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Tractable estimation and smoothing of highly non-
linear dynamic state-space models. 

Tom D. Holden1, School of Economics, University of Surrey 
 

Abstract: We present an algorithm for tractably estimating non-linear dynamic 
models, such as DSGE models with occasionally binding constraints, or stochastic 
volatility models. The algorithm presents an extended skew-t, augmented-state, 
version of the Cubature Kalman Filter of Arasaratnam and Haykin (2009) with 
dynamic state space reduction, to give adequate speed, and to ensure that it can handle 
the large state spaces generated, for example, by pruned perturbation solutions to 
medium-scale DSGE models. The use of an extended skew-t approximation to the 
state’s distribution allows the filter to also track the distribution’s third and fourth 
moments. We extend the base algorithm to allow for alternative cubature procedures 
to further improve the tracking of non-linearities. We illustrate that the method can 
solve some of the identification problems that plague linearized DSGE models, and 
show that the method can readily handle the estimation of stochastic volatility models 
with time varying correlation between level and volatility innovations. We go on to 
extend the algorithm to produce smoothed estimates of states, and we use this to 
assess which shocks caused the great recession in the model of Christiano, Motto, and 
Rostagno (2014).  
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1. Introduction 

Traditionally, DSGE models have been linearized prior to solution and estimation.  
Assuming that the driving shocks are normally distributed, the resulting solution is a 
linear-Gaussian state space model that may be estimated without additional 
approximation error via the standard Kalman filter. Thanks to linearity, and the special 
properties of the normal distribution, this is remarkably tractable, and has enabled the 
estimation of rich macroeconomic models, as popularized by Smets and Wouters 
(2003). However, any small departure from linearity or Gaussianity means that 
tracking the distribution of the state without approximation error would require 
keeping track of the full distribution of the state, which is an infinite dimensional 
object. As a result, any non-linear filter will inevitably introduce additional 
approximation error. 

One important departure from linearity is the presence of occasionally binding 
constraints (OBCs). Such constraints are ubiquitous in modern macroeconomic 
models, appearing, variously, in the zero lower bound in nominal interest rates, in the 
irreversibility of investment, and in borrowing and collateral constraints. If they are 
ignored during estimation, the resulting parameters can be severely biased, as lower 
bounded variables will tend to have higher mean in an accurate approximation than 
they do under a first order one. Furthermore, when occasionally binding constraints 
are ignored, there can be failures of identification, as some of the model’s parameters 
may only alter behaviour when at the bound. 

Models with occasionally binding constraints present a variety of difficulties. As 
established by Holden (2016a), they may possess multiple solutions in some states, 
and no solutions at all in others, even when a terminal condition is specified. For 
estimation, this means both that the likelihood may be minus infinity for some 
parameters, and that unless care is taken, the likelihood may be discontinuous in the 
parameters, invalidating standard inference. Holden (2016b) is the only current 
simulation algorithm for models with occasionally binding constraints that is always 
guaranteed to select the same solution in the presence of multiplicity, restoring 
continuity in the parameters, and hence enabling conventional statistical inference in 
models with occasionally binding constraints. Furthermore, Holden (2016b) 
establishes that computing solutions to models with occasionally binding constraints 
is a computationally difficult problem, in a sense which that paper makes precise. 
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Indeed, Holden (2016b) is the first algorithm for simulating such models that is 
guaranteed to complete in finite time. Since almost all non-linear estimation methods 
are based upon repeated simulation, this in turn implies that estimating models with 
occasionally binding constraints is likely to be particularly difficult, and essentially 
impossible in general if the Holden (2016b) simulation algorithm is not used. 

Some progress has recently been made in estimating non-linear DSGE models using 
direct inversion of shocks (see e.g. Holden 2014; Guerrieri and Iacoviello 2015; 
Kollmann 2016), or using relatively standard particle filters (see e.g. Fernández-
Villaverde and Rubio-Ramírez 2007; Fernández-Villaverde, Guerrón-Quintana, and 
Rubio-Ramírez 2015; Gust et al. 2016). The former approach is potentially quite 
computationally intensive in models with many shocks, as it requires the inversion of 
a large system of non-linear equations in each period for each likelihood evaluation. 
Additionally, this system of equations may have multiple solutions, and selecting a 
particular one will give an incorrect value for the likelihood. Finally, the direct 
inversion approach requires that there are no more shocks than observables, which 
precludes the inclusion of econometrically reasonable measurement errors on each 
equation. 

The standard particle filter has the advantage that given an exact simulation 
procedure, it produces an estimate of the likelihood is unbiased (though noisy). This 
has been shown to be sufficient for correct Bayesian inference at least by Andrieu, 
Doucet, and Holenstein (2010). However, this advantage is less compelling for non-
linear DSGE models, since their simulation is impossible without approximation, 
which itself introduces biases into the likelihood. Furthermore, these methods require 
too many simulation-steps to be computationally tractable in the presence of 
occasionally binding constraints, at least on a current desktop machine. In addition, 
one of the chief reasons macroeconomists were led towards Bayesian methods was 
due to the weak identification of many linearized DSGE models. Since using non-
linear filters potentially solves the weak identification issue, we would ideally like to 
be able to return to maximum likelihood estimation, which is less econometrically 
divisive. However, due to the noise in the standard particle filter’s estimate of the 
likelihood, numerically maximising the likelihood is almost impossible in this case. 
While techniques such as the smooth particle filter of Pitt (2002) may remedy this, they 
come at the cost of introducing substantial sampling noise into the final parameter 
estimates. 

An alternative track of the literature has sought to exploit the properties of pruned 
perturbation solutions (Kim et al. 2008) to enable the use of the standard Kalman filter, 
despite the non-linearity, albeit with some additional approximation error. One 
prominent example of this approach is that of Kollmann (2013), who exploits the 
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existence of an augmented state-space in which the pruned perturbation solution is 
linear, though non-Gaussian. Another is that of Meyer-Gohde (2014), who exploits the 
ability to get a closed form first order approximation around the mean of an 
underlying pruned perturbation approximation. However, both of these methods are 
restricted to models which are everywhere differentiable, ruling out occasionally 
binding constraints. 

In this paper, we take an intermediary route between these two extremes, based on 
the cubature Kalman filter of Arasaratnam and Haykin (2009) and the smoother 
extension of it of Arasaratnam and Haykin (2011). Like the standard particle filter 
approach, we will rely on approximating the distribution of the state via simulation at 
a collection of points. Indeed, the approach we take is sometimes referred to as a type 
of particle filter (see e.g. Adjemian et al. 2016). Like the alternative approach though, 
we will maintain a parameteric approximation to the state of the model, and, in the 
presence of OBCs, we use an underlying simulation algorithm from Holden (2016b) 
that exploits the pruned perturbation structure. 

Relative to Arasaratnam and Haykin (2009), our approach expands and improves 
along several lines. Firstly, rather than approximating the distribution of the state by a 
Gaussian, our version approximates the state’s distribution by an extended skew-t 
distribution, which enables us to capture the skewness and kurtosis that is generated 
by non-linear models. 

Secondly, we present a version exploiting an augmented-state representation that 
both reduces the number of sampling procedures required per step from two to one, 
and which enables the use of the filter on models without additive shocks. While Wan 
and Van Der Merwe (2000) presented an augmented version of the related unscented 
Kalman filter for models with non-additive noise, and Li et al. (2009) presented an 
augmented-state version of the cubature Kalman filter for models with additive 
shocks, we present an augmented-state version of the cubature Kalman filter for non-
additive models. 

Thirdly, we present a technique that ensures the dimensionality of both this initial 
state, and subsequent states, are as low as possible, without introducing major 
inaccuracies. Given that pruned perturbation solutions produce very large state 
spaces, this is essential for medium-scale DSGE applications. Fourthly, we give an 
algorithm for the initialization of the state distribution. Fifthly, we introduce a choice 
of alternative cubature methods, which will produce better estimates at some 
additional computational cost. Sixthly, we discuss techniques to ensure consistency. 
Seventhly, we discuss techniques for the numerical maximisation of the likelihood, 
which needs considerable care given the potential multi-modality. Such difficulties in 
numerical maximisation were another key reason why the profession shifted towards 
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Bayesian methods, so addressing them is crucial if we are to argue for using maximum 
likelihood estimates. Finally, we discuss the computation of standard errors, given the 
non-normality of the actual surprise content of observations. 

Our paper is structured as follows. In the following section, we present our 
estimation algorithm, and discuss assorted extensions and econometric issues. In 
section 3, we then test the algorithm’s performance, and illustrate how non-linear 
estimation can address the weak identification of linearized DSGE models. Section 4 
discusses smoothing and provides an application to the Christiano, Motto, and 
Rostagno (2014) model. Section 5 discusses our implementation of these algorithms in 
the author’s DynareOBC add-on for Dynare (Adjemian et al. 2011), which is freely 
available from http://github.org/tholden/dynareOBC. Finally, section 6 concludes. 
All files needed for the replication of this paper’s numerical results are included in the 
“Examples” directory of the aforementioned toolkit.2 

2. Our algorithm for estimating non-linear models 

In this section, we first describe the extended skew t-distribution, of which we will 
make heavy use. We then give the core algorithm, leaving unspecified for the time 
being how the required integrals may be numerically evaluated. We then go on to 
examine alternative methods of performing the required integration. The following 
sub-section discusses the computation of the initial distribution of the state. This is 
followed by material on the practical numerical maximisation of the likelihood, and 
the computation of standard errors. 
2.1. The extended skew t-distribution 

We say that 𝑍𝑍  has the extended skew t-distribution with location 𝜉𝜉 ∈ ℝ𝑛𝑛 , scale-
matrix Ω ∈ ℝ𝑛𝑛×𝑛𝑛 , skew direction 𝛿𝛿 ∈ ℝ𝑛𝑛 , shape parameter 𝜏𝜏 ∈ ℝ  and “degrees of 
freedom” parameter 𝜈𝜈 ∈ ℝ+, and write 𝑍𝑍 ∼ EST(𝜉𝜉, Ω, 𝛿𝛿, 𝜏𝜏, 𝜈𝜈) if the density of 𝑍𝑍 at 𝑧𝑧 ∈
ℝ𝑛𝑛 is given by: 
𝑓𝑓EST𝜉𝜉,Ω,𝛿𝛿,𝜏𝜏,𝜈𝜈

(𝑧𝑧) = 

�Ω��−
1
2𝑓𝑓𝑇𝑇𝜈𝜈,𝑛𝑛

�Ω�−1
2(𝑧𝑧 − 𝜉𝜉)�

1
𝐹𝐹𝑇𝑇𝜈𝜈,1

(𝜏𝜏) 𝐹𝐹𝑇𝑇𝜈𝜈+𝑛𝑛,1 ⎝
⎜⎛𝛿𝛿′Ω�−1(𝑧𝑧 − 𝜉𝜉) + 𝜏𝜏

�1 − 𝛿𝛿′Ω�−1𝛿𝛿
�

𝜈𝜈 + 𝑛𝑛
𝜈𝜈 + (𝑧𝑧 − 𝜉𝜉)′Ω�−1(𝑧𝑧 − 𝜉𝜉)⎠

⎟⎞, 

where: 
Ω� ≔ Ω + 𝛿𝛿𝛿𝛿′, 

𝑓𝑓𝑇𝑇𝜈𝜈,𝑛𝑛
 is the p.d.f. of a standard 𝑛𝑛-dimensional t-distribution, with “degrees of freedom” 

parameter 𝜈𝜈, and where 𝐹𝐹𝑇𝑇𝜈𝜈,𝑛𝑛
 is the c.d.f. of the same distribution. This distribution 

                                                 
2 These files may be viewed online at https://github.com/tholden/dynareOBC/tree/master/Examples.  
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was introduced by Arellano-Valle and Genton (2010) who used a different, though 
equivalent parameterisation.3 

Proposition 2 of Arellano-Valle and Genton (2010) implies4 that if 𝑋𝑋0 ∼ T(0,1, 𝜈𝜈) (i.e. 
𝑋𝑋0 is a draw from a standard t-distribution with degrees of freedom parameter 𝜈𝜈) and  

𝑋𝑋1 ∼ T(0, Ω, 𝜈𝜈 + 1) 
(i.e. 𝑋𝑋1 is a draw from a t-distribution located at 0 with scale matrix Ω and degrees of 
freedom parameter 𝜈𝜈 + 1), with 𝑋𝑋0 and 𝑋𝑋1 independent, and if: 

𝑋𝑋�����0 =𝑑𝑑 𝑋𝑋0�𝑋𝑋0 + 𝜏𝜏 > 0, 
then: 

𝜉𝜉 + 𝑋𝑋1�𝜈𝜈 + 𝑋𝑋�����02

𝜈𝜈 + 1 + 𝛿𝛿𝑋𝑋�����0 =𝑑𝑑 𝑍𝑍 ∼ EST(𝜉𝜉 , Ω, 𝛿𝛿, 𝜏𝜏, 𝜈𝜈). 

Furthermore, by the results of Arellano-Valle and Genton (2010), the first two 
moments of 𝑍𝑍 are given by: 

𝔼𝔼𝑍𝑍 = 𝜉𝜉 + 𝛿𝛿𝛿𝛿𝑋𝑋�����0, 

var 𝑍𝑍 = �
𝜈𝜈 + 𝔼𝔼𝑋𝑋�����02

𝜈𝜈 − 1 � Ω + var 𝑋𝑋�����0 𝛿𝛿𝛿𝛿′, 

where closed form expressions for the moments of 𝑋𝑋�����0 are given in Arellano-Valle and 
Genton (2010). 

