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Abstract

Many important shocks in the real world are correlated not only in time, but also across some

notion of space. This may be physical space, or the space of product, firm or household types. As

a result of this spatial correlation, aggregate volatility emerges naturally from idiosyncratic shocks.

In this paper, we introduce a tractable framework that allows for such shocks without necessitating

the discretisation of space, or a departure from perturbation approximation. As a lead example,

we construct a dynamic, stochastic, general equilibrium model of economic geography (DSGEEG).

This model features population movement, firm dynamics and semi-endogenous growth. Using it,

we show how transitory, spatially located productivity shocks can lead to persistent movements in

population, helping to explain internal migration patterns in the U.S., and regional wage and invest-

ment dynamics. As an additional theoretical contribution, we derive conditions for the existence of

continuous-in-space shock processes on a range of spaces of economic interest.
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1 Introduction

Modern dynamic macroeconomic models are driven by a variety of shocks, including shocks to produc-

tivity, discounting and the disutility of labour supply. Each of these is likely to be spatially correlated.

Good ideas diffuse in the local neighbourhood, leading to spatial correlation in productivity.1 A desire to

bring forward consumption, or to reduce labour supply might be driven by the weather, which is highly

spatially correlated.2 In this paper we study the implications of productivity shocks that are correlated

across geography on macroeconomic dynamics. To do so, we introduce a tractable framework that allows

for shocks that are continuous in space, and hence correlated over it, using it to build a DSGE model in-

corporating the key features of the new economic geography literature. Regional heterogeneity is driven

by a continuous-in-space productivity process which is disciplined by estimating the spatial correlation

of productivity shocks in the U.S. This allows us to see how spatially located productivity shocks can

drive movements in population, helping to explain migration patterns in the U.S., and linking business

cycle shocks to lower frequency changes in economic activity across geography.

Modelling the macroeconomy without considering the geographical dispersion of economic conditions is

likely to hide the true welfare costs of business cycles. For example, Figure 1 plots the dispersion of

county level wage growth over recent decades. The observed volatility of county-level wage growth is

unheard of at the aggregate level and points to much larger welfare costs than those implied by aggregate

business cycles. In addition to studying these normative issues, our framework opens up the possibility

for exploring the effects this heterogeneity can have on the propagation of macroeconomic shocks and

policy changes, and for examining the macroeconomic consequences of local shocks.

Our model features the key ingredients highlighted by the new economic geography literature (see e.g.

Krugman (1998) or Redding (2013) for reviews). Firstly, firms in the model produce differentiated

varieties, and consumers have a taste for variety. Thus, in regions with high population, since there

will be greater firm entry, there will also be greater productivity, via the variety effect. We model firm

entry here following Bilbiie et al. (2012). Since high population is associated with high productivity,

high population regions are attractive to further inward migration. Concentration of population also

reduces transport costs, further increasing effective productivity, particularly since we allow for a role

for intermediates in production, following Krugman and Venables (1995).

These agglomeration forces are counterbalanced by the populations’ need for living space, and their

1For example, firms located physically closer to frontier firms have been shown to catch up quicker (Griffith et al., 2009;
Comin et al., 2012; Cardamone, 2017), and physical distance is found to be more important than economic distance in the
spill-over of productivity (Glass et al., 2013).

2Shocks may also be correlated across other notions of space, such as the space of product, firm or household types,
or, more generally, any space of economic agents in which “nearby” agents are expected to share similar properties and
experience similar shocks. For example, one might expect firms producing similar products to experience correlated shocks
to their returns from R&D. As an additional contribution, in appendix A, we derive conditions for the existence of such
processes for a range of spaces of economics interest.
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Figure 1: U.S. county year-on-year growth in average weekly wage: mean & 10th/90th percentiles (unweighted).
Source: Bureau of Labor Statistics

need to consume agricultural goods. As population increases in a location, more of it must be allocated

for living space, so there is less remaining to produce the agricultural good. Consequently, more of

the agricultural good must be imported into the location, pushing up its relative price. This increases

the desirability of locations producing significant quantities of the agricultural good. Additionally, an

increase in productivity pushes up wages, making entry relatively more expensive in high population

locations. While these dispersion forces are enough for the existence of a steady-state, it will turn

out that they are insufficient for the local stability of that steady-state. Small, temporary, exogenous

changes in productivity in one location can drive a move to other long-run equilibria. To counter this, we

introduce an additional dispersive force: a preference for living in a location with moderate population.

We calibrate the strength of this force so that the model is only just locally stable. Under this calibration,

positive productivity shocks have extremely persistent effects on population. In essence, the location that

gets “lucky” originally will have a permanent advantage.

The existing literature contains many techniques for solving heterogeneous agent models in which shocks

are i.i.d. across agents. These generally necessitate time-consuming global solution methods (see e.g.

Den Haan, 2010). Of course, one way of taking a local approximation to a heterogeneous agent model

is to solve the model with a finite collection of agents. However, getting reasonable accuracy along

these lines requires a prohibitively high number of agents, given the 1√
N

rate guaranteed by the central

limit theorem. In our modelling framework however, due to the continuity and bounded variation of the

driving stochastic processes, accurate solution does not require large state spaces. This makes taking a

perturbation solution to the model much more tractable, which is the approach we pursue here.3

3As pointed out by Desmet and Rossi-Hansberg (2014) “Incorporating a continuum of locations into a dynamic frame-
work is a challenging task for two reasons: it increases the dimensionality of the problem by requiring agents to understand
the distribution of economic activity over time and over space, and clearing goods and factor markets is complex because
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1.1 The puzzle of aggregate volatility

Since spatial correlation allows idiosyncratic shocks to lead to aggregate volatility, it gives a partial answer

to the question of the sources of aggregate fluctuations. The standard puzzle is as follows: suppose an

economy comprises N firms, each of which receive an i.i.d. productivity draw with finite variance. Then

by the Lindeberg–Lévy CLT, as N → ∞, the standard deviation of aggregate productivity declines as

1√
N

. Modern economies have millions of firms, so a back of the envelope calculation suggests they ought

to have a miniscule variance. Our solution to the puzzle is almost trivial, we just assume that firms

receive correlated shocks, as indeed they do in the real world. While perhaps simplistic, this story both

captures the micro-level data on correlation, resolves some macro-level puzzles, and provides a technical

approach for addressing important macroeconomic issues.

This paper’s story of the source of aggregate variation is a complement to those of Gabaix (2011)

and Acemoglu et al. (2012). Gabaix (2011) argues that aggregate fluctuations may be explained if the

distribution of firm sizes is fat-tailed so the economy contains large firms and firms receive a multiplicative

productivity shock with magnitude unrelated to their size., Gabaix shows that in the extreme case of a

s−1 tail to the firm size distribution, aggregate volatility declines as 1
logN , meaning that the observed

aggregate volatility need not be particularly surprising. However, this explanation can at best be part

of the story, as the law of large numbers applies just as well within a large firm (comprised of many

workers, in many factories, producing many different products or components) as it does across firms.

So, we ought to be as surprised that the variance of productivity does not wash out in large firms, as

we are that it does not wash out in aggregate. Gabaix suggests that the units that make up a firm may

themselves follow a power-law size distribution, but the justification for this is unclear: if firms or firm

units are receiving shocks with a second moment, it is hard to see how a power-law size distribution

could emerge in the first place, given such a distribution has infinite second moment. Our model gives

one way of completing Gabaix’s story: if the many products produced by large firms are all nonetheless

close in product space, then they will be tightly correlated, and there will still be substantial variance at

the firm level.

In our model, spatially correlated productivity shocks drives the geographic variation in economic con-

ditions. In addition to the empirical evidence we present here, there has been a large literature finding

support for such spatial correlation. For example, Griffith et al. (2009) show that firms that are physi-

cally closer to frontier firms catch-up quicker than those further away (see also Comin et al., 2012). Glass

et al. (2013) find that physical distance is more important than economic distance in the cross-border

spill-over of technology, and Cardamone (2017), studying Italian R&D, again finds, amongst several fac-

prices depend on trade and mobility patterns. These two difficulties typically make spatial dynamic models intractable,
both analytically and numerically.” That our approach enables us to solve rich dynamic spatial models without drastic
simplification is a considerable advantage to our approach.
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tors, physical closeness is important for the spread of productivity improvements (see also Glass et al.,

2016).

1.2 Other related literature

There have been several prior dynamic models of economic geography, though these have usually been

non-stochastic, with discrete space and simplifications which remove any forward-looking component to

economic decisions. Examples preserving some dynamic component to decisions include the model of

Caselli and Coleman II (2001) and Eckert and Peters (2018), who build OLG models to explain structural

change featuring capital investment decisions. Models with a static or purely backward looking solution

include Michaels et al. (2012), and Nagy (2016). Examples with continuous space include Desmet and

Rossi-Hansberg (2014) and Desmet et al. (2018), who propose models which, although dynamic, have a

solution that is backwards looking. Examples of dynamic economic geography models with a stochastic

component include Duranton (2007), who presents a version of the Grossman and Helpman (1991) model

with a fixed discrete set of cities, and Rossi-Hansberg and Wright (2007), who analyse a model with many

point cities to match the city size distribution. In both cases, restrictive assumptions are made to ensure

tractability.

