � 𝑜𝑜𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁
1

0
 

= 𝛼𝛼 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
�

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
1
𝛼𝛼
 

 
24 See Appendix A for derivations of this and subsequent results. 
25 To see log-concavity in price, write this expression as 𝐴𝐴𝑥𝑥𝑎𝑎 − 𝐵𝐵𝑥𝑥𝑎𝑎+𝑏𝑏, where 𝑥𝑥 = 𝑝𝑝𝜏𝜏

𝑃𝑃𝑡𝑡
, 𝐴𝐴, 𝑎𝑎, 𝐵𝐵, 𝑏𝑏 > 0 and 𝐴𝐴 −

𝐵𝐵𝑥𝑥𝑏𝑏 > 0 (as 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1). Then the second derivative of its logarithm is − 𝑎𝑎
𝑥𝑥2 − 𝑥𝑥−2�𝐴𝐴 − 𝐵𝐵𝑥𝑥𝑏𝑏�−2𝐵𝐵𝐵𝐵𝑥𝑥𝑏𝑏�(𝑏𝑏 − 1)𝐴𝐴 +

𝐵𝐵𝑥𝑥𝑏𝑏�. As long as 𝜃𝜃 > 1, 𝑏𝑏 > 1, so this is negative. 
26 I cover the 𝜁𝜁𝜏̅𝜏,𝑡𝑡 > 1 case in Appendix A. 
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−
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝜖𝜖𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖 �

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

�
𝜃𝜃+1

𝛼𝛼+𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼

. (4) 

This is also log-concave in 𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

.27  

3.2 State dynamics and the short-run Phillips curve 
The basic model will have two state variables, though calculating the 

model’s analogue of observed real GDP will add another nine. However, all 
these state variables will take the same form: 

𝑋𝑋𝑗𝑗,𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑝𝑝𝜏𝜏

𝜒𝜒𝑗𝑗,1 d𝜏𝜏
𝑡𝑡

−∞
, 

where 𝑗𝑗 ∈ ℤ and 𝜒𝜒𝑗𝑗,1 is a constant to be defined.28 This implies that: 
𝑋̇𝑋𝑗𝑗,𝑡𝑡 = 𝜆𝜆𝑡𝑡�𝑝𝑝𝑡𝑡

𝜒𝜒𝑗𝑗,1 − 𝑋𝑋𝑗𝑗,𝑡𝑡�, 

where, as usual, dots above variables denote time derivatives. 

Total demand for the variable production input, effective labour, is given by: 

𝑉𝑉𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 � 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 𝑔𝑔(𝜁𝜁) d𝜁𝜁

1

0
d𝜏𝜏

𝑡𝑡

−∞
. 

Assuming 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡, I show in Appendix A that: 

𝑉𝑉𝑡𝑡 = −
𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1
𝛼𝛼+𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 + �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1
𝛼𝛼

𝑃𝑃𝑡𝑡
−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡, (5) 

where 𝜒𝜒1,1 ≔ 𝜃𝜃 + 1
𝛼𝛼 + 𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼  and 𝜒𝜒2,1 ≔ 1
𝛼𝛼. Labour market clearing implies 𝑉𝑉𝑡𝑡 =

𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡, where 𝐿𝐿𝑡𝑡 is the household’s labour supply. 
Next, evaluating the integrals in the definition of the aggregator 𝑌𝑌𝑡𝑡, 

equation (1), implies: 

1 = −
𝜖𝜖

𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃+𝜖𝜖
𝜖𝜖 𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 + �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−1𝑃𝑃𝑡𝑡
−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡, (6) 

where I again assume 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡.29  
Holding fixed the values of the two states, 𝑋𝑋1,𝑡𝑡 and 𝑋𝑋2,𝑡𝑡, equations (5) and 

(6) can be combined with labour market clearing (𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡) and the 
household’s labour first order condition (to be given) to produce four equations 

in five unknowns (𝑉𝑉𝑡𝑡, 𝐿𝐿𝑡𝑡, 𝑊𝑊�𝑡𝑡, 𝑌𝑌𝑡𝑡 and 𝑃𝑃𝑡𝑡). The set of points satisfying these 
equations in (𝑌𝑌𝑡𝑡, 𝑃𝑃𝑡𝑡)-space gives the model’s short-run Phillips curve. 

 
27 By an identical argument to that of Footnote 25. 
28 The subscript “, 1” anticipates the fact that other powers will enter this integral in the extended model. 
29 Again, proven in Appendix A. 



 

Page 23 of 52 

Figure 3 plots the resulting short-run Phillips curve, under the model’s 

baseline calibration which I will describe shortly. This figure answers the 
following question. Suppose that for 𝑡𝑡 < 0, 𝑃𝑃𝑡𝑡 = exp(𝜋𝜋𝜋𝜋), meaning inflation was 

constant at 𝜋𝜋, and suppose all state variables were at steady state at time 0. 
Then, suppose that at time 0, an unexpected monetary shock caused the price 

level to jump to 𝑃𝑃0 from 1, where it would have been had no shock arrived. How 
does 𝑌𝑌0 vary with 𝑃𝑃0, assuming that 𝑃𝑃𝑡𝑡 = 𝑃𝑃0 exp(𝜋𝜋𝜋𝜋) for 𝑡𝑡 ≥ 0? I should stress 

that since the welfare relevant price level 𝑃𝑃𝑡𝑡 is not equal to the model’s analogue 
to PCEPI, this plot cannot easily be compared to the results of Figure 1. I will 

perform a careful comparison of the model to Figure 1 in Section 4. 

We see that the model’s short-run Phillips curve is convex and backwards-
bending. Expansionary monetary policy can produce a jump in prices by 
generating a jump in rationing, which tilts the weights of the welfare relevant 

price index away from goods with old (low) prices which are likely to ration. 
Large enough monetary expansions generate so much rationing that output 

falls. This result is completely independent of price setting, as it is an impact 

Figure 3: The model’s short-run Phillips curve (solid line), and the short-run Phillips curve without 

rationing (dashed line). Percent deviation from steady state. 

If 𝑃𝑃𝑡𝑡 = exp(𝜋𝜋𝜋𝜋) for 𝑡𝑡 < 0, with all state variables at steady state at time 0, how does 𝑌𝑌0 vary with a jump 
in 𝑃𝑃0, assuming inflation continues at 𝜋𝜋 after time 0? 
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result, before prices have adjusted. 

Without rationing, the equivalent of equation (6) relates 𝑃𝑃𝑡𝑡 & 𝑋𝑋−2,𝑡𝑡 with 
𝜒𝜒−2 ≔ −(𝜖𝜖 − 1).30 Thus, since 𝑋𝑋−2,𝑡𝑡 cannot jump, neither can 𝑃𝑃𝑡𝑡. Effectively, 

without rationing, the price level is a state variable. Thus, the model without 
rationing can never generate a jump in the welfare relevant price level. Of 

course, we do not observe the welfare relevant price level in reality, so this 
should not lead us to discard the model without rationing on its own. However, 

we will see that the faster adjustment of the welfare relevant measure with 
rationing will speed the adjustment of the observed price level, helping explain 

the data. 
The convexity and backward-bending of the short-run Phillips curve with 

rationing can be seen analytically from equation (6) in the special case in which 
wages are also fixed in the short-run. With wages fixed, totally differentiating 

equation (6) implies that: 
d log 𝑃𝑃𝑡𝑡
d log 𝑌𝑌𝑡𝑡

= 𝛼𝛼
1 − 𝒜𝒜𝑡𝑡

�1 + 𝛼𝛼 𝜃𝜃
𝜃𝜃 + 𝜖𝜖 (𝜖𝜖 − 1)� 𝒜𝒜𝑡𝑡 − 1

, (7) 

where: 

𝒜𝒜𝑡𝑡 ≔ 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼

𝑌𝑌𝑡𝑡
−𝜃𝜃

𝜖𝜖𝑃𝑃𝑡𝑡
−�𝜒𝜒1,1−𝜒𝜒2,1� 𝑋𝑋1,𝑡𝑡

𝑋𝑋2,𝑡𝑡
> 0. 

Thus, d log 𝑃𝑃𝑡𝑡
d log 𝑌𝑌𝑡𝑡

 is positive for moderate values of 𝒜𝒜𝑡𝑡 (a standard upwards sloping 

Phillips curve), but negative for extreme values (a doubly backwards-bending 
Phillips curve). 

