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Abstract: This paper presents a fast, simple and intuitive algorithm for simulation of linear dynamic 
stochastic general equilibrium models with inequality constraints. The algorithm handles both the 
computation of impulse responses, and stochastic simulation, and can deal with arbitrarily many 
bounded variables. Furthermore, the algorithm is able to capture the precautionary motive 
associated with the risk of hitting such a bound. To illustrate the usefulness and efficiency of this 
algorithm we provide a variety of applications including to models incorporating a zero lower bound 
(ZLB) on nominal interest rates. Our procedure is much faster than comparable methods and can 
readily handle large models. We therefore expect this algorithm to be useful in a wide variety of 
applications.  
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1. Introduction 
New Keynesian (NK) Dynamic Stochastic General Equilibrium (DSGE) models are today's standard 
framework for analysing central bank policies.3 The nominal and real rigidities in these models 
mean central banks may improve welfare through monetary policy. Traditionally, DSGE models are 
log-linearised, which results in both computational and analytic tractability. However, the simplicity 
of this approach also neglects important non-linearities, not-least inequality constraints, of which 
the zero lower bound (ZLB) on interest rates is the most prominent example. In this paper, we 
present an efficient algorithm for simulating DSGE models subject to arbitrarily many inequality 
constraints, at arbitrary accuracy, at least away from the bound. 

Macroeconomic analysis had ignored the zero lower bound almost completely before the 
experience of Japan in the 1990s, since the bulk of macroeconomists believed the constraint would 
bind only for a short time span (if at all). Under this presumption, the effects would be negligible, 
and so ignoring the bound seemed to be a reasonable simplification. However, the interest rates in 
Japan during the 1990s, as well as those in the US over the last few years, disabused researchers 
and policymakers of this popular fallacy. 

In the aftermath of the crisis, the transmission of monetary policy under the ZLB became an 
important matter for central banks and academia. To cope with the bound, researchers either solve 
such non-linear models using global approximation methods (which come at a dramatic increase in 
computational costs, and scale exceptionally poorly) or use deterministic setups. This paper 
provides a fast, simple and intuitive algorithm to deal with inequality constraints in perturbation 
approximations to DSGE models, which correctly captures the precautionary motives associated 
with such bounds. The code is designed to work with Dynare (Adjemian et al. 2011), so 
incorporating it into existing models is trivial. The method is not only useful for deriving impulse 
response functions (IRFs), but can also be used for stochastic simulations, opening up the possibility 
of particle filter based estimation of models with inequality constraints. The method endogenously 
determines when the constraint will bind, and can handle constraints that may bind in multiple 
disjoint runs, or that may not begin to bind until long after the initial impulse. The general idea is to 
introduce “shadow price shocks”, which hit the bounded variables every time the constraint is 
violated, and “push” these variables back to zero. To ensure the solution is consistent with rational 
expectations, these shocks are expected by agents in advance, so they may be thought of as a kind 
of endogenous news shock. 

This algorithm is not solely useful for modelling a ZLB on interest rates, but can be used for any 
model including constrained variables. Holden (2010), for example, uses it to constrain invention 
rates to be positive in a model of endogenous growth. In addition, Funke and Paetz (2012) use this 
technique to evaluate threshold loan-to-value policies in Hong Kong, where policymakers decrease 
the loan-to-value ratio, when property price inflation exceeds a certain value. In Chen et al. (2012), 
the same method   is   used   to  model   the   People’s   Bank   of   China’s interest rate corridor on retail 
lending and deposit rates. 

                                                      

3 See Clarida et al. (1999) for an early literature review on NK models. 
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The rest of the paper is organized as follows. In section 2, the algorithm is described and related to 
the existing literature. Section 3 assesses the accuracy of the procedure in a variety of models for 
which high accuracy solutions are available, and section 4 goes on to provide some sample 
applications to larger models. The final section concludes. 

2. The numerical method 

2.1. The existing literature 

Due to the recent experience of the US and Europe, the literature on (stochastic) simulation of 
models with a ZLB has grown rapidly in the past few years. The most important contributions 
include Eggertsson and Woodford (2003), Erceg and Lindé (2010), Braun and Körber (2011), 
Christiano et al. (2011) and Fernández-Villaverde et al. (2012). In what follows, we highlight the 
similarities and differences between the approaches employed in these papers and the method 
presented in this paper.4 

The first generation of papers used variants of the method proposed by Eggertsson and Woodford 
(2003), in an appendix. This relied on a piecewise linear approximation to the model, with the 
model being driven by a two-state Markov chain with an absorbing state. Once the ZLB is hit, there 
is a positive probability in each period that the discount factor jumps to its long run value, at which 
point the ZLB will never be hit again. Obviously, this is a highly restrictive assumption. A version of 
this algorithm without the restriction has been proposed by Jung et al. (2005), and implemented in 
full generality in Dynare by Guerrieri and Iacoviello (2012). Nonetheless, the algorithm still relies on 
a linear approximation, which the results of Braun et al. (2012) suggest may lead to unreliable 
conclusions in the presence of the ZLB. 

The next generation of papers used nonlinear perfect foresight solvers. These include Coenen et al. 
(2004), Braun and Körber (2011) and  the  “extended  path”  method  of  Adjemian  and  Juillard  (2011). 
These solve the  model’s  nonlinear  equations, under the assumption that eventually (e.g. after 100 
periods) the model is guaranteed to have returned to steady state. Such methods fully capture the 
nonlinearities of the model, but because they solve under perfect foresight, they omit any 
“precautionary  motives”   including   those   that   arise   from   the   risk  of  hitting   the   ZLB.   Furthermore,  
since the model has to have returned to steady state up to machine precision by the final period 
considered, they require a very large number of nonlinear equations to be solved. This means they 
tend to both be prohibitively slow, and unstable, with the algorithm frequently failing to find a 
solution to the equations. 

A third strand of the literature considers global approximations to models containing inequality 
constraints, with Fernández-Villaverde et al. (2012) doing this for a small scale NK model, using the 
Smolyak collocation method of Krueger et al. (2011). Global methods successfully capture both the 
model’s   nonlinearities   and   precautionary   motives;   however,   they   are   subject   to   a   curse   of  

                                                      

4 See the introduction in Braun et al. (2012) for a survey on models including a zero lower bound. An early analysis of 
the zero lower bound in a deterministic model can also be found in Fuhrer and Madigan (1997). 
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dimensionality that renders them infeasible in the medium scale NK models we usually consider. 
While global methods that avoid the curse of dimensionality have been developed by Maliar et al. 
(2011), these rely on an  endogenous  grid  constructed  from  the  model’s  ergodic  set,  which  is  likely  
to lead to low accuracy at the ZLB if this bound is only hit occasionally. 