There have been a few simple non-stochastic macroeconomic models involving continuous space, but with-

out allowing for substantial interactions between locations. These include Brito (2004) and Boucekkine

et al. (2009), who present Ramsey models with continuous space, as well as Quah (2002), who presents

a version of the Lucas (1988) model on the surface of a sphere.

Relative to the aforementioned papers, we are almost unconstrained in our model building. We will have

continuous space, with a distribution of population over the space that is changing over time in response

to varying regional opportunities. We will have both many state variables, and many forward-looking

variables, and we will need to impose transversality constraints in solving the model. We also allow for

a rich shock structure, with both spatially located shocks, and aggregate shocks.

1.3 Outline

The structure of our paper is follows. In Section 2, we introduce spatially correlated shock processes, and

discuss the tools we have produced to assist with the simulation of such models. The theoretical results on

existence of continuous stochastic processes are relegated to Appendix A, due to their technical nature.

In Section 3, we describe our dynamic stochastic general equilibrium model of economic geography

(DSGEEG). Section 4 presents theoretical and computational results from this model, and Section 5

concludes.
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2 Spatially correlated shock processes

In macroeconomics, it is typical to work with continuums of types, as it ensures individuals have no

impact on aggregates. Given this, in order for nearby types to receive correlated shock draws, it is

sufficient that the drawn shock is continuous in type space.

As an example, to fix ideas, suppose that firms produce products of types indexed by [0, 1]. We would

expect firms producing similar products to receive similar productivity shocks. We might then suppose

that if ax,t is the log-productivity of firm x ∈ [0, 1] at t, then:

ax,t = (1− ρ)µ+ ρax,t−1 + σεx,t,

where εx,t is a continuous function of x. By induction, it is then trivial to show that ax,t is a continuous

function of x as well, so firm productivity is always spatially correlated. Later we will consider general-

isations of this structure in which productivity today can depend on the lagged productivity of nearby

firms as well.

2.1 Simple examples

If we wanted a discrete time stationary stochastic process, using a Gaussian AR (1) process would be the

natural choice. Ornstein-Uhlenbeck processes are the continuous equivalent of Gaussian AR (1) processes,

and are defined on R. Using a draw from an Ornstein-Uhlenbeck process is one possibility when we want

shocks on e.g. the type space [0, 1]. These processes are characterised by Gaussian marginals, with an

auto-covariance function of the form:

cov (εx, εx̃) = σ2exp {−ζ |x− x̃|} ,

where σ2 scales the variance, and ζ > 0 controls the persistence. An example of a realisation of such a

process is given in Figure 2. As ζ → 0, we get Brownian motion, and as ζ → ∞ we get “white-noise”.

It turns out that Ornstein-Uhlenbeck processes are the unique stationary, Gaussian, Markovian process

on R (Doob, 1942). The other processes we look at in Appendix A will not be Markovian, but whereas

the Markovian assumption is natural in time, in space it does not have any particular intuitive appeal.

One downside to using [0, 1] as the type space is that types at the end of the interval may end up

with different properties. For example, if space is physical space, and some goods are produced at each

location, then households at the end of the interval will have to pay higher transport costs. It is often

convenient then to work with spaces which are invariant under translation, since this will ensure that all

points are a priori the same. One way to do this is to work with circles, spheres or torii. Recall that a
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Figure 2: A realisation of an Ornsein-Uhlenbeck process with σ = 1 and ζ = 8

torus is a “donut” shape. It may be thought of as a square in which when you move off the top edge,

you reappear on the bottom edge, and when you move off the left edge, you reappear on the right.

It turns out that the natural Gaussian continuous stochastic process on a circle or a torus is characterised

by an auto-covariance function of the form:

cov (εx, εx̃) = σ2s (ζ, d (x, x̃)) ,

where σ2 scales the variance, ζ > 0 controls the persistence, d is the distance function (metric) being

used on the circle (identified with [0, 1]) or torus (identified with [0, 1]× [0, 1]) and for all ζ, d > 0:

s (ζ, d) =
exp

(
−ζd+ ζd

)
+ exp

(
ζd− ζd

)
exp

(
ζd
)

+ exp
(
−ζd

) ,

where:

d ≡ sup
x,x̃∈X

d (x, x̃)

is the maximum distance between points. Further examples, along with proofs that these processes are

well-defined are given in Appendix A.
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2.2 Simulating DSGE models with continuous in space stochastic processes

Models with continuous-in-space stochastic processes, like all the models we are interested in, possess an

infinite dimensional state, making simulation non-trivial. However, by the continuity of the shock, all

variables including the states are continuous in space. Furthermore, it is easy to show that they are all

of bounded variation. Consequently, their integrals may be approximated arbitrarily well by their values

at finitely many points, via standard quadrature methods, and convergence of this quadrature will be

much faster than with Monte Carlo (as used say in the Krusell-Smith algorithm). For example, if the

trapezium rule is used on a circle, then the error will fall as O
(

1
n2

)
(Rahman and Schmeisser, 1990),

rather than O
(

1√
n

)
with Monte Carlo.

These results carry across to convergence in distribution. For example, if we let x 7→ εx,n be the stochastic

process on the circle in which
[
ε a
n ,n

]
a=1,...,n

is jointly normally distributed with mean zero and covariance

cov
(
ε a
n ,n

, ε b
n ,n

)
= exp

[
−ζd

(
a
n ,

b
n

)]
, and where εx,n is given by linear interpolation away from these

points, and we let x 7→ εx be the Gaussian stochastic process on the circle with mean zero and covariance

cov (εx,t, εx̃,t) = exp [−ζd (x, x̃)] , then it is a theorem (Pedersen, 2002) that [εx,n]x∈[0,1] converges in

distribution to [εx]x∈[0,1] as n→∞, uniformly in x.

Our approach to simulation then is to choose a regular grid of points in space, and then to approximate

the value of endogenous variables at points off this grid by linear interpolation. Having fixed the grid,

we can then solve the model by standard methods for finite dimensional models; indeed, we may even

use Dynare (Adjemian et al., 2011).4

3 A dynamic stochastic general equilibrium economic geogra-

phy model

We now present our DSGE model of economic geography. This model combines standard real business

cycle features, with features from the workhorse models of new economic geography of e.g. Krugman

(1991). The work of Bilbiie et al. (2012) on firm dynamics is used to help bridge the gap between these

two literatures. We are careful in our modelling choices to ensure that the model is consistent with

balanced growth. This rules out non-homothetic preferences, for example.

The model features two types of final goods, agricultural products and manufactured products. Manu-

4Of course, manually adding equations for every point on the grid would be extremely time consuming. Luckily
though, Dynare provides a pre-processor language that enables one to loop over points. To assist further with the cre-
ation of spatial models, we provide a Dynare toolkit that can automatically define spatially correlated shock processes,
including ones with spatial diffusion. It is available under an open source license from: https://github.com/tholden/

DynareTransformationEngine. The model presented in this section is contained in “ExampleWithSpatialShocks.mod” in
that repository. For a more complete example of all the capabilities of this toolkit, see the code for this paper’s main model
here: https://github.com/tholden/DynamicSpatialModel.
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factured products are an aggregate of differentiated varieties produced by the firms in the model. Both

these differentiated varieties and agriculture are produced using raw goods as an input, where raw goods

are produced from capital, labour and intermediate inputs of manufactured goods. These raw goods

may be thought of as providing production services. They are introduced chiefly to avoid complicating

the model with multiple varieties of capital and labour. In agricultural production, the raw good is com-

bined with land, whereas it is the sole input in the production of manufactured goods. For tractability,

agricultural goods will be freely transportable and tradeable across locations, and manufactured goods

will be untradeable. The differentiated varieties will be tradeable however, and will be subject to iceberg

transportation costs.

Firms, capital and population will all have a density over space. We denote the set of points in space

by X and assume that land is uniformly distributed over X. We normalise the total measure of X to 1,

so
∫
X

dx = 1. We assume that a metric is defined on X, giving the distance between any x, x̃ ∈ X as

d (x, x̃).

At each location, there will be a representative household. For simplicity though, we assume that all

these households are part of one representative family, and that household decisions are coordinated by a

family head, who maximises a utilitarian social welfare function. As usual, this is equivalent to assuming

the existence of complete markets between households. While assuming complete markets may be a little

of a stretch, it greatly enhances the tractability of our model. Without this assumption, at each point in

space there would be a distribution of asset holdings, as households who moved to that location would

come with different assets to those who were already there. Furthermore, the decision of a household

on where to move would be complicated by the need to consider what their utility would be at some

location, which will differ in general from the utility of the households already there. If the reader is

sceptical of the existence of complete markets in reality, it may help to think of our assumptions as giving

the outcomes that a social planner could achieve with sufficient instruments. If real government policy

is sufficiently close to optimal, then our model will provide a good guide to real world outcomes.