We can also calculate a natural multivariate pseudo-median of 𝑍𝑍 , that we shall 
denote by 𝜆𝜆. In particular, if we view 𝑍𝑍 as a function of the two random variables 𝑋𝑋�����0 
and 𝑋𝑋1, then a natural pseudo-median may be obtained by applying the same function 
to the median of 𝑋𝑋�����0  and the median of 𝑋𝑋1 . We take this definition since it will be 
particularly easy to calculate such a pseudo-median of the dynamic model, but we 
must note that potentially there may be other (less natural) representations of 𝑍𝑍  as 
functions of other shocks which might lead to differing pseudo-medians. Given this 
definition, and the fact that 𝑋𝑋1 is elliptically symmetric, and hence median 0 by any 
reasonable definition, we have that 𝜆𝜆 = 𝜉𝜉 + 𝛿𝛿 med 𝑋𝑋�����0  where med  is the standard 
univariate median operator. Consequently, if 𝔼𝔼𝑍𝑍 = 𝜇𝜇 and var 𝑍𝑍 = Σ, then: 

𝛿𝛿 =
𝜇𝜇 − 𝜆𝜆

𝔼𝔼𝑋𝑋�����0 − med 𝑋𝑋�����0
, 

𝜉𝜉 = 𝜇𝜇 − 𝛿𝛿𝛿𝛿𝑋𝑋�����0, 

Ω = ��
𝜈𝜈 − 1

𝜈𝜈 + 𝔼𝔼𝑋𝑋�����02
� �Σ − var 𝑋𝑋�����0 𝛿𝛿𝛿𝛿′��, 

                                                 
3  Writing EST-AVG  for the extended skew-t distribution under their parametrization, here we have that 𝑍𝑍 ∼

EST-AVG
⎝
⎜⎛𝜉𝜉, Ω�, diag�diag Ω��

1
2Ω�−1𝛿𝛿

�1−𝛿𝛿′Ω�−1𝛿𝛿
, 𝜈𝜈, 𝜏𝜏

�1−𝛿𝛿′Ω�−1𝛿𝛿⎠
⎟⎞, where the diag operator maps matrices to a vector containing their diagonal, and 

vectors to a diagonal matrix with the vector on the diagonal. 
4 Note that this proposition contains a typo in the published version of the paper. As may be clearly seen from the proof, the bar 
over the 𝜏𝜏 at the very end of the proposition’s statement should not be there.  
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where throughout this paper, ⟦𝐴𝐴⟧  will denote the nearest symmetric positive semi-
definite matrix to 𝐴𝐴 , under the Frobenius norm,5  plus the smallest multiple of the 
identity matrix needed to make ⟦𝐴𝐴⟧  pass a standard numerical test for positive 
definiteness6. This enables us to choose 𝜉𝜉 , 𝛿𝛿 and Ω to fit the desired location, mean 
and covariance, given 𝜈𝜈 and 𝜏𝜏. To calibrate 𝜈𝜈 and 𝜏𝜏, note that if we define: 

𝑍̌𝑍 ≔
�𝜇𝜇 − 𝜆𝜆�′�𝑍𝑍 − 𝜇𝜇�

��𝜇𝜇 − 𝜆𝜆�′Σ�𝜇𝜇 − 𝜆𝜆�
=

𝛿𝛿′�𝑍𝑍 − 𝜇𝜇�
�𝛿𝛿′Σ𝛿𝛿

∈ ℝ 

then by Proposition 5 and Proposition 6 of Arellano-Valle and Genton (2010): 
𝔼𝔼𝑍̌𝑍 = 0, 𝔼𝔼𝑍̌𝑍2 = 1, 

𝔼𝔼𝑍̌𝑍3 =
𝛿𝛿′Ω�𝛿𝛿
𝛿𝛿′Σ𝛿𝛿

�𝛿𝛿′Ω�𝛿𝛿
𝛿𝛿′Σ𝛿𝛿 ⎣

⎢⎡𝜔𝜔3 − 3𝜔𝜔2
𝛿𝛿′𝛿𝛿

�𝛿𝛿′Ω�𝛿𝛿
𝔼𝔼𝑋𝑋�����0 + 3𝜔𝜔1

(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
�𝔼𝔼𝑋𝑋�����0�2 −

(𝛿𝛿′𝛿𝛿)3

𝛿𝛿′Ω�𝛿𝛿�𝛿𝛿′Ω�𝛿𝛿
�𝔼𝔼𝑋𝑋�����0�3

⎦
⎥⎤, 

𝔼𝔼𝑍̌𝑍4 =
𝛿𝛿′Ω�𝛿𝛿
𝛿𝛿′Σ𝛿𝛿

𝛿𝛿′Ω�𝛿𝛿
𝛿𝛿′Σ𝛿𝛿 ⎣

⎢⎡𝜔𝜔4 − 4𝜔𝜔3
𝛿𝛿′𝛿𝛿

�𝛿𝛿′Ω�𝛿𝛿
𝔼𝔼𝑋𝑋�����0 + 6𝜔𝜔2

(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
�𝔼𝔼𝑋𝑋�����0�2

− 4𝜔𝜔1
(𝛿𝛿′𝛿𝛿)3

𝛿𝛿′Ω�𝛿𝛿�𝛿𝛿′Ω�𝛿𝛿
�𝔼𝔼𝑋𝑋�����0�3 +

(𝛿𝛿′𝛿𝛿)4

�𝛿𝛿′Ω�𝛿𝛿�2 �𝔼𝔼𝑋𝑋�����0�4

⎦
⎥⎤, 

where: 

𝜔𝜔1 =
𝛿𝛿′𝛿𝛿

�𝛿𝛿′Ω�𝛿𝛿
𝔼𝔼𝑋𝑋�����0 

𝜔𝜔2 =
𝛿𝛿′Σ𝛿𝛿
𝛿𝛿′Ω�𝛿𝛿

+
(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
�𝔼𝔼𝑋𝑋�����0�2 = �1 −

(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
� �

𝜈𝜈 + 𝔼𝔼𝑋𝑋�����02

𝜈𝜈 − 1 � +
(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
𝔼𝔼𝑋𝑋�����02 

𝜔𝜔3 =
3𝜈𝜈

𝜈𝜈 − 1
𝛿𝛿′𝛿𝛿

�𝛿𝛿′Ω�𝛿𝛿
�1 −

(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
� �𝔼𝔼𝑋𝑋�����0 +

1
𝜈𝜈 𝔼𝔼𝑋𝑋�����03� +

(𝛿𝛿′𝛿𝛿)3

𝛿𝛿′Ω�𝛿𝛿�𝛿𝛿′Ω�𝛿𝛿
𝔼𝔼𝑋𝑋�����03 

𝜔𝜔4 =
3𝜈𝜈2

(𝜈𝜈 − 1)(𝜈𝜈 − 3) �1 −
(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
�

2

�1 +
2
𝜈𝜈 𝔼𝔼𝑋𝑋�����02 +

1
𝜈𝜈2 𝔼𝔼𝑋𝑋�����04�

+
6𝜈𝜈

𝜈𝜈 − 1
(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
�1 −

(𝛿𝛿′𝛿𝛿)2

𝛿𝛿′Ω�𝛿𝛿
� �𝔼𝔼𝑋𝑋�����02 +

1
𝜈𝜈 𝔼𝔼𝑋𝑋�����04� +

(𝛿𝛿′𝛿𝛿)4

�𝛿𝛿′Ω�𝛿𝛿�2 𝔼𝔼𝑋𝑋�����04 

By numerically inverting the equations for 𝔼𝔼𝑍̌𝑍3 and 𝔼𝔼𝑍̌𝑍4, we can choose 𝜏𝜏 and 𝜈𝜈 to hit 
any desired skewness and kurtosis for 𝑍̌𝑍, prior to calculating 𝜉𝜉 , 𝛿𝛿 and Ω. 
2.2. Core algorithm 

The solution to a general non-linear DSGE model, or other non-linear state space 
model, may always be written in the following form for all 𝑡𝑡 ∈ ℕ+: 

𝑧𝑧𝑡𝑡 ≔
⎣
⎢⎡

𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡
𝜀𝜀𝑡𝑡⎦

⎥⎤ = 𝑔𝑔𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜀𝜀𝑡𝑡), 

where 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛𝑥𝑥, 𝑔𝑔𝑡𝑡: ℝ𝑛𝑛𝑥𝑥×ℝ𝑛𝑛𝜀𝜀 → ℝ𝑛𝑛𝑥𝑥+𝑛𝑛𝑦𝑦+𝑛𝑛𝜀𝜀, and 𝜀𝜀𝑡𝑡 ∼ NIID�0𝑛𝑛𝜀𝜀
, 𝐼𝐼𝑛𝑛𝜀𝜀×𝑛𝑛𝜀𝜀

�. The restriction 
to normal shocks is without loss of generality, since if 𝜀𝜀 ∼ N(0,1) , we can generate 

                                                 
5 Computed using the algorithm of Higham (1988). 
6 If ⟦𝐴𝐴⟧ is large enough, the Cholesky decomposition of ⟦𝐴𝐴⟧ should complete successfully. 
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shocks from a distribution with cumulative distribution function 𝐻𝐻  by evaluating 
𝐻𝐻−1�Φ(𝜀𝜀)�, where Φ is the cumulative distribution function of the standard normal. 
Given that the shocks may enter non-linearly, such an expression may be incorporated 
into our 𝑔𝑔. 

We force 𝑔𝑔 to “pass-through” 𝜀𝜀𝑡𝑡 to its output to simplify notation in the below. We 
also allow 𝑔𝑔  to return some of the model’s control variables in 𝑦𝑦𝑡𝑡 , as often it is 
impossible (or at least inconvenient) to substitute control variables out of a model’s 
equations. Furthermore, 𝑦𝑦𝑡𝑡  may be of independent interest, or may feature in 
observation equations. 

We suppose that rather than observing 𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡 and/or 𝜀𝜀𝑡𝑡, for all 𝑡𝑡 ∈ ℕ+, we instead 
observe: 

𝑚𝑚𝑡𝑡 = ℎ𝑡𝑡(𝑧𝑧𝑡𝑡) + 𝜁𝜁𝑡𝑡, 
where 𝑚𝑚𝑡𝑡 ∈ ℝ𝑛𝑛𝑚𝑚,𝑡𝑡, ℎ𝑡𝑡: ℝ𝑛𝑛𝑥𝑥+𝑛𝑛𝑦𝑦+𝑛𝑛𝜀𝜀 → 𝑛𝑛𝑚𝑚,𝑡𝑡 and 𝜁𝜁𝑡𝑡 ∼ NIID�0𝑛𝑛𝑚𝑚

, Λ𝑡𝑡�, where Λ𝑡𝑡 ∈ ℝ𝑛𝑛𝑚𝑚,𝑡𝑡×𝑛𝑛𝑚𝑚,𝑡𝑡 
is diagonal and full rank. Restricting ourselves to additive, uncorrelated, Gaussian 
measurement error is again without loss of generality, as richer measurement error 
processes can be directly incorporated into 𝑧𝑧𝑡𝑡. It is important that we do always allow 
for some additional measurement error though, since our state space dimension 
reduction procedure may possibly induce stochastic singularity even in models with 
as many shocks as observables, if some shocks make a small enough contribution. 

Now, suppose that we believe that: 
𝑥𝑥𝑡𝑡−1�ℱ𝑡𝑡−1 ∼ EST�𝑥𝑥𝑡̂𝑡−1|𝑡𝑡−1, 𝑃𝑃𝑡𝑡−1|𝑡𝑡−1

∗ , 𝛿𝛿𝑡𝑡−1|𝑡𝑡−1
∗ , 𝜏𝜏𝑡𝑡−1|𝑡𝑡−1, 𝜈𝜈𝑡𝑡−1|𝑡𝑡−1�, 

where 𝑃𝑃𝑡𝑡−1|𝑡𝑡−1
∗ ≔ 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1

∗ 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1
∗′ , ℱ𝑡𝑡−1 ≔ {𝑚𝑚1, … , 𝑚𝑚𝑡𝑡−1} is the period 𝑡𝑡 − 1 information 

set, and where 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1
∗  is not necessarily square. As in the standard Kalman filter, we 

wish to calculate the approximate distribution of 𝑥𝑥𝑡𝑡�ℱ𝑡𝑡, i.e. 𝑥𝑥𝑡𝑡��𝑚𝑚𝑡𝑡, ℱ𝑡𝑡−1�, for which it 
suffices to have an extended skew t-distribution approximation to �

𝑥𝑥𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1 . 

However, rather than splitting the calculation up into separate integrations for the 
predict and update step, as in both the cubature Kalman filter of Arasaratnam and 
Haykin (2009) and an older version of this paper (Holden 2016c),  we combine both 
steps as in the augmented extended Kalman filter of Wan and Van Der Merwe (2000). 
Let 𝑁𝑁0, 𝑁𝑁10 ∈ ℝ  be draws from N(0,1)  and 𝑁𝑁11 ∈ ℝ𝑘𝑘𝑡𝑡−1|𝑡𝑡−1  be a draw from 
N�0𝑘𝑘𝑡𝑡−1|𝑡𝑡−1

∗ , 𝐼𝐼𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
∗ � , where 𝑘𝑘𝑡𝑡−1|𝑡𝑡−1

∗ ≔ cols 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1
∗  , then note that by standard 

properties of the multivariate t-distribution, and the results of the previous section, 
the distribution of 𝑥𝑥𝑡𝑡−1�ℱ𝑡𝑡−1 is equal to that of: 

𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁) ≔ 𝑥𝑥𝑡̂𝑡−1|𝑡𝑡−1 + 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1
∗ 𝑁𝑁11𝐹𝐹

�
𝜈𝜈+1

𝜒𝜒𝜈𝜈+1
2

−1 �Φ1(𝑁𝑁10)�
⎷
��
�

𝜈𝜈 + 𝐹𝐹𝐸𝐸𝜏𝜏,𝜈𝜈
−1 �Φ1(𝑁𝑁0)�2

𝜈𝜈 + 1

+ 𝛿𝛿𝑡𝑡−1|𝑡𝑡−1
∗ 𝐹𝐹𝐸𝐸𝜏𝜏,𝜈𝜈

−1 �Φ1(𝑁𝑁0)�, 
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where 𝜏𝜏 = 𝜏𝜏𝑡𝑡−1|𝑡𝑡−1 , 𝜈𝜈 = 𝜈𝜈𝑡𝑡−1|𝑡𝑡−1 , 𝑁𝑁 ≔
⎣
⎢
⎡

𝑁𝑁0
𝑁𝑁10
𝑁𝑁11⎦

⎥
⎤ , Φ1  is the c.d.f. of a standard univariate 

normal, 𝐹𝐹
�

𝜈𝜈+1
𝜒𝜒𝜈𝜈+1

2

  is the c.d.f. of �𝜈𝜈+1
𝒬𝒬   where 𝒬𝒬 ∼ 𝜒𝜒𝜈𝜈+1

2  , 7  and 𝐹𝐹𝐸𝐸𝜏𝜏,𝜈𝜈
  is the c.d.f. of 

EST(0,0,1, 𝜏𝜏, 𝜈𝜈) i.e. the c.d.f. of 𝑋𝑋�����0 in the notation of the previous section. Hence, if we 
define 𝑤𝑤𝑡𝑡 ≔ �

