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Three essays in dynamic 
macroeconomics 

A thesis submitted for the degree of  Doctor of Philosophy, at the University of 

Oxford, Trinity Term 2012.  

Tom Holden1, Balliol College, University of Oxford 

Abstract: This thesis presents three papers within the field of dynamic macroeconomics. 

The first paper, entitled “Medium-frequency cycles and the remarkable near trend-

stationarity of output”, presents a dynamic stochastic general equilibrium model with 

endogenous growth, capable of reconciling the observed large medium-frequency 

fluctuations in output, with its long run (near) trend-stationarity. This requires a model in 

which standard business cycle shocks lead to highly persistent movements around trend, 

without significantly altering the trend itself. The robustness of the trend also requires that 

scale effects are eliminated both in the long and short runs. In an estimated version of the 

model, a financial-type shock to the stock of ideas emerges as the key driver of the medium 

frequency cycle. 

The second paper, entitled “Learning from learners”, is an intervention into two long running 

debates: the first, on whether learnability may be used to rule out explosive paths for 

inflation in New Keynesian models, and the second, into whether Taylor rule parameters 

may be identified from observing the data. We find that in an economy populated with 

traditional macroeconomic learners, Taylor rule parameters can always be identified by 

sophisticated econometric techniques. Furthermore, when all agents in the economy use 

such sophisticated techniques, stationary sunspot solutions are readily learnable, and there 

is no guarantee of convergence to a stationary solution even in the “determinate” case. This 

implies that learnability cannot be used for equilibrium selection. 

Finally, in the third paper, “Efficient simulation of DSGE models with inequality constraints” 

(joint with Michael Paetz), we present a new algorithm for the simulation of models subject 

to inequality constraints, such as the zero lower bound on nominal interest rates. Our 

algorithm is shown to deliver higher accuracy than all other non-global algorithms, and 

leading speed. We go on to provide a number of applications of our algorithm. 

Effective word count: Approx. 65,000 Actual word count: Approx. 45,000 

Supervisor: Simon Wren-Lewis 

                                                      
1 Contact address: School of Economics, FBEL, University of Surrey, Guildford, GU2 7XH, England 

Contact email: thomas.holden@gmail.com Web-site: http://www.tholden.org/  

The author would particularly like to thank his supervisor, Simon Wren-Lewis. Financial support provided to 

the author by the ESRC is also greatly appreciated. Further acknowledgements are included in the title page to 

each chapter. 

http://www.tholden.org/


Page 2 of 174 

Table of Contents 

Foreword Page 3 

References Page 5 

Chapter 1: Page 7 

Medium-frequency cycles and the remarkable near trend-stationarity of output 

1. Introduction Page 8 

2. Empirics Page 13 

3. The model Page 19 

4. Extended model and empirical tests Page 42 

5. Conclusion Page 65 

6. References Page 66 

7. Appendices Page 71 

Chapter 2: Page 93 

Learning from learners  

1. Introduction Page 94 

2. FREE solutions Page 96 

3. Learning (and identifying) from unsophisticated learners Page 101 

4. Learning from sophisticated learners Page 119 

5. Conclusion Page 130 

6. References Page 130 

7. Appendices Page 132 

Chapter 3:   Page 147 

Efficient simulation of DSGE models with inequality constraints  

1. Introduction Page 148 

2. The numerical method Page 149 

3. Accuracy Page 160 

4. Sample applications Page 163 

5. Conclusion Page 170 

6. References Page 170 

7. Appendices Page 172 

  



Page 3 of 174 

Foreword 

In the years since the seminal paper of Kydland and Prescott (1982), the field of dynamic 

macroeconomics has exploded. Estimated dynamic stochastic general equilibrium (DSGE) 

models are now used in all of the world’s major central banks, with models often derived 

from the medium-scale New Keynesian DSGE model of Smets and Wouters (2003). In this 

thesis, I present three contributions to this literature. 

The first paper, “Medium-frequency cycles and the remarkable near trend-stationarity of 

output” arose out of a concern with the source of fluctuations in productivity in DSGE 

models, with early versions of the paper attempting to endogenise aggregate productivity 

shocks from the firm-level upwards (Holden 2010a). However, it soon became clear that 

firm-level shocks could not possibly explain the large medium frequency fluctuations in 

output that we observe in the data. Consequently, in the included version of the paper, the 

movement in productivity stems rather from changes in the proportion of industries that 

are highly productive, which, in my paper, are those producing patent protected products. 

In a boom, inventing a new product is more profitable, leading to a higher proportion of 

relatively new industries, and so to a higher proportion producing patent protected 

products. The rents firms must pay to patent holders in our model lead entry into these 

industries to be more expensive, resulting in higher mark-ups, and consequently greater 

incentives for improvements in production processes. Thus industries producing patent 

protected products are endogenously more productive, so booms will lead to increases in 

aggregate productivity, further amplifying the expansion. 

I present a wide range of empirical evidence to support this story, and conclude with a 

demonstration of the performance of an estimated version of the model. 

The second paper included here, “Learning from learners”, is a distant ancestor of earlier, 

ultimately unsuccessful, work on fully rational macroeconomic learning (Holden 2008). Here 
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I step back slightly from the ambitious goal of full rationality, to produce a learning 

algorithm that is merely close enough to rationality that the users of the algorithm would 

not detect the misspecification in their econometric method. With traditional 

macroeconomic learning, the misspecification is readily detectable, meaning that 

competent econometricians would switch to a more sophisticated method. I argue that it is 

this misspecification that leads the traditional macroeconomic learning literature to find 

that some equilibria are not learnable, and I show that with a more sophisticated method, in 

fact almost all equilibria are learnable. As a result we agree with Cochrane (2011) that there 

is no justification for ruling out solutions to New Keynesian models in which inflation 

explodes. 

I also show that if everyone is using the traditional macroeconomic learning method for 

some reason, then the expectational errors they will make enable the identification of 

Taylor rule parameters, contrary to the claims of Cochrane (2009). 

The last paper I present here is a development of an idea for solving bounded DSGE models, 

first described in an appendix to an early version of the “Medium frequency cycles” paper 

(Holden 2010b). In that model, there is a lower bound on the growth of the stock of 

products, since products cannot be un-invented, which necessitated the creation of an 

algorithm for solving such models. Together with my co-author, Michael Paetz, the 

algorithm has been developed into the paper “Efficient simulation of DSGE models with 

inequality constraints” presented here. 

We show that our algorithm beats all others in terms of speed, and only slow, poorly scaling, 

global methods beat it in terms of accuracy. We go on to apply it to a range of dynamic 

macroeconomic models, including to the zero lower bound on nominal interest rates in the 

Smets and Wouters (2003) model. 

I hope all of these papers will have a lasting impact on the field of dynamic 

macroeconomics. 
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Chapter 1: Medium-frequency cycles 
and the remarkable near trend-

stationarity of output 

 

Tom Holden1, Balliol College, University of Oxford  

 

Abstract: This paper builds a dynamic stochastic general equilibrium (DSGE) model of 

endogenous growth that generates large medium-frequency cycles while robustly matching 

the near trend-stationary path of observed output. This requires a model in which standard 

business cycle shocks lead to highly persistent movements around trend, without 

significantly altering the trend itself. The robustness of the trend also requires that we 

eliminate the scale effects and knife edge assumptions that plague most growth models. In 

our model, when products go out of patent protection, the rush of entry into their production 

destroys incentives for process improvements. Consequently, old production processes are 

enshrined in industries producing non-protected products, and shocks that affect invention 

rates change the proportion of industries with advanced technologies. In an estimated 

version of our model, a financial-type shock to the stock of ideas emerges as the key driver of 

the medium frequency cycle.  

Keywords: medium frequency cycles, patent protection, scale effects 
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1. Introduction 

Viewed from a distance, a log-plot of the last one hundred years of US GDP looks very near 

linear. However, closer inspection reveals large medium frequency fluctuations around this 

linear trend. Generating this combination of remarkably near trend-stationary long run 

growth, and large cycles around the trend, is a challenge for traditional models of 

endogenous growth. The near linear trend requires scale effects to be removed not just in 

the long run, but in the shorter run as well. Models that remove these scale effects via knife-

edge assumptions will usually fail this test, as temporary business cycle shocks will knock the 

model away from perfectly removing the scale effect, leading to a permanent break in the 

trend of the GDP. Equally, models that remove scale effects via new product creation will 

tend to produce such trend breaks in GDP if the stock of new products can only respond 

slowly following a shock. On the other hand, if the stock of products can adjust instantly 

following a shock, then, (in standard models) there would be no movement in productivity 

at all, let alone the large, persistent medium frequency cycles that Comin and Gertler (2006) 

document in the data, and that may be seen in our Figure 1 below. In this paper, we present 

a mechanism capable of reconciling this apparently contradictory low and medium 

frequency behaviour of output, while also matching the cyclicality of mark-ups: the key 

determinant of research and invention decisions. 

Our story is as follows. The returns to inventing a new product are higher in a boom due to 

the higher demand. As a result, during periods of expansion, the rate of creation of new 

products increases, in line with the evidence of Broda and Weinstein (2010). Due to a first 

mover advantage, patent protection, or reverse-engineering difficulties, the inventors of 

these new products will be able to extract rents from them, increasing the costs 

manufacturing firms face if they wish to produce the new product. These higher costs lead 

to lower competition in new industries, increasing mark-ups and thus increasing firms’ 

incentives to perform the R&D necessary to catch-up with and surpass the frontier, for 
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basically Schumpeterian reasons. Consequently, the higher proportion of industries that are 

relatively new in a boom will lead to higher aggregate productivity, lower dispersion of both 

productivity levels and growth rates, as well as higher mark-ups. Since the length of time for 

which inventors can extract rents will be determined by the effective duration of patent-

protection, this effect will naturally work at medium frequencies. However, since we allow 

both for the creation of new industries (producing new products) and for a varying number 

of firms within each industry, even in the short-run the demand faced by any given firm will 

be roughly constant, meaning that our model will not produce large deviations from linear 

growth. 

 

Figure 1: The results of modelling quarterly log real US GDP per capita as a sum of a 
random walk, an AR(2) process and an idiosyncratic shock. The solid line in the second 
graph is a crude representation of the medium-frequency cycle. 
 

Evidence for the pro-cyclicality of TFP has been presented by Bils (1998) and Campbell 

(1998) amongst others, with Comin and Gertler (2006) showing that the evidence is 

particularly clear at medium-frequencies. The counter-cyclicality of productivity dispersion 

has been shown by Kehrig (2011), with evidence on the counter-cyclicality of the dispersion 

of productivity growth rates provided by e.g. Eisfeldt and Rampini (2006) and Bachmann and 
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Bayer (2009). Evidence for the pro-cyclicality of aggregate mark-ups has been presented by 

Boulhol (2007) and Nekarda and Ramey (2010). Nekarda and Ramey also show that mark-

ups lead output at business-cycle frequencies, we will present further evidence in section 2 

below that this relationship continues to hold at medium-frequencies. Boulhol (2007) also 

shows that although aggregate mark-ups are pro-cyclical, the mark-ups in any particular 

industry tend to be counter-cyclical. This apparent contradiction will be readily explained in 

our model since the increase in competition in any particular industry will lead to a decline 

in mark-ups in that industry (much as in the models of Bilbiie, Ghironi, and Melitz (2012) and 

Jaimovich (2007)), despite the fact that aggregate mark-ups have increased due to the 

greater proportion of industries with relatively high mark-ups. Formal evidence on the small 

size of the unit root in output (i.e. its near trend stationarity) was presented by Cochrane 

(1988), and we will present further evidence in the next section that GDP returns to trend at 

long lags. 

Direct evidence for the importance of our mechanism comes from a number of sources. 

Balasubramanian and Sivadasan (2011) find that firms holding patents have 17% higher TFP 

levels on average, and additionally find that firms that go from not holding a patent to 

holding one experience a 7.4% increase in a fixed effects measure of productivity, 

suggesting that industries producing patent-protected products are indeed significantly 

more productive. Serrano (2007) finds that although aggregate patenting is only weakly 

correlated with aggregate TFP, a measure of the number of patents whose ownership is 

transferred is strongly related to productivity. He argues that there is a great deal of noise in 

measures of total patent activity, since so many patents are never seriously commercialised. 

Patent transfers are usually observed though when their purchaser intends to begin exactly 

such a commercialisation. Thus, patent transfers provide a proxy for the commencement of 

production of new patented-products, one that is found to be highly pro-cyclical. Finally, we 

will present new evidence that longer patent protection significantly increases the share of 

GDP variance attributable to cycles of medium frequency. 
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Previous papers have introduced endogenous productivity improvement into business cycle 

models (e.g. Comin and Gertler (2006), Comin (2009), Comin, Gertler, and Santacreu (2009), 

Phillips and Wrase (2006), Nuño (2008; 2009; 2011)), or looked at cycles in growth models 

(e.g. Bental and Peled (1996), Matsuyama (1999), Wälde (2005), Francois and Lloyd-Ellis 

(2008; 2009), Comin and Mulani (2009)). However, all of these papers have problems with 

scale effects, either in the long-run, or in the short-run, and thus all of them would predict 

counter-factually large unit roots in output in the presence of standard DSGE shocks. 

Furthermore, it is not obvious how these scale effects could be removed without destroying 

the papers’ mechanisms for generating aggregate TFP movements. For example, the papers 

of Wälde (2005) and Phillips and Wrase (2006) rely on there being a small finite number of 

sectors. Removing the scale effect would mean allowing this number to grow over time with 

population, meaning the variance of productivity would rapidly go to zero. Indeed, this 

happens endogenously in the model of Horii (2011). Many models of endogenous mark-up 

determination (e.g. Bilbiie, Ghironi, and Melitz (2012) or Jaimovich (2007)) have a similar 

problem, with the presence of a small finite number of industries being crucial for explaining 

the observed variance of mark-ups. Indeed, Bilbiie, Ghironi, and Melitz (2011) write that 

“reconciling an endogenous time-varying markup with stylized growth facts (that imply 

constant markups and profit shares in the long run) is a challenge to growth theory”. By 

disentangling the margins of firm entry and product creation, we will be able to answer this 

challenge. 

The paper of most relevance to our work is Comin and Gertler (2006), as they made the 

important contribution of bringing the significance of medium-frequency cycles to the 

attention of the profession. Additionally, their theoretical model, like ours, stresses the 

effects of mark-up variations on productivity growth. Unfortunately, however, it counter-

factually predicts that increases in mark-ups lead to falls in output, contrary to the empirical 

evidence of Nekarda and Ramey (2010). Furthermore, its only major sources of productivity 

persistence are the persistence of the driving mark-up shock, and the counter-factual trend 
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break in productivity following such a shock. We conclude then, that the literature still lacks 

a model of productivity capable of explaining both its short run and its long run behaviour. 

In section 3, we present a model capable of doing this. In order to remove both the long run 

and the short run scale effect, as discussed above it will feature a varying number of 

industries, each of which will contain a varying number of firms. We do not wish to make 

any exogenous assumptions on the differences between industries producing patented 

products versus those producing unpatented ones, so in order to match the medium-

frequency behaviour of productivity and mark-ups it is important that our model allow 

endogenous variation in these quantities across industries. Were we to assume free transfer 

of technologies across industries there would be too little difference in productivity 

between patent-protected and un-patent-protected industries, and hence we would not be 

able to generate medium-frequency cycles. Equally, were we to assume technology transfer 

across industries was impossible then it would be legitimate to inquire whether the 

difference between these industry types was implausibly large, as perhaps firms in non-

protected industries would find it optimal to perform technology transfer even if they did 

not find it optimal to perform any research. Consequently, in modelling the endogenous 

productivity in each industry we will allow firms both to perform research, and to perform a 

costly process of catch-up to the frontier we shall term appropriation. To make clear the 

strength of the amplification and persistence mechanism presented here, we initially omit 

capital from the model, and we focus on the impulse responses to non-persistent shocks 

when we discuss our model’s qualitative behaviour in section 3.5. Finally, in section 4, we 

add a few standard additional features to the model (habits, capital with adjustment costs, 

variable capacity utilisation, sticky wages, Taylor rule monetary policy) and we show that 

this model matches the data well at low, medium and high frequencies, with financial-type 

shocks to the stock of ideas playing the key role in driving medium-frequency fluctuations. 
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2. Empirics 

2.1. The near trend stationarity of output 

We begin by presenting evidence that GDP returns to trend at long lags. Since statistical 

tests on regressions with large numbers of lags tend to suffer from a lack of power, we have 

to find a sparsely parameterised way of capturing this long-run behaviour. It seems 

implausible that a high-frequency spike in GDP should lead to another spike in GDP many 

periods later. Instead, if GDP responds at all to its own past fluctuations at long lags, it will 

only respond to the low frequency (i.e. smoothed) fluctuations. We would like to smooth 

the data then at a range of frequencies, and regress output on the lags of these smoothed 

series. It will also help the interpretability of results if each lag of the data affects at most 

one of these smoothed series, which suggests taking moving averages. We choose then to 

regress log US quarterly GDP per-capita on a linear trend, the first lag of its one period 

moving average (i.e. its first lag), the second lag of its two period moving average, the fourth 

lag of its four period moving average, and so on up to the 32nd lag of its 32 period moving 

average. I.e. we run the regression: 

 

𝑦𝑡 = 𝜇 + 𝛿𝑡 + 𝜙1𝑦𝑡−1 + 𝜙2
1

2
(𝑦𝑡−2 + 𝑦𝑡−3)

+ 𝜙3
1

4
(𝑦𝑡−4 + 𝑦𝑡−5 + 𝑦𝑡−6 + 𝑦𝑡−7) + ⋯

+ 𝜙6
1

32
(𝑦𝑡−32 +⋯+ 𝑦𝑡−63) + 𝜀𝑡. 