3.1 Manufactured good aggregator at x ∈X

The non-tradeable manufactured final good at location x is produced by a perfectly competitive industry

with access to the CES production function:

Yx,t =

[∫
X

∫ Jx̃,t

0

(
Yj,x̃,x,t

exp [τtd (x, x̃)]

) 1
1+λ

djdx̃

]1+λ

. (3.1)

Here, 1+λ
λ is the elasticity of substitution between varieties, τt gives the strength of iceberg transportation

costs in period t, Jx̃,t gives the mass of firms located at x̃ in period t, and Yj,x̃,x,t denotes the quantity of
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the differentiated variety produced by firm j at x̃ that is used in producing the final manufactured good

at location x in period t. For convenience, we relabel firms each period, so that even with firm exit, the

measure of firms located at x̃ in period t is still given by [0, Jx̃,t]. Allowing for imperfect substitutability

between varieties is crucial both because it allows for an increase in the measure of firms to increase

productivity, providing an agglomerative force, and because it allows for the introduction of transport

costs without having to deal with positivity constraints on consumption of varieties. Transport costs

provide further agglomerative pressure, since in locations producing large numbers of varieties, less will

need to be spent on transport.

In period t, the manufactured final good at x is sold at a price Px,t, and the input produced by firm j

in location x̃ is sold at a price Pj,x̃,t. Thus, the profits of firms making the final manufactured good are

given by:

Px,tYx,t −
∫
X

∫ Jx̃,t

0

Pj,x̃,tYj,x̃,x,tdjdx̃.

From the first order condition for Yj,x̃,x,t we then have that:

Yj,x̃,x,t = Yx,t

(
Px,t
Pj,x̃,t

) 1+λ
λ

exp
[
−τt
λ
d (x, x̃)

]
, (3.2)

so demand is decreasing in the distance to the seller of the variety in question. From substituting equation

(3.2) into equation (3.1), we have that:

Px,t =

[∫
X

∫ Jx̃,t

0

(Pj,x̃,texp [τtd (x, x̃)] )
− 1
λ djdx̃

]−λ
. (3.3)

Furthermore, equation (3.2) implies that the total demand for the good produced by firm j in location

x at t is given by:

Yj,x,t ≡
∫
X

Yj,x,x̃,tdx̃ = P
− 1+λ

λ
j,x,t Y x,t, (3.4)

where:

Y x,t ≡
∫
X

Yx̃,tP
1+λ
λ

x̃,t exp
[
−τt
λ
d (x̃, x)

]
dx̃. (3.5)
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3.2 Firms at x ∈X

The jth firm at location x producing a differentiated variety has access to the production function:

Yj,x,t = Zj,x,t, (3.6)

where Zj,x,t is the amount of the raw good (“production services”) it purchases in period t, at a price of

Px,t. The firm maximises its profits which are given by:

Yj,x,t (Pj,x,t − Px,t) =
(
P
− 1
λ

j,x,t − Px,tP
− 1+λ

λ
j,x,t

)
Y x,t.

From the first order condition for Pj,x,t, we derive the usual mark-up pricing condition:

Pj,x,t = (1 + λ)Px,t. (3.7)

Consequently, profits are equal across firms located at x in period t, and are given by:

Πx,t ≡
λ

1 + λ
(1 + λ)

− 1
λP−

1
λ

x,t Y x,t.

Furthermore, from substituting equation (3.7) into equation (3.3) we have that:

Px,t = (1 + λ)

[∫
X

Jx̃,t(Px̃,texp [τtd (x, x̃)] )
− 1
λ dx̃

]−λ
.

Much as in the model of Bilbiie et al. (2012), firm entry requires paying φt units of the raw input, and

firms exit at an exogenous rate, δJ . Since firms are owned by the representative family, they discount

the future with that family’s stochastic discount factor, which we denote by Ξt+1. This leads to the free

entry condition:

φtPx,t = Et
∞∑
s=0

[
s∏

k=1

Ξt+k

]
(1− δJ)

s
Πx,t+s,

i.e.:

φtPx,t = Πx,t + (1− δJ)EtΞt+1φt+1Px,t+1. (3.8)
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3.3 Capital holding company at x ∈X

Without loss of generality, we assume that the capital stock at location x is owned by a representative

capital holding company that is located there. The capital stock at x evolves according to:

Kx,t = (1− δK)Kx,t−1 +

[
1− Φ

(
Ix,t
Ix,t−1

)]
Ix,t, (3.9)

where δK is the depreciation rate of capital, and Φ reflects Christiano et al. (2005) style investment

adjustment costs, with Φ (1) = Φ′ (1) = 0 and Φ′′ (1) > 0. Capital is rented out at a rate RK,x,t per

unit at location x in period t and is immovable across locations. Including investment adjustment costs

ensures that it is hard to move capital across locations by disinvesting in one location and reinvesting

somewhere else. It thus helps to give persistence to the location of clusters of economic activity (“cities”).

The representative capital holding company at x chooses period t investment to maximise their profits:

Et
∞∑
s=0

[
s∏

k=1

Ξt+k

]
(RK,x,t+sKx,t+s−1 − Px,tIx,t+s)

subject to law of motion for capital, equation (3.9). Writing Qx,t for the Lagrange multiplier on equation

(3.9), this leads to the first order condition for Kx,t:
5

1 = EtΞt+1
RK,x,t+1 +Qx,t+1 (1− δK)

Qx,t
,

and first order condition for Ix,t:

Px,t = Qx,t

(
1− Φ

(
Ix,t
Ix,t−1

)
− Φ′

(
Ix,t
Ix,t−1

)
Ix,t
Ix,t−1

)
+ EtΞt+1Qx,t+1Φ′

(
Ix,t+1

Ix,t

)(
Ix,t+1

Ix,t

)2

.

3.4 Agriculture at x ∈X

The agricultural sector at location x is perfectly competitive and has access to the production function:

Fx,t = Lγx,tZ
1−γ
F,x,t,

where ZF,x,t is the amount of the raw good (“production services”) used as an input to farming at

location x in period t, and where Lx,t is the amount of land allocated to farming at location x in period

t. Farm land Lx,t is rented from households at a rate of RL,x,t per unit, and, as before, the raw good

costs Px,t per unit. We take the agricultural product as our numeraire (i.e. we assume it has unit cost),

and further assume that it is tradeable without costs. The assumption of costless trade in agricultural

5The Lagrangian for this problem is contained in Appendix C.1.
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products is common in the new economic geography literature previously cited. Introducing trade costs to

the agricultural product would have required either introducing differentiation in agricultural products,

or dealing with positivity constraints on agricultural production at each location, both of which would

have substantially complicated the model. Furthermore, it is plausible that agricultural products should

have relatively low trade costs compared to the rest of economic output, since many non-agricultural

products are essentially non-tradeable (consider e.g. services, which, in our model, is subsumed within

manufacturing).

Firms producing the agricultural good at location x in period t have profits:

Fx,t −RL,x,tLx,t − Px,tZF,x,t,

and thus choose Lx,t such that:

γ
Fx,t
Lx,t

= RL,x,t, (3.10)

and ZF,x,t such that:

(1− γ)
Fx,t
ZF,x,t

= Px,t. (3.11)

3.5 Raw good production at x ∈X

The raw good at location x is produced in period t by a perfectly competitive industry with access to

the production function:

Zx,t =
[
Kα
x,t−1(Ax,tHx,t)

1−α
]1−κ

Mκ
x,t,

where in period t capital Kx,t−1 is rented from capital holding companies at a rate of RK,x,t per unit,

labour Hx,t is hired from the household at a wage Wx,t per unit, and intermediate inputs of the final

manufactured good, Mx,t, cost Px,t per unit. Ax,t is productivity at location x in period t. Allowing for

capital in production is important as high concentrations of capital are a defining feature of cities. It is

also important to give a role for intermediate inputs of the final manufactured good in production, both

because such inputs account for around half of gross output, and because this ensures that productivity

is higher in locations where the final good is relatively cheap, generating further agglomerative pressure.

We assume that the raw good is untradeable across locations, since it reflects production services.
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Firms producing the raw good at location x in period t have profits:

Px,tZx,t −RK,x,tKx,t−1 −Wx,tHx,t − Px,tMx,t,

and thus choose Kx,t−1 such that:

(1− κ)αPx,t
Zx,t
Kx,t−1

= RK,x,t,

Hx,t such that:

(1− κ) (1− α)Px,t
Zx,t
Hx,t

= Wx,t,

and Mx,t such that:

κPx,t
Zx,t
Mx,t

= Px,t.

3.6 Households and the representative family

There is a household with population Nx,t−1 at t at each x ∈ X. Population is pre-determined here

to capture the fact that it takes time for people to move to exploit new opportunities elsewhere. As

previously mentioned, for simplicity, we assume that all households are part of one representative family

that takes decisions on their behalf.