Our method represents a compromise between the accuracy of global methods, and the speed and 
scalability of linear ones, much like standard high order perturbation approximations. The paper 
that is probably most closely related to our work is Erceg and Lindé (2010), which we were not 
aware of until after the completion of the first version of our algorithm in Holden (2010). The 
authors rely on techniques, explained in an unpublished mimeo of James Hebden, Jesper Lindé and 
Lars Svensson, which, like our algorithm, are based on the idea of adding shocks to the bounded 
variable. Since we have not seen this mimeo, we are unable to relate our work to this algorithm, 
but we are confident that our method is novel in several respects. Firstly, it is designed to take 
advantage of existing algorithms both for simulating DSGE models (e.g. those of Dynare), and 
algorithms for quadratic programming, leading to its high speed. Secondly, it is generalized to 
permit any number of constrained variables. Thirdly, it is extended for use in stochastic simulations, 
permitting us to derive average IRFs, and opening up the possibility of estimating bounded models. 
Finally, it is generalized to perturbation approximations of arbitrary order, which is what enables 
the algorithm to capture precautionary incentives, thus improving on the accuracy of nonlinear 
perfect foresight algorithms. 

2.2. Our basic IRF algorithm with a single bound 

Suppose we have a rational expectations model in the variables 𝑥ଵ,௧, … , 𝑥௡,௧, and we are interested 
in the response to the shock, 𝜖௧.  Initially,  we  will  suppose  further  that  all  of  the  model’s  equations  
are linear, except one that takes the form: 

 𝑥ଵ,௧ = max{0, 𝜇ଵ + 𝜙ିଵ
ᇱ 𝑥௧ିଵ + 𝜙଴

ᇱ 𝑥௧ + 𝜙ଵ
ᇱ𝔼௧𝑥௧ାଵ − (𝜙ିଵ

ᇱ + 𝜙଴
ᇱ + 𝜙ଵ

ᇱ )𝜇}, (2.1) 
   

where 𝑥௧ is the vector ൣ𝑥ଵ,௧,  𝑥ଶ,௧,  … ,  𝑥௡,௧൧
ᇱ
, 𝜇 = ൣ𝜇ଵ,  𝜇ଶ,  … ,  𝜇௡൧

ᇱ
 is  a  vector  stacking  the  variables’  

steady state values and 𝜇ଵ > 0. We can transform any linear model with a bound into this form 
through the addition of appropriate auxiliary variables.5 

Now, a shock that drives 𝑥ଵ,௧ to 0 for some number of periods is like a combination of the original 
shock, and a news shock stating 𝑥ଵ,௧ will be higher than expected for some duration. We call these 
news   shocks   “shadow   price   shocks”   as   in   a   model   with   bounded   assets,   they   represent the 
Lagrange multiplier on the constraint. The key to the simplicity of our algorithm is the fact that in 

                                                      

5 So, if the bounded equation stated that 𝑥௧ = max{𝑥෤௧, 𝑦௧} (where ~ denotes unconstrained variables), with 𝑥௧ > 𝑦௧  in 
steady state, we would add an auxiliary variable defined as 𝑥෤௧ − 𝑦௧, noting that 𝑥௧ = 𝑦௧ + max{0, 𝑥෤௧ − 𝑦௧}. The models 
of Funke and Paetz (2012) and Chen et al. (2012) include variables that are bounded at a positive value, for example. 
When 𝑥௧ = 𝑦௧  in steady state, we instead add the variable 𝑦௧ − 𝑥෤௧, and note that 𝑥௧ = 𝑥෤௧ + max{0, 𝑦௧ − 𝑥෤௧}. If the 
model is in levels, rather than in logs, it may be preferable to define auxiliary variables as ratios rather than differences. 
In this case, rather than adding shadow shocks, we must multiply by their exponentials. 
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linear models, the IRF to a linear combination of shocks is equal to the same linear combination of 
each  shock’s  IRF.6 

Let us start by defining 𝑣௝  to be the column vector containing the relative impulse response of 
variable 𝑥௝  to the shock, ignoring the ZLB. Let 𝑇∗ be the number of periods after which the 
constraint is no longer expected to bind. Note that this will in general be much smaller than the 
time it takes to return to steady state. We assume that the IRF vectors are of length 𝑇, where 
𝑇 ≥ 𝑇∗.  

The first step of our algorithm is to replace equation (2.1) of the model with: 

 𝑥ଵ,௧ = 𝜇ଵ + 𝜙ିଵ
ᇱ 𝑥௧ିଵ + 𝜙଴

ᇱ 𝑥௧ + 𝜙ଵᇱ𝔼௧𝑥௧ାଵ − (𝜙ିଵ
ᇱ + 𝜙଴

ᇱ + 𝜙ଵᇱ )𝜇 + ෍ 𝜖௦,௧ି௦ୗ୔
்∗ିଵ

௦ୀ଴

, (2.2) 

   

where 𝜖௦,௧ୗ୔ is a newly introduced shadow price shock at horizon 𝑠, for 𝑠 = 0,… , 𝑇∗ − 1. Since 𝜖௦,௧ୗ୔ is 
known at 𝑡,  but  does  not  “hit”  until  𝑡 + 𝑠, it will function as a news shock, as required. In an impulse 
response exercise, all news arrives in period 0, so we want to find values for these shadow shocks 
such that 𝜖௦,௧ୗ୔ = 0 except perhaps when 𝑡 = 0. 

In order to exploit the linearity of IRFs in linear models, we also store the impulse responses to 
these new shadow price shocks. In particular, we let 𝑚௝,௦ be a column vector containing the relative 
impulse response of variable 𝑥௝,௧ to the shock 𝜖௦,௧ୗ୔. We then horizontally stack these vectors into the 
matrix 𝑀௝ = ൣ𝑚௝,଴,𝑚௝,ଵ, … ,𝑚௝,்∗ିଵ൧. With this matrix, we can now calculate the impulse responses 
to a simultaneous shock to 𝜖௧ of magnitude 1 and to 𝜖௦,௧ୗ୔ of magnitude 𝛼௦ (for each 𝑠 = 0,… , 𝑇∗ −
1), for an arbitrary 𝛼 = [𝛼଴, 𝛼ଵ, … , 𝛼்∗ିଵ]ᇱ , without any further simulation of the model. In 
particular, the IRF to this combination of shocks for variable 𝑥௝ will be equal to 𝜇௝ + 𝑣௝ + 𝑀௝𝛼. 