(2.1) 
 

   

The full results of this regression are given in Table 1. The key facts to note here though are 

that 𝜙2, 𝜙3, …, 𝜙6 are all negative, and that 𝜙6 is comfortably significant at 5%, suggesting 

that GDP is indeed returning towards trend at long lags. 𝜙6 corresponds to a period of eight 

to sixteen years, which includes the principal band of medium-frequency cycles, as is shown 

in Figure 3. 
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Variable Coefficient Std. Error t-value t-prob. Part R2 

𝜇 -1.20281 0.3603 -3.34 0.0010 0.0574 

𝛿 0.000572088 0.0001751 3.27 0.0013 0.0551 

𝜙1 1.21142 0.06323 19.2 0.0000 0.6673 

𝜙2 -0.251229 0.08649 -2.90 0.0041 0.0441 

𝜙3 -0.0272064 0.05389 -0.505 0.6143 0.0014 

𝜙4 -0.00266296 0.03332 -0.0799 0.9364 0.0000 

𝜙5 -0.0139299 0.02365 -0.589 0.5566 0.0019 

𝜙6 -0.0531785 0.02489 -2.14 0.0339 0.0243 

Table 1: Results of the regression (2.1). Run on log US quarterly real GDP (from NIPA) over 
X12 seasonally adjusted civilian non-institutional population (CNP16OV from FRED). 1948:1-
2011:2. 
 

We would like to know whether the magnitude of 𝜙6 is sufficient to pull GDP completely 

back to trend, or equivalently, whether log-GDP has a unit root. We can test for this if we 

transform (2.1) into Augmented Dickey-Fuller (ADF) form (Said and Dickey 1984), giving: 

 

Δ𝑦𝑡 = 𝜇 + 𝛿𝑡 + [∑𝜙𝑖

6

𝑖=1

− 1] 𝑦𝑡−1 −𝜙2
1

2
(2Δ𝑦𝑡−1 + Δ𝑦𝑡−2) − ⋯

− 𝜙6
1

32
(… ). 

(2.2) 

   

Since this is an equivalent model, no parameter estimates or standard errors change. 

However, we can now use the t-value on the 𝑦𝑡−1 coefficient (-3.36) to perform an ADF test. 

Our Monte-Carlo experiments2 indicate that there is only an 11.1% chance we would 

observe a result as extreme as this if the true data generating process were a random walk.3 

We do not wish to claim because of this that GDP is unambiguously trend-stationary. 

However, it does suggest that the size of the unit root in US GDP is (at most) very small, 

reinforcing the findings of Cochrane (1988). 

                                                      

2 With 220 replications, where in each case the regression (2.2) was run on the second half of a sample from a 

unit variance random walk, started at zero and twice the length of our data sample. This is broadly the 

methodology used by Cheung and Lai (1995) in their study of the finite sample properties of the ADF test with 

varying lag-order. 
3 Standard asymptotic critical values suggest a p-value close to 5%, but given the large number of lags and 

fairly small sample, it is unsurprising these are inaccurate. 
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2.2. Mark-ups 

Nekarda and Ramey (2010) found that mark-ups were pro-cyclical both when the data was 

filtered with a standard (𝜆 = 1600) HP-filter, and when it was filtered by taking first 

differences. However, Comin and Gertler (2006) report that mark-ups are counter-cyclical 

when the data is filtered via a band pass filter that keeps cycles of periods from one to fifty 

years.4 Given that Comin and Gertler find that the medium-frequency variance of output is 

concentrated on cycles taking around ten years, the natural question is whether the 

counter-cyclicality of mark-ups they observe is a consequence of behaviour around these 

frequencies, or whether it is driven by counter-cyclicality at lower frequencies. Nekarda and 

Ramey (2010) also found that at business cycle frequencies, mark-ups were strongly 

correlated with future output, and negatively correlated with past output. Again, we would 

like to know if this still holds at plausible medium frequencies. The plot in Figure 2 below 

answers both of these questions. 

Each vertical slice of this plot shows the cross-correlation5 of quarterly log output and log 

mark-ups6 when both are filtered by a high pass filter7 with a cut-off given by the x-axis’s 

value. (Shaded areas indicate positive correlations, with the darker area being significantly 

different from zero at 5%. The cross-hatched area is negative but insignificantly different 

from zero at 5%.) We see immediately that Nekarda and Ramey’s finding that mark-ups are 

positively correlated with future output and negatively correlated with past output holds 

particularly strongly at medium frequencies. Additionally, tracing along the lead=0 line we 

                                                      

4 Using annual data, they also find that mark-ups are counter-cyclical at business cycle frequencies, though less 

so than at medium ones; however, their measure of the mark-up relies on many more questionable 

assumptions about utility and production functions than the Nekarda and Ramey one does. Additionally, 

Nekarda and Ramey find that the use of annual data always biases observed correlations towards counter-

cyclicality. 
5 Fractional lags are evaluated via linear interpolation. 
6 Mark-ups are measured by the inverse labour share (following Nekarda and Ramey (2010)). Data is from 

NIPA, 1947:Q1-2011Q2. 
7 Implemented by setting the lower cut-off of a Christiano and Fitzgerald (2003) band-pass filter to two 

quarters. 
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see that mark-ups are pro-cyclical when the data is filtered by a high-pass filter with a cut-

off less than 16.5 years, suggesting that the Comin and Gertler’s medium-frequency 

counter-cyclicality result was indeed driven by behaviour below the main frequencies of 

medium-frequency cycles. 

 
Filter upper cut-off in years 

Figure 2: The cross correlation of US output and mark-ups, as a function of filter cut-off. 
(Dark grey is a significantly positive correlation (at 5%), light grey is a positive but 
insignificant one, cross-hatched is a negative but insignificant one and white is a significantly 
negative one.) 

 
Period length in years 

Figure 3: The spectral decomposition of US output growth. 
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Indeed, from the spectral decomposition8 of output growth shown in Figure 3, we see that 

mark-ups are significantly pro-cyclical when filtered at any frequency corresponding to a 

peak in the spectral decomposition, including the medium-frequency peak at twelve years. 

This establishes that the relevant medium-frequency cycles feature pro-cyclical movements 

in mark-ups. 

2.3. GDP variance 

Our model predicts that the length of patent-protection should be positively correlated with 

the observed size of medium-frequency cycles, at least for durations of patent-protection 

around those we observe in reality. In Table 2, we exploit cross-country variation in effective 

patent duration to demonstrate the presence of this correlation in the data, even when we 

control for GDP, legal origins and various measures of political stability and risk. (Full details 

of the data are given in footnotes to the table.) Patent duration in both 1960 and 2005 has a 

significantly positive effect (at 5%) on the strength of medium frequency cycles9 in all our 

five specifications, and only in in the specification with no controls is there marginal 

evidence of misspecification (at 5%). Concerns about endogeneity mean some restraint 

must be exerted in interpreting these results, but they are nonetheless suggestive of a role 

for patent protection in the mechanism generating medium frequency cycles in the data. 

                                                      

8 Constructed using an entirely parameter free method. We first filter the data with a Christiano and Fitzgerald 

(2003) band-pass filter with a lower cut-off of two quarters and a higher cut-off equal to the data length, in 

order to remove the influence of structural change and ensure stationarity. We then use the Hurvich (1985) 

cross-validation procedure to choose the bandwidth for the spectral-decomposition of the data, with his 

Stuetzle-derived estimator of the mean integrated squared error, the standard Blackman-Tukey lag-weights 

estimate, and the Quadratic Spectral Kernel recommended by Andrews (1991) amongst others.  
9 Data is from the Penn World Tables (Heston, Summers, and Aten 2011) and spans 1950-2009, though many 

countries have shorter samples. The shortest sample (of growth rates) is 23 years. We ran regressions 

including the sample length as a regressor, but it consistently came out insignificant. Medium frequency 

variance shares are constructed from spectral decompositions, following Levy and Dezhbakhsh (2003), where 

the spectral decomposition is performed using the parameter free method outlined in footnote 8, with the 

initial filter set to accept period lengths between 2 and 59 years (the length of the largest samples). 
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Variable Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 

Constant 
 

-2.09811 
(0.0300) 

-2.14048 
(0.0206) 

-1.91285 
(0.0180) 

-2.70784 
(0.0000) 

-2.18372 
(0.0009) 

English legal 
origin10 

-0.0506172 
(0.8567) 

   -0.448554 
(0.0810) 

French legal 
origin10 

-0.0557074 
(0.8394) 

   -0.350747 
(0.1653) 

German legal 

origin10 

-0.151587 
(0.6364) 

   -0.325196 
(0.3154) 

Log GDP per 

effective adult11 

0.0715242 
(0.3620) 

0.0707845 
(0.3501) 

   

GDP per effective 
adult growth11 

7.39306 
(0.1647) 

7.24517 
(0.1606) 

   

Socioeconomic 
Conditions (ICRG)12 

-0.224159 
(0.0078) 

-0.229358 
(0.0044) 

-0.170029 
(0.0107) 

  

Law and order 
(ICRG)12 

-0.154013 
(0.0856) 

-0.150749 
(0.0818) 

-0.148729 
(0.0856) 

  

Logit overall 

political risk (ICRG)12,13 

0.806772 
(0.0013) 

0.811630 
(0.0006) 

0.823980 
(0.0003) 

  

Index of patent 

duration, 196014 

0.357215 
(0.0336) 

0.363052 
(0.0242) 

0.384211 
(0.0131) 

0.395486 
(0.0044) 

0.396382 
(0.0060) 

Index of patent 
duration, 200514 

1.79391 
(0.0223) 

1.79854 
(0.0197) 

1.88715 
(0.0140) 

1.66419 
(0.0053) 

1.50279 
(0.0133) 

Observations 100 100 100 111 111 

Specification 

test p-values15 

0.50, 0.31, 
0.58 

0.51, 0.20, 
0.63 

0.58, 0.08, 
0.74 

0.31, 0.06, 
0.05 

0.32, 0.12, 
0.06 

Table 2: The impact of patent duration on the strength of medium frequency cycles. 
Coefficients from assorted regression specifications. (P-values in brackets.) In all cases, the 
dependent variable is a logit transform of the proportion of GDP per effective adult growth 
variance that is at frequencies with periods greater than eight years.9 

                                                      

10 All countries which neither have English, French or German legal origins have Scandinavian legal origin in our 

sample. Data is from La Porta, Lopez-de-Silanes and Shleifer (2008). 
11 The intercept and the slope from running a regression of log GDP per effective adult on time. Data from the 

Penn World Tables (Heston, Summers, and Aten 2011), samples identical to those used to construct the 

dependent variable. 
12 International Country Risk Guide, The PRS Group. Data provided by the Nuffield College Data Library. 

Variables are means of annual data from 1986-2007 (the largest span available for all countries in the sample). 
13 This is the sum of the two components mentioned above, along with measures of government stability, the 

investment profile, internal/external conflict, corruption, the military/religion in Politics, ethnic tensions, 

democratic accountability and bureaucracy quality. The logit transform was taken after the mean. We ran 

regressions including all components separately and our results were almost identical (p-values on patent 

duration of 0.0192 and 0.0172 respectively), but to save space here we focus on the components found to be 

most relevant. 
14 Data kindly provided by Walter Park, updated from Ginarte and Park (1997). 
15 Respectively, a normality test (Doornik and Henrik Hansen 2008), the White heteroskedasticity test (White 

1980) and the reset test with squares and cubes (Ramsey 1969). 
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3. The model 

Our base model is a standard quarterly real business cycle (RBC) model without capital, 

augmented by the addition of models of endogenous competition, research, appropriation 

and invention. The lack of capital means the underlying RBC model has no endogenous 

propagation mechanism, making clearer the contribution of our additions. 

Our model has a continuum of narrow industries, each of which contains finitely many firms 

producing a unique product. The measure of industries is increased by the invention of new 

products, which start their life patent-protected. However, we assume that product 

inventors lack the necessary human capital to produce their product at scale themselves, 

and so they must licence out their patent to manufacturing firms. The duration of patent-

protection is given by a geometric distribution, in line with Serrano’s (2010) evidence on the 

large proportion of patents that are allowed to expire early, perhaps because they are 

challenged in court or perhaps because another new product is a close substitute. An earlier 

working-paper version of this model (Holden 2011) considered the fixed duration case, 

which is somewhat less tractable. Allowing for a distribution of protection lengths also 

allows us to give a broader interpretation to protection within our model. Even in the 

absence of patent protection, the combination of contractual agreements such as NDAs, 

and difficulties in reverse engineering, is likely to enable the inventor of a new product to 

extract rents for a period. 

Our model of endogenous competition within each industry is derived from Jaimovich 

(2007). We chose the Jaimovich model as it is a small departure from the standard Dixit-

Stiglitz (1977) set-up, and leads to some particularly neat expressions. Similar results could 

be attained with Cournot competition, or the Translog form advocated by Bilbiie, Ghironi, 

and Melitz (2012). One important departure from the Jaimovich model is that in our model 

entry decisions take place one period in advance. This is natural as we wish to model 

research as taking place after entry but before production. 
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Productivity within a firm is increased by performing research or appropriation. We regard 

process research as incremental, with regular small changes rather than the unpredictable 

jumps found in Schumpetarian models (Aghion and Howitt 1992; Wälde 2005; Phillips and 

Wrase 2006). 

Throughout, we assume that only products are patentable,16 and so by exerting effort firms 

are able to “appropriate” process innovations from other industries to aid in the production 

of their own product. This appropriation is costly since technologies for producing other 

products will not be directly applicable to producing a firm’s own product. We assume that 

technology transfer within an industry is costless however, due to intra-industry labour 

flows and the fact that all firms in an industry are producing the same product. This is 

important for preserving the tractability of the model, as it means that without loss of 

generality we may think of all firms as just existing for two periods, in the first of which they 

enter and perform research, and in the second of which they produce. 

The broad timing of our model is as follows. At the beginning of period 𝑡 invention takes 

place, creating new industries. All holders of current patents (including these new inventors) 

then decide what level of licence fee to charge. Then, based on these licence fees and the 

level of overhead costs, firms choose whether to enter each industry. Next, firms perform 

appropriation, raising their next-period productivity towards that of the frontier, then 

research, further improving their productivity next period. In period 𝑡 + 1, they then 

produce using their newly improved production process. Meanwhile, a new batch of firms 

will be starting this cycle again. 

                                                      

16 This is at least broadly in line with the law in most developed countries: ideas that are not embedded in a 

product (in which category we include machines) generally have at most limited patentability. In the U.S., the 

most recent Supreme court decision found that the following was “a useful and important clue” to the 

patentability of processes (Bilski v. Kappos, 561 U.S. ___ (2010)): “a method claim is surely patentable subject 

matter if (1) it is tied to a particular machine or apparatus, or (2) it transforms a particular article into a 

different state or thing” (In re Bilski, 545 F.3d 943, 88 U.S.P.Q.2d 1385 (Fed. Cir. 2008)). This “machine or 

transformation” test was widely believed at the time to have ended the patentability of business processes 

(The Associated Press 2008), and this position was only slightly softened by Bilski v. Kappos. 
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We now give the detailed structure of the model. 