In period t, the family head maximises the discounted utilitarian social welfare function:

Et
∞∑
s=0

[
s∏

k=1

βt+k−1

]∫
X

Nx,t+s−1

U1−ς
x,t+s

1− ς
dx,

where βt is the discount factor between periods t and t+1, ς 6= 16 controls risk aversion and intertemporal

substitution and:

Ux,t =

(
Cx,t
Nx,t−1

)θC( Ex,t
Nx,t−1

)θF(1− Lx,t
Nx,t−1

)θL( 1

1 + ν

[
1−

(
Hx,t

Nx,t−1

)1+ν
])θH

·

(
Ω
Nt−1

Nx,t−1
− 1

)θN
g (Nx,t−1,Nx,x̃,t) , (3.12)

where Cx,t is total consumption of manufactured goods at x; Ex,t the consumption of the agricultural

good; Hx,t is total labour supplied; and Lx,t is access to unfarmed land, capturing the necessity of

6The normal device of subtracting 1 from the numerator is not possible here, as it renders the first order condition for
population inconsistent with balanced growth.
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space for housing, which is otherwise unmodeled.7 The term weighted by θN captures a preference for

moderate population density. This is required for model stability; a single productivity shock at x would

have otherwise have a permanent effect due to the agglomeration effect. Although stability is required

to find a numerical solution, this is otherwise a desirable property, so we set θN as low as possible so

that there is large endogenous persistence. The last term take the form

g (Nx,t−1,Nx,x̃,t) =

(
1− Nx,t

Nx,t−1

)ψ1
(
d− Dx,t
Nx,t

)ψ2

exp

[
ψ3

∫
X

Nx̃,t−1

Nt−1
log
Nx,x̃,t
Nx,t−1

dx̃

]
(3.13)

where

Nt−1 ≡
∫
X

Nx̃,t−1dx̃, (3.14)

Nx,t ≡
∫
X

Nx,x̃,tdx̃, (3.15)

Dx,t ≡
∫
X

d (x, x̃)Nx,x̃,tdx̃. (3.16)

The first term in (3.13) reflects the disutility of having substantial outward migration Nx,t, that is,

capturing people being upset by their friends and relatives moving away. This ensures that there is

always an interior solution for Nx,t, which is necessary for tractability. The second term gives the

disutility of migration to distant locations, where d gives the maximum distance between points, and

Dx,t/Nx,t is a measure of the average distance moved. This term helps avoid rapid jumps in population

to distant locations, implying that most migration will be between a city and its suburbs. The final

term in g (·) reflects a preference to have at least some migration to all locations (Nx,x̃,t is the amount of

migration from location x to location x̃ at t), with higher weight (and so higher migration) to locations

with higher populations, i.e. it captures the inevitability of people starting new households with people

from far away. This ensures that there is an interior solution for Nx,x̃,t, which is necessary for tractability.

Finally, the weights are constrained so

1 = θC + θF + θL + θH + θN + ψ1 + ψ2 + ψ3. (3.17)

The family head faces the budget constraint:

∫
X

(Px,tCx,t + Ex,t) dx+Bt =

∫
X

(RL,x,tLx,t +Wx,tHx,t) dx+Rt−1Bt−1

−
∫
x

ΦL

(
Lx,t
Lx,t−1

)
Lx,tdx+ Tt, (3.18)

7The broad form of the utility function is dictated by the requirement that the model be consistent with balanced
growth. This is particularly onerous in this model since the first order condition for population will include Ux,t, thus we
cannot have additive terms within a household’s felicity that have different growth rates.
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where Tt includes all net profits from owning firms and capital holding companies, and where the family’s

bond holdings, Bt, are zero in equilibrium.. There is strong evidence for costs of land development due to

both construction costs and regulatory costs, and so we include a land-use adjustment cost represented

by function ΦL.8 The family head also faces the following constraint on the evolution of Nx,t, for all

x ∈ X:

Nx,t = GN,tNx,t−1 −
∫
X

Nx,x̃,tdx̃+

∫
X

Nx̃,x,tdx̃, (3.19)

where GN,t is the growth rate of aggregate population Nt,
∫
X
Nx,x̃,tdx̃ is outwards migration from x and∫

X
Nx̃,x,tdx̃ is inwards migration to x. Writing µN,x,t for the Lagrange multiplier on the law of motion

for Nx,t, equation (3.19), we may derive the following first order conditions9 for consumption Cx,t:

θCEx,t = θFPx,tCx,t,

land Lx,t:

θLEx,t = θF

 RL,x,t − ΦL

(
Lx,t
Lx,t−1

)
− Φ′L

(
Lx,t
Lx,t−1

)
Lx,t
Lx,t−1

+βEt
[

Nx,t
Nx,t−1

Ex,t+1

Ex,t

(
Ux,t+1

Ux,t

)1−ς
Φ′L

(
Lx,t+1

Lx,t

)(
Lx,t+1

Lx,t

)]
 (1− Lx,t) ,

hours Hx,t:

θH

(
Hx,t

Nx,t−1

)ν
= θF

Nx,t−1

Ex,t
Wx,t

(
1

1 + ν
Γ1+ν − 1

1 + ν

(
Hx,t

Nx,t−1

)1+ν
)
,

bonds Bt:

1 = βtRtE
Nx,tEx,tU

1−ς
x,t+1

Ex,t+1Nx,t−1U
1−ς
x,t

,

population Nx,t:

µN,x,t = βtEt


µN,x,t+1GN,t+1 + U1−ς

x,t+1

+ (1− ς)U1−ς
x,t+1

θH
(
Hx,t+1
Nx,t

)1+ν

1
1+ν Γ1+ν− 1

1+ν

(
Hx,t+1
Nx,t

)1+ν − θN
log
(
Nx,t
Nt

)
1
2 Ω2− 1

2

(
log
(
Nx,t
Nt

) )2

+ψ1
Nx,t+1

Nx,t−Nx,t+1
− (θC + θF + θL + ψ3)



 ,
8See Glaeser and Gyourko (2018) for a discussion.
9This is somewhat complicated by the need to differentiate with respect to functions. We solve this by first replacing

expressions of the form
∫
X f (x) dx with 1

|X̃|
∑

x∈X̃ f(x) where X̃ ⊂ X is a finite set. We then simplify, and take limits

as
∣∣∣X̃∣∣∣ → ∞ and as X̃ becomes dense in X. The Lagrangian, and further details on the derivation of these conditions is

contained in Appendix C.1
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and migration Nx,x̌,t:

µN,x,t = µN,x̃,t + (1− ς)Nx,t−1U
1−ς
x,t

[
ψ3

Nx̃,t−1

Nt−1Nx,x̃,t
− ψ1

1

Nx,t−1 −Nx,t
− ψ2

d (x, x̃)Nx,t −Dx,t
dN 2

x,t −Nx,tDx,t

]
.

We also have that the representative family’s stochastic discount factor is given by:

Ξt+1 ≡ βt
Nx,tEx,tU

1−ς
x,t+1

Ex,t+1Nx,t−1U
1−ς
x,t

,

and that
Ex,t

Nx,t−1U
1−ς
x,t

=
Ex̃,t

Nx̃,t−1U
1−ς
x̃,t

for all x, x̃ ∈ X, implying that with ς > 1, households with low utility

have high food consumption (a pattern that certainly holds in the data). Note also that with ς > 1,

µN,x,t gives a measure of the undesirability of location x, so it will be optimal to reduce population in

locations in which µN,x,t is high.

3.7 Market clearing

The final manufactured good is used for consumption Cx,t, investment Ix,t and as an intermediate in

raw good production Mx,t, giving the period t market clearing condition:

Yx,t = Cx,t + Ix,t +Mx,t.

Since raw goods are used in farming, firm entry and by the producers of differentiated varieties, demand

for raw goods in period t is:

Zx,t = ZF,x,t + φt [Jx,t − (1− δJ) Jx,t−1] +

∫ Jx,t

0

Zj,x,tdj

= ZF,x,t + φt [Jx,t − (1− δJ) Jx,t−1] + Jx,t(1 + λ)
− 1+λ

λ P−
1+λ
λ

x,t Y x,t,

where to derive the second line we have used equations (3.4) and (3.6). The agricultural product is only

“eaten”, and is freely traded across locations, giving the period t market clearing condition:

∫
X

Ex,tdx =

∫
X

Fx,tdx.

3.8 Stochastic processes

We close the model by specifying the driving stochastic processes. We assume that productivity Ax,t is

driven by a permanent component that is not location specific, AP
t , and a location specific transitory
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component, AT
x,t. In particular:

Ax,t = AP
t A

T
x,t,

where:

AP
t = GA,tA

P
t−1,

and where logGA,t follows the AR (1) process:

logGA,t = (1− ρGA) logGA + ρGA logGA,t−1 + σGAεGA,t,

and logAT
x,t follows the spatial AR (1) process:

logAT
x,t = ρAT logAT

x,t−1 + σATεAT,x,t,

where εAT,x,t is a realisation of some continuous stochastic process on X. We also assume that the other

aggregate stochastic variables follow AR (1) processes, with:

logGN,t = (1− ρGN ) logGN + ρGN logGN,t−1 + σGN εGN ,t,

log τt = (1− ρτ ) log τ + ρτ log τt−1 + στετ,t,

log φt = (1− ρφ) log φ + ρφlog φt−1 + σφεφ,t,

log βt = (1− ρβ) log β + ρβ log βt−1 + σβεβ,t.

4 Results

4.1 Growth rates

From combining the model’s equilibrium conditions, it may be shown that the model admits a balanced

growth path in which for any x, Yx,t has stochastic trend:

GỸ ,t ≡ (GA,tGN,t)
(1−α)(1−κ)(1+λ)

(1−α)(1−κ)(1+λ)−λ .

(Note, this does not mean that GỸ ,t will equal
Yx,t
Yx,t−1

for any particular x. Rather, this means that
Yx,t
Ỹt

will be stationary, where Ỹt evolves according to Ỹt = GỸ ,tỸt−1.) Since (1− α) (1− κ) (1 + λ)−λ > 0 in

any reasonable calibration, this implies that the growth rate of output is higher than that of GA,tGN,t.
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Thus, this is a model of semi-endogenous growth. Exogenous growth in productivity or population leads

to further endogenous growth since it increases the measure of firms producing differentiated varieties,

which feeds into the love for variety embedded in our aggregator, equation (3.1). The smaller is λ, the

weaker will be this endogenous growth channel, with purely exogenous growth in the λ = 0, perfect

competition, limit. The presence of this channel is also suggestive of areas of high population (“cities”)

having higher productivity.