Our task then is just to find a value for 𝛼 that is consistent with the model and with rational 
expectations. For the constraint to be satisfied, it certainly has to be the case that 𝜇ଵ + 𝑣ଵ + 𝑀ଵ𝛼 ≥
0்  (where 0்  is a length 𝑇 vector of 0s). Additionally, we require that 𝛼 ≥ 0்∗, as shadow shocks 
must increase the (lower) bounded variable.7 Finally, a complementary slackness type condition 
must hold: the shadow shock at horizon 𝑠 can only be non-zero if the bound binds at that horizon. 

We can express this as: 

 𝛼ᇱ[𝜇∗ + 𝑣∗ + 𝑀∗𝛼] = 0்∗, (2.3) 
   

where 𝜇∗ ≔ 𝜇ଵ1்∗, 𝑣∗ is the first 𝑇∗ elements of 𝑣ଵ and 𝑀∗ is the upper 𝑇∗ × 𝑇∗ sub-matrix of 𝑀ଵ. 
To solve for an 𝛼 that satisfies these constraints, we run the following quadratic programming 
problem: 

                                                      

6 The algorithm presented here was first explained in the appendix of Holden (2010). The various extensions we 
describe were not covered in that paper, however. 
7 We assume throughout that the diagonal of the 𝑀ଵ matrix is strictly positive, so a shadow shock at horizon 𝑠 increases 
the bounded variable at horizon 𝑠. When this does not hold, (as it may not, for example, at long horizons in sufficiently 
rich NK models), the sign with which the shadow shock enter equation (2.2) must be flipped. 



01/10/2012 

Page 6 of 20 

 
𝛼∗ ≔ arg  min

ఈஹ଴೅∗
ఓ∗ା௩∗ାெ∗ఈஹ଴೅∗

൤𝛼ᇱ(𝜇∗ + 𝑣∗) +
1
2
𝛼ᇱ(𝑀∗ + 𝑀∗ᇱ)𝛼൨, 

(2.4) 

   

where the solution is considered admissible if the minimand is 0 at the optimum (i.e. equation (2.3) 
is satisfied).8 Since there are well-established, fast, robust algorithms for quadratic programming, 
this is then a straightforward problem.9 

The standard properties of quadratic programming problems imply that a sufficient condition for 
the existence of a unique solution to (2.4) is that 𝑀∗ +𝑀∗ᇱ is positive definite. In our experience, 
this is satisfied in only the simplest models. When 𝑀∗ +𝑀∗ᇱ is not positive definite, we cannot rule 
out the existence of multiple solutions. In these cases, which solution is returned will depend on the 
precise properties of the quadratic programming algorithm used. However, for most models the 
construction of our problem will lead the algorithm to select the solution in which the components 
of 𝛼 are as small as possible, which will also tend to minimise the amount of time the constraint 
binds. If desired, explicit guarantees on the solution selected may be enforced via homotopy 
methods,10 though this will increase the time cost of our algorithm.  

It is also possible that there will be no admissible solution to (2.4), at least for sufficiently large 
shocks. This   will   happen   if   there   are   “complementarities”   between   constraints:   e.g.   hitting   one  
constraint increases the chance of hitting another constraint and vice versa. Obviously, this is much 
more likely when there are multiple bounds, rather than merely multiple horizons. A necessary 
condition for the existence of an admissible solution to (2.4) for arbitrarily large shocks is that there 
exists some 𝛼 ≥ 0்∗ such that 𝑀∗𝛼 ≥ 1்∗. In simple models the anticipation effects of hitting the 
bound in future are weak, so this condition will be satisfied, but in medium scale models, we will 
generally not be able to provide such a guarantee. 

2.3. Dealing with multiple bounds 

The algorithm previously described may be readily generalised to cases with multiple bounds. 
Suppose that in the set-up above, rather than just 𝑥ଵ,௧ being bounded, each of the variables 
𝑥ଵ,௧, 𝑥ଶ,௧, … , 𝑥௡∗,௧ is bounded, with a corresponding equation taking the form of (2.1). Much as 
before, we add shadow shocks to each of these equations (giving a total of 𝑛∗𝑇∗ extra shocks), and 
we horizontally concatenate the impulse responses of variable 𝑥௝,௧ to each of the shadow shocks in 
the equation for 𝑥௟,௧ into the matrix 𝑀௝,௟. We then define 𝑀௝,௟

∗  to be the upper 𝑇∗ × 𝑇∗ sub-matrix of 
𝑀௝,௟, and 𝑀∗ to be the 𝑛∗𝑇∗ × 𝑛∗𝑇∗ block-matrix with (𝑗, 𝑙)th block 𝑀௝,௟

∗  for 𝑗, 𝑙 ∈ {1, … , 𝑛∗}. Likewise, 
we define 𝜇௟∗ ≔ 𝜇௟1்∗, 𝑣௟∗ to be the first 𝑇∗ elements of 𝑣௟, and 𝜇∗ and 𝑣∗ to be the length 𝑛∗𝑇∗ 
block vectors with 𝑙th block 𝜇௟∗ and 𝑣௟∗, respectively. With these (re-)definitions, an admissible 

                                                      

8 The constraint 𝜇∗ + 𝑣∗ + 𝑀∗𝛼 ≥ 0்∗ may also be replaced with 𝜇ଵ + 𝑣ଵ + 𝑀ଵ𝛼 ≥ 0் to check there are no bound 
violations after 𝑇∗. 
9 In  MATLAB,  these  are  provided  by  the  “quadprog”  command. 
10 To guarantee selecting the equilibrium in which ‖𝛼‖ଶ is minimal, we replace 𝑀∗ + 𝑀∗ᇱ by 𝑀∗ +𝑀∗ᇱ + 𝜆𝐼, where 
𝜆 → 0 is the homotopy parameter. To guarantee selecting the equilibrium in which ‖𝛼‖ଵ is minimal, we replace 𝜇∗ + 𝑣∗ 
by 𝜇∗ + 𝑣∗ + 𝜆1்∗, where 𝜆 → 0 is the homotopy parameter. 
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solution to (2.4) again gives us the required combination of shadow shocks to enforce all bounds, 
and the uniqueness and existence conditions are identical as well. 

2.4. Stochastic simulation 

The algorithm of the previous sections may be readily extended to the stochastic simulation of 
bounded, linear models.11 As before we begin by adding shadow price shocks to the equations 
defining bounded variables. Now suppose we have simulated up to period 𝑡 − 1. In a linear model, 
agents’ expectations at 𝑡 of the state of the economy at 𝑡 + 1, 𝑡 + 2,… are the same as they would 
be were the variance of all shocks equal to 0 from 𝑡 + 1 onwards. This will not be exactly true in a 
model with bounds, since the bounds will tend to increase the means of lower bounded variables. 
However, since (log-)linearisation has already removed any effects of uncertainty on the mean, if 
we solve assuming there are no shocks after period 𝑡, our approximation error is likely to be of the 
same order as that of a (log-)linearised model without constraints,12 at least providing the 
precautionary incentives stemming from the risk of hitting the bound are fairly weak. 