3.1. Households 

There is a unit mass of households, each of which contains 𝑁𝑡 members in period 𝑡. The 

representative household maximises: 

𝔼𝑡∑𝛽𝑠𝑁𝑡+𝑠Θ𝑡+𝑠 [log
𝐶𝑡+𝑠
𝑁𝑡+𝑠

−
Φ𝑡+𝑠

1 + 𝜈
(
𝐿𝑡+𝑠
S

𝑁𝑡+𝑠
)

1+𝜈

]

∞

𝑠=0

 

where 𝐶𝑡 is aggregate period 𝑡 consumption, 𝐿𝑡
S  is aggregate period 𝑡 labour supply, Θ𝑡 is a 

demand shock, Φ𝑡 is a labour supply shock, 𝛽 is the discount rate and 𝜈 is the inverse of the 

Frisch elasticity of labour supply to wages, subject to the aggregate budget constraint that 

𝐶𝑡 + 𝐵𝑡 = 𝐿𝑡
S𝑊𝑡 + 𝐵𝑡−1𝑅𝑡−1 + Π𝑡, where 𝐵𝑡 is the aggregate number of (zero net supply) 

bonds bought by households in period 𝑡, 𝑊𝑡 is the period 𝑡 wage, 𝑅𝑡−1 is the period 𝑡 sale 

price of a (unit cost) bond bought in period 𝑡 − 1, and Π𝑡 is the households’ period 𝑡 

dividend income. In the following, where we refer to preference shocks we mean either a 

shock to Θ𝑡 or a shock to Φ𝑡. However, both of these shocks may be interpreted as proxying 

for real changes in the economy that are independent of preferences. For example, Θ𝑡 will 

capture changes in government consumption demand coming from wars, and Φ𝑡 will pick 

up changes in marginal tax rates and in the degree of imperfect competition in labour 

markets. 

Let 𝛽Ξ𝑡+1 be the households’ period 𝑡 stochastic discount factor, then the households’ first 

order conditions imply: 

Ξ𝑡 =
Θ𝑡𝑁𝑡𝐶𝑡−1
Θ𝑡−1𝑁𝑡−1𝐶𝑡

, Φ𝑡𝐿𝑡
S𝜈 = 𝑁𝑡

1+𝜈
𝑊𝑡

𝐶𝑡
, 𝛽𝑅𝑡𝔼𝑡[Ξ𝑡+1] = 1. 
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3.2. Aggregators 

The consumption good is produced by a perfectly competitive industry from the aggregated 

output 𝑌𝑡(𝑖) of each industry 𝑖 ∈ [0, 𝐼𝑡−1], using the following Dixit-Stiglitz-Ethier (Dixit and 

Stiglitz 1977; Ethier 1982) style technology: 

𝑌𝑡 = 𝐼𝑡−1
−𝜆 [∫ 𝑌𝑡(𝑖)

1

1+𝜆 ⅆ𝑖
𝐼𝑡−1

0

]

1+𝜆

 

where 
1+𝜆

𝜆
 is the elasticity of substitution between goods and where the exponent on the 

measure of industries (𝐼𝑡−1)17 has been chosen to remove the preference for variety in 

consumption.18 

Normalising the price of the aggregate consumption good to 1, and writing 𝑃𝑡(𝑖) for the 

price of the aggregate good from industry 𝑖 in period 𝑡, we have that: 

𝑌𝑡(𝑖) =
𝑌𝑡
𝐼𝑡−1

𝑃𝑡(𝑖)
−
1+𝜆

𝜆 , 1 = [
1

𝐼𝑡−1
∫ 𝑃𝑡(𝑖)

−
1

𝜆 ⅆ𝑖
𝐼𝑡−1

0

]

−𝜆

. 

Similarly, each industry aggregate good 𝑌𝑡(𝑖) is produced by a perfectly competitive industry 

from the intermediate goods 𝑌𝑡(𝑖, 𝑗) for 𝑗 ∈ {1,… , 𝐽𝑡−1(𝑖)},
19 using the technology: 

𝑌𝑡(𝑖) = 𝐽𝑡−1(𝑖)
−𝜂𝜆 [ ∑ 𝑌𝑡(𝑖, 𝑗)

1

1+𝜂𝜆

𝐽𝑡−1(𝑖)

𝑗=1

]

1+𝜂𝜆

 

where 𝜂 ∈ (0,1) controls the degree of differentiation between firms, relative to that 

between industries. 

                                                      

17 The 𝑡 − 1 subscript here reflects the fact that industries are invented one period before their product is 

available to consumers. 
18 Incorporating a preference for variety would not change the long-run stability of our model. 
19 Again, the 𝑡 − 1 subscript reflects the fact that firms enter one period before production. 



Medium-frequency cycles and the remarkable near trend-stationarity of output. 

Page 23 of 174 

This means that if 𝑃𝑡(𝑖, 𝑗) is the price of intermediate good 𝑗 in industry 𝑖: 

𝑌𝑡(𝑖, 𝑗) =
𝑌𝑡(𝑖)

𝐽𝑡−1(𝑖)
(
𝑃𝑡(𝑖, 𝑗)

𝑃𝑡(𝑖)
)

−
1+𝜂𝜆

𝜂𝜆

, 𝑃𝑡(𝑖) = [
1

𝐽𝑡−1(𝑖)
∑ 𝑃𝑡(𝑖, 𝑗)

−
1

𝜂𝜆

𝐽𝑡−1(𝑖)

𝑗=1

]

−𝜂𝜆

. 

3.3. Intermediate firms 

3.3.1. Pricing 

Firm 𝑗 in industry 𝑖 has access to the linear production technology 𝑌𝑡(𝑖, 𝑗) = 𝐴𝑡(𝑖, 𝑗)𝐿𝑡
P(𝑖, 𝑗) 

for production in period 𝑡. As in Jaimovich (2007), strategic profit maximisation then implies 

that in a symmetric equilibrium 𝑃𝑡(𝑖) = 𝑃𝑡(𝑖, 𝑗) = (1 + 𝜇𝑡−1(𝑖))
𝑊𝑡

𝐴𝑡(𝑖,𝑗)
= (1 + 𝜇𝑡−1(𝑖))

𝑊𝑡

𝐴𝑡(𝑖)
, 

where 𝜇𝑡(𝑖) ≔ 𝜆
𝜂𝐽𝑡(𝑖)

𝐽𝑡(𝑖)−(1−𝜂)
∈ (𝜂𝜆, 𝜆]is the industry 𝑖 mark-up in period 𝑡 + 1 and 𝐴𝑡(𝑖) =

𝐴𝑡(𝑖, 𝑗) is the productivity shared by all firms in industry 𝑖 in symmetric equilibrium. 

From aggregating across industries we have that 𝑊𝑡 =
𝐴𝑡

1+𝜇𝑡−1
 where: 

1

1 + 𝜇𝑡
= [

1

𝐼𝑡
∫ [

1

1 + 𝜇𝑡(𝑖)
]

1

𝜆

ⅆ𝑖
𝐼𝑡

0

]

𝜆

 

determines the aggregate mark-up 𝜇𝑡−1 and where: 

𝐴𝑡 ≔

[
1

𝐼𝑡−1
∫ [

𝐴𝑡(𝑖)

1+𝜇𝑡−1(𝑖)
]

1

𝜆
ⅆ𝑖

𝐼𝑡−1
0

]

𝜆

[
1

𝐼𝑡−1
∫ [

1

1+𝜇𝑡−1(𝑖)
]

1

𝜆
ⅆ𝑖

𝐼𝑡−1
0

]

𝜆
 

is a measure of the aggregate productivity level. 20 

                                                      

20 Due to the non-linear aggregation, it will not generically be the case that aggregate output is aggregate 

labour input times 𝐴𝑡. However, the aggregation chosen here is the unique one under which aggregate mark-

ups are known one period in advance, as industry mark-ups are. 
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3.3.2. Sunk costs: rents, appropriation and research 

Following Jaimovich (2007), we assume that the number of firms in an industry is pinned 

down by the zero profit condition that equates pre-production costs to production period 

revenues. Firms borrow in order to cover these upfront costs, which come from four 

sources.  

Firstly, firms must pay a fixed operating cost 𝐿F that covers things such as bureaucracy, 

human resources, facility maintenance, training, advertising, shop set-up and capital 

installation/creation. Asymptotically, the level of fixed costs will not matter, but including it 

here will help in our explanation of the importance of patent protection for long run growth. 

Secondly, if the product produced by industry 𝑖 is currently patent-protected, then firms 

must pay a rent of ℛ𝑡(𝑖) units of the consumption good to the patent-holder for the right to 

produce in their industry. Since all other sunk costs are paid to labour, for convenience we 

define 𝐿𝑡
ℛ(𝑖) ≔

ℛ𝑡(𝑖)

𝑊𝑡
, i.e. the labour amount equivalent in cost to the rent.  

Thirdly, firms will expand labour effort on appropriating the previous process innovations of 

the leading industry. We define the level of the leading technology within industry 𝑖 by 

𝐴𝑡
∗(𝑖) ≔ max

𝑗∈{1,…,𝐽𝑡−1(𝑖)}
𝐴𝑡(𝑖, 𝑗)  and the level of the best technology anywhere by 𝐴𝑡

∗ ≔

sup
𝑖∈[0,𝐼𝑡−1]

𝐴𝑡
∗(𝑖). Due to free in-industry transfer, even without exerting any appropriation 

effort, firms in industry 𝑖 may start their research from 𝐴𝑡
∗(𝑖) in period 𝑡. By employing 

appropriation workers, a firm may raise this level towards 𝐴𝑡
∗. 

We write 𝐴𝑡
∗∗(𝑖, 𝑗) for the base from which firm 𝑗 ∈ {1,… , 𝐽𝑡(𝑖)} will start research in period 

𝑡, and we assume that if firm 𝑗 employs 𝐿𝑡
A(𝑖, 𝑗) units of appropriation labour in period 𝑡 

then: 

 𝐴𝑡
∗∗(𝑖, 𝑗) = [𝐴𝑡

∗(𝑖)𝜏 + (𝐴𝑡
∗𝜏 − 𝐴𝑡

∗(𝑖)𝜏)
𝐴𝑡
∗(𝑖)−𝜁

A
Υ𝐿𝑡

A(𝑖, 𝑗)

1 + 𝐴𝑡
∗(𝑖)−𝜁

A
Υ𝐿𝑡

A(𝑖, 𝑗)
]

1

𝜏

, (3.1) 
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where Υ is the productivity of appropriation labour, 𝜁A > 0 controls the extent to which 

appropriation is getting harder over time (due, for example, to the increased complexity of 

later technologies) and where 𝜏 > 0 controls whether the catch-up amount is a proportion 

of the technology difference in levels (𝜏 = 1), log-levels (𝜏 = 0) or anything in between or 

beyond. This specification captures the key idea that the further a firm is behind the 

frontier, the more productive will be appropriation. Allowing for appropriation (and 

research, and invention) to get harder over time is both realistic, and essential for the 

tractability of our model, since it will lead our model to have a finite dimensional state 

vector asymptotically, despite all the heterogeneity across industries. 

Fourthly and finally, firms will employ labour in research. If firm 𝑗 ∈ {1,… , 𝐽𝑡(𝑖)} employs 

𝐿𝑡
R(𝑖, 𝑗) units of research labour in period 𝑡, its productivity level in period 𝑡 + 1 will be given 

by: 

𝐴𝑡+1(𝑖, 𝑗) = 𝐴𝑡
∗∗(𝑖, 𝑗) (1 + 𝛾𝑍𝑡+1(𝑖, 𝑗)𝐴𝑡

∗∗(𝑖, 𝑗)−𝜁
R
Ψ𝐿𝑡

R(𝑖, 𝑗))

1

𝛾
, 

where Ψ is the productivity of research labour, 𝜁R > 𝜁A  controls the extent to which 

research is getting harder over time, 𝑍𝑡+1(𝑖, 𝑗) > 0  is a shock representing the luck 

component of research, and 𝛾 > 0 controls the “parallelizability” of research. 21 If 𝛾 = 1, 

research may be perfectly parallelized, so arbitrarily large quantities may be performed 

within a given period without loss of productivity, but if 𝛾 is large, then the productivity of 

research declines sharply as the firm attempts to pack more into one period. The restriction 

that 𝜁R > 𝜁A means that the difficulty of research is increasing over time faster than the 

difficulty of appropriation. This is made because research is very much specific to the 

industry in which it is being conducted, whereas appropriation is a similar task across all 

                                                      

21 Peretto (1999) also looks at research that drives incremental improvements in productivity, and chooses a 

similar specification. The particular one used here is inspired by Groth, Koch, and Steger (2009). 
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industries attempting to appropriate the same technology, and hence is more likely to have 

been standardised, or to benefit from other positive spillovers. 

In the following, we will assume that 𝑍𝑡(𝑖, 𝑗) ≔ 𝑍𝑡 so that all firms in all industries receive 

the same “idea” shock. We make this assumption chiefly for simplicity, but it may be 

justified by appeal to common inputs to private research, such as university research output 

or the availability of new tools, or by appeal to in-period labour market movements carrying 

ideas with them. We will see in the following that allowing for industry-specific shocks has 

minimal impact on our results, providing there are at least correlations across industries 

(plausible if they are producing similar products). For concreteness, we assume that 𝑍𝑡 ≔

exp(𝜎𝑍𝜖𝑍,𝑡), where 𝜎𝑍 > 0 and 𝜖𝑍,𝑡~NIIID(0,1). 

3.3.3. Research and appropriation effort decisions 

Firms are owned by households and so they choose research and appropriation to 

maximize: 

𝛽𝔼𝑡 [Ξ𝑡+1 (𝑃𝑡(𝑖, 𝑗) −
𝑊𝑡+1

𝐴𝑡+1(𝑖, 𝑗)
) 𝑌𝑡(𝑖, 𝑗)] − [𝐿𝑡

R(𝑖, 𝑗) + 𝐿𝑡
A(𝑖, 𝑗) + 𝐿𝑡

ℛ(𝑖) + 𝐿F]𝑊𝑡 

It may be shown that, for firms in frontier industries (those for which 𝐴𝑡
∗(𝑖) = 𝐴𝑡

∗), if an 

equilibrium exists, then it is unique and symmetric within an industry; but we cannot rule 

out the possibility of asymmetric equilibria more generally. 22  However, since the 

                                                      

22 The equilibrium concept we use is that of pure-strategy subgame-perfect local Nash equilibria (SPLNE) (i.e. 

only profitable local deviations are ruled out). We have no reason to believe the equilibrium we find is not in 

fact a subgame-perfect Nash equilibria (SPNE). Indeed, if there is a pure-strategy symmetric SPNE then it will 

be identical to the unique pure-strategy symmetric SPLNE that we find. Furthermore, our numerical 

investigations suggest that at least in steady-state, at our calibrated parameters, the equilibrium we describe is 

indeed an SPNE. (Code available on request.) However, due to the analytic intractability of the second stage 

pricing game when productivities are asymmetric, we cannot guarantee that it remains an equilibrium away 

from the steady-state, or for other possible calibrations. However, SPLNE’s are independently plausible since 

they only require firms to know the demand curve they face in the local vicinity of an equilibrium, which 

reduces the riskiness of the experimentation they must perform to find this demand curve (Bonanno 1988). It 

is arguable that the coordination required to sustain asymmetric equilibria and the computational demands of 

mixed strategy equilibria render either of these less plausible than our SPLNE. 
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coordination requirements of asymmetric equilibria render them somewhat implausible, we 

restrict ourselves to the unique equilibrium in which all firms within an industry choose the 

same levels of research and appropriation. Let us then define effective research performed 

by firms in industry 𝑖 by ℒ𝑡
R(𝑖) ≔ 𝐴𝑡

∗∗(𝑖)−𝜁
R
Ψ𝐿𝑡

R(𝑖, 𝑗) (valid for any 𝑗 ∈ {1, … , 𝐽𝑡−1(𝑖)}) and 

effective appropriation performed by firms in that industry by ℒ𝑡
A(𝑖) ≔ 𝐴𝑡

∗(𝑖)−𝜁
A
Υ𝐿𝑡

A(𝑖, 𝑗) 

(again, valid for any 𝑗 ∈ {1,… , 𝐽𝑡−1(𝑖)}). 

Providing 
1

𝜇𝑡(𝑖)
< min{𝛾, 𝜏}, 𝛾 > 𝜁R  and 𝜆 < 1 (for the second order conditions23 and for 

uniqueness), combining the first order and free entry conditions then gives us that, in the 

limit as 𝜎𝑍 → 0:24 

 ℒ𝑡
R(𝑖) = max {0,

𝒹𝑡(𝑖)𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ(𝐿𝑡

A(𝑖, 𝑗) + 𝐿𝑡
ℛ(𝑖) + 𝐿𝑡

F) − 𝜇𝑡(𝑖)

𝛾𝜇𝑡(𝑖) − 𝒹𝑡(𝑖)
} (3.2) 

   

and: ℒ𝑡
A(𝑖) = max {0, 𝒻𝑡(𝑖) + √max{0, 𝒻𝑡(𝑖)2 + ℊ𝑡(𝑖)}}, (3.3) 

   
where 𝒹𝑡(𝑖) ∈ (0,1)

25 is small when firm behaviour is highly distorted by firms’ incentives to 

deviate from choosing the same price as the other firms in their industry, off the equilibrium 

path (so 𝒹𝑡(𝑖) → 1 as 𝐽𝑡(𝑖) → ∞), and 𝒻𝑡(𝑖) and ℊ𝑡(𝑖)
26  are increasing in an industry’s 

distance from the frontier, as the further behind a firm is, the greater are the returns to 

appropriation.  