𝑧𝑧𝑡𝑡
𝜁𝜁𝑡𝑡

�: 

𝔼𝔼 ��
𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1� =
�
⎮⎮⎮
�

⎣
⎢⎢
⎡ 𝑔𝑔𝑡𝑡�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁), 𝜀𝜀�

0
ℎ𝑡𝑡�𝑔𝑔�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁), 𝜀𝜀��⎦

⎥⎥
⎤

𝜙𝜙2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
∗ +𝑛𝑛𝜀𝜀

��𝑁𝑁
𝜀𝜀 �� 𝑑𝑑 �𝑁𝑁

𝜀𝜀 �

ℝ�2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
∗ +𝑛𝑛𝜀𝜀�

, 

var ��
𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1� 

=
�
��
��
�

� 𝑎𝑎𝑡𝑡|𝑡𝑡−1(𝑁𝑁, 𝜀𝜀)𝑎𝑎𝑡𝑡|𝑡𝑡−1(𝑁𝑁, 𝜀𝜀)′𝜙𝜙2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
∗ +𝑛𝑛𝜀𝜀

��𝑁𝑁
𝜀𝜀 �� 𝑑𝑑 �𝑁𝑁

𝜀𝜀 �

ℝ�2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
∗ +𝑛𝑛𝜀𝜀� �

��
��
�

+
⎣
⎢⎡

0 0 0
0 Λ𝑡𝑡 Λ𝑡𝑡
0 Λ𝑡𝑡 Λ𝑡𝑡⎦

⎥⎤, 

where: 

𝑎𝑎𝑡𝑡|𝑡𝑡−1(𝑁𝑁, 𝜀𝜀) ≔
⎣
⎢⎢
⎡ 𝑔𝑔𝑡𝑡�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁), 𝜀𝜀�

0
ℎ𝑡𝑡�𝑔𝑔�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁), 𝜀𝜀��⎦

⎥⎥
⎤

− 𝔼𝔼 ��
𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1�, 

and where 𝜙𝜙𝑘𝑘: ℝ𝑘𝑘 → ℝ+  is the probability density function of a standard 𝑘𝑘 -
dimensional normal variable. Thus, to derive a Gaussian approximation to the 
distribution of �

𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1 , we just need to evaluate a pair of 2 + 𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
∗ + 𝑛𝑛𝜀𝜀 -

dimensional standard Gaussian integrals, for the expectation and variance above. The 
co-variance term is not needed for filtering, but will be needed for smoothing, so we 
note its formula here. Of course, we in fact want an extended skew t approximation to 
�

𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1 . The obvious choice for the pseudo-median (𝜆𝜆  in the notation of the 

previous section) is 
⎣
⎢⎢
⎡ 𝑔𝑔𝑡𝑡�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(0), 0�

0
ℎ𝑡𝑡�𝑔𝑔�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(0), 0��⎦

⎥⎥
⎤

, since 𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(0) is the pseudo-median of 

𝑥𝑥𝑡𝑡−1�ℱ𝑡𝑡−1. From this, we can then calculate the quantity we called 𝑍̌𝑍 in the previous 
section, and so we can represent the third and fourth moments of “𝑍̌𝑍” also as Gaussian 
integrals with respect to 𝑁𝑁 and 𝜀𝜀. 

Methods for approximately evaluating these integrals will be discussed in the 
following section, but we observe here that any integration rule will take the form of 
a weighted sum over a set of sample points. Hence, the necessary integrals may be 

                                                 
7 Hence: 𝐹𝐹

� 𝜈𝜈+1
𝜒𝜒𝜈𝜈+1

2
�𝑑𝑑� = Γ�𝜈𝜈+1

2 ,𝜈𝜈+1
2𝑑𝑑2�

Γ�𝜈𝜈+1
2 �

, where Γ(𝑎𝑎, 𝑧𝑧) = ∫ 𝑒𝑒−𝑡𝑡𝑡𝑡𝑎𝑎−1 𝑑𝑑𝑡𝑡∞
𝑧𝑧 . 
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evaluated simultaneously by first evaluating 
⎣
⎢⎢
⎡ 𝑔𝑔𝑡𝑡�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁), 𝜀𝜀�

0
ℎ𝑡𝑡�𝑔𝑔�𝑥𝑥𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁), 𝜀𝜀��⎦

⎥⎥
⎤

  at the sample 

points, then using the integration rule to calculate the approximation to 

𝔼𝔼 ��
𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1� , which then enables us to calculate 𝑎𝑎𝑡𝑡|𝑡𝑡−1(𝑁𝑁, 𝜀𝜀)  without further 

evaluations of 𝑔𝑔  or ℎ . Providing that the sample points include the zero point, we 
obtain the pseudo-median “for free”, and using this we can calculate the value of “𝑍̌𝑍” 
at the sample points as well. As detailed in the previous section, we can then derive 
an approximation to the distribution of �

𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� �ℱ𝑡𝑡−1  that matches the approximate 

mean, covariance and pseudo-median, along with the skewness and kurtosis of the 
projection onto the line through the mean and pseudo-median. I.e., we can find 

𝑤𝑤�𝑡𝑡|𝑡𝑡−1 = �
𝑧𝑧𝑡̂𝑡|𝑡𝑡−1
0𝑛𝑛𝑚𝑚,𝑡𝑡

� =

⎣
⎢⎢
⎢⎢
⎡

𝑥𝑥𝑡̂𝑡|𝑡𝑡−1
𝑦𝑦𝑡̂𝑡|𝑡𝑡−1
0𝑛𝑛𝜀𝜀

0𝑛𝑛𝑚𝑚,𝑡𝑡 ⎦
⎥⎥
⎥⎥
⎤

, 𝑚𝑚�𝑡𝑡|𝑡𝑡−1, 𝑃𝑃𝑡𝑡|𝑡𝑡−1, 𝑄𝑄𝑡𝑡|𝑡𝑡−1, 𝑅𝑅𝑡𝑡|𝑡𝑡−1, 𝛿𝛿𝑡𝑡|𝑡𝑡−1, 𝜂𝜂𝑡𝑡|𝑡𝑡−1, 𝜏𝜏𝑡𝑡|𝑡𝑡−1 and 𝜈𝜈𝑡𝑡|𝑡𝑡−1 such 

that: 

�
𝑤𝑤𝑡𝑡
𝑚𝑚𝑡𝑡

� |ℱ𝑡𝑡−1 ∼approx EST ��
𝑤𝑤�𝑡𝑡|𝑡𝑡−1
𝑚𝑚�𝑡𝑡|𝑡𝑡−1

� , �
𝑃𝑃𝑡𝑡|𝑡𝑡−1 𝑅𝑅𝑡𝑡|𝑡𝑡−1
𝑅𝑅𝑡𝑡|𝑡𝑡−1

′ 𝑄𝑄𝑡𝑡|𝑡𝑡−1
� , �𝛿𝛿𝑡𝑡|𝑡𝑡−1

𝜂𝜂𝑡𝑡|𝑡𝑡−1
� , 𝜏𝜏𝑡𝑡|𝑡𝑡−1, 𝜈𝜈𝑡𝑡|𝑡𝑡−1�, 

where ∼approx is shorthand for “is approximately distributed as”. To ensure that scale 
parameters have standard asymptotics, we always impose that 𝜈𝜈𝑡𝑡|𝑡𝑡−1 > 4 . Note that 
although 𝜀𝜀𝑡𝑡  and 𝜁𝜁𝑡𝑡  are actually normally distributed, their thin tails will not push 
upwards our estimates of 𝜈𝜈𝑡𝑡|𝑡𝑡−1. This is because the median of 𝜀𝜀𝑡𝑡 and 𝜁𝜁𝑡𝑡 are equal to 
their mean, so, by construction, “𝑍̌𝑍” will be independent of them. This is desirable, as 
we are really only interested in the tails of 𝑥𝑥𝑡𝑡 and 𝑚𝑚𝑡𝑡. We also note that if we let 𝑃𝑃𝑡𝑡|𝑡𝑡−1

∗ ≔
𝑃𝑃𝑡𝑡|𝑡𝑡−1,11 be the upper left 𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 block of 𝑃𝑃𝑡𝑡|𝑡𝑡−1 and 𝑥𝑥𝑡̂𝑡|𝑡𝑡−1 ≔ 𝑤𝑤�𝑡𝑡|𝑡𝑡−1,1 & 𝛿𝛿𝑡𝑡|𝑡𝑡−1

∗ ≔ 𝛿𝛿𝑡𝑡|𝑡𝑡−1,1 be 
the top 𝑛𝑛𝑥𝑥 rows of 𝑤𝑤�𝑡𝑡|𝑡𝑡−1 & 𝛿𝛿𝑡𝑡|𝑡𝑡−1, respectively, then by Proposition 3 of Arellano-Valle 
and Genton (2010): 

𝑥𝑥𝑡𝑡|ℱ𝑡𝑡−1 ∼approx EST�𝑥𝑥𝑡̂𝑡|𝑡𝑡−1, 𝑃𝑃𝑡𝑡|𝑡𝑡−1
∗ , 𝛿𝛿𝑡𝑡|𝑡𝑡−1

∗ , 𝜏𝜏𝑡𝑡|𝑡𝑡−1, 𝜈𝜈𝑡𝑡|𝑡𝑡−1�. 
While the extended skew t approximation will not be exact, in practice it will often 
beat particle approximations unless implausibly large numbers of particles are used. 
We note one caveat to this procedure though. If a low order cubature method is used, 
then it will be impossible to arrive at a reliable estimate of 𝜈𝜈𝑡𝑡|𝑡𝑡−1, since this requires 
fourth moments. In this case, we suggest that the modeller assume that for all 𝑡𝑡 , 
𝜈𝜈𝑡𝑡|𝑡𝑡−1 = 𝜈𝜈 ,̅ where 𝜈𝜈  ̅is an additional free parameter to be estimated by the modeller. The 
estimation of this additional non-structural parameter potentially reduces efficiency, 
but this cost may be worthwhile if the resulting improved approximation to the 
likelihood sufficiently reduces bias. 
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We want to know the distribution of 𝑤𝑤𝑡𝑡�ℱ𝑡𝑡, but by the definition of ℱ𝑡𝑡, this is just 
equal to the distribution of 𝑤𝑤𝑡𝑡��𝑚𝑚𝑡𝑡, ℱ𝑡𝑡−1�. Hence, by Proposition 4 of Arellano-Valle 
and Genton (2010): 

𝑤𝑤𝑡𝑡|ℱ𝑡𝑡 ∼approx EST�𝑤𝑤�𝑡𝑡|𝑡𝑡, 𝑃𝑃𝑡𝑡|𝑡𝑡, 𝛿𝛿𝑡𝑡|𝑡𝑡, 𝜏𝜏𝑡𝑡|𝑡𝑡, 𝜈𝜈𝑡𝑡|𝑡𝑡�, 
where: 

𝑤𝑤�𝑡𝑡|𝑡𝑡 ≔ 𝑅̌𝑅𝑡𝑡|𝑡𝑡−1𝑄̌𝑄𝑡𝑡|𝑡𝑡−1
−1 �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�, 

𝑃𝑃𝑡𝑡|𝑡𝑡 ≔
𝜈𝜈𝑡𝑡|𝑡𝑡−1 + �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�′𝑄̌𝑄𝑡𝑡|𝑡𝑡−1

−1 �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�
𝜈𝜈𝑡𝑡|𝑡𝑡−1 + 𝑛𝑛𝑚𝑚,𝑡𝑡 �

��
�

𝑃̃𝑃𝑡𝑡|𝑡𝑡−1 −
𝛿𝛿𝑡̃𝑡|𝑡𝑡−1𝛿𝛿𝑡̃𝑡|𝑡𝑡−1

′

1 − 𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ 𝑄̌𝑄𝑡𝑡|𝑡𝑡−1

−1 𝜂𝜂𝑡𝑡|𝑡𝑡−1�
��
�

, 

𝛿𝛿𝑡𝑡|𝑡𝑡 ≔
⎷
��
�

𝜈𝜈𝑡𝑡|𝑡𝑡−1 + �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�′𝑄̌𝑄𝑡𝑡|𝑡𝑡−1
−1 �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�

�𝜈𝜈𝑡𝑡|𝑡𝑡−1 + 𝑛𝑛𝑚𝑚,𝑡𝑡��1 − 𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ 𝑄̌𝑄𝑡𝑡|𝑡𝑡−1

−1 𝜂𝜂𝑡𝑡|𝑡𝑡−1�
𝛿𝛿𝑡̃𝑡|𝑡𝑡−1, 

𝜏𝜏𝑡𝑡|𝑡𝑡 ≔ �
𝜈𝜈𝑡𝑡|𝑡𝑡−1 + 𝑛𝑛𝑚𝑚,𝑡𝑡

𝜈𝜈𝑡𝑡|𝑡𝑡−1 + �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�′𝑄̌𝑄𝑡𝑡|𝑡𝑡−1
−1 �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1�

𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ 𝑄̌𝑄𝑡𝑡|𝑡𝑡−1

−1 �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1� + 𝜏𝜏𝑡𝑡|𝑡𝑡−1

�1 − 𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ 𝑄̌𝑄𝑡𝑡|𝑡𝑡−1

−1 𝜂𝜂𝑡𝑡|𝑡𝑡−1

, 

𝜈𝜈𝑡𝑡|𝑡𝑡 ≔ 𝜈𝜈𝑡𝑡|𝑡𝑡−1 + 𝑛𝑛𝑚𝑚,𝑡𝑡, 

and: 
𝑃̃𝑃𝑡𝑡|𝑡𝑡−1 ≔ 𝑃̌𝑃𝑡𝑡|𝑡𝑡−1 − 𝑅̌𝑅𝑡𝑡|𝑡𝑡−1𝑄̌𝑄𝑡𝑡|𝑡𝑡−1

−1 𝑅̌𝑅𝑡𝑡|𝑡𝑡−1
′ , 

𝛿𝛿𝑡̃𝑡|𝑡𝑡−1 ≔ 𝛿𝛿𝑡𝑡|𝑡𝑡−1 − 𝑅̌𝑅𝑡𝑡|𝑡𝑡−1𝑄̌𝑄𝑡𝑡|𝑡𝑡−1
−1 𝜂𝜂𝑡𝑡|𝑡𝑡−1, 

𝑃̌𝑃𝑡𝑡|𝑡𝑡−1 ≔ 𝑃𝑃𝑡𝑡|𝑡𝑡−1 + 𝛿𝛿𝑡𝑡|𝑡𝑡−1𝛿𝛿𝑡𝑡|𝑡𝑡−1
′ , 

𝑅̌𝑅𝑡𝑡|𝑡𝑡−1 ≔ 𝑅𝑅𝑡𝑡|𝑡𝑡−1 + 𝛿𝛿𝑡𝑡|𝑡𝑡−1𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ , 

𝑄̌𝑄𝑡𝑡|𝑡𝑡−1 ≔ 𝑄𝑄𝑡𝑡|𝑡𝑡−1 + 𝜂𝜂𝑡𝑡|𝑡𝑡−1𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ , 

so: 

𝑄̌𝑄𝑡𝑡|𝑡𝑡−1
−1 = �𝑄𝑄𝑡𝑡|𝑡𝑡−1 + 𝜂𝜂𝑡𝑡|𝑡𝑡−1𝜂𝜂𝑡𝑡|𝑡𝑡−1

′ �−1 = 𝑄𝑄𝑡𝑡|𝑡𝑡−1
−1 +

𝑄𝑄𝑡𝑡|𝑡𝑡−1
−1 𝜂𝜂𝑡𝑡|𝑡𝑡−1𝜂𝜂𝑡𝑡|𝑡𝑡−1

′ 𝑄𝑄𝑡𝑡|𝑡𝑡−1
−1

1 − 𝜂𝜂𝑡𝑡|𝑡𝑡−1
′ 𝑄𝑄𝑡𝑡|𝑡𝑡−1

−1 𝜂𝜂𝑡𝑡|𝑡𝑡−1
. 8 

So, as before, if we let 𝑃𝑃𝑡𝑡|𝑡𝑡
∗ ≔ 𝑃𝑃𝑡𝑡|𝑡𝑡,11 be the upper left 𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 block of 𝑃𝑃𝑡𝑡|𝑡𝑡 and 𝑥𝑥𝑡̂𝑡|𝑡𝑡 ≔ 𝑤𝑤�𝑡𝑡|𝑡𝑡,1 

& 𝛿𝛿𝑡𝑡|𝑡𝑡
∗ ≔ 𝛿𝛿𝑡𝑡|𝑡𝑡,1  be the top 𝑛𝑛𝑥𝑥  rows of 𝑤𝑤�𝑡𝑡|𝑡𝑡  & 𝛿𝛿𝑡𝑡|𝑡𝑡 , respectively, then by Proposition 3 of 

Arellano-Valle and Genton (2010): 
𝑥𝑥𝑡𝑡|ℱ𝑡𝑡 ∼approx EST�𝑥𝑥𝑡̂𝑡|𝑡𝑡, 𝑃𝑃𝑡𝑡|𝑡𝑡

∗ , 𝛿𝛿𝑡𝑡|𝑡𝑡
∗ , 𝜏𝜏𝑡𝑡|𝑡𝑡, 𝜈𝜈𝑡𝑡|𝑡𝑡�. 

To complete the inductive step, we just have to find 𝑆𝑆𝑡𝑡|𝑡𝑡
∗  such that 𝑆𝑆𝑡𝑡|𝑡𝑡

∗ 𝑆𝑆𝑡𝑡|𝑡𝑡
∗′ ≈ 𝑃𝑃𝑡𝑡|𝑡𝑡

∗ . We 
give a general procedure for the reduced rank factorization of any symmetric positive 
semi-definite (henceforth, p.s.d.) matrix 𝑀𝑀 . First, let 𝑈𝑈𝑀𝑀𝐷𝐷𝑀𝑀𝑈𝑈𝑀𝑀

′   be the Schur 
decomposition of 𝑀𝑀 , where 𝑈𝑈𝑀𝑀  is orthogonal, and 𝐷𝐷𝑀𝑀  is diagonal and weakly 
positive, since 𝑀𝑀 is p.s.d.. Let 𝑑𝑑𝑀𝑀 ≔ diag 𝐷𝐷𝑀𝑀, where the diag operator maps matrices 
to a vector containing their diagonal, and vectors to diagonal matrices with the given 
vector on their diagonal. Now choose a threshold 𝜅𝜅. Then, without loss of generality, 
we may suppose that only the 𝑘𝑘𝑀𝑀,𝜅𝜅 first elements of 𝑑𝑑𝑀𝑀 are strictly greater than 𝜅𝜅. Now 

                                                 
8 Note that 𝑄𝑄𝑡𝑡|𝑡𝑡−1 is invertible as Λ is full rank, by assumption. 
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let 𝑈𝑈𝑀𝑀,𝜅𝜅,⋅1  be the first 𝑘𝑘𝑀𝑀,𝜅𝜅  columns of 𝑈𝑈𝑀𝑀 , and 𝑑𝑑𝑀𝑀,𝜅𝜅,1  be the first 𝑘𝑘𝑀𝑀,𝜅𝜅  rows of 𝑑𝑑𝑀𝑀 . 
Consequently, if we define: 

𝑆𝑆𝑀𝑀,𝜅𝜅 ≔ 𝑈𝑈𝑀𝑀,𝜅𝜅,⋅1 diag 𝑑𝑑𝑀𝑀,𝜅𝜅,1

1
2 , 

where exponentiation operates element-wise on vectors, then, providing 𝜅𝜅 is small: 
𝑀𝑀 ≈ 𝑈𝑈𝑀𝑀,𝜅𝜅,⋅1 diag 𝑑𝑑𝑀𝑀,𝜅𝜅,1 𝑈𝑈𝑀𝑀,𝜅𝜅,⋅1

′ = 𝑆𝑆𝑀𝑀,𝜅𝜅𝑆𝑆𝑀𝑀,𝜅𝜅
′ , 

giving a reduced rank factorisation of 𝑀𝑀 . Since the Schur decomposition coincides 
with the singular value decomposition for p.s.d. matrices, the result is the optimal 
rank 𝑘𝑘𝑀𝑀,𝜅𝜅 factorisation of 𝑀𝑀 under the Frobenius norm, by the Eckart–Young theorem. 

If we now fix 𝜅𝜅∗ > 0, and define 𝑆𝑆𝑡𝑡|𝑡𝑡
∗ ≔ 𝑆𝑆𝑃𝑃𝑡𝑡|𝑡𝑡

∗ ,𝜅𝜅∗, then: 
𝑥𝑥𝑡𝑡�ℱ𝑡𝑡 ∼approx EST�𝑥𝑥𝑡̂𝑡|𝑡𝑡, 𝑆𝑆𝑡𝑡|𝑡𝑡

∗ 𝑆𝑆𝑡𝑡|𝑡𝑡
∗′ , 𝛿𝛿𝑡𝑡|𝑡𝑡

∗ , 𝜏𝜏𝑡𝑡|𝑡𝑡, 𝜈𝜈𝑡𝑡|𝑡𝑡�, 
which completes one time-step. In all the examples below we set 𝜅𝜅∗ ≔ 10−12, which is 
large enough to provide reasonable dimension reduction without overly affecting 
accuracy. There are two benefits to taking reduced rank approximations. Firstly, by 
reducing the dimensionality of the space over which we must integrate, it will greatly 
speed up the computation of integrals. Secondly, integration rules are often much 
better behaved in lower dimensions. This may mean they evaluate less far from the 
centre, avoiding distortions caused by extreme tail non-linearities, or it may mean that 
they have more uniform weights, avoiding e.g. failures of positive semi-definiteness 
caused by a negative weight. 

We close this section by noting that we can use these calculations and 
approximations to obtain the approximate likelihood, in the standard way. In 
particular: 

log 𝑓𝑓 �ℱ𝑡𝑡� = log 𝑓𝑓 �ℱ𝑡𝑡−1� + log 𝑓𝑓 �𝑚𝑚𝑡𝑡�ℱ𝑡𝑡−1� 

≈ log 𝑓𝑓 �ℱ𝑡𝑡−1� −
1
2 log�𝑄̌𝑄𝑡𝑡|𝑡𝑡−1� + log 𝑓𝑓𝑇𝑇𝜈𝜈𝑡𝑡|𝑡𝑡−1,𝑛𝑛𝑚𝑚,𝑡𝑡

�𝑄̌𝑄𝑡𝑡|𝑡𝑡−1
−1

2 �𝑚𝑚𝑡𝑡 − 𝑚𝑚�𝑡𝑡|𝑡𝑡−1��

− log 𝐹𝐹𝑇𝑇𝜈𝜈𝑡𝑡|𝑡𝑡−1,1
�𝜏𝜏𝑡𝑡|𝑡𝑡−1� + log 𝐹𝐹𝑇𝑇𝜈𝜈𝑡𝑡|𝑡𝑡,1

�𝜏𝜏𝑡𝑡|𝑡𝑡�, 

This gives an iterative formula for progressively calculating the approximate log-
likelihood.9 
2.3. Cubature methods 
Degree 3 monomial rule Arasaratnam and Haykin (2009) suggest approximating the 
Gaussian integrals via degree three monomial cubature. The degree three rule they 
advocate is based upon the following approximation: 

� 𝑞𝑞(𝑧𝑧)𝜙𝜙𝑘𝑘(𝑧𝑧) 𝑑𝑑𝑧𝑧
ℝ𝑘𝑘

≈
1
2𝑘𝑘 ��𝑞𝑞�𝑒𝑒𝑗𝑗�𝑘𝑘� + 𝑞𝑞�−𝑒𝑒𝑗𝑗�𝑘𝑘��

𝑘𝑘

𝑗𝑗=1
, 

which is exact when the arbitrary function 𝑞𝑞 is in fact a sum of monomials of at most 
degree 3  (where 𝑒𝑒𝑗𝑗,𝑖𝑖  is 0  for 𝑖𝑖 ≠ 𝑗𝑗  and 1  for 𝑖𝑖 = 𝑗𝑗 ). Indeed, this is the degree 3  rule 

                                                 
9 In practice, we use the Cholesky factor of 𝑄̌𝑄𝑡𝑡|𝑡𝑡−1, rather than a matrix square root, and we rewrite all of the quadratic forms here 
and in the previously given update formulas in terms of this Cholesky factor. 
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requiring the minimum possible number of function evaluations, making it highly 
computationally efficient. However, since our likelihood requires the evaluation of 
𝑞𝑞(0) , it makes sense to include this additional point in the cubature rule, since its 
evaluation has no additional cost. The equally weighted degree 3  cubature rule 
including the zero point, with the minimum number of other points, takes the form: 

� 𝑞𝑞(𝑧𝑧)𝜙𝜙𝑘𝑘(𝑧𝑧) 𝑑𝑑𝑧𝑧
ℝ𝑘𝑘

≈
1

2𝑘𝑘 + 1 ⎣
⎢⎡𝑞𝑞(0) + � �𝑞𝑞 �

𝑒𝑒𝑗𝑗

2
�2 + 4𝑘𝑘� + 𝑞𝑞 �−

𝑒𝑒𝑗𝑗

2
�2 + 4𝑘𝑘��

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤, 

which just adds one additional point. 
In a model without occasionally binding constraints, under a first order 

approximation either rule will give the exact mean and variance, and under a second 
or third order approximation, it will give the exact mean, but only an approximate 
variance. In the presence of occasionally binding constraints, it will only give 
approximate means and variances, whatever the order of approximation. 

However, in practice these rules tends to perform remarkably well. As discussed in 
Holden (2016b), these degree 3 monomial cubature rules are particularly robust since 
they have positive, equal weights. All known higher degree integration rules that do 
not use more than polynomial in 𝑘𝑘 nodes also feature negative weights on at least some 
nodes (Cools 2003), which means that their result is not guaranteed to lie within the 
convex hull of the source evaluations, and it means that the approximated covariance 
matrix need not be p.s.d.. 

A downside of either rule is that when 𝑘𝑘 is large, the rule evaluates a long distance 
from the mean (approximately the same distance for either rule). When the true 
integrand is actually a sum of monomials of at most degree 3, this obviously does not 
matter, but in reality 𝑞𝑞 often has substantially more curvature. Indeed, in the presence 
of e.g. occasionally binding constraints, 𝑞𝑞 may feature extreme behaviour in the tails. 
Hence, when 𝑞𝑞 is evaluated far into the tails, we are likely to obtain biased estimates 
of the integral. Our dimension reduction algorithm obviously helps with this, but still 
in large models this may be problematic. 

Additionally, since these rules only integrate degree 3 monomials exactly, they are 
never going to be able to give reasonable approximations to 𝔼𝔼𝑍̌𝑍4 . Hence, if we are 
using these rules, then we will have to assume that for all 𝑡𝑡, 𝜈𝜈𝑡𝑡|𝑡𝑡−1 = 𝜈𝜈 ,̅ as previously 
suggested, meaning that the fatness of the tails of the approximating distribution will 
not be dynamic. 
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Genz and Keister (1996) rules By way of motivation, note that with the standard 
cubature Kalman filter, if we obtained a non-p.s.d. covariance matrix at one step, it 
would produce a catastrophic failure of the likelihood evaluation. We avoid such 
problems for two reasons. Firstly, our use of the ⟦ ⟧  operator ensures our 𝑃𝑃𝑡𝑡|𝑡𝑡  is 
positive definite. Secondly, even if we did not force 𝑃𝑃𝑡𝑡|𝑡𝑡 to be positive definite, given 
our dimension reduction algorithm, we would still not have problems. To see this, 
suppose that 𝑃𝑃𝑡𝑡|𝑡𝑡 were not p.s.d.. It would nonetheless be symmetric though, as it is 
being approximated by a weighted sum of symmetric matrices. Hence, by the spectral 
theorem for real symmetric matrices, the Schur decomposition would enable us to 
calculate 𝑆𝑆𝑡𝑡|𝑡𝑡  just as before, still selecting the eigenvalues that are greater than 𝜅𝜅∗  to 
give a p.s.d. approximation to 𝑃𝑃𝑡𝑡|𝑡𝑡. This would be a reasonable approximation to the 
true covariance of interest provided (plausibly enough) that the reason we ended up 
with a non-p.s.d. matrix was that the true covariance has some very small magnitude 
eigenvalues. 