Thus, much as in the IRF case, we first simulate the model to find the path by which it would return 
to the steady-state, in the absence of bounds, and with no shocks arriving after period 𝑡. If the 
constraints are not violated along this path, then our simulated value for period 𝑡 is fine, and we 
may move on to period 𝑡 + 1. Otherwise, shadow shocks must be added. The algorithm for doing 
this is identical to that described above for IRFs, except that the simulated return paths of the 
economy’s variables take the role of 𝜇∗ + 𝑣∗ above. (We again use the 𝑀௝,௟

∗  matrices formed from 
the impulse responses to shadow shocks.) The found solution to the quadratic programming 
problem gives a valid, new value for variables at 𝑡, enabling us to go on to the next period. Note 
that it is now  no  longer  the  case  that  the  “news” contained in shadow shocks is guaranteed to come 
true, since other shocks may arrive in the meantime pushing us away from the bounds. 
Consequently, 𝛼଴ no  longer  represents  the  found  value  of  today’s  shadow  price  shock.  Rather,  it  is  
equal to the cumulated history of shadow price shocks that hit in period 0 (i.e. 𝜖଴,଴ୗ୔ + 𝜖ଵ,ିଵୗ୔ + ⋯+
𝜖்∗ିଵ,ି்∗ାଵ
ୗ୔ ). 

2.5. Average IRFs 

Using our simulation algorithm we can go on to produce average IRFs, i.e. IRFs that give a measure 
of the average response of the model to a one standard deviation shock, rather than a measure of 
the response in steady-state. (The two measures agree in the absence of bounds.) To do this, we 
run a stochastic simulation of the model, and then rerun the same simulation with the same shocks 
in all periods except one, in which we add 1 to the shock of interest. The difference between these 
two simulations gives one sample IRF, and the average of many such sample IRFs gives us our 
average IRF.13 

                                                      

11 The algorithm described here was first publicly described by Tom Holden at http://bit.ly/I0nAHf. 
12 An identical approximation is made in the non-linear case by Adjemian and Juillard (2011). 
13  This is the algorithm used by Dynare for constructing IRFs in non-linear models. See 
http://www.dynare.org/DynareWiki/IrFs. 

http://bit.ly/I0nAHf
http://www.dynare.org/DynareWiki/IrFs
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2.6. Estimating Bounded Models 

Our method for simulating models incorporating a zero lower bound naturally leads to an algorithm 
for particle filter based estimation of them. Indeed, since the observation equations are still linear 
in the state, and the transition equations are near linear, this is likely to be far more efficient than 
particle filter estimation of second order approximations to standard DSGE models (as in 
Fernández-Villaverde and Rubio-Ramírez (2010)). Indeed, since our solution method readily delivers 
last  period’s  expectation  of  today’s shadow price shock, we can write down a close approximation 
to the model for which the transition  equations  are  linear  in  today’s shock. For this approximated 
model, the optimal particle filter “proposal distribution” may be derived analytically, giving us a 
near optimal proposal distribution for the actual model, and enabling us to get high accuracy out of 
a small number of particles. We intend to assess the practical performance of this method in future 
work. 

2.7. Generalisation to approximations of arbitrary order 

The recent work of Braun et al. (2012) brought to light some serious problems with log-linearised 
solutions to models with a ZLB. They illustrate that the log-linearised equilibrium conditions can be 
misleading with respect to the existence and uniqueness of equilibrium, and may lead  to  “wrong”  
dynamics under the ZLB. For example, they show that in a simple NK model with Rotemberg (1996) 
quadratic  price  adjustment  cost,  the  “paradox  of  toil”14 disappears in the fully nonlinear model, at 
least when solved under perfect foresight. The authors pinpoint the resource cost of price 
adjustment, which is zero in a linearised model, as being the key to this discrepancy. The paper 
shows that these costs work as automatic stabilizers that reduce the variation in marginal costs and 
inflation, and decrease the government spending multiplier at the ZLB. 

In fact, even fully nonlinear perfect foresight solutions may be misleading at the ZLB. For example, 
Adjemian and Juillard (2011) evaluate the accuracy of the (fully non-linear perfect foresight) 
extended path approach in a small-scale DSGE model and show that the accuracy drops significantly 
when the ZLB is hit regularly. Furthermore, using global methods, Fernández-Villaverde et al. (2012) 
find that when the interest rate stays at the ZLB for a prolonged time period, the government 
spending multiplier does indeed become large, contrary to the claims of Braun et al. (2012), again 
suggesting that the assumption of perfect foresight may itself be a source of substantial inaccuracy 
in the presence of a ZLB. Our algorithm provides an answer to these worries, as it may be readily 
generalised  to  “pruned” perturbation approximations (Sunghyun Henry Kim et al. 2008) of arbitrary 
order, and these approximations may be so constructed as to capture the precautionary motive 
arising from the risk of hitting the ZLB in future. 

The key to ensuring our algorithm works at higher orders, is that in a 𝑑th order pruned perturbation 
approximation, shocks of the form 𝜖௧ௗ only enter linearly,15 hence, if we use shocks of the form 

൫𝜖௦,௧ୗ୔൯
ௗ

 as shadow shocks, then our algorithm will work much as before, with the expected path 
implied by the pruned perturbation approximation taking the place of the expected path under 
                                                      

14 A fall in employment after a labour tax cut at the ZLB. See Eggertsson and Woodford (2003). 
15 See equation (36) of (Sunghyun Henry Kim et al. 2008). 
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perfect foresight. Using shocks of the highest available order as shadow shocks is also consistent 
with perturbation approximation theory, since with Gaussian shocks the probability of hitting the 
ZLB is 𝜊(𝜎ௗ) for any 𝑑 ∈ ℕ, where 𝜎 is the perturbation parameter controlling the variance of 
shocks. 

To capture the precautionary motive arising from the risk of hitting the ZLB in future we require 𝑑 

to be even, since in that case ൫𝜖௦,௧ୗ୔൯
ௗ

 is positive in expectation.16 This enables us to capture the 
effects   of   the   ZLB   on   each   series’ mean, removing the deficiency in our stochastic simulation 
algorithm previously noted. To do this requires us to first solve a fixed-point problem to ensure that 
the variance of 𝜖௦,௧ୗ୔ used in constructing the perturbation approximation actually agrees with the 
variance that is implied by the simulated mean values of 𝛼. In practice, the fixed-point problem is 
solved by standard numerical optimisation algorithms, at low accuracies since each residual 
evaluation requires the computation of simulated moments. We also found it helpful to treat the 
non-stochastic steady-state inflation target as an additional parameter to be optimised, to hold the 
mean level of inflation constant. 