The stochastic trend of other variables may be given in terms of the stochastic trend in output. In

particular, we have that for any x, the stochastic trend in Zx,t and Jx,t is given by G
1

1+λ

Ỹ ,t
, the stochastic

trend in Fx,t, Ex,t and RL,x,t is given by G
1−γ
1+λ

Ỹ ,t
, the stochastic trend in Wx,t is given by G

1−γ
1+λ

Ỹ ,t
G−1
N,t, the

stochastic trend in Px,t, Qx,t and RK,x,t is given by G
− γ+λ

1+λ

Ỹ ,t
, the stochastic trend in Px,t and Dx,t is

given by G
− γ

1+λ

Ỹ ,t
, the stochastic trend in Y x,t is given by G

− γλ
Ỹ ,t

, the stochastic trend in Ux,t is given by

G
θC+θF

1−γ
1+λ

Ỹ ,t
G
−(θC+θF+θL)
N,t , and the stochastic trend in µN,x,t is given byG

(θC+θF
1−γ
1+λ )(1−ς)

Ỹ ,t
G
−(θC+θF+θL)(1−ς)
N,t .

Thus, amongst other results, the model predicts that the price of manufactured goods and capital is falling

with respect to the price of agricultural goods, and that consumption of agricultural goods is growing

less quickly than consumption of manufactured ones.10

4.2 Properties of the steady-state, and choice of space and spatial correlation

While the full steady-state of the detrended model does not admit a closed form solution, in the special

case in which the space X is invariant under translation (i.e. X is a circle or a torus), then the detrended

model admits a uniform steady-state in which all variables are constant over x, and in which some

variables have a closed form solution. In particular, in the uniform solution in the absence of shocks,

Lx,t = γθF
θL+γθF

and
Nx,t
Nt−1

= ψ3

ψ1+ψ3
. Thus, the steady-state amount of land used in agriculture is increasing

in the importance of land for agricultural production, and in the importance of food for utility, and

decreasing in the importance of land for utility. Additionally, the steady-state amount of migration is

increasing in the family’s desire to have at least some migration to each location, and decreasing in the

amount the family dislikes any migration.

When the space X is not invariant under translation, as in the case when X is the plane [0, 1] × [0, 1]

with the usual Euclidean metric, numerical results suggest that the steady-state features a significant

concentration of population around the centre,
(

1
2 ,

1
2

)
. To see why this is unsurprising, suppose that

population were initially uniformly distributed. Then the centre would have lower average transport

costs, since it is on average closer to other places. These lower transport costs would imply lower prices

and higher productivity in the centre, making it an attractive destination for migration.

10The multiple different stochastic trends in the model complicate its simulation. However, this is facilitated by the
ability of the toolkit we provide here: https://github.com/tholden/DynareTransformationEngine to automatically take
care of detrending variables, once the stochastic trends are supplied.
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In reality, in the U.S. at least, we see a lot of population on the coasts, and less in the centre. This

is partly down to historical artefact, as the coasts were settled first, and partly due to the fact that in

reality the coasts have low transport costs both to other points on the coast, and to the rest of the world.

Rather than modelling trade along the coast, and to the rest of the world, we keep things simple by

modelling space as a torus, identified with [0, 1]× [0, 1]. That is, our model of space is similar to how the

continental U.S. would be were it the case that if you crossed the Canadian border, you teleported onto

an equivalent point on the Mexican border, and if you stepped off the pier in Boston, you teleported to

Seattle. We place the usual Euclidean norm on the torus, i.e.:

d ([x1, x2] , [x̃1, x̃2]) =

√
(min {|x1 − x̃1| , 1− |x1 − x̃1|} )

2
+ (min {|x2 − x̃2| , 1− |x2 − x̃2|} )

2
.

Given this, it makes sense to use the “natural” continuous stochastic process on the torus introduced in

Section 2.1, so:

cov
(
εAT,x,t, εAT,x̃,t

)
= s (ζ, d (x, x̃)) ,

where s is as defined in Section 2.1.

4.3 Calibration

We now describe the calibration used for the simulation exercises. Some of the parameters are calibrated

to target some steady state ratios, values of which are shown in the top part of table 1 with further

detail outlined in appendix B. The last three parameters in the table are calibrated to target higher

order simulated moments. In this section, we discuss the parameters which affect the stability properties

of the model and control population dynamics, namely: {θN ,Ω, %, ψ3, ζ}. We calibrate ζ jointly with the

intertemporal persistence of the spatial productivity shock, ρAT , by using state-level productivity data

to estimate

logAi,t = αt + βi + γit+ σiεi,t (4.1)

Capturing state-level trends, and time and state fixed effects, where for all i, j ∈ {1, · · · , N} and t, s ∈

{1, · · · , T}:

cov (εi,t, εj,s) = ρ
|t−s|
AT exp [−ζdi,j ] (4.2)
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Parameter Value Target

GA 1.0026 Quarterly trend growth rate in output GY = 0.679%
GN 1.0026 Quarterly trend growth rate in population = 0.262%
β 0.997 Real interest rate: R = 1.0056
α 0.18 Ratio of consumption to investment: PxCx+Ex

PxIx
= 4.80

κ 0.50 Ratio of manufactured goods cost to total value of production:
Px,tMx,t

Px,tZx,t = κ =
0.5

γ 0.18 Income share of land:
RL,x,tLx,t

Fx,t
= γ = 0.18

λ 0.1 Median markup
δJ 0.0268 Quarterly establishment exit rate, δJ = 2.682%
δK 0.0136 Average quarterly capital depreciation rate, δ = 1.36%
θC 0.144 Utility weights sum to 1, 1 = θC + θF + θL + θH + θN + ψ1 + ψ2 + ψ3

θF 0.015 Food as a proportion in consumption bundle
∫
X
Ex,tdx∫

X
Px,tCx,t+Ex,tdx

= 9.485% =⇒
θF = θC

0.09485
1−0.9485

θH 0.687 Average hours,
∫
X
Hx,tdx = 0.4109

θL 0.0005 Proportion of land used for agriculture, Lx,t = 0.84 =⇒ θL = γ
3 θF

ψ1 0.0013 Proportion of households that move each quarter,
∫
X
Nx,t/Nx,tdx = 1

13×4 =⇒
ψ3 = 0.01923

%−0.01923ψ1

ψ2 0.0001 40% of moves are over distances of more than 100 miles. i.e., d = 0.0155 and
23% of moves are over distances of more than 500 miles. i.e., d = 0.0773

ν 2 Standard deviation of total hours,
∫
X
Hx,tdx, 3.89%

ς 1.5 Relative standard deviation of consumption,
∫
X
Px,tCx,t + Ex,tdx, 0.7685

Φ 4 Relative standard deviation of investment,
∫
X
Px,tIx,tdx, 4.5858

Table 1: Calibrations and targets

where εi,t is normally distributed with Eεi,t = 0.11 This resulted in ζ = 14.1612 and ρAT = 0.763. The

parameter d̄ is implied by the dimension and type of space. With a 1× 1 torus, the maximum possible

distance between two points is 0.5
√

2.

4.4 Impulse responses

To understand the dynamic behaviour of our model, we start by simulating impulse responses.13 In all

of the simulations reported here we used a grid with effective size 9 × 9, with the bottom row of grid

points always agreeing with the top row, and the right column always agreeing with the left column.

We start by looking at the effects of a 3.6% spatial productivity shock. (that is, a magnitude 1 standard

deviation shock.) Since space is invariant under translation, without loss of generality we may focus

11The model was estimated via maximum likelihood, profiling out all parameters except ρAT and ζ from the likelihood.
Conditional on ρAT and ζ, the other parameters were estimated by iterated feasible generalized least squares, with iteration
until convergence of σ. The estimate of σ used within each iteration was the maximum likelihood one, which satisfies
σ = 1

T
diag

[
EP−1ET (diagσ)Z−1

]
, where the diag operator maps matrices to vectors containing their diagonal, and

vectors to matrices with zeros apart from the given diagonal, where E = [εi,t]t=1,··· ,T
i=1,··· ,N

, P =
[
ρ
|t−s|
AT

]
t=1,··· ,T
s=1,··· ,T

and Z =

[exp [−ζdi,j ]]i=1,··· ,N
j=1,··· ,N

.

12With a 95% confidence interval [11.81, 17.12], produced by inverting the likelihood ratio test on the profile likelihood
for ζ.

13The code we used both to simulate impulse responses, and to simulate stochastic runs is available from: https:

//github.com/tholden/DynamicSpatialModel. This repository also includes the full set of these results, including videos
showing the evolution over time of all distributions.
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Figure 3: Impulse responses of key state variables to a 1% spatial productivity shock centred on
(
1
2
, 1
2

)
. Entire

space, snapshots in time. Bright colours are high values.

Figure 4: Impulse responses of key state variables to a 1% spatial productivity shock centred on
(
1
2
, 1
2

)
. Percent

deviation from steady state. x-axis measured in years.

on a shock that is centred on the point
(

1
2 ,

1
2

)
. As shocks are correlated across locations, we take the

matrix square root of the covariance matrix to determine the impulse at each location. The impact of

such a shock is shown in Figures 3 and 4. Note that where an aggregate IRF is shown, this gives the

IRF to the integral of the variable over X. In the density plots in , bright colours represent high values.