                                                      

23 The second order condition for research may be derived most readily by noting that when 𝒹𝑡(𝑖) → 1, (i.e. 

𝐽𝑡(𝑖) → ∞) the first order condition for research is identical to the one that would have been derived had there 

been a continuum of firms in each industry with exogenous elasticity of substitution 
1+𝜇𝑡(𝑖)

𝜇𝑡(𝑖)
. That it holds more 

generally follows by continuity. Since 𝐴𝑡
∗∗(𝑖, 𝑗) is bounded above, no matter how much appropriation is 

performed the highest solution of the appropriation first order condition must be at least a local maximum. 
24 The first order and zero profit conditions are reported in an appendix, section 7.1, where we also derive 

these solutions. We do not assume 𝜎𝑍 = 0 when simulating, but it leads here to expressions that are easier to 

interpret. 
25 Defined in the appendix, section 7.1. 

26  𝒻𝑡(𝑖) ≔
1

2
[1 +

𝒹𝑡(𝑖)

𝜏𝜇𝑡(𝑖)

1+(𝛾−𝜁R)ℒ𝑡
R(𝑖)

1+𝛾ℒ𝑡
R(𝑖)

] [1 − (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

] − 1 , ℊ𝑡(𝑖) ≔
𝒹𝑡(𝑖)

𝜏𝜇𝑡(𝑖)

1+(𝛾−𝜁R)ℒ𝑡
R(𝑖)

1+𝛾ℒ𝑡
R(𝑖)

𝐴𝑡
∗(𝑖)−𝜁

A
Υ[𝐿𝑡

R(𝑖) + 𝐿𝑡
ℛ(𝑖) +

𝐿F] [1 − (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

] − (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

. 
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Equations (3.2) and (3.3) mean that research and appropriation levels are increasing in the 

other sunk costs a firm must pay prior to production, but decreasing in mark-ups. They also 

mean that the strategic distortions caused by there being a small number of firms within an 

industry tend to reduce research and appropriation levels. Other sunk costs matter for 

research levels because when other sunk costs are high, entry into the industry is lower, 

meaning that each firm receives a greater slice of production-period profits, and so has 

correspondingly amplified research incentives. 

Why mark-up increases decrease research incentives is clearest when those mark-up 

increases are driven by exogenous decreases in the elasticity of substitution. When products 

are close substitutes, then by performing research (and cutting its price) a firm may 

significantly expand its market-share, something that will not happen when the firm’s good 

is a poor substitute for its rivals. When 𝒹𝑡(𝑖) ≈ 1 (i.e. there are a lot of firms in the industry) 

firms act as if they faced an exogenous elasticity of substitution 
1+𝜇𝑡(𝑖)

𝜇𝑡(𝑖)
, and so when mark-

ups are high they will want to perform little research. When 𝒹𝑡(𝑖) is small (i.e. there are 

only a few firms) then firms’ behaviour is distorted by strategic considerations. Each firm 

realises that if they perform extra research today then their competitors will accept lower 

mark-ups the next period. This reduces the extent to which research allows market-share 

expansion, depressing research incentives. 

Perhaps counter-intuitively, the minimum value of 𝒹𝑡(𝑖) occurs when there is a strictly 

positive number of firms in the industry. It is certainly true that if there is a single firm in an 

industry, then, as you would expect, very little research will be performed (because the 

firm’s only incentive to cut prices comes from competition from other industries, 

competition which is very weak, since those industries are producing poor substitutes to its 

own good). However, this drop in research incentives is working entirely through the mark-

up channel, and so in fact we also have that 𝒹𝑡(𝑖) → 1 as 𝐽𝑡(𝑖) → 1. One intuition for this is 

that there can be no strategic behaviour when there is only a single firm. 
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The key thing to note about (3.2) and (3.3) is that research and appropriation are 

independent of the level of demand, except insomuch as demand affects mark-ups and the 

level of the strategic distortion. This is because when demand is high there is greater entry, 

so each firm still faces roughly the same demand. This is essential for removing the short-

run scale effect. 

In industries that are no longer patent-protected, rents will be zero (i.e. 𝐿𝑡
ℛ(𝑖) ≡ 0). Since 

research is getting harder at a faster rate than appropriation (𝜁R > 𝜁A ), at least 

asymptotically, no research will be performed in these industries. This is because 

𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ[𝐿𝑡

A(𝑖) + 𝐿F] − 𝜇𝑡(𝑖) is asymptotically negative since 𝜇𝑡(𝑖) ∈ (𝜂𝜆, 𝜆]. For growth 

to continue forever in the absence of patent protection, we would require that the 

overhead cost (𝐿F) was growing over time at exactly the right rate to offset the increasing 

difficulty of research. This does not seem particularly plausible. However, it will turn out 

that optimal patent rents grow at exactly this rate, so with patent protection we will be able 

to sustain long run growth even when overhead costs are asymptotically dominated by the 

costs of research. In the presence of sufficiently-severe financial frictions of the “pledgibility 

constraint” form (Hart and Moore 1994), it may be shown that long run growth is 

sustainable even without patent protection. We leave the details of this for future work. 

Appropriation is performed in an industry if and only if ℊ𝑡(𝑖) > 0, which, for a non-patent 

protected industry no longer performing research, is true if and only if: 

𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ < (

𝐴𝑡
∗(𝑖)−𝜁

A
Υ𝐿F

𝐴𝑡
∗(𝑖)−𝜁

A
Υ𝐿F + 𝜏

𝜇𝑡(𝑖)

𝒹𝑡(𝑖)

)

1

𝜏

. 

The left hand side of this equation is the relative productivity of the industry compared to 

the frontier. The right hand side of this equation will be shrinking over time at roughly 
𝜁A

𝜏
 

times the growth rate of the frontier, meaning the no-appropriation cut-off point is also 

declining over time. Indeed, we show in an appendix, section 7.2, that asymptotically the 
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relative productivity of non-protected firms shrinks at 
𝜁A

𝜏
[1 +

𝜁A

𝜏
]
−1

 times the growth rate of 

the frontier. This is plausible since productivity differences across industries have been 

steadily increasing over time,27 and is important for the tractability of our model since it 

enables us to focus on the asymptotic case in which non-protected firms never perform 

appropriation. It is also in line with the long delays in the diffusion of technology found by 

Mansfield (1993) amongst others. 

3.4. Inventors 

Each new industry is controlled by an inventor who owns the patent rights to the product 

the industry produces. Until the inventor’s product goes on sale, the patent holder can 

successfully protect their revenue stream through contractual arrangements, such as non-

disclosure agreements. This means that even in the absence of patent-protection a patent 

holder will receive one period of revenues. In this period, and each subsequent one for 

which they have a patent, the inventor optimally chooses the rent ℛ𝑡(𝑖) (or equivalently 

𝐿𝑡
ℛ(𝑖)) to charge all the firms that wish to produce their product. We are supposing 

inventors lack the necessary human capital to produce their product at scale themselves. 

The inventor of a new product has a probability of 1 − 𝓆 of being granted a patent to 

enable them to extract rents for a second period. After this, if they have a patent at 𝑡, then 

they face a constant probability of 1 − 𝓆 of having a patent at 𝑡 + 1. 

The reader should have a firm such as Apple in mind when thinking about these inventors. 

Apple has no manufacturing plants and instead maintains its profits by product innovation 

and tough bargaining with suppliers. 

                                                      

27 Some indirect evidence for this is provided by the increase in wage inequality, documented in e.g. Autor, 

Katz, and Kearney (2008). Further evidence is provided by the much higher productivity growth rates 

experienced in manufacturing, compared to those in services (mostly unpatented and unpatentable), 

documented in e.g. Duarte and Restuccia (2009). 
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3.4.1. Optimal rent decisions 

Inventor’s businesses are also owned by households; hence, an inventor’s problem is to 

choose 𝐿𝑡+𝑠
ℛ (𝑖) for 𝑠 ∈ ℕ to maximise their expected profits, which are given by: 

𝜋𝑡 ≔ 𝔼𝑡∑𝛽𝑠(1 − 𝓆)𝑠 [∏Ξ𝑡+𝑘

𝑠

𝑘=1

] 𝐿𝑡+𝑠
ℛ (𝑖)𝑊𝑡+𝑠𝐽𝑡+𝑠(𝑖)

∞

𝑠=0

, 

subject to an enforceability constraint on rents. If the rents charged by a patent-holder go 

too high, a firm is likely to ignore them completely in the hope that either they will be lucky, 

and escape having their profits confiscated from them by the courts (since proving patent 

infringement is often difficult), or that the courts will award damages less than the licence 

fee. This is plausible since the relevant U.S. statute states that “upon finding for the claimant 

the court shall award the claimant damages adequate to compensate for the infringement 

but in no event less than a reasonable royalty for the use made of the invention by the 

infringer, together with interest and costs as fixed by the court”.28,29 The established legal 

definition of a “reasonable royalty” is set at the outcome of a hypothetical bargaining 

process that took place immediately before production,30 so patent-holders may just as well 

undertake precisely this bargaining process before production begins.31  

                                                      

28 35 U.S.C. § 284 Damages. 
29 The reasonable royalty condition is indeed the relevant one for us since our assumption that the patent-

holder lacks the necessary human capital to produce at scale themself means it would be legally debatable if 

they had truly “lost profits” following an infringement (Pincus 1991). 
30 Georgia-Pacific, 318 F. Supp. at 1120 (S.D.N.Y. 1970), modified on other grounds, 446 F.2d 295 (2d Cir.), cert. 

denied, 404 U.S. 870 (1971), cited in Pincus (1991), defines a reasonable royalty as “the amount that a licensor 

(such as the patentee) and a licensee (such as the infringer) would have agreed upon (at the time the 

infringement began) if both had been reasonably and voluntarily trying to reach an agreement; that is, the 

amount which a prudent licensee—who desired, as a business proposition, to obtain the licence to manufacture 

and sell a particular article embodying the patented invention—would have been willing to pay as a royalty and 

yet be able to make a reasonable profit and which amount would have been acceptable by a prudent patentee 

who was willing to grant a licence.” 
31 In any case, if we allow for idiosyncratic “idea shocks” firms will wish to delay bargaining until this point 

anyway, since with a bad shock they will be less inclined to accept high rents. Patent-holders also wish to delay 

till this point because the more sunk costs the firms have already expended before bargaining begins, the 

greater the size of the “pie” they are bargaining over. 
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This leads patent-holders to set: 

 𝐿𝑡
ℛ(𝑖) =

1 − 𝓅

𝓅
[𝐿𝑡
R(𝑖) + 𝐿𝑡

A(𝑖) + 𝐿F], (3.4) 

   
at least for sufficiently large 𝑡, where 𝓅 ∈ (0,1) is the bargaining power of the firm, in the 

sense of the generalized Nash bargaining solution. The simple form of this expression comes 

from the fact that a firm’s production period profits (which is what is being bargained over) 

are precisely equal to the costs they face prior to production, thanks to the free entry 

condition. A full description of the legally motivated bargaining process is contained in an 

appendix, section 7.3, along with a discussion of some technical complications pertaining to 

off equilibrium play. 

From combining (3.2) and (3.4) then, at least for sufficiently large 𝑡, in the limit as as 𝜎𝑍 → 0, 

we have that: 

ℒ𝑡
R(𝑖) =

𝓅𝜇𝑡(𝑖) − 𝒹𝑡(𝑖)𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ(𝐿𝑡

A(𝑖) + 𝐿F)

𝒹𝑡(𝑖) − 𝛾𝓅𝜇𝑡(𝑖)
. 

For there to be growth in the long run then, we require 𝒹𝑡(𝑖) > 𝛾𝓅𝜇𝑡(𝑖), which together 

with the second order and appropriation uniqueness conditions means that it must at least 

be true that 𝓅𝛾 <
1

𝜇𝑡(𝑖)
< min{𝛾, 𝜏}.32 We see that, once optimal rents are allowed for, 

research is no longer decreasing in mark-ups within an industry, at least for firms at the 

frontier. Mathematically, this is because the patent-holder sets rents as such a steeply 

increasing function of research levels. More intuitively, you may think of the patent-holder 

as effectively controlling how much research is performed by firms in their industry, and as 

taking most of the rewards from this research. It is then unsurprising that we reach these 

Schumpeterian conclusions. 

                                                      

32 If the number of firms in protected industries is growing over time then 𝒹𝑡(𝑖) → 1, so asymptotically these 

conditions are equivalent. 
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The empirical evidence (Scott 1984; Richard C. Levin, Cohen, and Mowery 1985; Aghion et 

al. 2005; Tingvall and Poldahl 2006) suggests that the cross-industry relationship between 

competition and research takes the form of an inverted-U. Based on the fact that strategic 

distortions are maximised (i.e. 𝒹𝑡(𝑖) is minimised) when there is a small finite number of 

firms, one might perhaps hope that this holds in our model too. Unfortunately, the 

maximum of 
𝜇𝑡(𝑖)

𝒹𝑡(𝑖)
 (and hence of research) as a function of 𝐽𝑡(𝑖) may be shown to always 

occur at some 𝐽𝑡(𝑖) < 1. While fractional entry may be a legitimate way of modelling niche 

products that are never fully commercialised, we prefer to explain the inverted-U in the 

data with reference to the cross-sectional distribution of industries. New industries will start 

with a production process behind that of the frontier, and thus firms in them will wish to 

perform large amounts of appropriation and relatively small amounts of research, since 

appropriation is a cheaper means of increasing productivity for a firm behind the frontier. In 

the presence of a luck component to appropriation (not included above, for simplicity) this 

leads new industries to have the highest degree of productivity dispersion, as older 

industries remain close to the frontier. As a result of this high productivity dispersion, there 

will be firms in new industries setting both very high, and very low mark-ups, which, 

combined with the fact they are performing less research than more mature patent-

protected industries, would generate an inverted-U. 

3.4.2. Invention and long-run stability 

We consider invention as a costly process undertaken by inventors until the expected profits 

from inventing a new product fall to zero. New products appear at the end of the product 

spectrum. Additionally, once a product has been invented, it cannot be “un-invented”. 

Therefore, the product index 𝑖 always refers to the same product, once it has been invented. 

There is, however, no reason to think that newly invented products will start off with a 

competitive production process. A newly invented product may be thought of as akin to a 

prototype: yes, identical prototypes could be produced by the same method, but doing this 
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is highly unlikely to be commercially viable. Instead, there will be rapid investment in 

improving the product’s production process until it may be produced as efficiently as its 

rivals can be. In our model, this investment in the production process is performed not by 

the inventor but by the manufacturers. Prototyping technology has certainly improved over 

time;33 in light of this, we assume that a new product 𝑖 is invented with a production process 

of level 𝐴𝑡
∗(𝑖) = 𝐸𝑡𝐴𝑡

∗, where 𝐸𝑡 ∈ (0,1) controls initial relative productivity. 

Just as we expect process research to be getting harder over time, as all the obvious process 

innovations have already been discovered, so too we may expect product invention to be 

getting harder over time, as all the obvious products have already been invented. In 

addition, the necessity of actually finding a way to produce a prototype will result in the cost 

of product invention also being increasing in 𝐴𝑡
∗(𝑖), the initial productivity level of the 

process for producing the new product. As a result of these considerations, we assume that 

the labour cost is given by ℒ𝑡
I 𝐼𝑡−1
𝜒
𝐴𝑡
∗(𝑖)𝜁

I
, where ℒI > 0  determines the difficulty of 

invention and where 𝜒 ∈ ℝ and 𝜁I > 0 control the rate at which inventing a new product 

gets more difficult because of, respectively, an increased number of existing products or an 

increased level of productivity. 

We are assuming there is free entry of new inventions, so the marginal entrant must not 

make a positive profit from entering. That is, 𝐼𝑡 ≥ 𝐼𝑡−1 must be as small as possible such 

that: 

ℒI𝐼𝑡−1
𝜒
𝐴𝑡
∗(𝑖)𝜁

I
𝑊𝑡 ≥ 𝔼𝑡∑𝛽𝑠(1 − 𝓆)𝑠 [∏Ξ𝑡+𝑘

𝑠

𝑘=1

] 𝐿𝑡+𝑠
ℛ (𝐼𝑡)𝑊𝑡+𝑠𝐽𝑡+𝑠(𝐼𝑡)

∞

𝑠=0

. 

If, after a shock, invention can satisfy this equation with equality without the growth rate of 

the stock of products turning negative, then the number of firms per industry will not have 

                                                      

33 Examples of recent technologies that have raised the efficiency of prototype production include 3D printing 

and computer scripting languages such as Python. 
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to adjust significantly. However, if the  𝐼𝑡 ≥ 𝐼𝑡−1 constraint binds, then the number of firms 

per industry will have to adjust instead, meaning there may be an asymmetry in the 

response of mark-ups to certain shocks. 