In light of this discussion, it is natural for us to reappraise the use of higher degree 
cubature rules in our setting. Holden (2016b) found that the rules of Genz and Keister 
(1996) performed very well in a different context, with not excessively high 
computational cost, so these rules seem a natural thing to try here too. These rules 
rules allow one to choose the maximum degree of monomial that should be integrated 
exactly, up to a maximum order of 51. The number of points used is Ο�𝑘𝑘𝑑𝑑�, where 2𝑑𝑑 +
1 is the degree of monomial that is integrated exactly. When 𝑑𝑑 > 0 and 𝑘𝑘 > 1, the rule 
features negative weights on at least one node, but this enables it to ensure that the 
maximum over the absolute vectors of integration points is independent of 𝑘𝑘 . This 
contrasts with the aforementioned rule in which the higher is 𝑘𝑘, the further into the 
tails of the distribution one has to evaluate the integrand, which may lead to poor 
performance as discussed previously. Furthermore, by using a higher degree rule, we 
can generally obtain a better approximation to the integrand, leading to improved 
estimates. This is particularly important when it comes to the evaluation of 𝔼𝔼𝑍̌𝑍4, which 
we use to calibrate 𝜈𝜈𝑡𝑡|𝑡𝑡−1. Numerical experiments suggest that providing 𝑛𝑛 is not too 
small, using a rule that exactly integrates monomials of up to degree 9 performs well. 
2.4. Selecting the initial distribution of the state 

For models in which 𝑔𝑔𝑡𝑡  varies over time, there is no choice but to maximise the 
likelihood conditional on the first observation, but for models in which 𝑔𝑔𝑡𝑡 ≡ 𝑔𝑔 , we 
would like to be able to maximise the unconditional likelihood. In order to evaluate 
this, we need to be able to calculate the unconditional distribution of 𝑚𝑚1, which in turn 
requires the unconditional distribution of 𝑥𝑥0 . Now, if we have a model without 
occasionally binding constraints, then it is possible to get the moments of 𝑥𝑥0 without 
simulation if we are using a pruned solution. Even if we are not using a pruned 
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solution, we can at least derive reasonable approximations to these quantities without 
resorting to simulation. However, in the presence of occasionally binding constraints, 
or with more general non-linearities, we will not be able to calculate a reasonable 
approximation to the stationary distribution of 𝑥𝑥𝑡𝑡 without resorting to simulation. 

One approach then would be to simulate a long run from the model, discard a burn-
in period, and then take the moments of the remainder. This has two drawbacks. 
Firstly, due to the high degree of auto-correlation in many models, removing all 
sampling variation from the estimate would require a prohibitively long simulation 
run. Even if the same random seed was used for each run, so the objective was still 
continuous in the parameters even in finite samples, the result would just be that the 
sampling variation was transmitted to the final parameter estimates. This is essentially 
the same problem as is encountered by the particle filter in maximum likelihood 
contexts. 

Secondly, it is not clear that the stationary distribution of the model is actually what 
is needed here. In general, thanks to the approximations intrinsic in any variant of the 
cubature Kalman filter, including ours, the value to which e.g. 𝑥𝑥𝑡̂𝑡|𝑡𝑡  and 𝑃𝑃𝑡𝑡|𝑡𝑡

∗   would 
converge given an infinite string of completely uninformative observations will not 
agree with the stationary distribution of the model. If it is agreed that parameter 
estimates should not change when the data set is augmented by a run of initial missing 
observations, then rather than trying to evaluate the stationary distribution of 𝑥𝑥𝑡𝑡, we 
should be trying to evaluate the limit of 𝑥𝑥𝑡̂𝑡|𝑡𝑡, 𝑃𝑃𝑡𝑡|𝑡𝑡

∗ , etc. when no information arrives. 
This is the approach we take here. In particular, we imagine that we were tasked 

with running the cubature Kalman filter on an infinite run of missing observations. 
Since this works in “pseudo-time”, to distinguish “pseudo-times” from real times, we 
place  ̃ over all “pseudo-times” in the following. We start by initializing 𝑥𝑥0̃̂|0̃, 𝑃𝑃0̃|0̃ 𝛿𝛿0̃|0̃

∗ , 
𝜏𝜏0̃|0̃ and 𝜈𝜈0̃|0̃ with some easily computable approximation, such as that derived from 
the pruned perturbation approximation to the model, omitting occasionally binding 
constraints. We then run our cubature Kalman filter forward, with 𝑛𝑛𝑚𝑚,𝑡𝑡 ̃ = 0, meaning 
that 𝑥𝑥𝑡̂𝑡|̃𝑡𝑡 ̃ = 𝑥𝑥𝑡̂𝑡|̃𝑡𝑡−1� , 𝑃𝑃𝑡𝑡|̃𝑡𝑡 ̃

∗ = 𝑃𝑃𝑡𝑡|̃𝑡𝑡−1�
∗ , 𝛿𝛿𝑡𝑡|̃𝑡𝑡 ̃

∗ = 𝛿𝛿𝑡𝑡|̃𝑡𝑡−1�
∗ , 𝜏𝜏𝑡𝑡|̃𝑡𝑡 ̃ = 𝜏𝜏𝑡𝑡|̃𝑡𝑡−1�  and 𝜈𝜈𝑡𝑡|̃𝑡𝑡 ̃ = 𝜈𝜈𝑡𝑡|̃𝑡𝑡−1�  for all 𝑡𝑡 ̃ ∈ ℕ+. We 

continue until the change in these quantities is sufficiently small (e.g. on the order of 
10−8). For some models, this procedure may not converge exactly, in which case rather 
than making a full step from 𝑥𝑥𝑡̂𝑡−1�|𝑡𝑡−1�   to 𝑥𝑥𝑡̂𝑡|̃𝑡𝑡 ̃, 𝑃𝑃𝑡𝑡−1�|𝑡𝑡−1�

∗   to 𝑃𝑃𝑡𝑡|̃𝑡𝑡 ̃
∗  , etc., we instead make a 

partial step to a weighted average of the old and new points. DynareOBC contains 
code for dynamically adjusting the weight which works well in practice, ensuring 
convergence. When 𝑥𝑥𝑡̂𝑡|̃𝑡𝑡  ̃, 𝑃𝑃𝑡𝑡|̃𝑡𝑡 ̃

∗  , 𝛿𝛿𝑡𝑡|̃𝑡𝑡 ̃
∗  , 𝜏𝜏𝑡𝑡|̃𝑡𝑡 ̃ and 𝜈𝜈𝑡𝑡|̃𝑡𝑡  ̃ have converged, we set 𝑥𝑥0̂|0 , 𝑃𝑃0|0

∗  , 𝛿𝛿0|0
∗  , 𝜏𝜏0|0 

and 𝜈𝜈0|0 to the found limiting values. 
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2.5. Maximising the likelihood and computing standard errors 
Traditionally, DSGE models have chiefly been estimated by Bayesian methods. This 

has apparently been for two reasons. Firstly, many parameters in linearized DSGE 
models are either unidentified or just weakly identified. By placing a prior over the 
parameter space, although the likelihood may be flat in places, the posterior density 
will not be, ensuring that any numerical maximisation algorithm will return the same 
maximum a posterior estimate. Nonetheless, the prior does not solve the underlying 
non-identification. Instead, when the likelihood is flat, then the prior becomes highly 
“informative”. Of course, if the prior reflects true external information (e.g. from panel 
micro-data), then it is completely appropriate to incorporate this information into the 
final estimate. However, often the prior used in macroeconomic modelling is instead 
a product (albeit indirect) of the same data on which the model is now being estimated. 
It is preferable then to attempt to fix the underlying weak identification problem, 
which is what non-linear estimation potentially permits. This is thanks to the fact that 
two parameters may have identical effects on dynamics very close to the steady-state, 
but quite different effects further away. 

The second reason people have not traditionally pursued maximum likelihood 
estimation of DSGE models is because the likelihoods tend to be highly multi-modal. 
The hope is that with a strong enough prior, the posterior density might be unimodal, 
even though the likelihood is not. This hope is somewhat naïve though, since at least 
asymptotically the likelihood will asymptotically dominate the prior along any 
dimensions in which there is identification. Evidence for the practical relevance of this 
is provided by Herbst and Schorfheide (2014) who show that a range of popular DSGE 
models actually possess multimodal posteriors, though this was previously missed 
due to the difficulties of integrating over high dimensional spaces. 

Consequently, the only way that a Bayesian approach could have a computational 
advantage over a classical approach would be if somehow it was at least easier to 
integrate over high dimensional spaces than it was to maximise in them. But this 
cannot be true. If one has an algorithm that can sample from a distribution in a high 
dimensional space, then by starting standard local maximisation procedures from 
these draws, one will eventually find the global maximum. Furthermore, since local 
maximisation requires far fewer evaluations than (say) MCMC would to explore a 
mode, this will be faster. Of course, one can never guarantee that a maximisation 
procedure has found the true global maximum, but neither can one guarantee that an 
integration procedure has explored every mode. The fact that most MCMC 
implementations start by using conventional methods to search for a global mode 
provides further evidence that integration must be harder than maximisation. 
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In short then, the standard arguments for a Bayesian approach do not seem relevant 
when the model is estimated non-linearly. To make a maximum likelihood approach 
practical though, we must provide a global search algorithm with decent performance. 
By default, DynareOBC uses a customised version of the CMA-ES algorithm of 
Hansen et al. (1995; 2006). While first order (and first generation) evolutionary 
algorithms evolve a population of parameter vectors by combining parameters from 
multiple “parents” and adding independent noise to each component, the second 
order (and second generation) CMA-ES algorithm draws noise from a covariance 
matrix which mirrors the shape of the objective. This covariance matrix is dynamically 
updated over time in an entirely parameter-free way, and the result is an algorithm 
which is almost competitive with local algorithms on unimodal objectives,10 but which 
also possesses good global search properties. The modified version in DynareOBC is 
designed to exploit parallel computing environments, further speeding up the search. 

Once we have found the location of the maximum of the likelihood function, we then 
need to compute standard errors. Now, recall that the likelihood is coming from 
approximations to the distributions of 𝑚𝑚𝑡𝑡�ℱ𝑡𝑡−1 for 𝑡𝑡 ∈ {1, … , 𝑇𝑇}. In non-linear models, 
these distributions may be quite a way from the true distribution, hence, what we have 
here is in fact a quasi-maximum likelihood estimate. Quasi-maximum likelihood 
estimates are consistent with respect to the pseudo-true parameters (the ones 
minimising the Kullback–Leibler divergence to the true distribution) and 
asymptotically normal (White 1982), but they require standard errors to be computed 
using a sandwich formula, as detailed in e.g. Canova (2007). 

In fact, any “maximum-likelihood” estimation of an approximation (first order or 
otherwise) to a model is actually a quasi-maximum likelihood procedure. The true 
distribution of the measurement will be non-normal in general, so the result of, for 
example, linearization followed by the Kalman filter will still not be the true 
distribution. While Gaussian quasi-maximum likelihood appears to be consistent with 
respect to the true parameters under milder conditions than in the non-Gaussian case 
(Bollerslev and Wooldridge 1992), at a minimum this requires that the mean and 
covariance of the approximating Gaussian model are equal to the true mean and 
covariance, which is certainly not the case following an approximation to the source 
model. Thus, for example, the maximum a posterior estimate of the parameters of a 
linearized DSGE model is inconsistent in general for the true (un-approximated) 
model’s parameters. Given that the profession does not seem to be overly concerned 
with this inconsistency, there does not seem to be any good reason to be concerned 
with the inconsistency coming from our explicit approximations to the true 
distribution of the measurement. Indeed, it seems reasonable to hope that by better 

                                                 
10 CMA-ES requires around ten times more function evaluations than local methods on quadratic objectives. 
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fitting the true distribution, thanks to higher order approximations to the source 
model, and more flexible distributional approximations, we ought to reduce the 
magnitude of this inconsistency if anything. Nonetheless, in some circumstances, 
being assured of consistency is desirable. In the next section, we derive a modified 
estimator for these circumstances. 
2.6. Alternative objective delivering a consistent estimator 

We now describe an alternative to the standard quasi-maximum likelihood 
estimator that is consistent for the true parameters of the model, or at least for the 
parameters of the best approximation to the model from which one can simulate. For 
any 𝜃𝜃 , let 𝑚𝑚𝜃𝜃,1

∗ , 𝑚𝑚𝜃𝜃,2
∗ , …  be a series of simulated “measurements” generated by 

simulating the model and its measurement equation, and define ℱ𝜃𝜃,𝑡𝑡∗
∗ ≔

�𝑚𝑚𝜃𝜃,1
∗ , … , 𝑚𝑚𝜃𝜃,𝑡𝑡∗

∗ �. Furthermore, let 𝑓𝑓 �̃𝑚𝑚𝑡𝑡�ℱ𝑡𝑡−1, 𝜃𝜃� be the approximate likelihood function 
derived in section 2.2, with 𝑓𝑓 �̃𝑚𝑚𝜃𝜃,𝑡𝑡∗

∗ �ℱ𝑡𝑡∗−1
∗ , 𝜃𝜃�  the approximate likelihood of the 

simulated data, and let 𝑠𝑠�̃𝜃𝜃; 𝑚𝑚𝑡𝑡, ℱ𝑡𝑡−1� ≔
𝜕𝜕𝑓𝑓 �̃𝑚𝑚𝑡𝑡�ℱ𝑡𝑡−1, 𝜃𝜃�

𝜕𝜕𝜕𝜕   be the corresponding score. 
Then define: 

𝑠̅𝑠𝑇𝑇(𝜃𝜃) ≔
1
𝑇𝑇
� 𝑠̃𝑠(𝜃𝜃; 𝑚𝑚𝑡𝑡, ℱ𝑡𝑡−1)
𝑇𝑇

𝑡𝑡=1

−
1

𝑇𝑇∗(𝑇𝑇) � 𝑠̃𝑠�𝜃𝜃; 𝑚𝑚𝜃𝜃,𝑡𝑡∗∗ , ℱ𝑡𝑡∗−1
∗ �

𝑇𝑇∗(𝑇𝑇)

𝑡𝑡∗=1

 

where 𝑇𝑇
∗(𝑇𝑇)
𝑇𝑇 → ∞ as 𝑇𝑇 → ∞. Finally define our estimate as: 

𝜃𝜃𝑇̂𝑇 ≔ arg min
𝜃𝜃

𝑠𝑠𝑇̅𝑇(𝜃𝜃)′𝑠𝑠𝑇̅𝑇(𝜃𝜃). 