The shock leads to an increase in consumption (manufactured and agricultural), investment, capital, the

measure of firms, hours and population at the epicentre. Despite this, utility at the epicentre actually

falls as people there are asked to work harder to take advantage of their high productivity. Since the

increase in productivity leads to firm entry, it is optimal for the epicentre to move away from agricultural

production, towards manufacturing. Consequently, agricultural production increases elsewhere, with a

consequent increase in the land used for farming. This does not harm utility away from the epicentre
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since population flows towards the centre, reducing pressure on land in the periphery. As one would

expect, aggregate utility increases overall from this positive productivity shock.

The effects of this initial shock are extremely persistent, with population still not back to trend 100 years

after the initial shock. This suggests that our model can successful explain how small initial shocks can

lead to city formation in one place, and not in another.

One explanation for the decline in the U.S. midwest through the lens of the model is that the increase

in productivity in e.g. San Francisco and New York has pulled people out of the midwest and towards

the coasts. That utility seems to have declined in the midwest suggests that our model is still lacking

important frictions, such as costs to adjust land usage.

5 Conclusion

This paper has presented a new approach to building heterogeneous agent macroeconomic models in

which the heterogeneity is across space. While the paper focuses on applications in which space is

physical space, our approach can also contribute to understanding heterogeneity across types, be it

product variety, skills or preferences.

We suggested that spatial macroeconomic models should be driven by shocks that are continuous across

space, and presented a variety of examples of such shock processes. We give further technical results on

existence of such processes across a wide range of spaces of interest in Appendix A.

We went on to build a DSGE model featuring the key model components of the new economic geography

literature. We showed that the model was able to generate extremely persistent movements in population,

even given very strong preferences for a moderate population density. Thus, this is a model in which

business cycle shocks can endogenously lead to the formation of new cities.

In future work, we plan on extending the model presented here, incorporating, for example, adjustment

costs to land, that might ameliorate the need to have a preference for moderate population density. We

will also undertake a more comprehensive calibration exercise, explore the asymmetric steady-states of

the model, and assess the feasibility of solving the model at a higher order of approximation to capture

the model’s important non-linearities.
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Adjemian, S., Bastanie, H., Karamé, F., Juillard, M., Maih, J., Mihoubi, F., Perendia, G., Pfeifer, J.,

Ratto, M. and Villemot, S. (2011), ‘Dynare : Reference Manual Version 4’, Dynare Working Paper

Series (1), 160.

Basu, S. and Fernald, J. G. (1997), ‘Returns to scale in u.s. production: Estimates and implications’,

Journal of Political Economy 105(2), 249–283.

Bilbiie, F. O., Ghironi, F. and Melitz, M. J. (2012), ‘Endogenous Entry, Product Variety, and Business

Cycles’, Journal of Political Economy 120(2), 304–345.

Bogomolny, E., Bohigas, O. and Schmit, C. (2007), ‘Distance matrices and isometric embeddings’, ArXiv

Preprint ArXiv:0710.2063 .

URL: http://arxiv.org/abs/0710.2063

Boucekkine, R., Camacho, C. and Zou, B. (2009), ‘Bridging the gap between growth theory and the new

economic geography: The spatial Ramsey model’, Macroeconomic Dynamics 13(1), 20–45.

Brito, P. (2004), The dynamics of growth and distribution in a spatially heterogeneous world.

Cardamone, P. (2017), ‘A Spatial Analysis of the R&D-Productivity Nexus at Firm Level’, Growth and

Change 48(3), 313–335.

Caselli, F. and Coleman II, W. J. (2001), ‘The U.S. Structural Transformation and Regional Convergence:

A Reinterpretation’, Journal of Political Economy 109(3), 584–616.

Chepoi, V., Deza, M. and Grishukhin, V. (1997), ‘Clin d’oeil on L1-embeddable planar graphs’, Discrete

Applied Mathematics 80(1), 3–19.

URL: https://www.sciencedirect.com/science/article/pii/S0166218X97000668

Christiano, L. J., Eichenbaum, M. and Evans, C. L. (2005), ‘Nominal Rigidities and the Dynamic Effects

of a Shock to Monetary Policy’, Journal of Political Economy 113(1), 1–45.

Comin, D., Dmitriev, M. and Rossi-Hansberg, E. (2012), The Spatial Diffusion of Technology, No. 18534,

NBER Working Paper Series, Cambridge, MA.

Comin, D. and Gertler, M. (2006), ‘Medium-term business cycles’, American Economic Review

96(3), 523–551.

Den Haan, W. J. (2010), ‘Comparison of solutions to the incomplete markets model with aggregate

uncertainty’, Journal of Economic Dynamics and Control 34(1), 4–27.

Page 24 of 26



Desmet, K., Nagy, D. K. and Rossi-Hansberg, E. (2018), ‘The Geography of Development’, Journal of

Political Economy 126(3), 903–983.

Desmet, K. and Rossi-Hansberg, E. (2014), ‘Spatial Development’, American Economic Review

104(4), 1211–1243.

Doob, J. L. (1942), ‘The Brownian Movement and Stochastic Equations’, Annals of Mathematics

43(2), 351–369.

Duranton, G. (2007), ‘Urban evolutions: The fast, the slow, and the still’, American Economic Review

97(1), 197–221.

Eckert, F. and Peters, M. (2018), Spatial Structural Change.

Gabaix, X. (2011), ‘The Granular Origins of Aggregate Fluctuations’, Econometrica 79(3), 733–772.

Glaeser, E. and Gyourko, J. (2018), ‘The Economic Implications of Housing Supply’, Journal of Economic

Perspectives 32(1), 3–30.

Glass, A. J., Kenjegalieva, K. and Sickles, R. C. (2016), ‘A spatial autoregressive stochastic frontier

model for panel data with asymmetric efficiency spillovers’, Journal of Econometrics 190(2), 289–300.

Glass, A., Kenjegalieva, K. and Paez-Farrell, J. (2013), ‘Productivity growth decomposition using a

spatial autoregressive frontier model’, Economics Letters 119, 291–295.

Gneiting, T. (2013), ‘Strictly and non-strictly positive definite functions on spheres’, Bernoulli

19(4), 1327–1349.

Gneiting, T. and Schlather, M. (2004), ‘Stochastic Models That Separate Fractal Dimension and the

Hurst Effect’, SIAM Review 46(2), 269–282.

Griffith, R., Redding, S. and Simpson, H. (2009), ‘Technological catch-up and geographic proximity’,

Journal of Regional Science 49(4), 689–720.

Grossman, G. M. and Helpman, E. (1991), ‘Quality Ladders in the Theory of Growth’, The Review of

Economic Studies 58(1), 43–61.
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Appendix A Continuous stochastic processes

A.1 Type spaces

We would like to be able to draw realisations of a shock which are continuous (and hence locally corre-

lated) over some compact space X, equipped with a Radon measure. Compactness of X ensures that the

law of large numbers does not remove the aggregate impact of the stochastic process, and the existence

of a Radon measure is a technical assumption that will not rule out any spaces of interest.

Often, we will have X = h−1 (G), where h : X → G is continuous, and G is a locally-compact, abelian

group, also equipped with some Radon measure. For those readers not familiar with group theory, one

may view a group as a structure on which “addition” and “subtraction” are defined, along with an

identity “zero”. The addition and subtraction operations can be thought of as spatial translations. This

“additive” group structure will be important, since it will give rise to the spatial analogue of the time

series procedure of taking lags or leads.

We will define an underlying continuous stochastic process on G, a realisation of which will be a continu-
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ous function φ : G→ R. It will turn out that continuous stochastic processes will be particularly easy to

construct on such groups, explaining our interest in type spaces (Xs), that admit such a representation.

The realisation of the stochastic process on X will then be given by x 7→ φ (h (x)), which is continuous

by the continuity of φ and h. If not stated otherwise, h will be the identity map (or more strictly, the

inclusion map). The assumption that G is abelian (i.e. the group operation is commutative) is not

needed, but all practical examples will feature abelian G, so nothing is lost. Throughout, the group

operation will be denoted “+”, with inverse “−” and identity element “0”.

For example, we might have:

• X = [0, 1]
n ⊆ Rn = G, for some n ∈ N. This might represent a space of types in which there is a

meaningful boundary, such as education levels, or with n = 2, the physical area of a country. The

group operation and measure are the normal ones on Rn.

• X = Sn, for some n ∈ N, where Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}

(i.e. circle, sphere, etc.). This might

represent a space of types with no meaningful boundary, in which there is no intrinsic difference

between the axes of the type space, or with n = 2, it can represent the surface of earth (a sphere!).

The group operation on S1 is addition of angles, so in that case we may take G = X1. Spheres in

three-dimensional space do not have an Abelian group operation, so need to be treated specially.

The measure on the space is given by the usual spherical surface element.

• X = Tn = G, for some n ∈ N, where Tn = Rn/Zn ' Sn1 (i.e. circle, torus, etc.). This gives

another representation for type spaces with no boundary, this time for type spaces with clear

axes/anisotropy. In this case, the group operation and measure are the ones induced by the

quotient construction.