3.3 Price setting 
Just as all of the model’s state variables take a similar form, so to do all of 

the forward-looking expressions that appear in the first order condition for 
firms’ optimal price. In particular, they all take the form: 

𝑧𝑧𝑗𝑗,𝜏𝜏 ≔ � 𝑒𝑒− ∫ (𝜆𝜆𝜐𝜐+𝑟𝑟𝜐𝜐) d𝜐𝜐𝑡𝑡
𝜏𝜏 𝐷𝐷𝜔𝜔𝑗𝑗,1𝑊𝑊�𝑡𝑡

𝜔𝜔𝑗𝑗,2𝑌𝑌𝑡𝑡
𝜔𝜔𝑗𝑗,3𝑃𝑃𝑡𝑡

𝜔𝜔𝑗𝑗,4 d𝑡𝑡
∞

𝜏𝜏
, 

for 𝑗𝑗 ∈ ℤ, and constants 𝜔𝜔𝑗𝑗,1, 𝜔𝜔𝑗𝑗,2, 𝜔𝜔𝑗𝑗,3 and 𝜔𝜔𝑗𝑗,4 to be defined. Here, 𝑟𝑟𝑡𝑡 is the real 
interest rate at 𝑡𝑡. Differentiating the definition of 𝑧𝑧𝑗𝑗,𝑡𝑡 implies it satisfies the 
following differential equation: 

 
30 See Appendix B. 
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𝑧𝑧𝑗̇𝑗,𝜏𝜏 = −𝐷𝐷𝜔𝜔𝑗𝑗,1𝑊𝑊�𝜏𝜏
𝜔𝜔𝑗𝑗,2𝑌𝑌𝜏𝜏

𝜔𝜔𝑗𝑗,3𝑃𝑃𝜏𝜏
𝜔𝜔𝑗𝑗,4 + (𝜆𝜆𝜏𝜏 + 𝑟𝑟𝜏𝜏)𝑧𝑧𝑗𝑗,𝜏𝜏. 

Firms updating their price at a time 𝜏𝜏 choose 𝑝𝑝𝜏𝜏  to maximize their value 

over the life of the price: 

𝑜𝑜𝜏𝜏 ≔ � 𝑒𝑒− ∫ (𝜆𝜆𝜐𝜐+𝑟𝑟𝜐𝜐) d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑜𝑜𝜏𝜏,𝑡𝑡 d𝑡𝑡

∞

𝜏𝜏
 

= −
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝛼𝛼𝛼𝛼

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 (1 − 𝛼𝛼)−𝜔𝜔1,2𝑝𝑝𝜏𝜏
−𝜔𝜔1,4𝑧𝑧1,𝜏𝜏 + 𝛼𝛼(1 − 𝛼𝛼)−𝜔𝜔2,2𝑝𝑝𝜏𝜏

−𝜔𝜔2,4𝑧𝑧2,𝜏𝜏, 

where 𝜔𝜔1,1 ≔ 𝜃𝜃, 𝜔𝜔1,2 ≔ − 𝜃𝜃+𝜖𝜖
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 , 𝜔𝜔1,3 ≔ − 𝜃𝜃

𝜖𝜖, 𝜔𝜔1,4 ≔ −𝜒𝜒1,1 = −�𝜃𝜃 + 1
𝛼𝛼 + 𝜃𝜃

𝜖𝜖
1−𝛼𝛼

𝛼𝛼 �, 

𝜔𝜔2,1 ≔ 0, 𝜔𝜔2,2 ≔ − 1−𝛼𝛼
𝛼𝛼 , 𝜔𝜔2,3 ≔ 0, 𝜔𝜔2,4 ≔ −𝜒𝜒2,1 = − 1

𝛼𝛼.31 Thus, firms optimally set 
𝑝𝑝𝜏𝜏  such that: 

𝜖𝜖 �
𝜖𝜖

𝜃𝜃(1 − 𝛼𝛼) + 𝜖𝜖 −
𝜖𝜖 − 1
𝜃𝜃 + 𝜖𝜖� (1 − 𝛼𝛼)

𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 𝑝𝑝𝜏𝜏

𝜃𝜃+𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 𝑧𝑧1,𝜏𝜏 = 𝑧𝑧2,𝜏𝜏. 

In the quasi-flexible price limit with 𝜆𝜆𝜏𝜏 → ∞, this implies they would set the 

price 𝑝𝑝𝜏𝜏
QF with: 

𝑝𝑝𝜏𝜏
QF

𝑃𝑃𝜏𝜏
=

⎣
⎢
⎡�

𝜖𝜖2

𝜃𝜃(1 − 𝛼𝛼) + 𝜖𝜖 − 𝜖𝜖
𝜖𝜖 − 1
𝜃𝜃 + 𝜖𝜖�

−𝛼𝛼𝛼𝛼
𝜃𝜃

𝐷𝐷−𝛼𝛼𝛼𝛼𝑌𝑌𝜏𝜏
𝛼𝛼 �

𝑊𝑊�𝜏𝜏
1 − 𝛼𝛼�

1−𝛼𝛼

⎦
⎥
⎤

1
1+(𝜖𝜖−1)𝛼𝛼

. 

For comparison, without rationing in the quasi-flexible price limit, firms would 

set the price 𝑝𝑝𝜏𝜏
QFNR:32 

𝑝𝑝𝜏𝜏
QFNR

𝑃𝑃𝜏𝜏
=

⎣
⎢⎡�(1 − 𝛼𝛼) �

𝜖𝜖
𝜖𝜖 − 1�

𝜃𝜃 + 𝜖𝜖
𝜃𝜃(1 − 𝛼𝛼) + 𝜖𝜖�

1−𝛼𝛼
𝐷𝐷−𝛼𝛼𝛼𝛼𝑌𝑌𝑡𝑡

𝛼𝛼 �
𝑊𝑊�𝜏𝜏

1 − 𝛼𝛼�
1−𝛼𝛼

⎦
⎥⎤

1
1+(𝜖𝜖−1)𝛼𝛼

 

The two expressions agree when 𝛼𝛼 = 𝜃𝜃+𝜖𝜖
𝜃𝜃+𝜖𝜖2. At this point, the derivatives of the 

ratio 𝑝𝑝𝜏𝜏
QFNR

𝑝𝑝𝜏𝜏
QF  with respect to 𝛼𝛼, 𝜖𝜖 or 𝜃𝜃 are all zero, and the second derivatives of the 

ratio with respect to those variables are all positive. Thus, at least locally around 
𝛼𝛼 = 𝜃𝜃+𝜖𝜖

𝜃𝜃+𝜖𝜖2, with quasi-flexible prices, firms set higher prices if they cannot ration 

than if rationing is allowed. This is intuitive. If rationing is not allowed, firms 
worry about making large losses if demand is very high. To protect against this, 
they set a higher price. 

3.4 Price adjustment rate choice 
I endogenize 𝜆𝜆𝑡𝑡, broadly following Blanco et al. (2024b). This is important 

as I wish to analyse the effects of changing steady-state inflation, and it is not 

 
31 See Appendix A for this derivation and those of the rest of the results in this Subsection. I continue to 
assume 𝜁𝜁𝜏̅𝜏,𝑡𝑡 ≤ 1 for all 𝜏𝜏 and 𝑡𝑡 throughout. 
32 See Appendix B for the model without rationing. 
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plausible to assume that 𝜆𝜆𝑡𝑡 remains fixed as the long-run inflation rate 

increases. Higher trend inflation should mean more frequent price adjustment. 
To endogenize 𝜆𝜆𝑡𝑡, I assume that all firms are owned by conglomerates, with 

each conglomerate owning countably many firms (still a measure zero subset 
of the set of all firms). Each conglomerate will choose the rate of price 

adjustment 𝜆𝜆𝑡𝑡 for the firms it owns, to maximize average firm value over its 
firms minus a price adjustment cost of 𝜅𝜅1

1+𝜅𝜅2
(max{0, 𝜆𝜆𝑡𝑡 − 𝜆𝜆})1+𝜅𝜅2 labour units, 

where 𝜅𝜅1, 𝜅𝜅2 > 0 and 𝜆𝜆 ≥ 0. This cost function has the reasonable property that 
if there is little price adjustment (𝜆𝜆𝑡𝑡 ≤ 𝜆𝜆) then there are no costs, unlike the cost 

function chosen by Blanco et al. (2024b) which is positive when adjustment 
rates are small. If 𝜆𝜆 > 0 it also captures the free price adjustments stressed by 