It may be shown that, in the long run, 𝑔𝐼 =
1

1+𝜒
(𝑔𝑁 − 𝜁I𝑔𝐴∗) (where 𝑔𝑉 is the asymptotic 

growth rate of the variable 𝑉𝑡). Therefore, if 𝜒 = 𝜁I = 0 the stock of products will grow at 

exactly the same rate as population, and away from this special case it will be growing more 

slowly. If invention were to stop asymptotically, eventually there would be no protected 

industries, and hence no productivity growth. Therefore, for long-run growth, we either 

require that 𝑔𝑁 ≥ 𝜁I𝑔𝐴∗  (which will hold providing research is getting more difficult 

sufficiently slowly, as long as population growth continues), or that there is sufficiently fast 

depreciation of the stock of products.34 Even without product depreciation, productivity 

growth may be sustained indefinitely in the presence of a declining population if the 

government offers infinitely renewable patent-protection. 

The existence of a solution for our model, at all time periods, requires the number of firms 

in a protected industry to be bounded below asymptotically. The previous result on the 

growth rate of the stock of products implies it is sufficient that (𝜁R −
𝜁I

1+𝜒
) 𝑔𝐴∗ ≤

𝜒

1+𝜒
𝑔𝑁 for 

this to hold. This inequality is guaranteed to be satisfied providing 𝜁R −
𝜁I

1+𝜒
 is sufficiently 

small. To do this while also ensuring that 𝑔𝐼 > 0 requires that max {𝜁I, 𝜁R +
1

𝜒
(𝜁R − 𝜁I)} <

𝑔𝑁

𝑔𝐴∗
, which will hold for a positive measure of parameter values providing population growth 

is strictly positive.35 

                                                      

34 Bilbiie, Ghironi, and Melitz (2012) include such product depreciation in their model. We have chosen not to 

model it here. 
35 More generally, when population is stable, providing there is sufficiently fast (proportional) depreciation of 

the stock of products, we just require that 𝜁R <
𝜁I

1+𝜒
. 
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Assuming this condition holds, we may show36 that providing the growth rate of the 

productivity of newly invented products is sufficiently close to the frontier growth rate (i.e. 

𝐸𝑡 does not decline too quickly37), asymptotically catch-up to the frontier is instantaneous in 

protected industries, and the frontier growth rate is stationary. This instantaneous catch-up 

to the frontier means that, had we allowed for industry-specific shocks, all other protected 

industries would “inherit” the best industry shock, the period after it arrived. This justifies 

our focus on aggregate “idea” shocks. Additionally, instantaneous catch-up to the frontier 

means that providing there is population growth or product depreciation, asymptotically, 

long-run growth may be sustained even in the absence of patent-protection (i.e. when 𝓆 =

0), as the one period in which the inventor has a first mover advantage is sufficient for their 

industry to surpass the existing frontier.  

If the number of firms in protected industries were asymptotically infinite, then our 

simulations would tell us nothing about the consequences of the variations in this number 

that we might see non-asymptotically. Therefore, it will be helpful if it is additionally the 

case that this number is asymptotically finite. To guarantee this will, unfortunately, require a 

knife-edge assumption, namely that (𝜁R −
𝜁I

1+𝜒
)𝑔𝐴∗ =

𝜒

1+𝜒
𝑔𝑁 . To satisfy this without 

restricting population growth rates means 𝜒 = 0 (so invention is not made more difficult by 

the number of existing products) and 𝜁R = 𝜁I (so prototype production is increasing in 

difficulty at the same rate as research). The former assumption may be justified by noting 

that many situations in which invention is apparently getting harder over time because of 

                                                      

36 Suppose (𝑖𝑡)𝑡=0
∞  is a sequence of industries, all protected at 𝑡, whose productivity grows at rate �̃� ≤ 𝑔𝐴∗  

asymptotically. We conjecture that lim
𝑡→∞

𝐴𝑡
∗∗(𝑖𝑡)

−𝜁RΨ𝐿𝑡
A(𝑖𝑡) = 0  and verify. This assumption implies that 

effective research is asymptotically bounded, since mark-ups are. Hence from (3.3), since 𝜁R > 𝜁A, effective 

appropriation is growing at a rate in the interval (
𝜁R�̃�−𝜁A�̃�

2
,
𝜁R𝑔𝐴∗−𝜁

A�̃�

2
) ⊆ (0,∞). Therefore 𝐴𝑡

∗∗(𝑖)−𝜁
R
Ψ𝐿𝑡

A(𝑖𝑡) is 

growing at a rate in the interval (−𝜁R𝑔𝐴∗ + 𝜁A�̃� +
𝜁R�̃�−𝜁A�̃�

2
, −𝜁R�̃� + 𝜁A�̃� +

𝜁R𝑔𝐴∗−𝜁
A�̃�

2
). For our claim to be 

verified we then just need that 
𝜁R

2𝜁R−𝜁A
𝑔𝐴∗ < �̃�, which certainly holds when �̃� = 𝑔𝐴∗  as 𝜁R > 𝜁A. 

37 As 𝜁A → 0 it is sufficient that 𝐸𝑡 is declining at less than half the rate that 𝐴𝑡
∗ is growing. 
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congestion effects may equally well by explained by production-process-difficulty effects. 

The latter assumption is immediately plausible, since both parameters are measuring the 

complexity of working with a given production process. However, unlike with knife-edge 

growth models whereby relatively slight departures from the stable parameter values 

results in growth that could not possibly explain our observed stable exponential growth, 

here, away from the knife-edge case we will have slowly decreasing mark-ups, consistent 

with Ellis’s (2006) evidence of a persistent decline in UK whole economy mark-ups over the 

last thirty years and Kim’s (2010) evidence of non-stationarity in mark-ups. 

We assume then that 0 = 𝜒 < 𝜁A < 𝜁R = 𝜁I. Since asymptotically non-protected industries 

perform no research or appropriation under these assumptions, their entry cost to post-

entry industry profits ratio is tending to zero, meaning their number of firms will tend to 

infinity as 𝑡 → ∞. This is in line with our motivating intuition that excess entry in non-

protected industries kills research and appropriation incentives. 

3.5. Simulations 

With 0 = 𝜒 < 𝜁A < 𝜁R = 𝜁I, as 𝑡 → ∞ the behaviour our model tends towards stationarity 

in the key variables. It is this asymptotically stationary model that we simulate. For 

convenience we define 𝜁 ≔ 𝜁R = 𝜁I. The full set of equations of the de-trended model are 

given in an appendix, section 7.4. The definition of equilibrium here is entirely standard. 

When 𝜆 = ν = γ = 1, it may be shown analytically that the equations determining the 

model’s steady-state have at most two solutions with more than one firm in each industry. 

However, only one of these two solutions exists for large values of ℒI, i.e. when invention is 

costly. Since we think that in reality invention is getting harder over time due to congestion 

effects (i.e. 𝜒 > 0), any solution that only exists for small values of ℒI is non-feasible. Our 

numerical investigations suggest that the model always has at most these two equilibria, 
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and that always at most one of them exists for large values of ℒI.38 However, since the 

existence of multiple-equilibria is indicative that linear approximations may be inaccurate in 

that region, rather than just picking the solution that exists for arbitrarily large ℒI, we 

instead restrict the parameter space to regions in which there is a unique solution. This 

ensures that the value of ℒI we use is indeed large, in this sense. 

Since Ψ𝐸𝜁ℒ𝑡
I  always occurs as a group, without loss of generality we may make the 

normalization Ψ ≔ 𝐸 ≔ 1. We fix all of the model’s other parameters, except ℒI, to the 

values estimated for our extended model in section 4. ℒI is set such that the number of 

firms in patent-protected industries in this model is equal to that of the estimated extended 

model. The full parameterisation is reported in an appendix (section 7.7). At the chosen 

parameters, the model has a unique solution, which will exist for arbitrarily high values of 

ℒI. 

3.5.1. Simulation method 

We take a first-order perturbation approximation around the non-stochastic steady state, 

perturbing in the variance of shocks, and solve for the rational expectations solution of the 

linearized model.39 As we have previously mentioned, the zero lower bound on net product 

creation (i.e. on 𝑔𝐼,𝑡) means there may be an asymmetric response to sufficiently large 

shocks, but in fact we do not find that the bound is hit with shocks of the magnitudes we 

consider. 

3.5.2. Impulse responses 

In Figure 4 we present the impulse responses that result from 0.1% IID (hence non-

persistent) shocks to “ideas” (𝑍𝑡), labour supply (Φ𝑡), demand (Θ𝑡) and population growth 

                                                      

38 It may be shown analytically that the complete model may always be solved by solving a single nonlinear 

equation, which was always concave for all the parameters we examined. 
39 This was performed using Dynare (Adjemian et al. 2011). 
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(𝐺𝑁,𝑡). Each graph is given in terms of per cent deviations from the value the variable would 

have taken had the shock never arrived, and the horizontal axis shows time in years, though 

this remains a quarterly model. Each shock is in a different column, and the key response 

variables are in rows. 

The principle mechanism of our paper is shown most clearly by the population growth rate 

shock, shown in the final column. (We do not wish to advance population shocks as a key 

driver of business cycles though, since real rigidities will significantly reduce their impact.) 

Following a permanent increase in population, demand is permanently higher, so, in the 

long run, the number of industries must grow to balance this out. Given sufficiently inelastic 

labour supply, this long-run increase in the measure of industries requires a short-run 

substitution of labour from production to invention, pushing down consumption and 

pushing up wages, and so moderating the rate at which invention will grow. Consequently, 

in the short run some of the additional demand is absorbed by fluctuations in the number of 

firms in each industry. Without this additional margin of adjustment, this shock would have 

led to a large increase in average firm sizes, with a consequent increase in the frontier 

growth rate and counter-factually large unit root in output. 

Despite the tiny movement in frontier productivity (less than 0.01%), there is still however 

a substantial movement in aggregate productivity in the medium-term. Following the shock, 

more new products are being invented each period, meaning that a greater proportion of 

industries are relatively new, and so a greater proportion are patent-protected. But because 

patent-protected industries have such strong incentives to catch-up to the frontier, patent-

protected industries are more productive than non-protected ones, so an increase in the 

proportion of industries that are patent protected means an increase in aggregate 

productivity. Patent-protected industries also have higher mark-ups due to the cost of 
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paying licence fees, and so we also see a rise in mark-ups over the medium-term. It is this 

mechanism that generates medium-frequency pro-cyclical mark-ups in our model.40 

This mechanism also underlies our model’s response to the other shocks we consider. 

Following a negative labour supply shock, invention is temporarily more expensive, meaning 

fewer new industries and consequently lower productivity and mark-ups.41 Following a 

demand shock labour is transferred away from research and invention towards production, 

in order to satisfy the temporary higher demand. This drop in invention on impact means 

that demand shocks actually reduce output in subsequent periods. This is no longer the case 

when the shock has some persistence, or when there are real rigidities. 

An idea shock permanently increases the productivity of patent-protected industries. Over 

time, these industries fall out of patent-protection, carrying their higher productivity with 

them, and thus increasing the average productivity of non-protected firms too. 

Consequently, aggregate productivity slowly rises towards its permanently higher long run 

level. However, since the magnitude of the original shock was very small, this will not result 

in a large unit root in output. Following the shock, patent-protected industries are relatively 

more productive than normal, and so they are also relatively more profitable. This means 

patent holders can extract higher rents, and so we see an increase in invention with a 

corresponding increase in mark-ups over the medium-term. 

                                                      

40 Pavlov and Weder (2012) also develop a business cycle model capable of generating pro-cyclical mark-ups, 

via the changing importance of different types of buyers over the business cycle. The properties of these 

buyers are exogenous in their model however, whereas the properties of the different types of sellers that 

drive our results are endogenous. 
41 Were the number of firms per protected industry to absorb the cost-cut instead, then next-period mark-ups 

would rise and so future wages would fall. However, an expected fall in wages will increase invention today, 

since inventor returns are increasing in the expected future wage. Hence, invention must fall in the period of 

the shock. 
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 Positive idea shock (𝑍𝑡) Negative labour supply shock 
(Φ𝑡) 

Positive demand shock (Θ𝑡) Population shock (𝐺𝑁,𝑡) 

 
Figure 4: Impulse responses from the core model. 

(Vertical axes are in percent, horizontal axes are in years.)  
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4. Extended model and empirical tests 

In order to compare our model to the data seriously, we incorporate habits, capital, and 

imperfect competition in labour markets. We allow for the possibility of stochastic 

movements in the key parameters ℒI, 𝛾 and 𝜂,42 (though it turns out that the data favours 

constant values for these parameters), and we specify an AR(1) form for these and all other 

shocks, with the exception of 𝑍𝑡, the true technology shock which remains uncorrelated 

across time. The data will be allowed to choose which, if any, of these shocks might be 

important drivers of business cycles, at high, or medium frequencies. 

Additionally, we include intermediate goods as a factor of production, which may be 

necessary in order to reconcile the low mark-ups found in micro-evidence with the higher 

mark-ups implied by the inverse labour share. The presence of intermediates in production 

will amplify shocks in our economy, as it implies that an increase in the proportion of 

industries that are patent-protected means intermediate inputs are cheaper for non-

protected industries, increasing their output too. To potentially dampen our model’s overly 

powerful amplification mechanism, we include some spill-overs from frontier productivity 

growth; these mean that the variance of TFP may be less than that of 𝐴𝑡. 

We also allow for sticky nominal wages in line with the micro-evidence of Barattieri, Basu, 

and Gottschalk (2010), and to enable us to make preliminary remarks about the possible 

medium-term impact of monetary policy. In all of the impulse responses presented below 

though, we will show the model’s performance both with and without this feature. We do 

not include sticky prices for several reasons. Firstly, it is hard to reconcile the highly 

sophisticated behaviour of firms in our model with the naïve behaviour of firms in the Calvo 

(1983) model. Secondly, introducing sticky prices would make solving for firm behaviour 

very complicated, unless the sticky prices were only introduced to a separate retail sector, 

                                                      

42 These parameters are assumed to be known before the entry decision at 𝑡, for production in period 𝑡 + 1. 
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further increasing the size of our model. Finally, as is well known, introducing sticky prices 

results in counter-cyclical mark-ups, contrary to the evidence of Nekarda and Ramey (2010). 

The observed frequency of price adjustment can perhaps be reconciled with pro-cyclical 

mark-ups using a consumer search model as in Head et al. (2011). We do not pursue this 

avenue here. 

4.1. Model changes 

We assume that firm 𝑖 in industry 𝑗 has access to the production technology: 

𝑌𝑡(𝑖, 𝑗) = 𝐴𝑡(𝑖, 𝑗)𝑋𝑡
P(𝑖, 𝑗)𝜄P[𝐾𝑡

P(𝑖, 𝑗)𝛼P𝐿𝑡
P(𝑖, 𝑗)1−𝛼P]1−𝜄P 

where 𝑋𝑡
P(𝑖, 𝑗) is their level of intermediate good input and 𝐾𝑡

P(𝑖, 𝑗) is the quantity of capital 

they hire from households, at a cost of 𝑅𝑡
KP per unit. We use a Hicks-neutral specification 

here since it minimises the changes necessary to the model without capital. (In particular, 

profits take the same form, and so research incentives are identical.) 

Research, appropriation and invention will also use capital, but we assume that the capital 

they use is from a different stock. This research/invention capital may be thought of as 

capturing (variously) education, creativity, ideas, knowledge and advanced physical capital. 