Note that if 𝑓𝑓  ̃were the true density, then as 𝑇𝑇
∗(𝑇𝑇)
𝑇𝑇 → ∞, the right-hand term in 𝑠̅𝑠𝑇𝑇(𝜃𝜃) 

would tend to zero, so the first order conditions of this problem would be 
asymptotically identical to those for the quasi-maximum likelihood estimator. 
However, in general this will not be the case, and 𝜃𝜃𝑇̂𝑇  will differ from the standard 
quasi-maximum likelihood estimator. That 𝜃𝜃𝑇̂𝑇 is consistent and asymptotically normal 
(given the standard technical assumptions) follows immediately from the consistency 
of the simulated method of moments (Duffie and Singleton 1990). Since this is a just 
identified case, and we are assuming that 𝑇𝑇

∗(𝑇𝑇)
𝑇𝑇 → ∞ as 𝑇𝑇 → ∞, this estimator is also 

asymptotically efficient in the class of asymptotically normal estimators using these 
moment conditions.11 

3. A test of the performance of our algorithm 

In this section, we give some indications of the accuracy of our approach, by 
applying it to three simple non-linear models, with one from finance, and two simple 
DSGE models, one of which contains occasionally binding constraints. The finance 

                                                 
11 An alternative procedure would have been to find, by simulation, the value of the true parameters at which the expected score 
at the QMLE parameters was equal to zero. This two-step procedure was proposed by Tauchen and Gallant (1995) and would 
deliver similar results, but is likely to be computationally more expensive due to the need to maximise twice. 
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model is a generalization of the standard discrete time stochastic volatility (SV) model, 
generalized to allow for time variation in the parameters of the standard SV model. 
One of the DSGE models is a minimal example of a DSGE model with occasionally 
binding constraints, the other merely removes the constraint from the former. We 
restrict ourselves to OBC models for which the results of Holden (2016a) imply there 
is a unique solution in all states of the world, to avoid additional uncertainty coming 
from equilibrium selection, though the algorithm of Holden (2016b) does give a 
natural procedure for doing this. Likewise, we restrict ourselves to models for which 
an exact solution is available, to enable us to assess the impact of approximation error 
on the final parameter estimates. 

We start by presenting results for the stochastic volatility model. We then describe 
the two DSGE models, and their identification properties, before presenting the 
estimation results. 
3.1. Results for a stochastic volatility model with time varying models 
TODO 
3.2. A simple “DSGE” model without occasionally binding constraints 

Suppose the representative household in an economy chooses consumption 𝐶𝐶𝑡𝑡 and 
zero net supply bond holdings 𝐵𝐵𝑡𝑡 to maximise: 

𝔼𝔼𝑡𝑡 � 𝛽𝛽𝑘𝑘 𝐶𝐶𝑡𝑡+𝑘𝑘
1−𝛾𝛾 − 1
1 − 𝛾𝛾

∞

𝑘𝑘=0
, 

subject to the restriction that: 
𝐴𝐴𝑡𝑡 + 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑡𝑡−1 = 𝐶𝐶𝑡𝑡 + 𝐵𝐵𝑡𝑡 

for all 𝑡𝑡 ∈ ℤ, where 𝐴𝐴𝑡𝑡’s evolution is given by: log 𝐴𝐴𝑡𝑡 = log 𝐴𝐴𝑡𝑡−1 + 𝑔𝑔𝑡𝑡, where 
𝑔𝑔𝑡𝑡 = �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡 

and 𝜀𝜀𝑡𝑡 ∼ N(0,1) . Market clearing implies 𝐴𝐴𝑡𝑡 = 𝐶𝐶𝑡𝑡  and 𝐵𝐵𝑡𝑡 = 0  for all 𝑡𝑡 ∈ ℤ , implying 
that the first order condition may be written as: 

1 = 𝛽𝛽𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡 exp�−𝛾𝛾𝑔𝑔𝑡𝑡+1� = 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡 exp�log 𝛽𝛽 − 𝛾𝛾𝑔𝑔𝑡𝑡+1�, 
and from this, it is easy to see that in the exact solution: 

𝑅𝑅𝑡𝑡 = �𝛽𝛽 exp �
𝛾𝛾2𝜎𝜎2

2 − 𝛾𝛾𝜇𝜇𝑡𝑡��
−1

, 

where 𝜇𝜇𝑡𝑡 = �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡. 
To make our estimation task more challenging, we suppose that the econometrician 

only observes log 𝑅𝑅𝑡𝑡 , not 𝑔𝑔𝑡𝑡 . The model has five parameters, but with this limited 
information set, only three of them can be identified. To see this, first note that since 𝛾𝛾 
just scales −𝛾𝛾𝑔𝑔𝑡𝑡+1 , and log 𝛽𝛽  just shifts log 𝛽𝛽 − 𝛾𝛾𝑔𝑔𝑡𝑡+1 , the parameter vector 
�𝛽𝛽, 𝛾𝛾, 𝑔𝑔̅, 𝜌𝜌, 𝜎𝜎�  must be observationally equivalent to the parameter vector �1,1, 𝛾𝛾𝑔𝑔̅ −
log 𝛽𝛽 , 𝜌𝜌, 𝛾𝛾𝛾𝛾�. In light of this, when we estimate the model, we fix 𝛽𝛽 and 𝛾𝛾 at their true 
values. These estimates will be based on an 1000 period artificial data-set constructed 
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from the exact solution using the following parameters: 𝛽𝛽 ≔ 0.99 , 𝛾𝛾 ≔ 5 , 𝑔𝑔̅ ≔ 0.005 , 
𝜌𝜌 ≔ 0.95 and 𝜎𝜎 ≔ 0.007 (after discarding 100 periods of burn-in).  
3.3. A simple “DSGE” model with occasionally binding constraints 

To produce a model with occasionally binding constraints, we modify the previous 
model, changing the law of motion for 𝑔𝑔𝑡𝑡. In particular, we suppose that for all 𝑡𝑡 ∈ ℤ: 

𝑔𝑔𝑡𝑡 = max�0, �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡� 
where 𝜀𝜀𝑡𝑡 ∼ N(0,1) . This specification may be thought of as capturing the fact that 
technologies cannot be un-invented. The first order condition of this model is as 
before, but now, in the exact solution, slightly more onerous calculation gives us that: 

𝑅𝑅𝑡𝑡 =
⎣
⎢
⎡𝛽𝛽

⎣
⎢⎡�1 − Φ �

𝜇𝜇𝑡𝑡
𝜎𝜎 �� +

⎝
⎜⎜⎛1 − Φ �

𝛾𝛾𝜎𝜎2 − 𝜇𝜇𝑡𝑡
𝜎𝜎 �

⎠
⎟⎟⎞ exp �

𝛾𝛾2𝜎𝜎2

2 − 𝛾𝛾𝜇𝜇𝑡𝑡�
⎦
⎥⎤

⎦
⎥
⎤

−1

, 

where 𝜇𝜇𝑡𝑡 is as before. 
This model also contains five parameters, but thanks to the additional non-linearity, 

four of them can be identified despite only log 𝑅𝑅𝑡𝑡  being observed. While 𝛾𝛾  still just 
scales the −𝛾𝛾𝑔𝑔𝑡𝑡+1  term in the first order condition, varying log 𝛽𝛽  is no longer 
equivalent to shifting 𝑔𝑔̅, due to the zero lower bound on productivity. Thus, when we 
estimate this model, we only need to fix 𝛾𝛾 at its true value. For comparison though, we 
also perform runs with 𝛽𝛽  fixed too. These estimates will use an artificial data set 
constructed from the exact solution exactly as before, with identical parameters. 
3.4. “DSGE” Estimation results 
TODO: UPDATE THE RESULTS BELOW WHICH WERE CREATED USING A 
GAUSSIAN APPROXIMATION TO THE DISTRIBUTION OF THE STATE 
 

Results from estimating both models are contained in Table 1 below. We also include 
the results of estimating the unbounded model on data from the bounded model, to 
illustrate the biases that can occur when bounds are ignored. Furthermore, to illustrate 
the potential costs of different types of approximation error, we include both results 
where the simulations in the filter predict step are performed using the exact solution, 
and results where they are performed using the approximate solution algorithm from 
Holden (2016b), either without cubature or with degree 3 monomial cubature in the 
internal simulation algorithm (referred to as “fast cubature” in the below). If cubature 
is not incorporated into the inner simulation algorithm, then expectations are not fully 
rational, as agents are continually surprised by the presence of the bound. Using 
cubature in the inner solution algorithm fixes this, producing more accurate 
simulations, and, hopefully, better estimates. 

When using this approximate solution algorithm without cubature, we try both with 
an order one approximation to the underlying model, and with an order three one. 
The latter illustrates our algorithm’s dimension reduction method, since it turns out 
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that in these models, order two and order three solutions agree. Finally, when we use 
the exact solution algorithm, we try both with degree 3 cubature for the integrals in 
the filter step, and with the degree 51  Genz and Keister (1996) rules, which are 
essentially exact. All other integrals are performed with the degree 3 monomial rule. 
 

Bound 
in 

model 

Bound 
in 

d.g.p. 

Simulation 
approxi- 
mation 

Filter 
int. 

degree 

𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑�𝓕𝓕𝒕𝒕� 
true 

params. 

𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑�𝓕𝓕𝒕𝒕� 

estimated 
params. 𝜷𝜷 𝒈𝒈̅ 𝝆𝝆 𝝈𝝈 �𝜦𝜦 

No No Order 1 3 1991.00 2005.96 Fixed 2.72E-03 
(NaN) 

9.24E-01 
(8.09E-03) 

7.04E-03 
(2.95E-05) 

0.00E+00 
(5.53E-11) 

No No Order 3 3 1991.02 2005.96 Fixed 2.84E-03 
(NaN) 

9.24E-01 
(1.07E-02) 

7.04E-03 
(5.26E-05) 

0.00E+00 
(1.13E-10) 

No No Exact 3 1991.02 2005.96 Fixed 2.84E-03 
(1.57E-01) 

9.24E-01 
(2.51E+01) 

7.04E-03 
(4.14E-02) 

0.00E+00 
(1.76E-07) 

No No Exact 51 1991.02 2005.96 Fixed 2.84E-03 
(2.60E-05) 

9.24E-01 
(4.89E-03) 

7.04E-03 
(4.46E-05) 

0.00E+00 
(1.35E-10) 

No Yes Order 1 3 2116.99 2193.82 Fixed 1.51E-02 
(NaN) 

8.98E-01 
(1.27E-02) 

6.00E-03 
(9.19E-05) 

0.00E+00 
(3.22E-10) 

No Yes Order 3 3 2116.92 2193.82 Fixed 1.52E-02 
(NaN) 

8.98E-01 
(2.31E-02) 

6.00E-03 
(1.11E-04) 

0.00E+00 
(5.06E-10) 

No Yes Exact 3 2116.92 2193.82 Fixed 1.52E-02 
(1.21E-04) 

8.98E-01 
(2.57E-03) 

6.00E-03 
(5.09E-05) 

0.00E+00 
(1.92E-10) 

No Yes Exact 51 2116.92 2193.82 Fixed 1.52E-02 
(6.71E-05) 

8.98E-01 
(1.70E-02) 

6.00E-03 
(2.85E-06) 

0.00E+00 
(9.73E-11) 

Yes Yes Order 1 
No cub. 

3 2181.32 2239.61 Fixed 1.02E-02 
(NaN) 

9.21E-01 
(7.45E-02) 

6.25E-03 
(9.36E-05) 

2.12E-11 
(1.68E-16) 

Yes Yes Order 3 
No cub. 

3 2187.98 2242.91 Fixed 1.06E-02 
(NaN) 

9.20E-01 
(5.27E-03) 

6.31E-03 
(6.43E-05) 

4.25E-11 
(4.53E-15) 

Yes Yes Order 1 
Fast cub. 

3 2232.11 2258.29 Fixed 3.13E-03 
(NaN) 

9.44E-01 
(7.47E-03) 

7.02E-03 
(1.65E-12) 

5.23E-09 
(1.05E-10) 

Yes Yes Exact 3 2233.50 2254.06 Fixed 2.89E-03 
(2.78E-05) 

9.46E-01 
(5.51E-03) 

6.59E-03 
(6.23E-05) 

3.80E-05 
(2.38E-07) 

Yes Yes Exact 51 2236.48 2255.92 Fixed 1.36E-03 
(3.79E-05) 

9.49E-01 
(2.39E-02) 

6.69E-03 
(1.60E-04) 

3.73E-05 
(1.34E-07) 

Yes Yes Order 1 
No cub. 

3 2181.32 2253.06 9.75E-01 
(NaN) 

1.00E-06 
(NaN) 

9.44E-01 
(2.55E-02) 

6.37E-03 
(4.97E-04) 

1.40E-09 
(6.27E-10) 

Yes Yes Order 3 
No cub. 

3 2187.98 2253.07 9.75E-01 
(NaN) 

1.00E-06 
(NaN) 

9.44E-01 
(4.02E-03) 

6.37E-03 
(5.57E-05) 

0.00E+00 
(1.11E-10) 

Yes Yes Order 1 
Fast cub. 