“Calvo plus” models (Nakamura & Steinsson 2010). I will set 𝜆𝜆 to the minimum 
observed annual price adjustment rate in the Montag & Villar (2025) data used 

in Figure 1, 𝜆𝜆 = 0.73. (This is at least a consistent estimator of the quantity of 
interest, if not necessarily an efficient one.) I calibrate 𝜅𝜅1 to match the time series 

mean (1978/01 – 2024/08) of the cross-sectional weighted median rate of price 
adjustment observed in the same data, 𝜆𝜆 = 1.48.33 And I will calibrate 𝜅𝜅2 to 

match the response of 𝜆𝜆𝑡𝑡 to monetary shocks observed in Figure 1. 
The derivation of the conglomerate’s first order condition is a little involved, 

so I confine it to Appendix A, but the first order condition itself is quite simple. 
Define the total flow of profits at 𝑡𝑡 by: 

𝑂𝑂𝑡𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝑜𝑜𝜏𝜏,𝑡𝑡 d𝜏𝜏

𝑡𝑡

−∞
 

= −
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝛼𝛼𝛼𝛼

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼

𝑊𝑊�𝑡𝑡
�

𝜃𝜃+𝜖𝜖
𝜖𝜖

1−𝛼𝛼
𝛼𝛼

𝑌𝑌𝑡𝑡
−𝜃𝜃

𝜖𝜖𝑃𝑃𝑡𝑡
−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡 

+𝛼𝛼 �
1 − 𝛼𝛼

𝑊𝑊�𝑡𝑡
�

1−𝛼𝛼
𝛼𝛼

𝑃𝑃𝑡𝑡
−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡. (8) 

using equation (4),34 and define the total value of all firms at time 𝑠𝑠 over the 
 

33 See Footnote 11. 
34 Note that by equations (5) and (8): 

𝑊𝑊�𝑡𝑡𝑉𝑉𝑡𝑡 + 𝑂𝑂𝑡𝑡 = − �
(1 − 𝛼𝛼)𝜖𝜖

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖 +
𝜖𝜖

𝜃𝜃 + 𝜖𝜖
𝛼𝛼𝛼𝛼

(1 − 𝛼𝛼)𝜃𝜃 + 𝜖𝜖� 𝐷𝐷𝜃𝜃 �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
𝜃𝜃+𝜖𝜖

𝜖𝜖
1−𝛼𝛼

𝛼𝛼
𝑌𝑌𝑡𝑡

−𝜃𝜃
𝜖𝜖𝑃𝑃𝑡𝑡

−𝜒𝜒1,1𝑋𝑋1,𝑡𝑡

+ [(1 − 𝛼𝛼) + 𝛼𝛼] �
1 − 𝛼𝛼
𝑊𝑊�𝑡𝑡

�
1−𝛼𝛼

𝛼𝛼
𝑃𝑃𝑡𝑡

−𝜒𝜒2,1𝑋𝑋2,𝑡𝑡 = � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 𝑑𝑑𝜐𝜐𝑡𝑡
𝜏𝜏

𝑝𝑝𝜏𝜏
𝑃𝑃𝑡𝑡

𝑦𝑦𝜏𝜏,𝑡𝑡 𝑑𝑑𝜏𝜏
𝑡𝑡

−∞
. 
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lives of their current prices by: 

𝑄𝑄𝑠𝑠
∗ ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑠𝑠

𝜏𝜏 � 𝑒𝑒− ∫ (𝜆𝜆𝜐𝜐+𝑟𝑟𝜐𝜐) d𝜐𝜐𝑡𝑡
𝑠𝑠 𝑜𝑜𝜏𝜏,𝑡𝑡 d𝑡𝑡

∞

𝑠𝑠
d𝜏𝜏

𝑠𝑠

−∞
. 

Then: 

𝑄̇𝑄𝑡𝑡
∗ = 𝜆𝜆𝑡𝑡𝑜𝑜𝑡𝑡 − 𝑂𝑂𝑡𝑡 + 𝑟𝑟𝑡𝑡𝑄𝑄𝑡𝑡

∗, 
and the conglomerate’s first order condition implies: 

𝜅𝜅1(𝜆𝜆𝑡𝑡 − 𝜆𝜆)𝜅𝜅2𝑊𝑊𝑡𝑡 = 𝑜𝑜𝑡𝑡 − 𝑄𝑄𝑡𝑡
∗. 

This is easy to understand. The right-hand side is the benefit of increasing the 

price adjustment rate. Firms that update their price have value 𝑜𝑜𝑡𝑡 (over the life 
of their new price), while those that do not update their price on average have 

value 𝑄𝑄𝑡𝑡
∗ (over the lives of their current prices). The left-hand side is the 

marginal cost of increasing the price adjustment rate. 

3.5 Households and monetary policy 
In period 𝑡𝑡 the representative household maximizes: 

� 𝑒𝑒− ∫ 𝜌𝜌𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 �log 𝑌𝑌𝑡𝑡 − Ψ𝑡𝑡

1
1 + 𝜈𝜈 �𝐿𝐿𝑡𝑡 +

𝜅𝜅1
1 + 𝜅𝜅2

(𝜆𝜆𝑡𝑡 − 𝜆𝜆)1+𝜅𝜅2�
1+𝜈𝜈

� d𝑡𝑡,
∞

𝜏𝜏
 

where 𝜈𝜈 > 0 and for all 𝑡𝑡, Ψ𝑡𝑡 > 0 and 𝜌𝜌𝑡𝑡 > 0, with ∫ 𝜌𝜌𝜐𝜐 d𝜐𝜐∞
𝑡𝑡 = ∞. Note that I have 

defined 𝐿𝐿𝑡𝑡 so that it just includes production labour, not labour used in price 

adjustment. 
The household faces the budget constraint: 

𝑌𝑌𝑡𝑡 +
𝐵̇𝐵𝑡𝑡

(𝑖𝑖)

𝑃𝑃𝑡𝑡
+ 𝐵̇𝐵𝑡𝑡

(𝑟𝑟) = 𝑊𝑊𝑡𝑡 �𝐿𝐿𝑡𝑡 +
𝜅𝜅1

1 + 𝜅𝜅2
(𝜆𝜆𝑡𝑡 − 𝜆𝜆)1+𝜅𝜅2� + 𝑖𝑖𝑡𝑡

𝐵𝐵𝑡𝑡
(𝑖𝑖)

𝑃𝑃𝑡𝑡
+ 𝑟𝑟𝑡𝑡𝐵𝐵𝑡𝑡

(𝑟𝑟) + Τ𝑡𝑡, 

where 𝐵𝐵𝑡𝑡
(𝑖𝑖) are their holdings of nominal bonds, which return 𝑖𝑖𝑡𝑡, 𝐵𝐵𝑡𝑡

(𝑟𝑟) are their 
holdings of real bonds, which return 𝑟𝑟𝑡𝑡, and where Τ𝑡𝑡 contains all profits from 

owning firms and aggregators. The household’s first order conditions then 
imply: 

Ψ𝑡𝑡 �𝐿𝐿𝑡𝑡 +
𝜅𝜅1

1 + 𝜅𝜅2
(𝜆𝜆𝑡𝑡 − 𝜆𝜆)1+𝜅𝜅2�

𝜈𝜈
=

𝑊𝑊𝑡𝑡
𝑌𝑌𝑡𝑡

, 𝑟𝑟𝑡𝑡 = 𝜌𝜌𝑡𝑡 +
𝑌̇𝑌𝑡𝑡
𝑌𝑌𝑡𝑡

, 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡, 

where 𝜋𝜋𝑡𝑡 = 𝑃̇𝑃𝑡𝑡
𝑃𝑃𝑡𝑡

. 
I assume that the central bank sets the nominal interest rate according to the 

“real rate rule” of Holden (2024), so in particular: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡
∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), 

 
So, as expected, labour income plus total firm profits equals the real value of goods sold. 
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where 𝜙𝜙 > 1 and where 𝜋𝜋𝑡𝑡
∗ is an exogenous inflation target. Combining this 

equation with the Fisher equation derived above implies 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ for all 𝑡𝑡. 