Rather than the input to the research function for firm 𝑗 in industry 𝑖 being 𝐿𝑡
R(𝑖, 𝑗), as it was 

originally, it is now: 

𝑋𝑡
R(𝑖, 𝑗)𝜄𝑅[𝐾𝑡

R(𝑖, 𝑗)𝛼𝑅𝐿𝑡
R(𝑖, 𝑗)1−𝛼𝑅]1−𝜄𝑅 , 

where 𝑋𝑡
R(𝑖, 𝑗)  are the intermediates they use in research, and 𝐾𝑡

R(𝑖, 𝑗)  is the 

research/invention capital they use. This will not significantly change research incentives as 

we can decompose the research problem into a research level one and a cost minimisation 

one. Additionally, rather that invention requiring a stochastic amount of invention labour, it 

now requires a stochastic amount of invention output, which is produced using the same 

production function as research (chiefly for simplicity). 
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Households’ preferences are now given by: 

𝔼𝑡∑𝛽𝑠𝑁𝑡+𝑠Θ𝑡+𝑠 [log �̃�𝑡+𝑠(ℎ) −
Φ𝑡+𝑠

1 + 𝜈
�̃�𝑡
S(ℎ)1+𝜈]

∞

𝑠=0

 

for each household ℎ ∈ [0,1], where 

�̃�𝑡(ℎ) ≔
𝐶𝑡(ℎ)

𝑁𝑡
− 𝒽

(1 − 𝒽INT)𝐶𝑡−1 + 𝒽INT𝐶𝑡−1(ℎ)

𝑁𝑡−1
 

is habit adjusted consumption per head, (with 𝒽 ∈ [0,1)  controlling the strength of 

consumption habits and 𝒽INT ∈ [0,1] controlling whether consumption habits are internal 

or external), and where: 

�̃�𝑡
S(ℎ) ≔

𝐿𝑡+𝑠
S (ℎ)

𝑁𝑡+𝑠
− 𝒽LS

𝐿𝑡+𝑠−1
S

𝑁𝑡+𝑠−1
 

is habit adjusted labour supply per head (with 𝒽LS determining the strength of these 

external labour habits). Each household now supplies a different type of labour 𝐿𝑡
S(ℎ) and 

potentially receives a different real wage, 𝑊𝑡(ℎ). They face the budget constraint: 𝐶𝑡 +

𝐼𝑡
KP + 𝐼𝑡

KR + 𝐵𝑡 = 𝐿𝑡
S(ℎ)𝑊𝑡(ℎ) + 𝑅𝑡

KP𝑢𝑡
P𝐾𝑡−1

P + 𝑅𝑡
KR𝑢𝑡

R𝐾𝑡−1
R + 𝐵𝑡−1𝑅𝑡−1 +Π𝑡, where 𝐼𝑡

KP and 

𝐼𝑡
KR is investment in the two capital stocks,43 and 𝑢𝑡

P𝐾𝑡−1
P  and 𝑢𝑡

R𝐾𝑡−1
R  are the quantities of 

these stocks that households make available to firms, with 𝑢𝑡
P and 𝑢𝑡

R their chosen utilisation 

rates and 𝐾𝑡−1
P  and 𝐾𝑡−1

R  the level of the capital stocks at the end of period 𝑡 − 1. The 

utilisation of research/invention decision may be thought of as capturing the incentives to 

bunch the implementation of ideas, as stressed by Francois and Lloyd-Ellis (2008; 2009). 

                                                      

43 We assume a complete set of nominal state contingent securities, meaning 𝐶𝑡, 𝐼𝑡
KP  and 𝐼𝑡

KR will not differ 

across households. 
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Following Schmitt-Grohé and Uribe (2011), investment goods of type V ∈ {P,R}  are 

produced from consumption goods using the technology: 

𝐼𝑡
KV* = 𝐴𝑡

∗𝜉KV𝐸𝑡
KV𝐼𝑡

KV 

where 𝐼𝑡
KV is investment in units of consumption goods and 𝐴𝑡

∗𝜉KV𝐸𝑡
KV captures investment 

specific technological change, as a short-cut alternative to modelling separate endogenous 

growth processes in a multi-sector model. As in Schmitt-Grohé and Uribe (2011), the 

productivity of the frontier (i.e. the underlying trend in 𝐴𝑡) enters into this expression in 

order to capture the cointegration between the relative price of investment and 

productivity that is observed in the data. It may be justified as reflecting improvements in 

installation technologies, or improvements to the allocation of new capital across firms, 

both of which come as a side-effect of the increase in general knowledge following an 

increase in 𝐴𝑡
∗. Explicitly modelling a role for human capital in physical capital production 

would generate very similar results, while adding unnecessary complications. 

Both capital stocks evolve according to: 

𝐾𝑡
V = (1 − 𝛿𝑡

V(𝑢𝑡
V))𝐾𝑡−1

V + Γ𝑡𝐼𝑡
KV* [1 − 𝑄KV (

𝐼𝑡
KV*

𝐼𝑡−1
KV*
)] 

for V ∈ {P,R}, where 𝛿𝑡
V(∙) for V ∈ {P,R} are increasing functions capturing the effect of 

utilisation on depreciation, locally convex at the steady-state, 𝑄KV(∙) for V ∈ {P,R} are 

convex functions capturing adjustment costs to the rate of investment (following Christiano, 

Eichenbaum, and Evans (2005)), which attain their minimum value of zero at the steady 

state rate of growth of investment, and where Γ𝑡 is a shock to the marginal efficiency of 

investment, which, following Justiniano, Primiceri, and Tambalotti (2011), we will identify 

with a decreasing function of Moody’s BAA-AAA bond spreads.44 (The difference between Γ𝑡 

                                                      

44 Justiniano, Primiceri, and Tambalotti (2011) used the high yield to AAA spread. We choose the BAA-AAA one 

due to increased data availability. 
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and 𝐸𝑡
KV is that only the latter will appear in the measured relative price of investment, and 

only the former is common to both processes.) 𝛿𝑡
V(∙)  has a time subscript since we allow for 

a shock to depreciation to capture some of the volatility in depreciation shares we observe 

in the data.45 There is a single shock across both capital types, which we call 𝛿𝑡, and it is 

constrained to weakly increase both the levels and the first derivatives of 𝛿𝑡
P(∙) and 𝛿𝑡

R(∙).46 

Depreciation shocks have been shown to be important by Dueker, Fischer, and Dittmar 

(2007), Liu, Waggoner, and Zha (2011) and Furlanetto and Seneca (2011) amongst others, 

and will turn out to be important here too. As these authors note, they may be interpreted 

as proxying for a combination of product specific capital, heterogeneity in capital quality 

across products, and changes in consumer preferences across these products. With this 

interpretation allowing depreciation shocks to affect the first derivative of 𝛿𝑡
V(∙) as well as 

its level is natural, since low quality capital will both break faster on average, and be more 

sensitive to heavy usage. This will also aid us in matching the negative correlation between 

depreciation and utilisation that is observed in the data. 

Aggregate labour services to firms are now provided by a competitive industry of labour 

packers using the technology 𝐿𝑡
T = 𝐴𝑡

∗𝜉L𝐸𝑡
L [∫ 𝐿𝑡

S(ℎ)
1

1+𝜆L ⅆℎ
1

0
]
1+𝜆L

, where 𝐸𝑡
L is an exogenous 

stationary labour productivity shock. (In the absence of research and development, this 𝐸𝑡
L 

shock would act exactly like a classical TFP shock.) The productivity of the frontier enters our 

expression for labour services in order to capture the improvements in labour productivity 

that arise from the higher knowledge levels after an increase in frontier productivity. Again, 

                                                      

45 Our measure of depreciation is the consumption of fixed capital from NIPA. If anything, this will 

underestimate the true variance of depreciation, since the NIPA measure omits variation in depreciation rates 

within individual product categories. We thank Martin Seneca for this observation. 
46 We additionally constrain the response of 𝛿𝑡

V(∙) to the shock such that in its linearised version, with 

utilisation at its steady-state level, both 𝛿𝑡
V(∙) and 𝛿𝑡

V′(∙) are positive with at least 95% probability. This is true 

automatically in the source non-linear specification in which 𝛿𝑡
V(∙) and 𝛿𝑡

V′(∙) are log-linear in 𝛿𝑡  when 

utilisation is at its steady-state, but in preliminary estimates the linearised 𝛿𝑡
P′(∙) turned negative a high 

proportion of the time, in the absence of this additional constraint. 
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explicitly modelling human capital evolution would add little to our model’s performance. 

However, following Jaimovich and Rebelo (2008) we do include labour adjustment costs. In 

particular, we assume that in sector V ∈ {P,R} there is a perfectly competitive industry that 

transforms aggregate labour services into sector specific labour services using the 

technology 𝐿𝑡
EV = 𝐿𝑡

TV [1 − 𝑄LV (
𝐿𝑡
TV

𝐿𝑡−1
TV )], where 𝑄LV(∙) is a monotone increasing function that 

is zero at the steady state rate of growth of 𝐿𝑡
TV. The aggregate labour market clearing 

condition is then 𝐿𝑡
T = 𝐿𝑡

TP + 𝐿𝑡
TR. In the absence of labour adjustment costs, there is a risk 

that the capital share of R&D would be biased upwards since there are adjustment costs to 

capital. Labour adjustment costs also help generate plausible business cycles in response to 

news about future productivity (Jaimovich and Rebelo 2008), which may be important here 

due to the endogenous movements in future productivity that our model generates. 

The two positive spillovers from frontier productivity growth mean that the steady-state 

growth rate of real output per capita is given by 
𝑔𝐴

(1−𝛼P)(1−𝜄P)
+ (𝜉L +

𝛼P

1−𝛼P
𝜉KP) 𝑔𝐴∗. If 𝜉L and 

𝜉KP are positive then 𝑔𝐴∗ will not need to be as high, meaning the variance of 𝑔𝐴 (and hence 

that of output) will be lower. Providing the technology for producing overheads takes the 

same form as that for producing the input to research and invention, neither these 

spillovers nor the presence of capital and intermediate goods in the production function will 

change the criterion for no appropriation to be performed asymptotically in non-protected 

industries. (Away from this special case the lower bound on 𝜁 would be non-zero, and 

possibly negative.) 

We model sticky nominal wages in the standard Calvo (1983) fashion, following Erceg, 

Henderson and Levin (2000). Each household is able to set its wage optimally with 

probability 1 − 𝓋 . We assume that those households that cannot adjust their wage 

optimally will fully index their wage to its steady-state growth rate. 
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Monetary policy takes an augmented Taylor rule form. We allow the central bank to 

respond to all prices in the economy (i.e. the price of consumption, production investment, 

research investment and labour), four proxies for the real interest rate (the return on 

production and research investment, the demand shock and the depreciation shock), as well 

as both output’s deviation from trend and its growth rate. In particular: 

𝑅𝑡
NOM

𝑅NOM
= (

𝑅𝑡−1
NOM

𝑅NOM
)

𝜌
𝑅NOM

[(
𝐺𝑃,𝑡
𝐺𝑃,𝑡
∗ )

ℳP

(
𝐸𝑡−1
KP 𝐺𝐴∗

𝜉KP

𝐸𝑡
KP𝐺𝐴∗,𝑡

𝜉KP
)

ℳPKP

(
𝐸𝑡−1
KR 𝐺𝐴∗

𝜉KR

𝐸𝑡
KR𝐺𝐴∗,𝑡

𝜉KR
)

ℳPKR

(
𝐺𝑊,𝑡

𝐺𝑊
)
ℳW

]

1−𝜌
𝑅NOM

∙ [(
𝑅𝑡
KP

𝐴𝑡
∗𝜉KP

)

ℳRKP

(
𝑅𝑡
KR

𝐴𝑡
∗𝜉KR

)

ℳRKR

Θ𝑡
ℳΘ𝛿𝑡

−ℳ�̃�]

1−𝜌
𝑅NOM

∙ [(
𝑌𝑡

𝑁𝑡𝐴𝑡
𝒶𝐴𝑡

∗ℯ)

ℳY

(
𝐺𝑌,𝑡 𝐺𝑁,𝑡 

𝐺𝑌 𝐺𝑁 
)

ℳG

]

1−𝜌
𝑅NOM

exp 𝜖𝑅NOM,𝑡, 

where 𝑅𝑡
NOM is the gross nominal interest rate, 𝐺𝑃,𝑡 is the (gross) growth rate of the nominal 

price of the consumption good, 𝐺𝑃,𝑡
∗  is the stochastic target for this growth rate, 

𝐸𝑡−1
KV

𝐸𝑡
KV𝐺

𝐴∗,𝑡

𝜉KV
 is 

the growth rate of the real price of investment goods of type V ∈ {P,R}, 𝐺𝑊,𝑡 is the growth 

rate of the real wage, 𝑌𝑡 𝑁𝑡  is log real GDP, 𝐺𝑌,𝑡 𝐺𝑁,𝑡  is the real per capita GDP growth rate 

and 𝑅𝑡
SHOCK ≔ exp𝜎𝑅NOM𝜖𝑅NOM,𝑡  is a monetary policy shock. Variables without time 

subscripts are steady-state values, and the constants 𝒶 and ℯ are defined in the appendix, 

section 7.5. In the absence of endogenous productivity, the optimal policy would fully 

stabilise nominal wages, completely removing the Calvo distortion, thus it is important to 

allow wages to enter the Taylor rule. There is no guarantee though that this prescription 

carries over into our model with endogenous productivity. (We intend to investigate optimal 

policy in this model in future work.) It turns out however that the only significant terms in 

the Taylor rule are the lag, the price response, and the response to the depreciation shock 

and the rental rate of production capital (which are tightly correlated with the Wicksellian 

real interest rate (Woodford 2001)), so the estimated rule takes a more standard form. 
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The model’s full set of de-trended equations is given in an appendix (section 7.5). 

4.2. Data and estimation 

The model is estimated on logs of quarterly U.S. series for nominal output growth,47 

consumption price inflation, investment price inflation, population growth, labour supply 

per capita, the R&D share, the consumption share, the labour share, the depreciation share, 

nominal interest rates, capacity utilisation and the BAA-AAA spread. The longest samples 

are from 1947Q1 to 2011Q2, though some series are shorter. (Our estimation method can 

cope with an uneven sample.) Most series comes from NIPA or the FRB. Full details of the 

sources and construction methods of the data are given in an appendix, section 7.6, and the 

full data set is available from the author on request. 

In order to remove any structural change, we filter the data before estimation, with a high-

pass filter that allows frequencies with periods below the sample length (258 quarters). We 

adjust the level of the filtered data so that the mean of the filtered series matches that of 

the original data. (Broadly) following Canova (2009) we also include IID , AR(1)  and 

repeated-root AR(2)48  “measurement error” shocks in each observation equation, to 

prevent our model from being contorted to fit the data. (Canova (2009) advocates the 

inclusion of IID, I(1) and I(2) shocks.)  

In standard DSGE models, there are usually enough degrees of freedom that almost any set 

of first moments may be matched without impacting the model’s ability to match second 

moments. The presence of endogenous growth in our model, though, means this is no 

                                                      

47 We use nominal output as there should be less measurement error in the nominal series than in the real 

series. 
48 Our justification for going up to a repeated-root AR(2) process is that as the auto-regressive parameter of 

such a process tends to one, the process becomes an I(2) trend, which is exactly the type of trend removed by 

the widely used HP-filter (Hodrick and Prescott 1997). In order to avoid implicitly removing an I(3) trend from 

the series in differences (nominal output growth, consumption price inflation, investment price inflation and 

population growth) we suppose that the measurement error enters the observation equations for these series 

with the over-differenced moving average form me𝑡 −me𝑡−1. 
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longer true for us. In our model, almost all first moments are tightly coupled both to each 

other (e.g. the labour-share, mark-ups and growth) and to the model’s dynamics. This raises 

the possibility that our model’s inevitable misspecification may mean it is impossible for our 

model to match simultaneously all first moments without grossly compromising its 

dynamics. The Canova (2009) approach is to discard all information about first moments, 

and to assume the “measurement error” has a unit root, but this necessitates the use of 

strong priors, something that is infeasible here since the dimensionality of our model rules 

out MCMC based estimation. Additionally, allowing unit roots in measurement error would 

prevent us using the variance share of measurement error as a measure of the quality of our 

model. Instead, we allow for a mean term in the measurement error to prevent 

misspecification of the kind described from severely biasing other parameters. However, to 

ensure the means of the data series remain informative, we follow Lee et al. (2010) and 

Candès, Wakin, and Boyd (2008) in imposing a sparsity inducing “adaptive lasso” 

(generalized t) prior on these mean measurement error terms.49 

Since we want our model to rely on its internal persistence mechanism, rather than the 

persistence of shocks, and since we want all shocks to be stationary, we impose a prior on 

all the “𝜌” parameters of our model (these include the persistence of shocks, the 

persistence of AR(1) and repeated-root AR(2) measurement errors, and the persistence of 

monetary policy). We use a logit-normal distribution that is scaled to [−1,1] then truncated 

to [0,1] (i.e. if 𝑍 is normally distributed, 
1−exp(−𝑍)

1+exp(−𝑍)
| 𝑍 >

1

2
 has our distribution). We set the 

mean of the underlying normal distribution to 0 and its variance to 2, which are the unique 

                                                      

49 In the notation of Lee et al. (2010), in this prior we set 𝑎𝑗  to the length of the data to the power of 1 3⁄  (to 

ensure the method possesses the oracle property), and 𝑏𝑗  is chosen so that the expected absolute 

measurement error mean term is 1%. To reduce the dimensionality of the state space, we force these 

measurement error mean terms to the level at which the model’s steady state for observable variables exactly 

matches their mean in the data. 
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values which result in a density which has zero first, second and third derivatives at the 

origin, ensuring small to medium values of 𝜌 are not biased. 