It is also possible to approximate around the risky steady state, following Juillard (2011), within our 
algorithm.   This   enables   the  model’s   responses   to   reflect   better   the   differences   in   all   equations’  
slope close to the ZLB. 

At sufficiently high (even) orders of perturbation approximation, our algorithm (using either the 
non-stochastic steady state or the risky steady state) must beat any perfect foresight method in 
terms of accuracy, since it captures the effects of uncertainty  on  the  variables’ means. Indeed, we 
show in the next section that even at order 2 our algorithm beats the extended path in standard 
models. Our algorithm is likely to be particularly   useful   for   the   analysis   of   “paradox of toil”-type 
effects, since it enables the analysis of the effects of the ZLB even in second order approximations 
to large models. 

3. Accuracy 

3.1. A borrowing constraints model 

We begin with a very simple model taken from Guerrieri and Iacoviello (2012). 

An  individual’s  income  follows  the  process  log 𝑌௧ = 𝜌 log 𝑌௧ିଵ + 𝜎ඥ1 − 𝜌ଶ𝜀௧, where 𝜀௧~NIID(0,1), 
𝜎 = 0.03 and 𝜌 = 0.9. This income may be used for consumption 𝐶௧ or saving, and it also acts as 
collateral. There is a collateral constrain on total borrowing, 𝐵௧, that states that 𝐵௧ ≤ 𝑀𝑌௧, with 
𝑀 = 2. Consumers maximise the utility function: 

𝑈 = 𝔼௧෍𝛽௦ log 𝐶௧ା௦

ஶ

௦ୀ଴

, 

                                                      

16 Our algorithm will not always generate positive values for ൫𝜖௦,௧ୗ୔൯
ௗ

 as news may not be realised. However, since 𝜖௦,௧ୗ୔ 
only enters into the transition equations when raised to the power of 𝑑, this will not result in complex numbers 
entering into the simulated paths. 
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with 𝛽 = 0.94, subject to the collateral constraint and subject to the budget constraint 𝐶௧ = 𝑌௧ +
𝐵௧ − 𝑅𝐵௧ିଵ, with 𝑅 = 1.05. In normal times, the collateral constraint binds, so in place of the 
standard Euler equation we use the equations: 

𝐴௧ = max ൜0,
1

(1 + 𝑀)𝑌௧ − 𝑅𝐵௧ିଵ
− 𝔼௧

𝛽𝑅
𝐶௧ାଵ

ൠ 

1
𝐶௧

= 𝔼௧
𝛽𝑅
𝐶௧ାଵ

+ 𝐴௧  

where 𝐴௧ is an auxiliary variable. 

 Pr ൬
𝐵௧
𝑌௧

> 1.98൰ 𝔼 log𝐶௧ ඥVar log𝐶௧ Corr(log 𝐶௧ , log 𝑌௧) 
Linear17 100% −0.1054 0.0480 0.75 
Log-linear18 100% −0.1043 0.0475 0.77 
Piecewise linear17 88% −0.1051 0.0426 0.82 
Extended path 89% −𝟎.𝟏𝟎𝟒𝟓 0.0431 0.84 
Our algorithm order 118 88% −0.1040 0.0427 0.85 
Our algorithm order 218 𝟖𝟓% −0.1046 𝟎. 𝟎𝟒𝟐𝟎 𝟎. 𝟖𝟔 
Value function17 79% −0.1045 0.0403 0.86 

Table 1: An accuracy comparison in the simple borrowing constraints model of Guerrieri and Iacoviello 
(2012). 

In Table 1 below we present a comparison of the results of our algorithms with the piecewise linear 
algorithm of Guerrieri and Iacoviello (2012) and the extended path method of Adjemian and Juillard 
(2011). All values except those taken from Guerrieri and Iacoviello (2012) were generated from a 
run of 10000 periods. The shaded cells with bold text show the results coming closest to the value 
function iteration results, and the shaded cells without bold text show the next closest values. Our 
second order algorithm comes closest to the value function iteration results along three out of the 
four metrics considered, and is a runner up in that fourth case. Indeed, for this model, even our first 
order algorithm beats the extended path algorithm in three cases out of four. However, it is only 
really the second order version that can come close to matching the percentage of time in which 
the constraint binds, by virtue of taking into account the incentive to save to avoid it. 

3.2. An NK model 

We now turn to the NK model of Fernández-Villaverde et al. (2012). This is a standard nonlinear NK 
model with sticky prices, labour choice, flexible wages, Taylor rule monetary policy and a stochastic 
share of government spending in output. The equilibrium conditions for this model are given in the 
first appendix, section 7.1, and we calibrate to the same standard values as Fernández-Villaverde et 
al. (2012). 

To assess our accuracy, we treat the solution of Fernández-Villaverde et al. (2012) as  the  “truth”,  
and measure the deviations between their simulated paths19 and the paths generated by our 

                                                      

17 Taken from Guerrieri and Iacoviello (2012). 
18 With 𝑌௧ and 𝐶௧ simulated in logs. 
19 We would like to thank Grey Gordon for providing us with this data. 
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algorithms (with all variables in logs) and the extended path method of Adjemian and Juillard 
(2011). All paths were length 30000 periods. We report the norms of these errors for consumption, 
nominal interest rates and inflation in Tables 2, 3 and 4 respectively. (Cells are formatted as 
before.) 

 1 norm 2 norm ∞ norm 
Log-linear 364.0 1.011 0.03816 
Extended path 311.0 0.7575 0.01792 
Our algorithm order 1 336.7 0.8120 0.03593 
Our algorithm order 2 𝟐𝟕𝟔. 𝟏 𝟎. 𝟔𝟗𝟐𝟒 𝟎. 𝟎𝟏𝟕𝟖𝟎 

Table 2: Norms of the approximation errors in log consumption in the NK model of Fernández-Villaverde 
et al. (2012). 

 1 norm 2 norm ∞ norm 
Capped log-linear20 314.4 0.8344 0.01096 
Extended path 𝟑𝟏𝟏. 𝟔 0.8240 0.01064 
Our algorithm order 1 314.4 0.8344 0.01096 
Our algorithm order 2 313.8 𝟎. 𝟖𝟏𝟒𝟒 𝟎. 𝟎𝟏𝟎𝟓𝟎 

Table 3: Norms of the approximation errors in log gross nominal interest rates in the NK model of 
Fernández-Villaverde et al. (2012). 