Hence, inflation will be effectively exogenous. This is helpful as we are 

interested in the relationship between output and inflation. The clearest way to 
study this relationship is to make one of the two exogenous. Making output 

exogenous risks multiplicity due to the backward bending Phillips curve, so it 
is more sensible to make inflation exogenous, as here. I can still study monetary 

policy shocks in this environment, as the central bank can undertake 
expansionary policy by increasing 𝜋𝜋𝑡𝑡

∗, and contractionary by decreasing it. 

3.6 Other aggregates 
A number of other aggregates will prove useful. First, I need a measure of 

the average probability that a buyer from a particular firm will receive their 
order: 

𝜓𝜓𝜏̅𝜏,𝑡𝑡 ≔ � 𝜓𝜓𝜁̅𝜁,𝜏𝜏,𝑡𝑡𝑔𝑔(𝜁𝜁) 𝑑𝑑𝜁𝜁
1

0
=

𝜃𝜃𝜁𝜁𝜏̅𝜏,𝑡𝑡
𝜖𝜖 − 𝜖𝜖𝜁𝜁𝜏̅𝜏,𝑡𝑡

𝜃𝜃

𝜃𝜃 − 𝜖𝜖 . 

I then need a measure of the average of this across all firms. For comparability 
with the fixed weights of the Cavallo & Kryvtsov (2023) evidence on stockouts, 

it makes sense to take a simple average across firms, so I define: 

𝜓𝜓𝑡̅𝑡 ≔ � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝜓𝜓𝜏̅𝜏,𝑡𝑡 d𝜏𝜏

𝑡𝑡

−∞
. 

I calibrate 𝜃𝜃 so that 𝜓𝜓̅ = 1 − 0.11, as Cavallo & Kryvtsov (2023) found an 11% 
stockout rate in the U.S. in 2019. 

Next, I need the model’s equivalent of the PCEPI index. At the most 
disaggregated level, the PCEPI index uses price indices constructed by the BLS 

(for the CPI), which are a geometric mean of gross product price growth for 
most goods.35 When a price is not observed, due to a stockout, the BLS assumes 

that the good’s price growth is equal to average price growth. 
This suggests that over a small interval Δ, the PCEPI price index 𝑃𝑃𝑡𝑡

PCEPI 
should satisfy: 

1
Δ �log 𝑃𝑃𝑡𝑡

PCEPI − log 𝑃𝑃𝑡𝑡−Δ
PCEPI� 

 
35 See Footnote 13. 
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=
1
𝛥𝛥 � 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡−𝛥𝛥

𝜏𝜏 �𝜓𝜓𝜏̅𝜏,𝑡𝑡−𝛥𝛥𝜆𝜆𝑡𝑡𝛥𝛥 �𝜓𝜓𝑡̅𝑡,𝑡𝑡 log
𝑝𝑝𝑡𝑡
𝑝𝑝𝜏𝜏

+ �1 − 𝜓𝜓𝑡̅𝑡,𝑡𝑡� log
𝑃𝑃𝑡𝑡

PCEPI

𝑃𝑃𝑡𝑡−𝛥𝛥
PCEPI�

𝑡𝑡−𝛥𝛥

−∞

+ 𝜓𝜓𝜏̅𝜏,𝑡𝑡−𝛥𝛥(1 − 𝜆𝜆𝑡𝑡𝛥𝛥) �𝜓𝜓𝜏̅𝜏,𝑡𝑡0 + �1 − 𝜓𝜓𝜏̅𝜏,𝑡𝑡� log
𝑃𝑃𝑡𝑡

PCEPI

𝑃𝑃𝑡𝑡−𝛥𝛥
PCEPI�

+ �1 − 𝜓𝜓𝜏̅𝜏,𝑡𝑡−𝛥𝛥� log
𝑃𝑃𝑡𝑡

PCEPI

𝑃𝑃𝑡𝑡−𝛥𝛥
PCEPI� d𝜏𝜏, 

where we have split the integral to consider the multiple cases coming from the 

three following events: (1) was the price observed at 𝑡𝑡 − Δ? (2) did the price 
change in the interval (𝑡𝑡 − Δ, 𝑡𝑡]? (3) was the price observed at 𝑡𝑡? Taking the limit 

as Δ → 0 and solving for d log 𝑃𝑃𝑡𝑡
PCEPI

d𝑡𝑡  implies: 

𝜋𝜋𝑡𝑡
PCEPI ≔

d log 𝑃𝑃𝑡𝑡
PCEPI

d𝑡𝑡 = 𝜆𝜆𝑡𝑡𝜓𝜓𝑡̅𝑡,𝑡𝑡

∫ 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝜓𝜓𝜏̅𝜏,𝑡𝑡

2 1
𝜓𝜓𝜏̅𝜏,𝑡𝑡

log 𝑝𝑝𝑡𝑡
𝑝𝑝𝜏𝜏

d𝜏𝜏𝑡𝑡
−∞

∫ 𝜆𝜆𝜏𝜏𝑒𝑒− ∫ 𝜆𝜆𝜐𝜐 d𝜐𝜐𝑡𝑡
𝜏𝜏 𝜓𝜓𝜏̅𝜏,𝑡𝑡

2 d𝜏𝜏𝑡𝑡
−∞

. 

I have deliberately not simplified 𝜓𝜓𝜏̅𝜏,𝑡𝑡
2 1

𝜓𝜓𝜏̅𝜏,𝑡𝑡
 in the numerator to make clear that 

this is proportional to a weighted mean of 1
𝜓𝜓𝜏̅𝜏,𝑡𝑡

log 𝑝𝑝𝑡𝑡
𝑝𝑝𝜏𝜏

 across firms. Old firms will 

have low prices, and so will ration a lot, making 1
𝜓𝜓𝜏̅𝜏,𝑡𝑡

 big. Thus, this measure will 
effectively give higher weight to the (large) price changes of older firms. 

Finally, I need a measure of aggregate productivity. First, imagine that a 
constrained social planner wants to maximize aggregate output (without 

rationing) at 𝑡𝑡 by choosing 𝑣𝑣𝜁𝜁,𝜏𝜏,𝑡𝑡 for all 𝜁𝜁 ∈ [0,1] and 𝜏𝜏 ≤ 𝑡𝑡 subject to a fixed 
total effective labour supply, 𝑉𝑉𝑡𝑡. Then, I show in Appendix A that their choices 

imply total output 𝑌𝑌𝑡𝑡 of: 

𝑌𝑌𝑡𝑡
SP ≔

⎣
⎢⎢
⎡ 𝜃𝜃 + 1

𝜃𝜃 + 𝜖𝜖
1 + 𝛼𝛼(𝜖𝜖 − 1)⎦

⎥⎥
⎤

1+𝛼𝛼(𝜖𝜖−1)
𝜖𝜖−1

�
𝜃𝜃 + 1

𝜃𝜃 𝑉𝑉𝑡𝑡�
1−𝛼𝛼

. 

Given this, the natural measure of the economy’s productivity is 𝑌𝑌𝑡𝑡

𝑌𝑌𝑡𝑡
SP. 

3.7 Detrended variables and stability 
For the sake of simulation, it is helpful to define detrended versions of the 

model’s variables, such that the detrended variables are stationary. The 
differential equations followed by these detrended variables will also inform us 

about the model’s stability. 
For the state variables, I define 𝑋̂𝑋𝑗𝑗,𝑡𝑡 ≔

𝑋𝑋𝑗𝑗,𝑡𝑡

𝑃𝑃𝑡𝑡
𝜒𝜒𝑗𝑗,1 for 𝑗𝑗 ∈ ℤ, and I define 𝑝𝑝𝑡̂𝑡 ≔ 𝑝𝑝𝑡𝑡

𝑃𝑃𝑡𝑡
. 

Then: 
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𝑋̇̂𝑋𝑗𝑗,𝑡𝑡 = 𝜆𝜆𝑡𝑡𝑝𝑝𝑡̂𝑡
𝜒𝜒𝑗𝑗,1 − �𝜆𝜆𝑡𝑡 + 𝜒𝜒𝑗𝑗,1𝜋𝜋𝑡𝑡�𝑋̂𝑋𝑗𝑗,𝑡𝑡. 