3 2232.11 2262.63 9.93E-01 
(NaN) 

6.53E-03 
(NaN) 

9.33E-01 
(8.46E-03) 

6.91E-03 
(5.58E-05) 

1.38E-11 
(1.58E-11) 

Yes Yes Exact 3 2233.50 2257.95 9.96E-01 
(1.94E-03) 

9.75E-03 
(1.37E-04) 

9.23E-01 
(3.92E-03) 

6.85E-03 
(6.77E-05) 

2.11E-11 
(3.94E-16) 

Yes Yes Exact 51 2236.48 2259.46 9.96E-01 
(2.50E-08) 

9.58E-03 
(2.10E-10) 

9.24E-01 
(2.03E-08) 

6.95E-03 
(1.52E-10) 

0.00E+00 
(1.56E-14) 

Table 1: Estimates (Standard errors in brackets. Standard errors in italics may be unreliable due to reported 
numerical difficulties inverting the Hessian. NaN stands for “not a number” and is indicative of near zero 

Eigenvalues in both the Hessian and the Fisher information matrix, resulting in 0/0 expressions.) 

All numerical maximisation was performed with the CMA-ES algorithm, with the 
results polished by MATLAB’s “fmincon”. We start CMA-ES from the true 
parameters, with the measurement error standard deviation, �Λ , set to 0.0001 , but 
thanks to the initial broad search undertaken by the CMA-ES algorithm, it soon moves 
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away from this point, so identical results would be derived with a different initial 
point. We constraint 𝛽𝛽 and 𝜌𝜌 to lie in �10−6, 1 − 10−6�, 𝑔𝑔̅ to lie in �10−6, ∞�, and 𝜎𝜎  and 
�Λ to lie in [0, ∞). Estimation times range from a few minutes for the models without 
bounds, to around four hours for the runs with “fast cubature” in the internal 
simulation algorithm, running on either a 12 or 20 core machine. We stress though 
that thanks to our dimension reduction techniques, and the fact that simulation speed 
is almost independent of model size, running times should be of a similar order of 
magnitude even with medium-scale models. 

Turning to the results, we first note that the estimates of 𝑔𝑔̅ are all quite poor. For 
example, in the model without occasionally binding constraints, 𝑔𝑔̅ is roughly half its 
true value, even with the exact simulation algorithm, which turns this into a standard 
linear filtering problem. However, in all cases this is just driven by sampling error. 
Given the high persistence in 𝑔𝑔𝑡𝑡, 𝑔𝑔̅ cannot be precisely estimated. To provide further 
intuition, note that in the model without occasionally binding constraints:  

𝔼𝔼 log 𝑅𝑅𝑡𝑡 = 𝛾𝛾𝑔𝑔̅ −
𝛾𝛾2𝜎𝜎2

2 − log 𝛽𝛽. 

Hence, conditional on the other parameters, we can estimate 𝑔𝑔̅ by evaluating: 
1
𝛾𝛾 �

1
𝑇𝑇 � log 𝑅𝑅𝑡𝑡

𝑇𝑇

𝑡𝑡=1
+

𝛾𝛾2𝜎𝜎2

2 + log 𝛽𝛽�, 

which, on our generated data set without occasionally binding constraints, gives a 
value of 2.58×10−3, broadly in line (though somewhat worse) than our estimates. 

Next, note that without occasionally binding constraints, three of our methods give 
identical results. This is due to the fact that the third order approximation is exact in 
this case, and to the fact that the exact measurement equation is linear. The standard 
errors do not perfectly agree here though, essentially due to a blow up in numerical 
errors coming from the poor-conditioning of the Hessian, which itself comes from the 
weak identification of 𝑔𝑔̅. 

 We now examine the estimates generated by running the model without 
occasionally binding constraints on the data generated with an occasionally binding 
constraint. Here, we see a big upward bias in 𝑔𝑔̅, and a big downwards bias in 𝜌𝜌 and 𝜎𝜎 . 
The former is due to the fact that the mean of a zero lower bounded process is higher 
than the mean of the process without bound. The latter is due to the fact that hitting 
the bound prevents 𝑔𝑔𝑡𝑡  from getting any lower, both compressing its range, and 
reducing its mean half-life, as returning from e.g. 𝑔𝑔𝑡𝑡 = −0.01  takes longer than 
returning from 𝑔𝑔𝑡𝑡 = 0 . This illustrates the severe biases that may accompany an 
attempt to estimate a model without occasionally binding constraints when there 
clearly are such constraints in the data generating process.  

 The estimates using a model with occasionally binding constraints unsurprisingly 
fare much better. With “fast cubature”, we get results very close to those using the 
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exact solution, suggesting that even in models for which an exact solution is not 
available, we are likely to get good results using “fast cubature”. The estimates of 𝜌𝜌 
seem particularly impressive, which is most likely explained by the additional 
information coming from the zero lower bound, as 𝜌𝜌 will now have a non-linear effect. 

When we attempt to estimate 𝛽𝛽  as well, understandably, the estimates of other 
parameters suffer somewhat. For example, 𝛽𝛽 is biased downwards, and 𝑔𝑔̅ is driven to 
its lower bound of 10−6  when we do not incorporate cubature in the simulation 
algorithm. To understand this, observe that in the absence of cubature, our simulation 
algorithm essentially ignores the bound when computing expectations. In particular, 
if 𝑑𝑑  is a dummy which equals 0  under a first order approximation, and 1  under a 
second or higher order approximation, then our solution’s approximation in the 
absence of cubature, which we shall denote 𝑅̃𝑅𝑡𝑡

(𝑑𝑑) solves: 

1 = 𝛽𝛽𝑅̃𝑅𝑡𝑡
(𝑑𝑑) exp �𝑑𝑑

𝛾𝛾2𝜎𝜎2

2 − 𝛾𝛾𝜇𝜇𝑡𝑡�. 

Hence: 

log 𝑅̃𝑅𝑡𝑡
(𝑑𝑑) = 𝛾𝛾𝜇𝜇𝑡𝑡 − 𝑑𝑑

𝛾𝛾2𝜎𝜎2

2 − log 𝛽𝛽 

= 𝛾𝛾��1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡� − 𝑑𝑑
𝛾𝛾2𝜎𝜎2

2 − log 𝛽𝛽 

≥ 𝛾𝛾�1 − 𝜌𝜌�𝑔𝑔̅ − 𝑑𝑑
𝛾𝛾2𝜎𝜎2

2 − log 𝛽𝛽, 

as 𝑔𝑔𝑡𝑡 ≥ 0. Thus, using this approximation, a reasonable estimate of log 𝛽𝛽 conditional 
on the other parameters would be: 

𝛾𝛾�1 − 𝜌𝜌�𝑔𝑔̅ − 𝑑𝑑
𝛾𝛾2𝜎𝜎2

2 − min
𝑡𝑡=1,…,𝑇𝑇

log 𝑅̃𝑅𝑡𝑡. 

Note though, that this is likely to be substantially biased down, since our 
approximation to  𝔼𝔼𝑡𝑡 exp�−𝛾𝛾𝑔𝑔𝑡𝑡+1� is biased upwards, as it ignores the impact of the 
bound. Now suppose we are trying to simultaneously estimate 𝑔𝑔̅ as well. Given our 
approximation, the natural estimate of 𝑔𝑔̅ is the solution for 𝑔𝑔̅ to: 

𝛾𝛾��1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝜌𝜌𝑔𝑔𝑡𝑡� =
1
𝑇𝑇 � log 𝑅̃𝑅𝑡𝑡

(𝑑𝑑)
𝑇𝑇

𝑡𝑡=1
+ 𝑑𝑑

𝛾𝛾2𝜎𝜎2

2 + log 𝛽𝛽, 

which, using our estimate of log 𝛽𝛽 is the solution for 𝑔𝑔̅ to: 

𝛾𝛾𝛾𝛾𝛾𝛾𝑔𝑔𝑡𝑡 =
1
𝑇𝑇 � log 𝑅̃𝑅𝑡𝑡

(𝑑𝑑)
𝑇𝑇

𝑡𝑡=1
− min

𝑡𝑡=1,…,𝑇𝑇
log 𝑅̃𝑅𝑡𝑡 . (1) 

Since 𝔼𝔼𝑔𝑔𝑡𝑡  depends positively on 𝑔𝑔̅ , and our estimate of log 𝛽𝛽  is biased down, so too 
will be our estimate of 𝑔𝑔̅. This in turn causes further downwards bias in the estimate 
of log 𝛽𝛽, which further pushes down 𝑔𝑔̅, and so on. 

To see the magnitude of these expected biases, note that our estimation algorithm 
approximates the stationary distribution of 𝑔𝑔𝑡𝑡 by a Gaussian, say N�𝜓𝜓, 𝜔𝜔2�, hence, if 
𝑔𝑔 ∼ N�𝜓𝜓, 𝜔𝜔2� and 𝜀𝜀 ∼ N(0,1): 
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�1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝜌𝜌 + 𝜎𝜎𝜎𝜎 ∼ N�𝜓𝜓,̃ 𝜔̃𝜔2�, 
where 𝜓𝜓̃ ≔ �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝜌𝜌 and 𝜔̃𝜔 ≔ �𝜌𝜌2𝜔𝜔2 + 𝜎𝜎2, so: 

𝜓𝜓 = 𝔼𝔼�max�0, �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝜌𝜌 + 𝜎𝜎𝜎𝜎�� = 𝜓𝜓Φ̃ �
𝜓𝜓̃
𝜔̃𝜔� + 𝜔̃𝜔𝜙𝜙 �

𝜓𝜓̃
𝜔̃𝜔�, 

and: 
𝜔𝜔2 = 𝔼𝔼��max�0, �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝜌𝜌 + 𝜎𝜎𝜎𝜎� − 𝜓𝜓�2� 

= 𝜓𝜓2̃Φ �
𝜓𝜓̃
𝜔̃𝜔� �1 − Φ �

𝜓𝜓̃
𝜔̃𝜔�� + 𝜔̃𝜔2

⎣
⎢⎡Φ �

𝜓𝜓̃
𝜔̃𝜔� − 𝜙𝜙 �

𝜓𝜓̃
𝜔̃𝜔�

2

⎦
⎥⎤ + 𝜓𝜓𝜔̃̃𝜔𝜙𝜙 �

𝜓𝜓̃
𝜔̃𝜔� �1 − 2Φ �

𝜓𝜓̃
𝜔̃𝜔��, 

which implicitly define 𝜓𝜓 and 𝜔𝜔 in terms of 𝑔𝑔̅. Substituting 𝜓𝜓 ≈ 𝔼𝔼𝑔𝑔𝑡𝑡 into equation (1), 
and solving the resulting non-linear equations gives an estimate of 𝑔𝑔̅ on our artificial 
data of −0.0080.12  Since we constrain 𝑔𝑔̅ to be greater than 10−6 when we estimate, this 
means that we should be unsurprised that we hit this bound. Given this, the implied 
estimate for 𝛽𝛽 is: 

exp �10−6𝛾𝛾�1 − 𝜌𝜌� − 𝑑𝑑
𝛾𝛾2𝜎𝜎2

2 − min
𝑡𝑡=1,…,𝑇𝑇

log 𝑅̃𝑅𝑡𝑡�, 

which, on our data, equals 0.9759 under a first order approximation, and 0.9753 under 
a third order approximation. These estimates are closely in line with the estimates 
produced by our procedure, fully explaining our results. 

Luckily, when we include cubature in the underlying simulation algorithm, ensuring 
that agent’s expectations are truly rational, all of these biases disappear. Indeed, our 
estimates with “fast cubature” including the bound are the most accurate estimates of 
both 𝛽𝛽  and 𝑔𝑔̅  from any of our estimation runs. Given that “fast cubature” is 
computationally tractable even on large models, this suggests that we should be able 
to use our estimation procedure to get reliable estimates even in the medium scale 
DSGE models used by policy makers. 

4. Performing smoothing 

4.1. Algorithm 
The smoother contains a forward pass that follows the algorithm given in section 

2.2, followed by a backwards pass that uses information saved from the forward pass. 
Since a smoother is generally only run once, we anticipate users wishing to use the 
Genz and Keister (1996) rules for the forward pass, to ensure high accuracy in the 
presence of strong non-linearities. 

A natural strategy for smoothing were we approximating the distribution of the state 
by a Gaussian would be as follows.13 We would first calculate an approximation to  

                                                 
12 Replication code for this is contained in the “NaturalEstimate.m” file within the “Examples\BoundedProductivityEstimation” 
folder of DynareOBC. 
13 This broadly follows both the derivation of the standard Rauch Tung Striebel (1965) smoother, and the smoother for the non-
augmented Gaussian cubature Kalman filter of Arasaratnam and Haykin (2011). 



Page 25 of 28 

cov�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡�ℱ𝑡𝑡−1� just as we calculated the other moments in section 2.2. We could then 
calculate a Gaussian approximation to  �

𝑥𝑥𝑡𝑡
𝑤𝑤𝑡𝑡−1

� �ℱ𝑡𝑡−1, with marginals agreeing with the 

results of section 2.2, using standard properties of the Gaussian distribution along 
with the fact that 𝑥𝑥𝑡𝑡��𝑤𝑤𝑡𝑡−1, ℱ𝑡𝑡−1� =𝑑𝑑 𝑥𝑥𝑡𝑡��𝑥𝑥𝑡𝑡−1, ℱ𝑡𝑡−1� . This in turn would give us  
𝑤𝑤𝑡𝑡−1��𝑥𝑥𝑡𝑡, ℱ𝑇𝑇� =𝑑𝑑 𝑤𝑤𝑡𝑡−1��𝑥𝑥𝑡𝑡, ℱ𝑡𝑡−1�, as 𝑥𝑥𝑡𝑡 is Markov. However, such a strategy cannot work 
with an extended skew t-distribution. To see this, note that for �

𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡−1

� �ℱ𝑡𝑡−1  or 

�
𝑥𝑥𝑡𝑡

𝑤𝑤𝑡𝑡−1
� �ℱ𝑡𝑡−1  to be extended skew t-distributed, 𝑥𝑥𝑡𝑡�ℱ𝑡𝑡−1  and 𝑥𝑥𝑡𝑡−1�ℱ𝑡𝑡−1  would have to 

have identical “degrees of freedom” parameters, i.e. we would need 𝜈𝜈𝑡𝑡|𝑡𝑡−1 = 𝜈𝜈𝑡𝑡−1|𝑡𝑡−1. 
Aside from being a probability zero event in a sufficiently general model, this would 
also imply that 𝜈𝜈𝑡𝑡|𝑡𝑡 = 𝜈𝜈𝑡𝑡|𝑡𝑡−1 + 𝑛𝑛𝑚𝑚,𝑡𝑡 = 𝜈𝜈𝑡𝑡−1|𝑡𝑡−1 + 𝑛𝑛𝑚𝑚,𝑡𝑡,  so 𝜈𝜈𝑡𝑡|𝑡𝑡 → ∞  as 𝑡𝑡 → ∞ , giving an 
unsatisfactory degree of non-stationarity to the filter. 