 1 norm 2 norm ∞ norm 
Log-linear 217.7 0.6021 0.01576 
Extended path 𝟐𝟎𝟔. 𝟓 𝟎. 𝟓𝟓𝟓𝟓 0.01387 
Our algorithm order 1 212.8 0.5695 0.01381 
Our algorithm order 2 208.2 0.5621 𝟎. 𝟎𝟎𝟗𝟐𝟎𝟑 

Table 4: Norms of the approximation errors in log inflation in the NK model of Fernández-Villaverde et al. 
(2012). 

At second order, our algorithm beats the extended path algorithm for consumption whichever 
norm is used. This is unsurprising since consumption is sensitive to risk. For the nominal interest 
rate, it beats the extended path method with respect to the 2 norm or the ∞ norm, but not with 
respect to the 1 norm. This implies the extended path algorithm is capable of closely following 
interest rates a lot of the time, but occasionally it is a long way off, perhaps because of its 
difficulties in tracking consumption. Finally, for the inflation rate, the extended path method is 
more accurate with respect to all norms except the ∞ norm. It is also only with respect to the ∞ 
norm of the inflation error that our first order algorithm is capable of beating the extended path 
one. 

The evidence then is a little mixed here, with six instances in which our second order algorithm 
wins, and three instances in which the extended path one does. However, whereas the extended 
path algorithm took 7 hours and 25 minutes, ours completed in only 2 hours and 34 minutes on an 
identical  system,  with  the  vast  majority  of  that  time  in  the  “fixed  cost”  stage  of  finding  the  correct  
variance for the shadow shocks. In summary, then, we find that our second order algorithm is both 
marginally more accurate, and significantly faster, and so it seems right to conclude that our second 
order algorithm is the natural choice for NK models. 

                                                      

20 We replace the interest rate generated by the log-linear simulation with the maximum of 0 and the generated value. 
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4. Sample applications 
In order to illustrate the usefulness of the algorithm provided in section 2, we apply it to two 
popular linear DSGE models. The first is the stylised two-country setting of Clarida et al. (2002), 
which we choose in order to show that our method can easily handle multiple constraints. The 
second is the estimated Smets and Wouters (2003) model of the Euro area, which acts as an 
illustration of the speed of our algorithm, even for large models. In future versions of this paper we 
will also analyse second order approximations to these models. 

4.1. The ZLB in the two-country model of Clarida et al. (2002) 

The framework used in the following is a completely symmetric version of the Clarida et al. (2002) 
model with sticky prices in both countries, and perfect risk-sharing. We add domestic and foreign 
preference shocks as exogenous drivers, and introduce a fraction of backward-looking price-setters 
as in Galí and Gertler (1999). The model is described in full in the appendix, section 7.2, along with 
its calibration. This calibration is standard with the exception of the elasticity of intertemporal 
substitution which takes a high value (i.e. a low value for risk aversion) in order to generate strong 
co-movement across countries. As a result, we do not claim that the simulations provide a realistic 
story of the transmission of shocks during the recent (nor any other) financial crises; we provide 
these simulations purely for illustrative reasons. 

In Figure 1, we show the IRFs of the benchmark model, ignoring the ZLB (solid line), and the model 
imposing the ZLB via our algorithm (dashed line), to a negative domestic preference shock of 
magnitude 0.65. We choose  such  a  strong  shock  to  ensure  that  both  countries’  ZLBs  are  hit. 

 

 

 

 

 

Figure 1: Perfect foresight IRFs to a domestic demand shock in the two-country model of Clarida et al. 
(2002). (Dashed line imposes the ZLB, solid line does not.) 21 

 

                                                      

21 Output gaps and inflation are measured in percentage deviations from equilibrium, and interest rates are measured 
in percent. 

3.1 The ZLB in the Two-Countr y Clar ida et al. (2002 ) Model 12

leads to falling in–ation in both countr ies and hence the central banks decrease the
interest rates to boost demand. In the case of a ZLB, the central banks are unab le
to decrease the interest rate strong enough to gener ate a negativ e real interest
rate, and as a consequence the recession becomes much stronger . Obviously, this
also implies stronger downtur ns of both in–ation rates. Interestingly , the contag ion
from the domestic recession on the foreign countr y in this case becomes so strong,
that even the foreign nominal intere st rate hits the ZLB , and the otherwise mild
transmission turns into a strong recession. Producing Figure 1 took roughly a
half second, using a desktop PC with an Intel Core i7 930 CPU with 2.8 GHz,
illustr ating the efficiency of our algor ithm.
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For the average IRFs descr ibed in 2 we set the standard deviations of domestic
and foreign preference shocks to 0 25, run 400 simulations of the model, and added
0 25 to the domest ic preference shock in per iod 101. In Figure 2.3 the results for

= 0 25 and = 0 5 are illustr ated. 18 Obviously , in the case of a ZLB the
average responses to 400 simulations differ substant ially from the responses of
a model ignor ing the bound, which are given by the dashed lines . Since inter est
rates have a lower limit, negativ e shocks have a stronger impact than positiv e ones.
This also implies that the average interest rate response must be higher , when zero
represents the minim um. Consequently , the average responses of in–ation rates
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shoc k in per iod 101 coincides accidentally with any other negativ e disturban ce,
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The fall in domestic demand induces output in both countries to fall. This leads to falling inflation in 
both countries and hence the central banks decrease the interest rates to boost demand. However, 
in the presence of the ZLB, the central banks are unable to decrease the interest rate strongly 
enough to generate a negative real interest rate, and consequently the recession is even more 
severe. This is further amplified by even larger downturns of both inflation rates. Since the foreign 
nominal interest rate hits the ZLB, a strong foreign recession is generated, despite the model’s  
otherwise feeble transmission mechanism. Producing Figure 1 took roughly a half second on a 
standard desktop PC, illustrating just how low is the computation cost of imposing the ZLB. 

In Figure 2 we go on to simulate this model (with the standard deviation of both shocks set equal to 
0.2), for 220 quarters, dropping the first 100, a process that took less than two seconds. The 
shaded areas of the figure show periods when both bounds are hit simultaneously, illustrating that 
recessions become substantially more severe in these situations.  

 

 
 

 
Figure 2: Simulations from the two-country model of Clarida et al. (2002). 

(Dashed line imposes the ZLB, solid line does not.)21 

 
Finally, in Table 5 we show the simulated moments of both the benchmark model (ignoring the 
ZLBs) and the constrained one, evaluated from a sample of 50,000 periods. Using our algorithm this 
took only 7 minutes and 24 seconds, whereas the extended path algorithm took 37 minutes and 19 
seconds to produce identical results, running on the same machine.22 

 

 Home country Foreign country 
 Output Inflation Nom. int. Output Inflation Nom. int. 