Given a path of 𝑝𝑝𝑡̂𝑡, this differential equation is stable if and only if 𝜆𝜆𝑡𝑡 + 𝜒𝜒𝑗𝑗,1𝜋𝜋𝑡𝑡 >
0, in which case when 𝑋̂𝑋𝑗𝑗,𝑡𝑡 is high, it will be pushed back towards trend. Recall 
that with rationing, my model has the state variables 𝑋𝑋1,𝑡𝑡 and 𝑋𝑋2,𝑡𝑡, with 𝜒𝜒1,1 =
𝜃𝜃 + 1

𝛼𝛼 + 𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 > 0 and 𝜒𝜒2,1 = 1

𝛼𝛼 > 0. Thus, as long as inflation does not go too 
negative, both state variables will be stable. By contrast, the state variable of the 

model without rationing is 𝑋𝑋−1,𝑡𝑡 with 𝜒𝜒−1,1 ≔ − 𝜖𝜖
1−𝛼𝛼 < 0 (see Appendix B). 

Since this is negative, if inflation gets too high then the state variable can 

explode to infinity, with output collapsing to zero. Marsal, Rabitsch & Kaszab 
(2023) and Holden, Marsal & Rabitsch (2024) show that this instability is a 

major problem for empirically plausible calibrations. It is not even clear that a 
valid global solution exists to the basic New Keynesian model. Luckily, all of 

these problems go away when rationing is allowed. 
For the forward-looking variables, I define 𝑧𝑧𝑗̂𝑗,𝑡𝑡 ≔

𝑧𝑧𝑗𝑗,𝑡𝑡

𝑃𝑃𝑡𝑡
𝜔𝜔𝑗𝑗,4 for 𝑗𝑗 ∈ ℕ, so: 

𝑧𝑧̂𝑗̇𝑗,𝑡𝑡 = −𝐷𝐷𝜔𝜔𝑗𝑗,1𝑊𝑊�𝑡𝑡
𝜔𝜔𝑗𝑗,2𝑌𝑌𝑡𝑡

𝜔𝜔𝑗𝑗,3 + �𝜆𝜆𝑡𝑡 + 𝑟𝑟𝑡𝑡 − 𝜔𝜔𝑗𝑗,4𝜋𝜋𝑡𝑡�𝑧𝑧𝑗̂𝑗,𝑡𝑡. 

Remembering that this equation is solved backwards in time, given the paths 

of other variables, 𝜔𝜔𝑗𝑗,4 < 0 is sufficient for “stability” (with 𝑟𝑟𝑡𝑡, 𝜋𝜋𝑡𝑡 positive). The 
forward-looking variables with rationing were 𝑧𝑧1,𝑡𝑡 and 𝑧𝑧2,𝑡𝑡, with 𝜔𝜔1,4 =
−�1

𝛼𝛼 + 𝜃𝜃 + 𝜃𝜃
𝜖𝜖

1−𝛼𝛼
𝛼𝛼 � < 0 and 𝜔𝜔2,4 = − 1

𝛼𝛼 < 0, so both variables are well behaved. 
Again, without rationing, neither of the two forward looking variables have this 

“stability” property. 

3.8 Parameterization and calibration 
I will show results for the model with rationing presented here, as well as 

for the equivalent model without rationing. (See Appendix B for the model 

without rationing.) I set most parameters to standard values for both models. I 
set 𝜌𝜌 ≔ 2% and 𝜋𝜋PCEPI ≔ 2%, unless otherwise stated. For the model with 

rationing, hitting this target for PCEPI inflation requires true inflation of 2.04%. 
For the model without rationing, true inflation is also 2%. 

Following Smets & Wouters (2007), I set 𝜖𝜖 ≔ 10 and 𝜈𝜈 ≔ 2. I set 𝛼𝛼 ≔ 3
5 

following the argument of the introduction and the evidence of Abraham et al. 

(2024). Note that 35 was consistent with the fixed share evidence of Abraham et 
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al. (2024) at annual frequency. At higher frequencies, perhaps even higher 

calibrations of 𝛼𝛼 would be justified. Choosing 35 is thus relatively conservative. I 
normalize units by setting 𝐴𝐴 ≔ 1 and I normalize Ψ so that steady-state  

production labour supply agrees with that in an equivalent model with 
exogenous 𝜆𝜆𝑡𝑡 and Ψ = 1. 

I set 𝜃𝜃 ≔ 27, as at this level the model implies that in steady state, the average 
probability of being rationed across goods, 1 − 𝜓𝜓̅ = 11%, matching the 11% 

stockouts found in 2019 by Cavallo & Kryvtsov (2023). Setting 𝜃𝜃 = 27 implies 
the mean of 𝜁𝜁  is 0.96 and its standard deviation is 0.03. This does not seem like 

an implausibly high level for an idiosyncratic demand shock. 
 As previously mentioned, I set 𝜆𝜆 to the minimum annual median price 

adjustment rate in the Montag & Villar (2025) data, 𝜆𝜆 = 0.73, and I calibrate 𝜅𝜅1 
to match the time series mean of the median rate of price adjustment from the 

same data, 𝜆𝜆 = 1.48. (This implies an expected price duration of 8 months.) I 
calibrate 𝜅𝜅2 to equate the value of: 

∫ (𝜆𝜆𝑡𝑡 − 𝜆𝜆) d𝑡𝑡
1
4

0

∫ �𝜋𝜋𝑡𝑡
PCEPI − 𝜋𝜋PCEPI� d𝑡𝑡

1
4

0

 

following a monetary policy shock to the value of this expression estimated 
from Figure 1, 8.2.36 With rationing, this leads to 𝜅𝜅1 = 0.016 and 𝜅𝜅2 = 3.75. 

Without rationing, I set 𝜅𝜅1 = 0.105 and 𝜅𝜅2 = 2.06.37 With this calibration, with 
rationing allowed, only 0.1% of all labour is used for price adjustment. By 

contrast, without rationing, 2.0% of all labour is used for price adjustment. This 
illustrates the degree to which rationing reduces the price adjustment frictions 

needed to match the data. 

4 Results 
I will first present comparative static results varying the steady-state 

inflation rate. Given these results suggest that welfare is higher in the model 
 

36 I choose the persistence of the monetary policy shock so that the resulting path for one-year bonds is 
inside the confidence bands from Figure 1. The annual decay rate of 𝜋𝜋𝑡𝑡

∗ is 3.9, giving an annual decay rate 
for one-year bonds of 5.1. 
37 A slightly lower 𝜅𝜅2 would have been preferable in the no-rationing case, but numerical difficulties 

prevented this. 
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with rationing, I then spend some time discussing what drives this. I then 

examine the model’s impulse responses to monetary policy shocks, starting 
with a comparison of the model’s three-month Phillips curve to the results of 

Figure 1. Let me first remind you, though, of one important result we have 
already seen. In Figure 2, I showed that the model can match the concavity of 

firm sales over the life of a price that we see in scanner data, despite this not 
being a calibration target. 

4.1 Comparative statics 
This Subsection will present quite a number of graphs. In almost all the 

following plots, black solid lines are from the model with rationing, and black 
dashed lines are from the model without rationing. (See Appendix B for the 

model without rationing.) 
A first question to answer is how rationing varies as the rate of inflation 

varies. The first panel of Figure 6 answers this. It shows that average rationing 
levels are increasing in the steady-state inflation rate. This is driven by the fact 

that when inflation is high, mark-ups are eroded quickly, leading to greater 
rationing. 

A natural follow-on question is: which firms ration? The middle panel of 
Figure 6 shows that for firms with new prices, stockout rates are actually 

decreasing in steady-state inflation. This is because when inflation is high, firms 
resetting their price choose a high initial mark-up, to protect themselves against 

future mark-up erosion. However, the third panel of Figure 6 shows that this 
effect for firms with new prices is dominated by the mark-up erosion channel. 

The dark blue line in that panel shows that if the steady-state inflation rate is 
0.5%, then the stockout probability is almost constant over the life of a price. 
However, if the steady-state inflation rate is 8% (the dark red line), then the 
probability of being rationed increases quickly as the prices ages, as inflation 

erodes markups. 
Figure 7 shows how output, production labour supply and welfare change 

with the long-run level of inflation. Both with and without rationing, the 
welfare maximising and output maximising inflation levels are very close to 0% 

(at least conditional on inflation being positive). Figure 7 makes clear that the 
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costs of high steady-state inflation are far more serious when rationing is not 

allowed. While with rationing, 8% inflation leads to 2.6% worse welfare 
(consumption equivalent) than 0% inflation, without rationing the same loss is 

36%. Inflation is bounded above in the model without rationing and with 
exogenous 𝜆𝜆𝑡𝑡, and output falls to zero as inflation approaches this level. 