• X is the embedding of a graph in Rn (i.e. a collection of joined curved line-segments). This might

represent a road, river, train or canal network. There is no natural group operation in general, so

the existence of continuous processes on this space will be non-trivial. The measure in this case is

the one dimensional Hausdorff measure in X.

A.2 General results on the existence of continuous stochastic processes

Before introducing our general results on the existence of continuous stochastic processes in spaces such

as these, we first need to define two closely related notions of positive definiteness for functions.

Definition 1 Let f : G → R. We say f is positive definite on G if f is a positive, even function,

and ∀n ∈ N, ∀x1, . . . , xn ∈ G, the matrix [f (xi − xj)]i,j=1,...,n is positive semi-definite.

Definition 2 Let f : X×X → R. We say f is positive definite on X×X if f is a positive, symmetric
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function, and ∀n ∈ N, ∀x1, . . . , xn ∈ G, the matrix [f (xi, xj)]i,j=1,...,n is positive semi-definite.

The two notions are related, as if f is a positive definite function on G, then (x1, x2) 7→ f (h (x1)− h (x2))

is positive definite on X ×X, providing h is as defined previously.

It is easy to verify that sums and products of positive definite functions are positive definite, and that a

positive multiple of a positive definite function is positive definite. A further useful characterisation of

positive definite functions is Bochner’s theorem, which, in our context, implies that f is positive definite

on G if and only if the Fourier transform (equivalently, cosine transform) of f on G is positive. For

spaces with a group structure, this gives an easy method of constructing positive definite functions.

We are interested in positive definite functions, as by results due to Doob, for the existence of a Gaussian

stochastic process with covariance f (xi, xj) for all x1, x2 ∈ X, it is sufficient that the function f be

positive definite on X ×X. Hence, by using this result along with Bochner’s theorem, we are easily able

to verify if there is a continuous stochastic process with the covariance structure we desire. Alternatively,

if we find results in the mathematical literature proving the positive definiteness of some function of

interest, then we know there is a continuous stochastic process with that auto-covariance function.

A.3 Continuous stochastic processes in Euclidean spaces

We now proceed to give examples of spaces and some of the possible continuous stochastic processes on

those spaces. Ornstein-Uhlenbeck processes extend naturally to Euclidean spaces, and may be further

generalized to allow for different rates of decay of the auto-covariance. In particular, let ‖‖p be the

usual `p (quasi-)norm on Rn, then x 7→ exp
{
−‖x‖qp

}
is positive definite on Rn if and only if one of the

following conditions hold:

• 0 < q ≤ p ≤ 2 (independent of n).

• n = 1, and p > 0, and 0 < q ≤ 2.

• n = 2, and p ∈ (2,∞], and q ∈ (0, 1],

(Schoenberg, 1938; Misiewicz, 1989; Koldobsky, 1992; Kuniewski and Misiewicz, 2014). This gives us

a wide range of stochastic processes on Rn, with the p = 1, q = 1 and p = 2, q = 1 processes both

being contenders to be the “natural” Ornstein-Uhlenbeck process on Rn. The p = q = 2 process is also

potentially useful in macroeconomic applications, as it is the unique stochastic process in this class with

realisations that are smooth almost surely.

Another useful class of positive definite functions on Rn are given by x 7→ (1 + ‖x‖α2 )
− τα , where α ∈ (0, 2]

and τ > 0 (Gneiting and Schlather, 2004). These have long-memory, so may be useful in applications with

very high spatial dependence. Further processes on Rn may be constructed by taking G = Rm, X = Rn,
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and h (x) = Ax for some matrix A, then f (h (x1)− h (x2)) = f (h (x1 − x2)) so x 7→ exp
{
−‖Ax‖qp

}
and x 7→ (1 + ‖Ax‖α2 )

− τα are positive definite with the same assumptions as before.

A.4 Continuous stochastic processes on circles and spheres

If X = Sn, the sphere in n + 1 dimensional space, then the natural distance between points is the

great circle distance, which, appropriately normalised, is given by d (x1, x2) = 1
2πarccos (x′1x2) ∈

[
0, 1

2

]
.

Then, for ζ > 0, (x1, x2) 7→ exp {−ζd (x1, x2)
q} is positive definite on X × X if and only if q ∈

(0, 1] (Bogomolny et al., 2007). On S1, this function has cosine transform k 7→ ζ(1−(−1)ke−ζ/2)
4π2k2+ζ2 for

k ∈ N+, which has an undesirable oscillating component not present in the cosine transform on R

of x 7→ exp (−ζ |x|), i.e. ω 7→ ζ
4π2ω2+ζ2 . As a result, this may not be a particularly natural choice.

As an alternative, it is worth noting that on S1,1 for ζ > 0, the function (x1, x2) 7→ s (ζ, d (x1, x2)) is

positive definite, where s (ζ, d) =
exp(−ζd+ ζ

2 )+exp(ζd− ζ2 )
exp( ζ2 )+exp(− ζ2 )

(Pedersen, 2002). Furthermore, this has a cosine

transform proportional to k 7→ ζ
4π2k2+ζ2 for k ∈ N+, which means it is the natural generalisation of the

Ornstein-Uhlenbeck process on R. Other possibilities include (x1, x2) 7→ (1− ζ) + ζ
(

1
2 − d (x1, x2)

)2
and

(x1, x2) 7→ (1− ζ) + 1
2ζ (1 + x′1x2), which are both positive definite for ζ ∈ [0, 1], by the condition given

in Gneiting (2013). The latter is an analogue of x 7→ exp
(
−ζx2

)
on R, and will lead to smooth sample

paths.

A.5 Continuous stochastic processes on tori

If G = G1×G2×· · ·×Gn, and fi is positive definite on Gi for i = 1, . . . , n, then the function f : G→ R

defined by f (x) =
∏n
i=1 fi (xi) is positive definite on G. Hence, positive definite functions on tori can

be constructed from products of positive definite functions on circles (where the circle is identified with

R/Z). For example, by our previous results, for ζ1, . . . , ζn > 0, q1, . . . , qn ∈ (0, 1], the function:

(x1, . . . , xn) 7→ exp

{
−

n∑
i=1

ζimin {|xi| , 1− |xi|} qi
}

will be positive definite on G.

A.6 Continuous stochastic processes on graphs or networks

In general, graphs cannot be isometrically embedded in Euclidean space, so if d is the shortest path

metric on the (embedding of the) graph, (x1, x2) 7→ exp
(
−ζd(x1, x2)

2
)

will only be positive definite for

1This does not hold on S2 or higher, by the condition given in Gneiting (2013).
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very particular graphs. We do know however that (x1, x2) 7→ exp (−ζd (x1, x2)) will be positive definite

for all ζ > 0 if the following conditions are all satisfied (Chepoi et al., 1997):

• the graph is unweighted, or possesses integer weights,

• the graph is planar,

• every interior face of the graph is an isometric cycle,

• two interior faces meet at at most one edge (of length one).

Additionally, (x1, x2) 7→ exp (−ζd (x1, x2)) is positive definite on all (weighted) trees, for all ζ > 0

(Hjorth et al., 1998).

Furthermore, it may be shown that for all graphs, there exists ζ such that (x1, x2) 7→ exp (−ζd (x1, x2))

is positive definite for ζ > ζ. The idea of the proof is the following. For large ζ, the “ACF” matrix

is diagonally dominant on the graph’s vertices, hence positive definite, hence we can draw from a finite

dimensional Gaussian process on the vertices, and then link the realisations at the vertices with inde-

pendent Ornstein-Uhlenbeck processes along each, conditional on them taking the given values at the

vertices.

Appendix B Calibration details

The exogenous technical progress is chose to target the growth rate in output, calculated by regressing

logged real GDP (from NIPA) against time. Population growth is that of the total working age population

of the U.S. from the OECD. The real interest comes from applying the Fisher equation rt = rNt −Etπt+1

using the 3-month treasury bill secondary market rate as the risk-free nominal rate and the realised next

period GDP deflator from 1980–2010. This yields an average real annual rate of 2.27%. The factor shares

are taken as the averages from the BLS ‘Multifactor Productivity Trends in Manufacturing’ release. We

sum over energy, materials and purchased services for the manufactured good inputs and take averages

over the whole empirical sample. The income share of land of 0.18 comes from that estimated by

Valentinyi and Herrendorf (2008). The price markup is the same used by Comin and Gertler (2006),

originally estimated by Basu and Fernald (1997). Establishment exit rate is the average over 1977-

2014 according to the Longitudinal Business Database, U.S. Census. The capital depreciation rate is

computed by dividing BEA’s depreciation of fixed assets by the stock using data over 1980-2018. For θL,

we use U.S. evidence that indicates the share of land with broadly agricultural usage is around 84%.2.

For θF , using BEA consumption data by category, we find food has by 9.5% of consumption3 so set

2Data from https://www.ers.usda.gov/data-products/major-land-uses/, Summary Table 1. We classify cropland,
grassland, pasture, range and forest-use land as agricultural, and the remainder as non-agricultural.

3Excluding housing from total consumption and excluding food services from food in-line with methodology of BEA.
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θF = θC
0.09485

1−0.9485 . For the distribution of distance moved, we use survey data on home-searches that

suggests 23% of moves are over a distance of more than 500 miles and 60% less than 100 miles.4. These

targets are used to pin down ψ2 The steady state conditions for migration are linear in ψ1, ψ2 and ψ3.