Benchmark mean −0.07 −0.01 0.97 0.01 0.00 1.01 
Constrained mean −3.75 −1.17 1.12 −3.55 −1.10 1.14 
Benchmark standard dev. 6.90 1.58 1.33 6.88 1.57 1.31 
Constrained standard dev. 14.80 4.13 1.06 14.54 4.03 1.06 

Table 5: Moments from the two-country model of Clarida et al. (2002). 

                                                      

22 The relative speed of our algorithm becomes even more apparent if we decrease the standard deviations of both 
shocks to 0.1, as then our algorithm needs only 4m36s, while the extended path method still takes 31m52s. 
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Table 5 makes clear the magnitude of the increase in the volatility of both output gaps and inflation 
when we impose the ZLB on interest rates, as well as the large recessionary impact.23 We stress 
again that we do not claim these values to be realistic. Rather, we presented the previous graphs 
and Table 5 to make clear the importance of the ZLB, and underline the tiny cost of imposing it using 
the method proposed in this paper.  

Having shown the workings of the algorithm in a very stylized example, we now turn to a more 
realistic application, using the seminal Smets and Wouters (2003) model of the Euro Area. 

4.2. The ZLB in the Smets and Wouters (2003) model 

Modern macroeconomic models are getting progressively larger, so it is important that our 
algorithm can handle big models, of which the Smets and Wouters (2003) model is the canonical 
example. It also enables us to get a more realistic impression of the importance of the ZLB for the 
analysis of DSGE models. 

We briefly recap the features of the model, but refer the reader to the paper for further details. It 
features sticky prices and wages, capital adjustment costs, variable capital utilisation and habit 
formation in consumption. The stochastic side of the model consists of ten exogenous shocks: six 
persistent shocks (technology, investment, preferences, labor supply, government spending and an 
inflation objective shock), all modelled as standard AR(1) -processes, and four short-run i.i.d. 
shocks (wage mark-ups, price mark-ups, Tobin's Q, and a monetary policy shock). 

Since the original paper uses detrended data for estimation, the inflation target is set to zero. As 
this implies a very low steady state interest rate, we would find ourselves at the ZLB implausibly 
often. Hence, we add a positive annual inflation target of 1.8% to the Taylor rule, implying a 
quarterly steady state interest rate of 1.451%. Since the official target of the ECB is below, but near 
2%, we believe this to be an adequate  representation  of  Europe’s monetary policy. All other model 
parameters are calibrated according to the reported posterior mode in Smets and Wouters 
(2003).24 

Smets and Wouters (2003) find that preference and productivity shocks are the chief drivers of 
fluctuations in nominal interest rates. It makes sense then to look at productivity shocks to 
illustrate how things change when the ZLB is imposed. In Figure 3, we plot the IRF to a large positive 
productivity shock (4.9 times   the   shock’s   estimated   standard   deviation).   Since   natural   output  
increases faster than actual output, this produces a large negative output gap, and the ZLB is hit. 
Hitting the ZLB dampens the response of investment, and so rather than output returning to trend 
within four years (as it would in the absence of the ZLB), instead it takes around eight years for the 
output gap to close. 

 

                                                      

23 Obviously, the assumption of completely symmetric countries implies that the moments of domestic and foreign 
variables should converge to equal values as we increase the number of periods. 
24 The model code is taken from the extensive model database described in Cwik et al. (2012). 



01/10/2012 

Page 15 of 20 

 

 
Figure 3: Impulse response to a large positive productivity shock in the Smets and Wouters (2003) model. 

(Dashed line imposes the ZLB, solid line does not.)25 

 
Obviously a realisation of a shock that is 4.9 times  the  shock’s  standard  deviation  is  not  particularly  
plausible, so one may wonder about the importance of the ZLB within the Smets and Wouters 
(2003) model. To assess this we ran a simulation of length 250,000 periods and noted when the ZLB 
was hit. With our preferred specification for the inflation target (1.8%), the implied probability of 
hitting the ZLB was only 0.01%. With an inflation target of 1.5% this increased to 0.02%, and with 
a target of 1.2% it hit 0.04%. This most likely reflects the absence of a financial accelerator 
mechanism from the Smets and Wouters (2003) model, and the fact that the data on which they 
estimated excluded the recent financial crisis. 

 

 
 

 

 
Figure 4: Simulations from the Smets and Wouters (2003) model. (Dark line does not impose the 

ZLB, others correspond to imposing the ZLB with inflation targets of 1.8%, 1.5% and 1.2%)24 

 
However, although the probability of hitting the ZLB is very low in the Smets and Wouters (2003) 
model, the implications when it is hit can be severe. This is illustrated in Figure 4, which presents 

                                                      

25 The output gap, employment, investment and consumption are measured in percentage deviations from equilibrium, 
the interest rate  and inflation are measured in percent; inflation and the interest rate are annualised. 
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simulated paths for a period of 15 years during which the ZLB was hit. This figure also illustrates the 
increasing effect of the ZLB as the inflation target is decreased. 

The solid black line represents the benchmark scenario, ignoring the bound; the grey lines 
represent scenarios with a ZLB for different inflation targets (the lighter the line, the lower the 
inflation target). For a 1.8% percent inflation target, the ZLB is hit in the 13th quarter, and holds for 
only two periods. In this case, the simulated path is nearly identical to the benchmark one ignoring 
the ZLB. However, the lower the inflation target, the more severe is the fall in prices and aggregate 
activity. For an inflation target of 1.2%, the ZLB binds for one year. During this period, monetary 
policy is unable to prevent a drop in investment, resulting in investment staying below equilibrium 
for eleven and a half years. Moreover, employment stays below its long-term steady state for about 
nine years. The conclusion of this exercise is that with a high enough inflation target, hitting the ZLB 
is incredibly unlikely, and so the expected welfare loss from the bound is minimal. However, once 
the bound is hit, the impact can be very strong and highly persistent, as we are presently seeing in 
reality. 

Finally, the Smets and Wouters (2003) model gives us another opportunity to present our 
algorithm’s   speed   advantage.   With   the   first   two   inflation   targets,   our   algorithm   only   took   10  
minutes and 33 seconds, for 250,000 periods, rising to 22 minutes and 17 seconds with an inflation 
target of 1.2%. By contrast, the extended path algorithm of Adjemian and Juillard (2011) took 3 
hours and 45 minutes just to simulate 50000 periods, after which it crashed. Clearly, only our 
algorithm is viable on models of the scale of Smets and Wouters (2003). 