Allowing conglomerates to choose price adjustment rates removes this hard 
upper bound, but instead a substantial amount of labour is diverted to price 

adjustment when inflation is high. 
Figure 8 looks in more detail at how rationing might be improving welfare 

relative to economies without rationing. The first panel looks at productivity 
(measured by log 𝑌𝑌

𝑌𝑌SP). With rationing, the productivity loss due to rationing 

and labour misallocation across firms varies from 4% to 6%. This is dwarfed by 
the productivity loss due to misallocation without rationing, which hits 25% at 

8% inflation. 
A priori, a potential candidate for productivity losses might have been 

mark-ups. But the bottom panels of Figure 8 show aggregate mark-ups 
(measured by (1−𝛼𝛼)𝑌𝑌

𝑊𝑊𝑊𝑊 ) and aggregate excess firm profit shares (𝑂𝑂
𝑌𝑌 − 𝛼𝛼) are 

rapidly declining in inflation without rationing. This is driven by the 
combination of inflation eroding firm mark-ups, and firms with low (or 

negative) mark-ups selling large quantities. By contrast, when rationing is 
allowed, no firms set negative mark-ups, and firms with low mark-ups sell low 

quantities. Thus, aggregate mark-ups and profits barely change with inflation. 
Finally, Figure 8 shows how the price adjustment rate varies with inflation. 

At 8% inflation, with rationing, price adjustment rates reach 1.91, while without 
rationing, they hit 2.66. While this may not seem like a huge difference, the 

consequences for price adjustment labour use are massive, due to the differing 
calibrations of 𝜅𝜅1 and 𝜅𝜅2 (that come from the differing losses from having an 

old price across the two models). With rationing, at 8% inflation, a moderate 
1.0% of labour is used for price adjustment. Without, this figure is over 31%, 

explaining a substantial portion of the output loss. 

4.2 Why might rationing be desirable? 
The previous subsection showed welfare is higher in economies with 
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rationing than in those without rationing.38 This may be surprising. Is rationing 

not a bad thing? 
Rationing’s relative welfare benefits are primarily a consequence of the fact 

that in standard models, the firms with the most distorted prices are selling a 
lot, since the most distorted prices are very old and hence very low. High 

production by these firms with old prices pushes up marginal costs for all firms, 
in turn reducing output for firms with relatively undistorted prices. Thus, 

without rationing, demand is shifted from firms with undistorted prices to 
firms with distorted prices. By contrast, if rationing is allowed, then these firms 

with old, highly distorted, prices will limit sales through rationing. With 
relatively low production of goods with old prices, there will be less pressure 

on marginal costs for firms with new prices, so those firms will produce more. 
Demand is shifted from firms with distorted prices to firms with undistorted 

ones, at least relative to the no rationing benchmark. 
Furthermore, note that if a firm could adjust their price after observing their 

demand shock, they would choose a price that is increasing in 𝜁𝜁 . Thus, fully 
flexible prices lead to reduced sales when 𝜁𝜁  is high compared to the sticky or 

quasi-flexible benchmarks without rationing. Rationing also limits sales when 
𝜁𝜁  is high, so it is intuitive that increased rationing can bring the economy closer 

to the fully flexible benchmark. 
At the micro level (looking at demand and supply of a single good), with 

arbitrary demand and cost curves and a fixed price, it is ambiguous whether 
average welfare (with quasilinear utility) is higher with rationing or with 

production of the full quantity demanded. But, in reality, we expect the demand 
curve (𝑝𝑝

𝑃𝑃 ∝ 𝑦𝑦−1
𝜖𝜖 ≈ 𝑦𝑦− 1

10) to be flatter than the marginal cost curve (MC ∝ 𝑦𝑦
𝛼𝛼

1−𝛼𝛼 ≈
𝑦𝑦

3
2). In this case, we can see graphically that welfare should be higher when 

rationing is allowed than when firms are forced to satisfy demand, as shown in 

Figure 4. While the graphical argument of Figure 4 strictly only applies with 
linear marginal costs and linear demand, this result is more general. In 

Appendix C.1 I show that microeconomic welfare is higher with rationing with 
 

38 See also the results and discussion in Hahn (2022), who also examined static outcomes under rationing 

with sticky prices, but without idiosyncratic demand shocks. 



 

Page 35 of 52 

general isoelastic demand and marginal costs. Of course, with random 

rationing, these average welfare figures mask substantial heterogeneity across 
buyers. Some are getting their full order, while others get nothing. So, such 

average quasilinear micro-welfare results are far from the full story. 

The average benefits of rationing are even clearer if supply constraints really 

do mean that marginal costs go to infinity at some finite output level 𝑦𝑦,̅ as 
depicted in Figure 5. Then, if the quantity demanded at the current price is 

greater than 𝑦𝑦,̅ there is no way the micro market can clear without rationing, 
holding macro quantities fixed. Instead, as the firm increases production to try 

to satisfy demand, more and more of the economy’s resources are devoted to 
this one micro market. This decreases aggregate production, pushing down 

demand for all products, including the current one, until demand for it is below 
𝑦𝑦.̅ Thus, without rationing, macro quantities may have to move to clear a micro 

market, producing arbitrarily large distortions. With rationing, the equilibrium 
is at the point at which price equals marginal cost, as usual. 

Figure 4: The microeconomics of rationing. 

With rationing allowed, production is given by the orange line, and welfare is 𝐴𝐴 + 𝐵𝐵. 
Without rationing, production is given by the grey line, and welfare is 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 − 𝐸𝐸. 

With demand flatter than marginal costs, 𝐸𝐸 > 𝐶𝐶, and so welfare is higher with rationing. 
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Figure 5: The microeconomics of rationing with supply constraints. 

With rationing allowed, production is given by the orange line. 
Without rationing, production should be given by the grey line, but it is impossible to ever produce this 

much, as maximum output is 𝑦𝑦,̅ the dashed green line. 
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4.3 Results figures 

 
Average stockout level, 1 − 𝜓𝜓 ̅(percent). 

 
Stockout rate at firms with new prices, 1 − 𝜓𝜓𝑡̅𝑡,𝑡𝑡 

(percent). 

 
Stockout levels (percent) as a function of price age 

(years), with varying steady state inflation levels. 
Dark blue corresponds to 0.5% inflation. 

Dark red corresponds to 8% inflation. 
Figure 6: Stockouts and rationing as a function of PCEPI inflation (percent). 
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Relative output: log 𝑌𝑌 (percent). 

 
Relative production labour supply: log 𝐿𝐿 (percent). 

 
Relative welfare: 

100 �log 𝑌𝑌 − Ψ
1

1 + 𝜈𝜈 �𝐿𝐿 +
𝜅𝜅1

1 + 𝜅𝜅2
(𝜆𝜆𝑡𝑡 − 𝜆𝜆)𝑡𝑡

1+𝜅𝜅2�
1+𝜈𝜈

� 
Figure 7: Output and welfare as a function of inflation (percent). 

Black solid lines are the model with rationing. Black dashed lines are the model without rationing. 
All plots are normalized to hit 0% on the horizontal axis when 𝜋𝜋PCEPI = 2%. 

 
 

-30 -25 -20 -15 -10 -5 0 5
0

1

2

3

4

5

6

7

8

-25 -20 -15 -10 -5 0 5
0

1

2

3

4

5

6

7

8

-35 -30 -25 -20 -15 -10 -5 0 5
0

1

2

3

4

5

6

7

8

𝜋𝜋PCEPI 
 

 

𝜋𝜋PCEPI 𝜋𝜋PCEPI 



 

Page 39 of 52 

 
TFP loss from efficient benchmark: log 𝑌𝑌

𝑌𝑌SP (percent). 
 

Price adjustment rate (percent): 100𝜆𝜆. 

 
Aggregate mark-ups: log (1−𝛼𝛼)𝑌𝑌

𝑊𝑊𝑊𝑊  (percent).  
Excess firm profits shares: 𝑂𝑂𝑌𝑌 − 𝛼𝛼 (percent). 

Figure 8: Other consequences of varying inflation (percent). 

Black solid lines are the model with rationing. Black dashed lines are the model without rationing. 
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Black solid line: measured cumulated real GDP, log ∫ 𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡

𝑃𝑃𝑡𝑡
PCEPI d𝑡𝑡

1
4

0 , with rationing. 