We fix the discount factor (𝛽) at 0.99 following standard practice. We also bound the 

inverse-Frisch elasticity (𝜈) to be above 0.25, which is a lower bound on standard macro 

calibrations as reported by Peterman (2011). All the other parameters of our model are 

given flat priors. We then estimate by the “maximum a posteriori” method (which is very 

close to maximum-likelihood since the majority of parameters have flat priors), subject to: 

 all variables being stationary, 

 a unique (determinate) solution existing for both the simple model and this extended 

one, (with an identical number of firms per industry in both, and with all parameters 

identical except possibly ℒI), 

 all parameters being in the region in which the model is well behaved asymptotically,50 

 the steady-state value of the average mark-up (𝜇𝑡) equalling 0.056 (to 3 decimal places), 

in line with the micro-evidence of Boulhol (2007),51 

 patent protected industries being 17% (to 0 decimal places) more productive than non-

protected industries in steady-state, in line with the micro-evidence of Balasubramanian 

and Sivadasan (2011),52 

 the correlation of log mark-ups (as measured by the inverse labour share) and log 

output, being positive when the data is filtered by a cut-off of one, five or eleven years 

and negative when the data is filtered by a filter with a cut-off of twenty years,53 

                                                      

50 𝓅𝜆𝔼𝛾𝑡 < 1, 𝜆𝔼𝜂𝑡𝛾𝑡 ≥ 1, 𝔼𝒹𝑡 > 𝓅𝔼𝛾𝑡𝜇𝑡
P, 𝔼𝑔𝐼,𝑡 > 0 and 𝔼𝐽𝑡

𝑃 > 1. 
51 This is implemented by adding the steady-state mark-up as an additional observation variable to the model, 

with an NIID(0,0.0005) shock (added both to the data and to the model, with known standard deviation). 
52 Similarly, this is implemented by adding the steady-state value of log �̂�𝑡

N as an additional observation 

variable, with an NIID(0, 1 2 (log(1 1.165 ) − log(1 1.175 ))) shock (as before). 
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 the share of medium frequency variance54 decreasing when the mean length of patent 

protection is reduced by one quarter.  

By disciplining mark-ups and relative-productivity from micro-evidence, we hope to go some 

way to answering the concerns about the introduction of free-parameters raised by Chari, 

Kehoe and McGrattan (2009). 

For technical reasons, we ignore the positivity constraint on 𝑔I,𝑡 during estimation. 

The maximisation is carried out using the CMA-ES algorithm (N. Hansen et al. 2009), which is 

known to have good global search performance, particularly when run with large 

populations, as we do. However, although the dimensionality of our model is much smaller 

than that of a VAR(1) run on the same series, we still cannot absolutely guarantee that a 

global maximum has been found. This is a standard problem in estimating large models. 

4.3. Estimation results 

The full list of estimated parameters is given in an appendix, section 7.7. We briefly discuss a 

few key parameters here however. In the below, approximate posterior standard errors are 

given in brackets. (These are generated from the optimisation algorithm, which gives the 

inverse hessian of a robust quadratic approximation to the upper envelope of the 

maximand. Our Monte Carlo experiments indicate that the resulting standard errors are 

                                                                                                                                                                     

53 More specifically, we begin by generating 210 simulated runs from the model, each the same length as the 

data, using the same random seed for each set of runs, for the sake of variance reduction. We then take the 

correlation of the given variables at each filter cut-off, for each of the runs. We require that the proportion of 

the runs for which these are of the correct sign is both greater than one-half and significantly different from 

one-half at 5%. (We use a two-sided test in order to preserve comparability with Figure 2.) 
54 As measured by applying a perfect filter to the spectral density generated by the transition matrices, with 

accepted band between 8 and 60 years. 
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moderately biased upwards, meaning that parameters may be estimated more precisely 

than they appear to be.55) 

𝓅 was estimated at 0.0427 (0.00021), implying that manufacturing firms have very little 

bargaining power in dealing with patent holders. The large bargaining power of patent 

holders suggests that they may be bargaining simultaneously with all firms keen to licence 

their product, rather than bargaining with each independently as in our model. In future 

work we intend to study the strategic interactions in this simultaneous bargaining and entry 

process more rigorously. 

𝓆 was estimated at 0.0374 (0.00030), which implies that only 4.9% of patents last twenty 

years. This is consistent with some patented products not being commercialised until long 

after their patent was granted, and others having their patent challenged in court prior to 

their expiry. It is also consistent with a broader interpretation of “patent protection” within 

the model, since some inventors are able to exclude entry to their industry for a while, even 

in the absence of patent protection, via obfuscation or contractual arrangements. 

The inverse Frisch elasticity of labour supply was driven to its lower bound of 𝜈 = 0.25 by 

the estimation procedure.56 While older studies suggested that such highly elastic labour 

supplies were difficult to reconcile with the micro-data, recent studies (e.g. Peterman (2011) 

and Keane & Rogerson (2012)) have concluded that highly elastic labour supplies are 

consistent with the micro evidence when that data includes a broad range of individuals, 

and is interpreted in light of e.g. human capital accumulation. Our model also includes 

labour adjustment costs, which make aggregate labour supply appear less elastic. 

Consequently, a standard RBC calibration of the Frisch elasticity based on simulated data 

                                                      

55 Our estimate of the Hessian of the maximand may be affected by the inclusion of exact bound constraints, 

since these will tend to reduce the variance of parameters that lead the bound constraint to be violated. 

However, our procedure estimates the scale of the hessian separately, so still on average over all parameters 

we expect posterior standard errors to be upward biased. 
56 When this bound was not imposed, the estimated value was below 0.01. 
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from our model would produce a much lower Frisch elasticity than 4. In light of this, we do 

not consider our estimated elasticity to be implausible. Nonetheless, in future work we 

intend to investigate the performance of our model when it is augmented by employment 

search and participation decisions. 

𝛼P was estimated to be 0.201 (0.00040), much lower than the traditional value for the 

capital share of around 0.3. In line with this low value, the consumption share generated by 

our model was about 10.9% higher than the true value, and the labour share was around 

34.5% higher. The treatment here of net exports as investment may be one factor that is 

biasing down the capital share, due to the US’s persistent trade deficit. Another explanation 

is the existence of some missing heterogeneity across sectors in the real world, with the 

sectors that are driving growth (e.g. services) tending to be more labour intensive. There is 

further evidence of missing sectoral heterogeneity in the estimated intermediate goods 

share in production of 0.0534 (0.0026), (standard estimates are around 0.4), however, this 

is most likely just a function of the absence of a retail sector in our model. Allowing for the 

possibility that consumption of intermediate goods in R&D is measured as investment, 

rather than intermediate consumption, would also help fix these shares as it would 

decrease the numerators and increase the denominators (𝜄R = 0.178 (0.0032)). 

However, the low value for the capital share of output is at least partially balanced by a very 

high estimated value for the capital share of R&D (𝛼R = 0.996 (7.4 × 10−6)). Further 

insight into the nature of this research-capital comes from the very high adjustment costs to 

increasing the growth rate of its stock ( 𝑄R
′′
(𝐺𝐼KR*) = 62.6 (4.0) , in comparison, 

𝑄P
′′
(𝐺𝐼KP*) = 0.00533 (0.0012)). These values suggest our interpretation of research-

capital as being an external “idea-stock” may be correct. Additional evidence for this comes 

from the fact that depreciation shocks knock large amounts off the level of the research 

capital stock (ideas we thought were good turned out to be not so great), whereas they only 
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affect the sensitivity of production-capital depreciation to utilisation (machines we thought 

to be reliable turned out to be quite sensitive). 

In estimating our model, we allowed the data to specify whether investment in R&D capital 

was measured in the standard national accounts, or whether it was only measured in the 

R&D satellite account data, since it was not obvious a priori that those producing the 

accounts can distinguish investment to help future R&D from investment to help future 

production. Our estimates suggests that 49.4% (1.3%) of all R&D investment is actually 

captured by the standard national accounts, with the rest measured in the satellite 

accounts. This level of mis-measurement seems plausible given the difficulties in 

ascertaining for what a piece of physical capital will be used. 

The frictions in our model take plausible values, with households able to update their wage 

optimally in 17.4% (0.42%) of quarters, which is not statistically different (at 5%) from the 

probability of a wage change for hourly workers found in micro data by Barattieri et al. 

(2010) (18%). Recall, too, that when households in our model cannot optimally update their 

wage, they instead index to steady-state inflation, so the welfare costs of this friction are 

likely to be small. As observed previously, there is virtually no adjustment cost on 

production capital, however we find a substantial adjustment cost to production labour 

(𝑄LP
′
(𝐺𝐿TP) = 0.0875 (0.0047)). As shown by Jaimovich and Rebelo (2009), this enables 

the model to produce co-movement in response to news about future productivity, which is 

provided in our model by almost any standard shock, thanks to the endogenous growth 

mechanism. Consumption habits are estimated as being predominately external (𝒽INT =

0.0151 (0.0032)), and much less strong than in many DSGE models (𝒽 = 0.253 (0.0041)). 

Estimated habits in labour are negligible. This lesser role for habits of both kinds stems from 

the much stronger persistence mechanism in our model. 

We now turn to the estimated sources of growth. Core (Hicks-neutral) frontier productivity 

is estimated to grow at 1.11% per year, which is further scaled up by the roles of 



Chapter 1 

Page 56 of 174 

intermediates and capital, along with the various spillovers, to arrive at an aggregate real 

growth rate (in units of the consumption good) of 1.57% per year, only slightly lower than 

that found in the data (1.76% per year57). The importance of spillovers for growth has been 

stressed extensively in the empirical literature before (Griliches 1998; Eaton and Kortum 

1999; Forni and Paba 2002; Klenow and Rodríguez-Clare 2005). It is likely that there is some 

downwards bias in real GDP growth rate estimates, due to the difficulty of valuing new 

products (Broda and Weinstein 2010), so in future work we intend to examine the 

robustness of our results to correcting for this in the data, at least approximately. 

Finally, on the sources of cycles, we find that all variables are primarily driven by the 

depreciation shock, with lesser contributions from the labour supply shock and the 

population shock. The monetary policy shock plays an even smaller role (contributing to less 

than 1% of each variable’s non measurement error variance), and all other shocks make a 

negligible contribution. (The full variance decomposition is given in Table 6 in the appendix.) 

Of note is the fact that all shocks have a persistence parameter of less than 0.9, suggesting 

that the model is able to generate the observed persistence in macroeconomic time series 

on its own. 

The depreciation shock is estimated as having two distinct effects here. Firstly, it increases 

the sensitivity of the production-capital depreciation rate to increased utilisation. Since the 

derivative of the depreciation rate with respect to utilisation enters directly into the 

investment and utilisation equations, even under a first order approximation this can have a 

large effect on investment and utilisation, by increasing the costs of using capital. Secondly, 

it increases the depreciation rate of the stock of research-capital, independent of utilisation. 

The natural interpretation for the shock then is as a proxy for the financial wedge. Indeed, 

                                                      

57 The low figure comes from deflating by the consumption price, rather than by a consumption-investment 

price aggregate. 
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the correlation between the estimated series for 𝛿𝑡 and the BAA-AAA spread is 0.296 (with 

a p-value of less than 0.00001), confirming this interpretation. 

In a time of great uncertainty, or low asset values, such as the aftermath of the recent crisis, 

if capital is “put to work” there is a risk it will disappear completely. This is in the spirit of the 

Kiyotaki-Moore model (Kiyotaki and Moore 1997), and captures the first of these two 

effects. (For an example that makes clear the effect is on the sensitivity of the depreciation 

rate to utilisation, consider the incentives of a mortgage-holder in negative-equity to 

maintain their house.) That financial shocks should result in an increase in the depreciation 

rate of the stock of ideas is equally clear. In the absence of sufficiently valuable collateral, 

inventors may be unable to finance the commercialisation of their invention, and by the 

time asset values recover, it may no longer be “timely” enough to warrant that expense. 

Obviously, this calls for the inclusion of structurally modelled financial frictions in our model. 

We intend to pursue this avenue in future work. 

4.4. Model evaluation 

As previously mentioned, we use the estimated amount of measurement error to quantify 

the model’s performance. Aside from the two series previously discussed (the labour and 

capital shares), all of our series had mean levels of measurement error below 0.05%, 

implying the model is well able to capture the rest of the data’s first moments. This leaves 

the data’s second moments to discuss. Since our model is designed to explain cycles at 

business and medium frequencies, but is unlikely to be able to match either very high 

frequency noise, or low-frequency structural change, we report measurement error 

variance in a range of frequency bands. (These are produced by applying perfect filters to 

the measurement error and observation variable series.) The results of this may be seen in 

Table 3 below. 
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Data series High frequency 
0-1 years 

Business cycles 
1-8 years 

Medium 
frequency 
8-50 years 

Low frequency 
>50 years 

Nominal output growth 2.2% 9.8% 44.1% 1.3% 
Cons. price inflation 89.0% 94.0% 66.1% 2.4% 
Investment price inflation 97.6% 99.0% 93.2% 17.7% 
Population growth 6.6% 37.2% 89.9% 80.1% 
Labour supply per capita 44.6% 24.7% 48.8% 82.6% 
R&D share 0.0% 0.0% 0.0% 0.0% 
Consumption share 67.3% 22.3% 16.7% 35.2% 
Labour share 100.0% 100.0% 99.6% 99.1% 
Depreciation share 5.5% 37.4% 83.1% 89.9% 
Nominal interest rates 86.6% 89.2% 54.3% 15.0% 
Capacity utilisation 47.2% 87.8% 89.1% 87.7% 
BAA-AAA Spread 100.0% 100.0% 100.0% 100.0% 

Table 3: Proportion of variance attributed to measurement error in the unconstrained 
model. 

 

Significantly, our model explains much of the variance in nominal GDP, labour supply, and 

the R&D and consumption shares, suggesting it is capturing well the linkages between 

research and the business cycle. Indeed, from summing the percentages our model explains 

(i.e. 100% minus the measurement error share), we see that the model is fully explaining 

the equivalent of 5.0 variables at business cycle frequencies and 4.2 variables at medium 

frequencies. Given there are only four shocks given any weight by the estimation procedure 

(with one of those given a tiny weight), the model is fully explaining more variables than 

there are driving shocks. Note too that the interpretation of these percentages is somewhat 

different to the percentages of explained variance given in traditional business cycle 

analysis. Whereas for us explaining a high percentage of the variance means that the 

model’s response is preferred by the data to the general measurement error process (i.e. it 

is a claim about the full covariance structure of the model), the claim in the business cycle 

literature is really only about the variance of each variable, and covariances across variables 

or time need not be plausible. 

Nonetheless, the model’s poor performance along other axes deserves comment. Its 

difficulties matching inflation rates and nominal interest rates at business cycle frequencies 

most likely reflect the absence of short run price-rigidity in our model. The model also does 
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spectacularly poorly in matching the variance of the labour share. However, we will see 

below that the labour share our model generates has a similar correlation structure with 

GDP across frequencies as we observe in the data. This suggests that the pro-cyclical 

movements in mark-ups generated by our model are too small relative to those in the data, 

which is not too surprising given that at the estimated parameters, there are 6.47 firms 

even in patent protected industries, meaning even these industries will have quite low 

mark-ups. Now, certainly our model can generate larger swings in mark-ups over the cycle 

with alternative parameterizations, but these parameterizations will imply even larger 

movements in productivity. One way of dampening down these excessively large 

movements in productivity would be to consider the non-asymptotic version of our model in 

which it takes several periods for new firms to catch-up to the frontier. Producing a non-

asymptotic version of the model that may be feasibly simulated is left for future work. 

As an additional test of the model, we re-estimated the model under the constraint that 

𝓆 = 0, (and without the constraint on the effect of increasing 𝓆 on the share of medium-

frequency variance). Doing this reduced the log posterior density by 14.1458 which with flat 

priors would mean we could reject the null of the validity of the 𝓆 = 0 constraint at even 

0.01% significance. Now, with 𝓆 = 0, patent protection is indefinite, so there cannot be any 

of the movement in the share of patent protected industries that was previously seen to 

drive our model’s behaviour, and the model collapses to a medium scale variant of the 

Jaimovich (2007) model. Hence, our ability to reject the null of 𝓆 = 0 provides strong 

evidence of the macroeconomic importance of our key mechanism. 

We can further statistically test our model by looking for evidence of misspecification. 

Under the null hypothesis of no misspecification, the estimated shock residuals should be 

NIID(0,1). In Table 5 in the appendix, we report the p-values of LM tests for the presence of 

                                                      

58 The log posterior density decreased from 13462.01 to 13447.86. 



Chapter 1 

Page 60 of 174 

auto-correlation in these residuals. We are unable to reject the null of no auto-correlation 

(at 1%) for six shocks, including the depreciation shock, the population shock and the 

monetary policy shock. Given these last three shocks together explain more than 50% of 

the non-measurement-error variance in ten out of the twelve variables (including output 

and prices), and given that the estimated shocks from DSGE models tend to be highly auto-

correlated, this is a further strong vindication of our model. 