Instead, we rely on the standard forward-backward smoothing identity: 
𝑓𝑓 �𝑤𝑤𝑡𝑡−1�ℱ𝑇𝑇� = � 𝑓𝑓 �𝑤𝑤𝑡𝑡−1, 𝑥𝑥𝑡𝑡�ℱ𝑇𝑇� 𝑑𝑑𝑥𝑥𝑡𝑡 = � 𝑓𝑓 �𝑤𝑤𝑡𝑡−1�𝑥𝑥𝑡𝑡, ℱ𝑇𝑇�𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑇𝑇� 𝑑𝑑𝑥𝑥𝑡𝑡 

= � 𝑓𝑓 �𝑤𝑤𝑡𝑡−1�𝑥𝑥𝑡𝑡, ℱ𝑡𝑡−1�𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑇𝑇� 𝑑𝑑𝑥𝑥𝑡𝑡 = �
𝑓𝑓 �𝑥𝑥𝑡𝑡�𝑤𝑤𝑡𝑡−1, ℱ𝑡𝑡−1�𝑓𝑓 �𝑤𝑤𝑡𝑡−1�ℱ𝑡𝑡−1�

𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑡𝑡−1�
𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑇𝑇� 𝑑𝑑𝑥𝑥𝑡𝑡 

= �
𝑓𝑓 (𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1)𝑓𝑓 �𝑤𝑤𝑡𝑡−1�ℱ𝑡𝑡−1�

𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑡𝑡−1�
𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑇𝑇� 𝑑𝑑𝑥𝑥𝑡𝑡 = 𝔼𝔼 �

𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑇𝑇�

𝑓𝑓 �𝑥𝑥𝑡𝑡�ℱ𝑡𝑡−1�
�𝑥𝑥𝑡𝑡−1� 𝑓𝑓 �𝑤𝑤𝑡𝑡−1�ℱ𝑡𝑡−1� 

where we have used the Markov property of 𝑥𝑥𝑡𝑡 at the start of the second and third 
lines. Now, suppose that: 

𝑥𝑥𝑡𝑡�ℱ𝑇𝑇 ∼approx EST�𝑥𝑥𝑡̂𝑡|𝑇𝑇, 𝑃𝑃𝑡𝑡|𝑇𝑇
∗ , 𝛿𝛿𝑡𝑡|𝑇𝑇

∗ , 𝜏𝜏𝑡𝑡|𝑇𝑇, 𝜈𝜈𝑡𝑡|𝑇𝑇�, 
and recall that: 

𝑤𝑤𝑡𝑡−1�ℱ𝑡𝑡−1 ∼approx EST�𝑤𝑤�𝑡𝑡−1|𝑡𝑡−1, 𝑃𝑃𝑡𝑡−1|𝑡𝑡−1, 𝛿𝛿𝑡𝑡−1|𝑡𝑡−1, 𝜏𝜏𝑡𝑡−1|𝑡𝑡−1, 𝜈𝜈𝑡𝑡−1|𝑡𝑡−1�. 
Then, much as in section 2.2, define 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1 ≔ 𝑆𝑆𝑃𝑃𝑡𝑡−1|𝑡𝑡−1,𝜅𝜅∗, and let 𝑁𝑁0, 𝑁𝑁10 ∈ ℝ be draws 
from N(0,1)  and 𝑁𝑁11 ∈ ℝ𝑘𝑘𝑡𝑡−1|𝑡𝑡−1  be a draw from N�0𝑘𝑘𝑡𝑡−1|𝑡𝑡−1

, 𝐼𝐼𝑘𝑘𝑡𝑡−1|𝑡𝑡−1
� , where 𝑘𝑘𝑡𝑡−1|𝑡𝑡−1 ≔

cols 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1, so the distribution of 𝑤𝑤𝑡𝑡−1�ℱ𝑡𝑡−1 is equal to that of: 

𝑤𝑤𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁) ≔ 𝑤𝑤�𝑡𝑡−1|𝑡𝑡−1 + 𝑆𝑆𝑡𝑡−1|𝑡𝑡−1𝑁𝑁11𝐹𝐹
�

𝜈𝜈+1
𝜒𝜒𝜈𝜈+1

2

−1 �Φ1(𝑁𝑁10)�
⎷
��
�

𝜈𝜈 + 𝐹𝐹𝐸𝐸𝜈𝜈,𝜏𝜏
−1 �Φ1(𝑁𝑁0)�2

𝜈𝜈 + 1

+ 𝛿𝛿𝑡𝑡−1|𝑡𝑡−1𝐹𝐹𝐸𝐸𝜈𝜈,𝜏𝜏
−1 �Φ1(𝑁𝑁0)�, 

where 𝜈𝜈 = 𝜈𝜈𝑡𝑡−1|𝑡𝑡−1 , 𝜏𝜏 = 𝜏𝜏𝑡𝑡−1|𝑡𝑡−1  and 𝑁𝑁 ≔
⎣
⎢
⎡

𝑁𝑁0
𝑁𝑁10
𝑁𝑁11⎦

⎥
⎤ . Then, by the derived forward-

backward smoothing identity, for any function 𝑞𝑞: 
𝔼𝔼�𝑞𝑞(𝑤𝑤𝑡𝑡−1)�ℱ𝑇𝑇� ≈ � 𝑞𝑞�𝑤𝑤𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁)�𝑟𝑟𝑡𝑡(𝑁𝑁, 𝜀𝜀)𝜙𝜙2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀

��𝑁𝑁
𝜀𝜀 �� 𝑑𝑑 �𝑁𝑁

𝜀𝜀 �

ℝ�2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀�

, 

where:  
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𝑟𝑟𝑡𝑡(𝑁𝑁, 𝜀𝜀) =
𝑓𝑓EST𝑥̂𝑥𝑡𝑡|𝑇𝑇,�𝑃𝑃𝑡𝑡|𝑇𝑇

∗ �,𝛿𝛿𝑡𝑡|𝑇𝑇
∗ ,𝜏𝜏𝑡𝑡|𝑇𝑇,𝜈𝜈𝑡𝑡|𝑇𝑇

�𝑔𝑔𝑡𝑡,1�𝑤𝑤𝑡𝑡−1|𝑡𝑡−1,1(𝑁𝑁), 𝜀𝜀��

𝑓𝑓EST𝑥̂𝑥𝑡𝑡|𝑡𝑡−1,�𝑃𝑃𝑡𝑡|𝑡𝑡−1
∗ �,𝛿𝛿𝑡𝑡|𝑡𝑡−1

∗ ,𝜏𝜏𝑡𝑡|𝑡𝑡−1,𝜈𝜈𝑡𝑡|𝑡𝑡−1
�𝑔𝑔𝑡𝑡,1�𝑤𝑤𝑡𝑡−1|𝑡𝑡−1,1(𝑁𝑁), 𝜀𝜀��

, 

and where 𝑔𝑔𝑡𝑡,1  and 𝑤𝑤𝑡𝑡−1|𝑡𝑡−1,1  give the first 𝑛𝑛𝑥𝑥  outputs of 𝑔𝑔𝑡𝑡  and 𝑤𝑤𝑡𝑡−1|𝑡𝑡−1  respectively. 
The required integral here is again just a Gaussian one, and so may be efficiently 
evaluated using the methods detailed in section 2.3. 
We note that: 

1 = 𝔼𝔼�1�ℱ𝑇𝑇� ≈ � 𝑟𝑟𝑡𝑡(𝑁𝑁, 𝜀𝜀)𝜙𝜙2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀
��𝑁𝑁

𝜀𝜀 �� 𝑑𝑑 �𝑁𝑁
𝜀𝜀 �

ℝ�2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀�

, 

so the term 𝑟𝑟𝑡𝑡(𝑁𝑁, 𝜀𝜀) is effectively a weight. Thus, for increased numerical robustness, 
it is better to represent 𝔼𝔼�𝑞𝑞(𝑤𝑤𝑡𝑡−1)�ℱ𝑇𝑇� in our numerical calculations as: 

𝔼𝔼�𝑞𝑞(𝑤𝑤𝑡𝑡−1)�ℱ𝑇𝑇� ≈
� 𝑞𝑞�𝑤𝑤𝑡𝑡−1|𝑡𝑡−1(𝑁𝑁)�𝑟𝑟𝑡𝑡(𝑁𝑁, 𝜀𝜀)𝜙𝜙2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀

��𝑁𝑁
𝜀𝜀 �� 𝑑𝑑 �𝑁𝑁

𝜀𝜀 �
ℝ�2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀�

� 𝑟𝑟𝑡𝑡(𝑁𝑁, 𝜀𝜀)𝜙𝜙2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀
��𝑁𝑁

𝜀𝜀 �� 𝑑𝑑 �𝑁𝑁
𝜀𝜀 �

ℝ�2+𝑘𝑘𝑡𝑡−1|𝑡𝑡−1+𝑛𝑛𝜀𝜀�

. 

Using this result, just as in section 2.2, we may evaluate the integrals necessary to find 
𝑤𝑤�𝑡𝑡−1|𝑇𝑇, 𝑃𝑃𝑡𝑡−1|𝑇𝑇, 𝛿𝛿𝑡𝑡−1|𝑇𝑇, 𝜏𝜏𝑡𝑡−1|𝑇𝑇 and 𝜈𝜈𝑡𝑡−1|𝑇𝑇 such that: 

𝑤𝑤𝑡𝑡−1�ℱ𝑇𝑇 ∼approx EST�𝑤𝑤�𝑡𝑡−1|𝑇𝑇, 𝑃𝑃𝑡𝑡−1|𝑇𝑇, 𝛿𝛿𝑡𝑡−1|𝑇𝑇, 𝜏𝜏𝑡𝑡−1|𝑇𝑇, 𝜈𝜈𝑡𝑡−1|𝑇𝑇�. 
Defining, as usual , 𝑃𝑃𝑡𝑡−1|𝑇𝑇

∗ ≔ 𝑃𝑃𝑡𝑡−1|𝑇𝑇,11  to be the upper left 𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥  block of 𝑃𝑃𝑡𝑡−1|𝑇𝑇  and 
𝑥𝑥𝑡̂𝑡−1|𝑇𝑇 ≔ 𝑤𝑤�𝑡𝑡−1|𝑇𝑇,1  & 𝛿𝛿𝑡𝑡−1|𝑇𝑇

∗ ≔ 𝛿𝛿𝑡𝑡−1|𝑇𝑇,1  to be the top 𝑛𝑛𝑥𝑥  rows of 𝑤𝑤�𝑡𝑡−1|𝑇𝑇  & 𝛿𝛿𝑡𝑡−1|𝑇𝑇 , 
respectively, then by Proposition 3 of Arellano-Valle and Genton (2010): 

𝑥𝑥𝑡𝑡−1�ℱ𝑇𝑇 ∼approx EST�𝑥𝑥𝑡̂𝑡−1|𝑇𝑇, 𝑃𝑃𝑡𝑡−1|𝑇𝑇
∗ , 𝛿𝛿𝑡𝑡−1|𝑇𝑇

∗ , 𝜏𝜏𝑡𝑡−1|𝑇𝑇, 𝜈𝜈𝑡𝑡−1|𝑇𝑇�. 
Therefore, by induction, we can calculate an approximation to the distribution of 𝑥𝑥𝑡𝑡�ℱ𝑇𝑇 
and 𝑤𝑤𝑡𝑡�ℱ𝑇𝑇 for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, giving our smoother. 
4.2. Application: Which shocks caused the great recessions? 

TODO in Christiano, Motto, and Rostagno (2014) 

5. Further details on the DynareOBC toolkit 

Code implementing the estimation algorithm discussed here is contained in the 
author’s “DynareOBC” toolkit which is a suite of MATLAB files designed to augment 
the abilities of Dynare (Adjemian et al. 2011).  The toolkit may be freely downloaded 
from http://github.org/tholden/dynareOBC, and this site also contains complete 
documentation for its assorted options.14 To use it for simulation, one merely has to 
include a “max”, “min” or “abs” in the MOD file describing the DSGE model to be 
simulated, and then to invoke DynareOBC with the MATLAB command “dynareOBC 
ModFileName.MOD”. Using it for estimation is almost as easy, and the examples in 
the “Examples\BoundedProductivityEstimation” sub-folder should make it clear to 
the user how to proceed. 

                                                 
14 A PDF of the toolkit’s documentation is available from: https://github.com/tholden/dynareOBC/raw/master/ReadMe.pdf. 

http://github.org/tholden/dynareOBC
https://github.com/tholden/dynareOBC/raw/master/ReadMe.pdf


Page 27 of 28 

While base Dynare now supports using the cubature Kalman filter for estimating 
second order approximations to models (Adjemian et al. 2016), it does not implement 
either the state initialization, or the state space reduction technique developed here; it 
does not support third order approximations; it does not calculate quasi-Maximum 
likelihood standard errors; and it cannot handle occasionally binding constraints. In 
all these regards then, the DynareOBC estimation procedure is an improvement on 
that already contained in base Dynare. 

6. Conclusion 

This paper has presented an efficient algorithm for estimating non-linear models, 
including those with occasionally binding constraints. Thanks to the algorithm’s 
dimension reduction techniques, the algorithm keeps the costs of forming predictive 
distributions manageable, allowing it to be used even on models for which simulation 
is expensive, such as those with occasionally binding constraints. We went on to show 
that identification is easier in non-linear models, and that estimating ignoring 
occasionally binding constraints may introduce substantial biases. The latter is 
particularly relevant for the zero lower bound on nominal interest rates, given the 
amount of time many economies have now spent at the bound. Macro-
econometricians thus have no choice but to include the occasionally binding constraint 
in their model when they estimate medium-scale DSGE models, if they want to use up 
to date data. Luckily, the algorithms presented in this paper will readily scale up to 
handle such models. 

Code implementing all of the algorithms discussed here is contained in the author’s 
“DynareOBC” toolkit which augments the abilities of Dynare (Adjemian et al. 2011) 
with the ability to solve and estimate models with occasionally binding constraints. 
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