Red solid line: cumulated true output, log ∫ 𝑌𝑌𝑡𝑡 d𝑡𝑡
1
4

0 , with rationing. 

Black dashed line: measured cumulated real GDP, log ∫ 𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡

𝑃𝑃𝑡𝑡
PCEPI d𝑡𝑡

1
4

0 , without 

rationing. 

 
Black solid line: cumulated price adjustment rate, 100 ∫ 𝜆𝜆𝑡𝑡 d𝑡𝑡

1
4

0 , with rationing. 

Black dashed line: cumulated price adjustment rate, 100 ∫ 𝜆𝜆𝑡𝑡 d𝑡𝑡
1
4

0 , without 

rationing. 

 

Figure 9: The three-month Phillips curve with (solid lines) and without (dashed lines) rationing. 

All variables in percent. All variables are relative to the no-shock counterfactual. 
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Driving inflation shocks (percent) as a function of 

time (years). 
 

PCEPI inflation (percent) as a function of time 
(years). 

 
Price adjustment rate (× 100) as a function of time 

(years). 

 
Measured real GDP response (percent) as a function 

of time (years). 

 
True output response (percent) as a function of time 

(years). 

 
Stockout share response (percentage points) as a 

function of time (years). 
Figure 10: Impulse responses to monetary shocks, with rationing. 

Colours are consistent across subplots. All responses are relative to the no-shock counterfactual. 
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Driving inflation shocks (percent) as a function of 

time (years). 
 

PCEPI level (percent) as a function of time (years).  
Price adjustment rate (× 100) as a function of time 

(years). 

 
Measured real GDP response (percent) as a function 

of time (years). 

 
True output response (percent) as a function of time 

(years). 

 
Stockout share response (percentage points) as a 

function of time (years). 
Figure 11: Impulse responses to more persistent monetary shocks, with rationing. 

Colours are consistent across subplots. All responses are relative to the no-shock counterfactual. 
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4.4 Dynamics 
I now examine the behaviour of the model in response to unexpected 

monetary policy shocks which vary 𝜋𝜋𝑡𝑡
∗ and hence 𝜋𝜋𝑡𝑡. I assume these shocks 

have prior probability zero, “MIT shock” style, and I assume the economy 
begins in steady state. In this simple model, other potential shocks are of limited 

interest due to divine coincidence.39 (In the extended model of Section 5, I look 
at supply shocks, modelled as shocks to the intermediate input share in 

production.) 
I consider driving monetary shocks of the form: 

𝜋𝜋𝑡𝑡
∗ = 2% + shock × exp�−𝜚𝜚𝜚𝜚�, 

for 𝑡𝑡 ≥ 0, for varying values of “shock”. I set 𝜚𝜚 ≔ 3.9 to ensure that following 

small shocks, the resulting impulse response for one-year bonds is inside the 
confidence bands from Figure 1. (This gives an annual decay rate for one-year 

bonds of 5.1.) 

4.5 The three-month Phillips curve 
I start by producing the three-month Phillips curve for the models with and 

without rationing, shown in the first panel of Figure 9. This plots cumulated 

output in the three months following a monetary shock of varying magnitude 
(relative to the no-shock counterfactual) again cumulated inflation in these 

three months (again relative to the no-shock counterfactual). 
The black lines in this plot measure output as nominal GDP divided by the 

model’s PCEPI index. Since there is no investment (etc.) in the model, this is 
the natural equivalent of measured real GDP. With rationing, the resulting 

Phillips curve slope around the origin is 1.2 (this is the solid black line). This is 
exactly the same as the three-month Phillips curve slope implied by the results 

in Figure 1 (produced using equivalent calculations). Thus, the model with 
rationing matches the observed three-month Phillips curve slope, without this 

being a calibration target. The model without rationing generates a three-month 
Phillips curve slope of only 0.05 (this is the dashed black line), completely 

 
39 Shocks to productivity, 𝐴𝐴𝑡𝑡, the disutility of labour supply, Ψ𝑡𝑡, or the discount rate, 𝜌𝜌𝑡𝑡, have essentially 

identical effects to their effects under quasi-flexible prices if monetary policy holds inflation constant. 
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failing to match the data. 

The better empirical performance of the rationing model is partly explained 
by the flexibility in the welfare relevant price index discussed in Subsection 3.2. 

Increases in rationing lead this index to place greater weight on newer firms 
that ration less and have higher prices. The flexibility in the true price index 

drives flexibility in the model’s version of the PCEPI index, as firm pass through 
cost changes. Additionally, with rationing, measured PCEPI price growth gets 

tilted towards the price growth of firms with old prices, following shocks that 
increase rationing. This is a consequence of the BLS’s imputation procedure, 

which assumes unobserved prices have the average price growth rate, as 
demonstrated in Subsection 3.6. 

The first panel of Figure 9 also demonstrates that the model with rationing 
produces substantial convexity in its (three-month) Phillips curve. 

Expansionary shocks lead to increases in rationing, dampening the output 
impact. Contractionary shocks reduce rationing, cushioning the output impact.  

However, the solid black line in this panel is no way near as convex as the 
solid red line. Whereas the solid black line plots our model’s equivalent of 

cumulated measured real GDP, the solid red line plots our model’s cumulated 
true output. While moderate expansionary monetary policy shocks increase 

measured real GDP over three months, we see that they reduce the model’s true 
output over the same period. The price index used in constructing real GDP 

cannot capture changes in consumers’ gains from variety, and so when these 
gains fall (due to increased rationing) measured real GDP is overstated. For a 

monetary policy maker, this is alarming. At least in the vicinity of the steady 
state, changes in monetary policy cannot stimulate the economy, correctly 

measured. 
The second panel of Figure 9 plots the three-month “price adjustment 

Phillips curve”. The slope of this curve around the origin was a calibration 
target, and thus is of limited interest. However, it is interesting to see that 
following large contractionary shocks, this price adjustment Phillips curve 
bends backwards, and conglomerates increase the rate of price adjustment 

again. This is intuitive. Small contractionary shocks can be absorbed by merely 
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skipping the regular positive price adjustments that come from trend inflation. 

But large contractionary shocks make price reductions desirable, necessitating 
an increase in the price adjustment rate. 

4.6 Impulse responses to monetary shocks 
To see how the economy evolves beyond the three-month horizon following 

monetary shocks, I now present impulse responses in the model with rationing. 
Given the results of the previous subsection, these will not contain any major 

surprises. 
Figure 10 contains these impulse responses, for driving 𝜋𝜋𝑡𝑡

∗ shocks from +6% 

to −6%. In all the panels, the +6% shock is in dark red, while the −6% shock is 
in dark blue, with intermediate shocks in intermediary colours of the rainbow. 

These move PCEPI inflation by around ±2%. Only the large “contractionary” 
shocks succeed in increasing true output one year out. These contractionary 

shocks actually increase felicity here, though it is unlikely that this result would 
survive in a model with a more plausible labour market. 

Since PCEPI inflation moves much less than true inflation, even a +6% 
shock does not get PCEPI inflation up to the 7% level we saw post-Covid. To 

see how the model behaves at such inflation levels, in Figure 11 I repeat the 
previous exercise for positive 𝜋𝜋𝑡𝑡

∗ shocks between 0% and 12%, but now with the 

shock persistence, 𝜚𝜚 = 2 log 2, implying the shock has a half-life of half a year. 
The second panel shows that the +12% 𝜋𝜋𝑡𝑡

∗ shock succeeds in raising the 

measured PCEPI price index by 5% relative to the counterfactual, after one year. 
Given steady-state inflation is 2%, this matches the 7% PCEPI inflation we saw 

in the U.S. from June 2021 to June 2022. (Incidentally, the fact that the gap 
between measured and true inflation is so big following large shocks may help 

explain some of the biases in consumers’ inflation expectations.) This shock 
raises the stockout rate from 11% to about 20% at the peak, close to the 23% 

stockout level Cavallo & Kryvtsov (2023) found for 2022. (Another untargeted 
moment matched!) The shock also raises 𝜆𝜆𝑡𝑡 from 1.48 to 1.85. This is some way 

off the levels of 𝜆𝜆𝑡𝑡 implied by the Montag & Villar (2025) data for the post-
Covid period, suggesting further changes to my price adjustment cost function 

may be necessary. 
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5 Extensions 
TODO: WRITE UP. 