5. Conclusion 
This paper provides a fast, simple and intuitive method for the simulations of DSGE models with 
inequality  constraints,  based  on  the  introduction  of  “shadow  price  shocks”  which  hit  the  bounded  
variables whenever the constraints are violated. We showed that at second order, the algorithm is 
more accurate than all methods except fully global ones, and we showed that the second order 
algorithm also leads in terms of speed, at least when compared to other algorithms of similar 
accuracy. At first order we illustrated that the speed was even greater, enabling it to be reliably 
used on the largest models around today. 

We believe our algorithm will prove useful to a very wide variety of models including bounded 
variables, and we hope to investigate its application to the estimation of such models in future 
work. 
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7. Online appendices 

7.1. The NK model of Fernández-Villaverde et al. (2012) 

Households choose consumption 𝐶௧ and labour supply 𝐿௧ to maximise their utility, given the wage 
𝑊௧, the rate of inflation Π௧ and the nominal interest rate 𝑅௧. This leads to the FOCs: 

1
𝐶௧

= 𝔼௧
𝛽௧ାଵ𝑅௧
𝐶௧ାଵΠ௧ାଵ

, 𝜓𝐿௧ణ𝐶௧ = 𝑊௧. 

Firms choose prices to maximise profits. This leads them to set a relative price Π௧
∗ satisfying: 

MC௧ =
𝑊௧

𝐴௧
, 𝜀𝑥ଵ,௧ = (𝜀 − 1)𝑥ଶ,௧, 

𝑥ଵ,௧ =
MC௧𝑌௧
𝐶௧

+ 𝜃𝔼௧𝛽௧ାଵΠ௧ାଵ
ఌ 𝑥ଵ,௧ାଵ, 𝑥ଶ,௧ = Π௧

∗ ቆ
𝑌௧
𝐶௧

+ 𝜃𝔼௧𝛽௧ାଵ
Π௧ାଵ
ఌିଵ

Π௧ାଵ
∗ 𝑥ଶ,௧ାଵቇ, 

where 𝐴௧ is productivity, MC௧ is marginal costs and 𝑌௧ is output. 

The central bank follows a standard Taylor rule, with monetary policy shock 𝑀௧, and government 
spending is a stochastic fraction 𝑆௚,௧ of total output: 

𝑅௧ = max ൝1, 𝑅ଵିఘೝ𝑅௧ିଵ
ఘೝ ቈ൬

Π௧

Π
൰
థഏ

൬
𝑌௧
𝑌
൰
థ೤

቉
ଵିఘೝ

𝑀௧ൡ , 𝐺௧ = 𝑆௚,௧𝑌௧. 

Inflation and price dispersion evolve according to: 

1 = 𝜃Π௧
ఌିଵ + (1 − 𝜃)(Π௧

∗)ଵିఌ, 𝜐௧ = 𝜃Π௧
ఌ + (1 − 𝜃)(Π௧

∗)ିఌ. 

Finally, market clearing in goods and labour markets imply: 

𝑌௧ = 𝐶௧ + 𝐺௧, 𝑌௧ =
𝐴௧𝐿௧
𝜐௧

. 

The stochastic processes 𝛽௧, 𝐴௧, 𝑀௧ and 𝑆௚,௧ are all log AR(1). 

7.2. Our modified version of the two-country model of Clarida et al. (2002) 

Let 𝑦෤௧, 𝜋௧ and 𝑖௧ represent the domestic output gap, inflation rate and interest rate respectively, 
and let 𝑦෤௧∗, 𝜋௧∗ and 𝑖௧∗ denote their foreign equivalents. Let 𝜈௧ and 𝜈௧∗ be home and foreign demand 
shocks. When both countries are symmetric, the linearised model is described by the following four 
equations, and another four in which the roles of home and foreign country are swapped: 

𝑦෤௧ = 𝔼௧𝑦෤௧ାଵ − 𝜎଴ିଵ(𝑖௧ − 𝔼௧𝜋௧ାଵ − 𝜅଴𝔼௧Δ𝑦෤௧ାଵ∗ + 𝜅଴(1 − 𝜌ఔ)𝜈௧ − 𝚤)̅, 

𝜋௧ = Φ(𝜃𝛽𝔼௧𝜋௧ାଵ + 𝜏𝜋௧ିଵ) + 𝜆𝑦෤௧, 

𝑖௧ = max൛0, 𝚤̅ + (1 − 𝜙௜)൫𝜙గ𝜋௧ + 𝜙௬𝑦෤௧൯ + 𝜙௜(𝑖௧ିଵ − 𝚤)̅ൟ, 

𝜈௧ = 𝜌ఔ𝜈௧ିଵ + 𝜀௧ఔ. 

These represent the Euler equation, the NK Phillips curve, the Taylor rule and the evolution of the 
exogenous shock, respectively. 
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The parameters used in the equations above are the following functions of the structural 
parameters: 

𝜅଴ =
𝜎 − 1
2

, 𝜎଴ = 𝜎 − 𝜅଴, 𝜅 = 𝜎 − 𝜅଴ + 𝜑, 𝜆 =
(1 − 𝜃)(1 − 𝛽𝜃)

𝜃
𝜅, 𝚤̅ =

1
𝛽

 

Φ =
1

𝜃 + 𝜏൫1 − 𝜃(1 − 𝛽)൯
, 

where 𝜎 ≔ 1
3ൗ  is the inverse elasticity of intertemporal substitution in consumption,26 𝜑 ≔ 1 is 

the inverse Frisch elasticity of labour supply, 𝛽 ≔ 0.99 is the discount factor, 𝜃 ≔ 3
4ൗ  is the 

probability  a  firm’s  price  must  remain  fixed and 𝜏 ≔ 1
10ൗ  is the fraction of backwards looking price 

setters. We also set 𝜙గ ≔ 1.5, 𝜙௬ ≔ 0.125 and 𝜙௜ ≔ 0.8 in the   central   bank’s   reaction   function  
and  the  shocks’  persistence  as  𝜌ఔ ≔ 0.7. 

                                                      

26 The model implicitly assumes a unitary substitution elasticity between domestic and foreign goods. Hence, for values 
of 𝜎 smaller than one, any increase in foreign production is accompanied by an increase in domestic production, since 
the negative effect due to the implied real appreciation is dominated by the fall in the real interest rate stemming from 
an increase in domestic consumer price inflation. With 𝜎 = 1 (i.e. log utility) both effects balance each other out, since 
in that case 𝜅଴ = 0, meaning there is no transmission at all. We could derive similar results for lower substitution 
elasticities and higher values of 𝜎, but we maintain this parameterisation to keep the model close to that of Clarida et 
al. (2002). 