The ratio ψ1/ψ3 is pinned down by the number of movers, then conditional on any value of ψ2, we can

solve ψ3 to minimize the sum of squared residuals from the two targets. The maximum distance between

counties in the contiguous U.S. is 4572.6 miles, so with a 1×1 torus where d̄ = 0.5
√

2, this is 23% moving

across distances of more than 0.0773. Similarly, 40% of moves are over distances of more than 100 miles,

which is 0.0155 on the 1 × 1 torus. The proportion of household movers is taken from a study by the

National Association of Home Builders.5 The proportion of households moving in a single quarter is then

1
13×4 = 0.01923 and so ψ3 = 0.01923

%−0.01923ψ1 Hours is the total annual hours worked by FT and PT workers

in the U.S. (BEA) divided by working age population of the U.S. (OECD). For the first moment, we

divide by 52*7*8.6 The average hours is only GDP, consumption and investment data is from the BEA’s

National Income and Product Accounts (NIPA). Consumption is disaggregated to food purchases and

food services. Relative standard deviation is the ratio with the standard deviation of total GDP which

is taken as the sum of manufactured goods and agricultural goods,
∫
X
Px,tYx,t + Fx,tdx.

Appendix C Further model properties

C.1 Lagrangians

The capital holding company’s problem leads to the following Lagrangian:

Et
∞∑
s=0

[
s∏

k=1

Ξt+k

] RK,x,t+sKx,t+s−1 − Px,tIx,t+s+

Qx,t

(
(1− δK)Kx,t−1 +

[
1− Φ

(
Ix,t
Ix,t−1

)]
Ix,t −Kx,t

)
 .

The household’s problem leads to the following Lagrangian:

Et
∞∑
s=0

[
s∏

k=1

βt+k−1

]
·

4https://www.trulia.com/research/moving-far-far-away-or-not-far-enough/.
5See http://eyeonhousing.org/2013/01/latest-study-shows-average-buyer-expected-to-stay-in-a-home-13-years/.
6This is only used to normalize hours and implies a maximum daily average hours of 8, accounting for holiday time and

weekends. If one assumes workers take 4 weeks vacation a year and work 5 day weeks, this is a maximum 12 hours per
working day. Conditional on the these assumptions, the average is under 5 hours per working day.
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

∫
X



Nx,t+s−1


U1−ς
x,t+s

1−ς + µU,x,t+s



(
Cx,t+s
Nx,t+s−1

)θC( Ex,t+s
Nx,t+s−1

)θF ( 1−Lx,t+s
Nx,t+s−1

)θL
·(

1
1+νΓ1+ν − 1

1+ν

(
Hx,t+s
Nx,t+s−1

)1+ν
)θH
·(

1
2Ω2 − 1

2

(
log
(
Nx,t+s−1

Nt+s−1

) )2
)θN
·(

1−
∫
X
Nx,x̃,t+sdx̃
Nx,t+s−1

)ψ1
(
d−

∫
X
d(x,x̃)Nx,x̃,t+sdx̃∫
X
Nx,x̃,t+sdx̃

)ψ2

·

exp

[
ψ3

∫
X
Nx̃,t+s−1log

Nx,x̃,t+s
Nx,t+s−1

dx̃∫
X
Nx̃,t+s−1dx̃

]
− Ux,t+s




+
µN,x,t+s

1−ς
[
GN,t+sNx,t+s−1 −

∫
X
Nx,x̃,t+sdx̃+

∫
X
Nx̃,x,t+sdx̃−Nx,t+s

]



dx

+µB,t+s

 ∫
X

(RL,x,t+sLx,t+s +Wx,t+sHx,t+s) dx+Rt+s−1Bt+s−1 + Tt+s

−
∫
X

(Px,t+sCx,t+s + Ex,t+s) dx−
∫
x

ΦL

(
Lx,t+s
Lx,t+s−1

)
Lx,t+sdx−Bt+s





.

Note that µU,x,t and µB,t do not occur in the first order conditions given in the text, as we substitute it

out from the first order condition for Ux,t:

µU,x,t = U−ςx,t .

and the first order condition of Ex,t:

µB,t = θF
Nx,t−1

Ex,t
U1−ς
x,t .

C.2 Equilibrium conditions

The complete set of equilibrium conditions of the model are as follows:

Y x,t ≡
∫
X

Yx̃,tP
1+λ
λ

x̃,t exp
[
−τt
λ
d (x̃, x)

]
dx̃ (C.1)

Dx,t ≡
λ

1 + λ
(1 + λ)

− 1
λP−

1
λ

x,t Y x,t (C.2)

Px,t = (1 + λ)

[∫
X

Jx̃,t(Px,texp [τtd (x, x̃)] )
− 1
λ dx̃

]−λ
(C.3)

φtPx,t = Dx,t + (1− δJ)EtΞt+1φt+1Px,t+1 (C.4)

Fx,t = Lγx,tZ
1−γ
F,x,t (C.5)

γ
Fx,t
Lx,t

= RL,x,t (C.6)

(1− γ)
Fx,t
ZF,x,t

= Px,t (C.7)

Zx,t =
[
Kα
x,t−1(Ax,tHx,t)

1−α
]1−κ

Mκ
x,t (C.8)

(1− κ)αPx,t
Zx,t
Kx,t−1

= RK,x,t (C.9)

(1− κ) (1− α)Px,t
Zx,t
Hx,t

= Wx,t (C.10)
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κPx,t
Zx,t
Mx,t

= Px,t (C.11)

Kx,t = (1− δK)Kx,t−1 +

[
1− Φ

(
Ix,t
Ix,t−1

)]
Ix,t (C.12)

1 = EtΞt+1
RK,x,t+1 +Qx,t+1 (1− δK)

Qx,t
(C.13)

Px,t =Qx,t

(
1− Φ

(
Ix,t
Ix,t−1

)
− Φ′

(
Ix,t
Ix,t−1

)
Ix,t
Ix,t−1

)
+ EtΞt+1Qx,t+1Φ′

(
Ix,t+1

Ix,t

)(
Ix,t+1

Ix,t

)2 (C.14)

Yx,t = Cx,t + Ix,t +Mx,t (C.15)

Zx,t = ZF,x,t + φt [Jx,t − (1− δJ) Jx,t−1] + Jx,t(1 + λ)
− 1+λ

λ P−
1+λ
λ

x,t Y x,t (C.16)∫
X

Ex,tdx =

∫
X

Fx,tdx (C.17)

Ux,t =

(
Cx,t
Nx,t−1

)θC( Ex,t
Nx,t−1

)θF(1− Lx,t
Nx,t−1

)θL
·(

1

1 + ν
Γ1+ν − 1

1 + ν

(
Hx,t

Nx,t−1

)1+ν
)θH(

Ω− 1

2

(
log

(
Nx,t−1

Nt−1

) )2
)θN
·

(
1− Nx,t

Nx,t−1

)ψ1
(
d− Dx,t
Nx,t

)ψ2

exp

[
ψ3

∫
X

Nx̃,t−1

Nt−1
log
Nx,x̃,t
Nx,t−1

dx̃

]
, (C.18)

Nt ≡
∫
X

Nx̃,tdx̃, (C.19)

Nx,t ≡
∫
X

Nx,x̃,tdx̃, (C.20)

Dx,t ≡
∫
X

d (x, x̃)Nx,x̃,tdx̃ (C.21)

Nx,t = GN,tNx,t−1 −Nx,t +

∫
X

Nx̃,x,tdx̃ (C.22)

θCEx,t = θFPx,tCx,t (C.23)

θLEx,t = θF

RL,x,t − ΦL

(
Lx,t
Lx,t−1

)
− Φ′L

(
Lx,t
Lx,t−1

)
Lx,t
Lx,t−1

+Et
[
Ξt+1Φ′L

(
Lx,t+1

Lx,t

)(
Lx,t+1

Lx,t

)]
 (1− Lx,t) (C.24)

θH

(
Hx,t

Nx,t−1

)ν
= θF

Nx,t−1

Ex,t
Wx,t

(
1

1 + ν
Γ1+ν − 1

1 + ν

(
Hx,t

Nx,t−1

)1+ν
)

(C.25)

1 = RtEΞt+1 (C.26)

Ξt+1 = βt
Nx,tEx,tU

1−ς
x,t+1

Ex,t+1Nx,t−1U
1−ς
x,t

(C.27)

µN,x,t = βtEt





µN,x,t+1GN,t+1 + U1−ς
x,t+1

+ (1− ς)U1−ς
x,t+1


θH

(
Hx,t+1
Nx,t

)1+ν

1
1+ν Γ1+ν− 1

1+ν

(
Hx,t+1
Nx,t

)1+ν

−θN
log
(
Nx,t
Nt

)
1
2 Ω2− 1

2

(
log
(
Nx,t
Nt

) )2

+ψ1
Nx,t+1

Nx,t−Nx,t+1
− (θC + θF + θL + ψ3)






(C.28)
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µN,x,t = µN,x̌,t + (1− ς)Nx,t−1U
1−ς
x,t

ψ3
Nx̌,t−1

Nt−1Nx,x̌,t − ψ1
1

Nx,t−1−Nx,t

−ψ2
d(x,x̌)Nx,t−Dx,t
dN 2

x,t−Nx,tDx,t

 (C.29)
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