5.1 Partial quantity-capped rationing 
TODO: WRITE UP. 

5.2 Consumer distaste for rationed goods 
TODO: WRITE UP. 

5.3 Intermediates in production 
TODO: WRITE UP. 

5.4 Firm specific capital and other partially fixed inputs 
TODO: WRITE UP. 

5.5 Results from the extended model 
TODO: WRITE UP. 

6 Conclusion 
In this paper I have shown how relaxing one small simplifying assumption 

from the workhorse model of sticky prices drastically alters the conclusions of 

that model. Allowing firms to ration removes most of the welfare costs of steady 
state inflation yet leads “expansionary” monetary policy shocks to decrease the 

welfare relevant output measure. The model with rationing also matches the 
data remarkably well. With just one parameter controlling rationing, the model 

roughly matches the level of stockouts pre-Covid, the level of stockouts in the 
high inflation of 2022, the concavity of output over the life of a price and the 

slope of the three-month Phillips curve derived from high frequency monetary 
shocks. The model also produces a convex Phillips curve, as we see in the data. 
Allowing rationing appears essential to understanding the relationship 
between inflation and output and has dramatic implications for optimal 

monetary policy. 
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Appendix A The full extended model 
TODO: WRITE UP. 

Appendix B The full extended model without rationing 
TODO: WRITE UP. 

Appendix C Further proofs 
C.1 Microeconomic welfare under quantity-capped rationing 
versus meeting demand 

Suppose the demand curve is 𝑝𝑝̂ = 𝐴𝐴𝑦𝑦−1
𝜖𝜖 (𝑝𝑝 ̂ is the real price, 𝐴𝐴 > 0, 𝑦𝑦 is 

quantity) and the marginal cost curve is 𝑞𝑞 ̂ = 𝐵𝐵𝑦𝑦
𝛼𝛼

1−𝛼𝛼 (𝑞𝑞 ̂is real marginal cost, 𝐵𝐵 >
0). Then the efficient quantity is �𝐴𝐴

𝐵𝐵�
1 � 𝛼𝛼

1−𝛼𝛼+1
𝜖𝜖��

 and the efficient price is 𝑝𝑝∗̂ =
𝐴𝐴

𝛼𝛼𝛼𝛼
1+𝛼𝛼(𝜖𝜖−1)𝐵𝐵

1−𝛼𝛼
1+𝛼𝛼(𝜖𝜖−1). Assume the demand curve is flatter than the marginal cost 

curve, so 1𝜖𝜖 < 𝛼𝛼
1−𝛼𝛼, i.e. 𝛼𝛼 > 1

𝜖𝜖+1. 
Welfare is the difference between the integral under the demand curve and 

the integral under the marginal cost curve, which is: 
𝜖𝜖

𝜖𝜖 − 1 𝐴𝐴𝑦𝑦
𝜖𝜖−1
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Suppose that 𝑝𝑝̂ < 𝑝𝑝∗̂. Then output under rationing is �𝑝̂𝑝
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1−𝛼𝛼
𝛼𝛼  and output without 

rationing is �𝑝̂𝑝
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−𝜖𝜖
. Thus, the welfare gain of rationing over producing the full 

quantity demanded is: 
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𝛼𝛼

𝜖𝜖−1
𝜖𝜖

− �
𝑝𝑝̂
𝑝𝑝∗̂�

−(𝜖𝜖−1)

⎦
⎥
⎤

−
⎣
⎢
⎡�

𝑝𝑝̂
𝑝𝑝∗̂�

1
𝛼𝛼

− �
𝑝𝑝̂
𝑝𝑝∗̂�

− 𝜖𝜖
1−𝛼𝛼

⎦
⎥
⎤

⎦
⎥⎥
⎤

. 

Let 𝑐𝑐 ≔ (1 − 𝛼𝛼) 𝜖𝜖−1
𝜖𝜖 ∈ (0,1), 𝑎𝑎 ≔ 1

𝛼𝛼 > 1, 𝑏𝑏 ≔ 𝜖𝜖
1−𝛼𝛼 > 1, 𝑧𝑧 ≔ 𝑝̂𝑝

𝑝̂𝑝∗ ∈ (0,1) and let 
𝑓𝑓 : (0,1] → ℝ be defined by: 

𝑓𝑓 (𝑥𝑥) =
𝑧𝑧𝑎𝑎𝑎𝑎 − 𝑧𝑧−𝑏𝑏𝑏𝑏

𝑥𝑥 − �𝑧𝑧𝑎𝑎 − 𝑧𝑧−𝑏𝑏�, 
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for all 𝑥𝑥 ∈ (0,1). Then the welfare gain of rationing is: 

(1 − 𝛼𝛼)𝐴𝐴
𝜖𝜖

1+𝛼𝛼(𝜖𝜖−1)𝐵𝐵
−(1−𝛼𝛼)(𝜖𝜖−1)

1+𝛼𝛼(𝜖𝜖−1) 𝑓𝑓 (𝑐𝑐). 
Note that since 𝛼𝛼 > 1

𝜖𝜖+1, 𝑏𝑏 > 𝑎𝑎, so 𝑧𝑧𝑏𝑏 < 𝑧𝑧𝑎𝑎 < 1 and hence for 𝑥𝑥 ∈ (0,1], 𝑧𝑧𝑎𝑎𝑎𝑎 =
(𝑧𝑧𝑎𝑎)𝑥𝑥 < 1 < �𝑧𝑧𝑏𝑏�−𝑥𝑥 = 𝑧𝑧−𝑏𝑏𝑏𝑏. 

Next, observe that 𝑓𝑓 (1) = 0, so to prove the welfare gain of rationing is 
strictly positive for 𝑥𝑥 ∈ (0,1), it is sufficient to prove that 𝑓𝑓 ′(𝑥𝑥) < 0 for all 𝑥𝑥 ∈
(0,1]. Now:1 

𝑥𝑥2𝑓𝑓 ′(𝑥𝑥) + 𝑧𝑧𝑎𝑎𝑎𝑎 − 𝑧𝑧−𝑏𝑏𝑏𝑏 = �𝑎𝑎𝑎𝑎𝑧𝑧𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑧𝑧−𝑏𝑏𝑏𝑏��log 𝑧𝑧� =
𝑎𝑎𝑧𝑧𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑧𝑧−𝑏𝑏𝑏𝑏

𝑎𝑎 + 𝑏𝑏 log�𝑧𝑧𝑎𝑎𝑎𝑎𝑧𝑧𝑏𝑏𝑏𝑏�

= �
𝑧𝑧𝑎𝑎𝑎𝑎 + 𝑧𝑧−𝑏𝑏𝑏𝑏

2 −
�𝑧𝑧𝑎𝑎𝑎𝑎 − 𝑧𝑧−𝑏𝑏𝑏𝑏�(𝑏𝑏 − 𝑎𝑎)

2(𝑎𝑎 + 𝑏𝑏) � log�𝑧𝑧𝑎𝑎𝑎𝑎𝑧𝑧𝑏𝑏𝑏𝑏�

<
𝑧𝑧𝑎𝑎𝑎𝑎 + 𝑧𝑧−𝑏𝑏𝑏𝑏

2 log�𝑧𝑧𝑎𝑎𝑎𝑎𝑧𝑧𝑏𝑏𝑏𝑏� <
𝑧𝑧𝑎𝑎𝑎𝑎 + 𝑧𝑧−𝑏𝑏𝑏𝑏

2
2�𝑧𝑧𝑎𝑎𝑎𝑎𝑧𝑧𝑏𝑏𝑏𝑏 − 1�

𝑧𝑧𝑎𝑎𝑎𝑎𝑧𝑧𝑏𝑏𝑏𝑏 + 1
= 𝑧𝑧𝑎𝑎𝑎𝑎 − 𝑧𝑧−𝑏𝑏𝑏𝑏, 

using the fact that log(𝑢𝑢) < 2(𝑢𝑢−1)
𝑢𝑢+1  for 𝑢𝑢 ∈ (0,1). Hence, 𝑓𝑓 ′(𝑥𝑥) < 0 for all 𝑥𝑥 ∈ (0,1] 

and so 𝑓𝑓 (𝑥𝑥) > 0 for all 𝑥𝑥 ∈ (0,1). Therefore, the welfare gain of rationing over 
production of the total quantity demanded is strictly positive. 

 
1 This proof follows the one given here: https://math.stackexchange.com/questions/4989707/.  

https://math.stackexchange.com/questions/4989707/
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