A final natural test of the model is its ability to replicate the results of section 2. 

 
𝓆 

Figure 5: The effect of patent duration on the importance of medium-frequency cycles. 
 

In Figure 5 we verify that the model does indeed predict that increasing the duration of 

patent-protection increases the share of variance attributable to medium-frequency cycles. 

Each dot represents an estimated variance share using the spectral density implied by the 

transition matrices. With longer patent-protection (i.e. a smaller value of 𝓆), following a 

boom in invention the share of patent-protected industries will be above its steady-state 

level for longer, implying that productivity too will be above trend for longer. Consequently, 

we see in Figure 3 that increasing patent duration (reducing 𝓆) does indeed increase the 

share of medium-frequency variance. The left hand axis of this graph corresponds to the 

estimated value of 𝓆, so of course at that point it was constrained to have negative slope, 

but its continual decrease across the range was not a product of a constraint imposed in 

estimation. 
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Additionally, output per capita is near trend stationary in our model, just as in the data. By 

construction, there is only one potential source of non-stationarity in output per capita: the 

non-stationarity of 𝐴𝑡
∗. However, the standard deviation of 𝑔𝐴∗ is only 0.00186%, meaning 

that 𝐴𝑡
∗ is very close to being deterministic. Thus in the long run in our model, log-output will 

always return to its original linear trend. The low variance of 𝑔𝐴∗ comes from the fact that 

fluctuations in the number of industries and the number of firms absorb almost all demand 

variations in the long and short runs, meaning each individual firm faces roughly constant 

incentives to perform research. Despite this long-run return to trend however, our model 

still generates sizeable medium-frequency cycles, as may be seen in the impulse responses 

shown in the next section. 

 
Filter upper cut-off in years 

Figure 6: The cross correlation of model output and mark-ups, as a function of filter cut-
off. (Dark gray is a significantly positive correlation (at 5%), light grey is a positive but 
insignificant one, cross-hatched is a negative but insignificant one and white is a significantly 
negative one.) 
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correlation of output and mark-ups at lags or leads. In Figure 6 we replicate Figure 2 with 

simulated data from the estimated model. Immediately, we see that only the bound at 

twenty years is actually binding, meaning our model is not being contorted in order to 

produce pro-cyclicality. Indeed, the similarity between the figures is remarkable. Just as in 

reality, the model predicts that mark-ups are pro-cyclical for small lags or leads, unless the 

data is filtered with a very low frequency lower cut-off. Again, as in reality, the model 

predicts that mark-ups are positively correlated with leads of output, and negatively 

correlated with its lags. 

This pro-cyclicality is not driven by sticky wages. Indeed, with fully flexible wages we get 

pro-cyclicality whatever our filter cut-off. Instead, the pro-cyclicality is driven by the fact 

that increases in the proportion of industries producing patent protected products both 

increase mark-ups and productivity. This also explains why mark-ups should lead output; the 

increase in mark-ups is instant, however due to the assorted real rigidities in our model, the 

increase in output will only occur gradually. 

4.5. Impulse responses 

In Figure 7, we present the impulse responses to the four key driving shocks. As in the 

previous section, each graph is given in terms of per cent deviations from the value the 

variable would have taken had the shock never arrived, and the horizontal axis shows time 

in years, though this is a quarterly model. For no shocks was there an asymmetric positive 

and negative response, so the lower bound on invention is irrelevant. Each shock is in a 

different column, and the key response variables are in rows. Solid lines show the response 

with the estimated degree of wage stickiness, dashed lines show responses under flexible 

wages. 
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To show the magnitude of the effects of these shocks on productivity, we include the 

implied Solow residual59 in the third row. Our chief driving shock, that to depreciation, has 

both a direct effect on the Solow residual through reduced utilisation, and an indirect one 

through the consequent reduction in invention and transfer away from new, highly 

productive industries, both of which operate in the same direction initially. However, the 

indirect effect far outlasts the direct one, with aggregate productivity still negative nearly 

twenty years after the original shock. It then slightly overshoots due to our model’s real 

rigidities, producing a medium frequency cycle in productivity. 

In fact, thanks to the model’s endogenous growth component, the Solow residual moves 

following each of the four shocks, so in a sense all shocks are TFP shocks. Most interesting of 

these is our monetary policy shock, as a large medium term impact of monetary policy on 

productivity would substantially alter prescriptions for optimal monetary policy. However, 

at the estimated parameters the movement in productivity following a monetary policy 

shock is miniscule, so (perhaps unsurprisingly) the medium term impacts of monetary policy 

on productivity are not something that policy makers need to factor in to their decisions.  

                                                      

59 The Solow residual is given by 
𝑌𝑡

𝐾𝑡−1
𝛼P 𝐿𝑡

1−𝛼P
=

�̂�𝑡𝐴𝑡

1
1−𝜄P𝐴𝑡

∗(1−𝛼P)𝜉L

�̂�𝑡−1
𝛼P �̂�𝑡

1−𝛼P
 in the notation of the appendix, section 7.5. 
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 Depreciation shock (𝛿𝑡) Negative labour supply shock 
(Φ𝑡) 

Nom. interest shock 

(𝑅𝑡
SHOCK) 

Population shock (𝐺𝑁,𝑡) 

 
Figure 7: Impulse responses from the core model. 

(Vertical axes are in percent, horizontal axes are in years. Solid lines are with nominal wage 
rigidity, dashed lines are with flexible wages.) 
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5. Conclusion 

Many have expressed the worry that “the apparent fit of the DSGE model [has] more to do 

with the inclusion of suitable exogenous driving processes than with the realism of the 

model structure itself”60. In this paper, we have demonstrated that if productivity is 

endogenized through research, appropriation and invention then even a frictionless RBC 

model is capable of generating rich persistent dynamics from uncorrelated shocks, and a full 

medium-scale model is capable of accurately matching key moments, providing a 

statistically significant improvement in model fit. 

We showed that all shocks lead to changes in the rate of product invention that have 

significant consequences for aggregate productivity and mark-ups at medium-frequency, 

due to fluctuations in the proportion of industries that are producing patent-protected 

products. Our model’s propagation mechanisms thus lend persistence to all shocks, not just 

shocks to the invention or research process. Furthermore, this improvement in the model’s 

propagation mechanism does not come at the expense of counter-factual movements in 

mark-ups, implausibly large unit roots in output, or the use of a growth model that we can 

reject thanks to the absence of strong scale effects in the data. In all of these respects, then, 

our model presents a substantial advance on the prior literature. 

The fact we are able to combine a plausible growth model with a business cycle model also 

enables us to get much tighter estimates of the strength of externalities (for example) than 

is possible from traditional growth models, since these parameters have an impact on the 

dynamics as well as on the long run growth rate. This will enable the testing of hypotheses 

about the mechanics of endogenous growth that were previously near impossible to test. 

                                                      

60 Del Negro et al. (2007) paraphrasing Kilian (2007). 
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Our model suggests that a switch to indefinite patent protection would result in significant 

welfare improvements. Such a switch would both permanently increase the level of 

aggregate productivity, and substantially lessen its variance and persistence, while only 

slightly increasing mark-ups and efficiency losses due to research duplication. Indeed, it may 

be shown that in our model increasing patent protection even slightly increases growth 

rates, as industry profits are decreasing in aggregate productivity, and so with indefinite 

patent protection each (protected) industry has fewer firms meaning higher mark-ups and 

higher research. However, it is clear that the structure of our model has “stacked-the-deck” 

in favour of finding a beneficial role for patent protection. Patents in our model are less 

broad than in the real world, and they do not hinder future research or invention. One 

minimal conclusion we can draw on patent protection is that product patents should at least 

be long enough that by the end of patent protection, production process have reached 

frontier productivity. In our model, this time goes to zero asymptotically. A less radical 

policy change might be to grant temporary extensions to patents that would otherwise 

expire during a recession. We intend to explore the full policy implications of this model in 

future work. 
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7. Appendices 

7.1. The free-entry and first order conditions 

When deciding how much research and appropriation to perform, firms realise that if they 

perform a non-equilibrium amount then in the next period they will have an incentive to set 

a different mark-up to the other firms in their industry. (The clearest example of this is when 

we have perfect competition, in which case the most productive firm would want to price 

just below the second most productive firms’ marginal cost.) It may be seen that in non-

symmetric equilibrium the optimal price satisfies: 

𝑃𝑡(𝑖, 𝑗) =
𝑊𝑡

𝐴𝑡(𝑖, 𝑗)

[
 
 
 

1 +
𝜂𝜆

1 − (1 − 𝜂)
1

𝐽𝑡−1(𝑖)
(
𝑃𝑡(𝑖,𝑗)

𝑃𝑡(𝑖)
)
−
1

𝜂𝜆

]
 
 
 

. 
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Since we are looking for a symmetric equilibrium, it is sufficient to approximate this locally 

around 𝑃𝑡(𝑖) = 𝑃𝑡(𝑖, 𝑗) in order to calculate firms’ research and appropriation incentives. 

Taking a log-linear approximation of log 𝑃𝑡(𝑖, 𝑗) in 
𝑃𝑡(𝑖,𝑗)

𝑃𝑡(𝑖)
 gives us that: 

𝑃𝑡(𝑖, 𝑗) ≈
𝑊𝑡

𝐴𝑡(𝑖, 𝑗)
(1 + 𝜇𝑡−1(𝑖)) (

𝑃𝑡(𝑖, 𝑗)

𝑃𝑡(𝑖)
)

−𝜔𝑡−1(𝑖)

 

where 𝜔𝑡(𝑖) ≔
𝐽𝑡(𝑖)(1−𝜂)

(𝐽𝑡(𝑖)−(1−𝜂))
2
(1+𝜇𝑡(𝑖))

 captures the strength of these incentives to deviate 

from setting the same mark-up as all other firms in their industry. Therefore 𝑃𝑡(𝑖) ≈

𝑊𝑡

𝐴𝑡(𝑖)
(1 + 𝜇𝑡−1(𝑖)) and 𝑃𝑡(𝑖, 𝑗) ≈

𝑊𝑡

𝐴𝑡(𝑖,𝑗)
(1 + 𝜇𝑡−1(𝑖)) (

𝐴𝑡(𝑖,𝑗)

𝐴𝑡(𝑖)
)

𝜔𝑡−1(𝑖)

1+𝜔𝑡−1(𝑖) where: 

𝐴𝑡(𝑖) ≔ [
1

𝐽𝑡−1(𝑖)
∑ 𝐴𝑡(𝑖, 𝑗)

1

𝜂𝜆(1+𝜔𝑡−1(𝑖))

𝐽𝑡−1(𝑖)

𝑗=1

]

𝜂𝜆(1+𝜔𝑡−1(𝑖))

. 

Therefore, up to a first order approximation around the symmetric solution, profits are 

given by: 

𝛽
1

𝐼𝑡𝐽𝑡(𝑖)
(
1 + 𝜇𝑡
1 + 𝜇𝑡(𝑖)

)

1

𝜆

𝔼𝑡Ξ𝑡+1𝑌𝑡+1 [(
𝐴𝑡+1(𝑖, 𝑗)

𝐴𝑡+1(𝑖)
)

𝜔𝑡(𝑖)

1+𝜔𝑡(𝑖)

−
1

1 + 𝜇𝑡(𝑖)
] (
𝐴𝑡+1(𝑖, 𝑗)

𝐴𝑡+1(𝑖)
)

1−𝜂𝜆𝜔𝑡(𝑖)

𝜂𝜆(1+𝜔𝑡(𝑖))

(
𝐴𝑡+1(𝑖)

𝐴𝑡+1
)

1

𝜆

− [𝐿𝑡
R(𝑖, 𝑗) + 𝐿𝑡

A(𝑖, 𝑗) + 𝐿𝑡
ℛ(𝑖) + 𝐿F]𝑊𝑡. 

Note that if 𝐽𝑡(𝑖) >
2√2(3−√2)

1+2√2
≈ 1.17 , then 1 − 𝜂𝜆𝜔𝑡(𝑖) > 0  (by tedious algebra), so 

providing there are at least two firms in the industry, this expression is guaranteed to be 

increasing and concave in 𝐴𝑡+1(𝑖, 𝑗). 
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Let 𝓂𝑡
R(𝑖, 𝑗)𝑊𝑡 be the Lagrange multiplier on research’s positivity constraint and 𝓂𝑡

A(𝑖, 𝑗)𝑊𝑡 

be the Lagrange multiplier on appropriation’s positivity constraint. Then in a symmetric 

equilibrium the two first order conditions and the free entry condition (respectively) mean: 

𝛽
1

𝐼𝑡𝐽𝑡(𝑖)

𝜇𝑡(𝑖)

1 + 𝜇𝑡(𝑖)
(
1 + 𝜇𝑡
1 + 𝜇𝑡(𝑖)

)

1

𝜆

𝔼𝑡Ξ𝑡+1𝑌𝑡+1 (
𝐴𝑡+1(𝑖)

𝐴𝑡+1
)

1

𝜆 𝒹𝑡(𝑖)

𝜇𝑡(𝑖)

𝑍𝑡+1𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ

1 + 𝛾𝑍𝑡+1𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ𝐿𝑡

R(𝑖)

= 𝑊𝑡 (1 −𝓂𝑡
R(𝑖)) 

𝛽
1

𝐼𝑡𝐽𝑡(𝑖)

𝜇𝑡(𝑖)

1 + 𝜇𝑡(𝑖)
(
1 + 𝜇𝑡
1 + 𝜇𝑡(𝑖)

)

1

𝜆

𝔼𝑡Ξ𝑡+1𝑌𝑡+1 (
𝐴𝑡+1(𝑖)

𝐴𝑡+1
)

1

𝜆 𝒹𝑡(𝑖)

𝜇𝑡(𝑖)

1 + (𝛾 − 𝜁R)𝑍𝑡+1𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ𝐿𝑡

R(𝑖)

1 + 𝛾𝑍𝑡+1𝐴𝑡
∗∗(𝑖)−𝜁

R
Ψ𝐿𝑡

R(𝑖)

∙
1

𝜏

𝐴𝑡(𝑖)
−𝜁AΥ(𝐴𝑡

∗𝜏 − 𝐴𝑡(𝑖)
𝜏)

𝐴𝑡
∗∗(𝑖)𝜏 (1 + 𝐴𝑡(𝑖)−𝜁

A
Υ𝐿𝑡

A(𝑖))
2 = 𝑊𝑡 (1 −𝓂𝑡

A(𝑖)) 

𝛽
1

𝐼𝑡𝐽𝑡(𝑖)

𝜇𝑡(𝑖)

1 + 𝜇𝑡(𝑖)
(
1 + 𝜇𝑡
1 + 𝜇𝑡(𝑖)

)

1

𝜆

𝔼𝑡Ξ𝑡+1𝑌𝑡+1 (
𝐴𝑡+1(𝑖)

𝐴𝑡+1
)

1

𝜆

= [𝐿𝑡
R(𝑖, 𝑗) + 𝐿𝑡

A(𝑖, 𝑗) + 𝐿𝑡
ℛ(𝑖) + 𝐿𝑡

F]𝑊𝑡 

where: 

𝒹𝑡(𝑖) ≔ 1 −
𝜔𝑡(𝑖)

1 + 𝜔𝑡(𝑖)

(𝜆 − 𝜇𝑡(𝑖))(𝜇𝑡(𝑖) − 𝜂𝜆)

𝜆(1 − 𝜂)𝜇𝑡(𝑖)
< 1 

and where we have dropped 𝑗 indices on variables which are the same across the industry. 

We also have that: 

(𝜆 − 𝜇𝑡(𝑖))(𝜇𝑡(𝑖) − 𝜂𝜆)

𝜆(1 − 𝜂)𝜇𝑡(𝑖)
≤
𝜆(1 − √𝜂)(√𝜂 − 𝜂)

√𝜂
< 𝜆 

so providing 𝜆 < 1, 𝒹𝑡(𝑖) > 0. 

That the solution for research when 𝑍𝑡+1 ≡ 1  is given by equation (3.2) is a trivial 

consequence of the complementary slackness condition and the facts that 
1

𝜇𝑡(𝑖)
< 𝛾 and 

𝒹𝑡(𝑖) < 1. Deriving (3.3) is less trivial though. 
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Begin by defining 𝓀𝑡(𝑖) ≔
1+(𝛾−𝜁R)ℒ𝑡

R(𝑖)

1+𝛾ℒ𝑡
R(𝑖)

, and note that since we are assuming 𝛾 > 𝜁R ≥ 0, 

we have that 0 < 𝓀𝑡(𝑖) ≤ 1. 

Also define: 

𝓃𝑡(𝑖) ≔
𝒹𝑡(𝑖)𝓀𝑡(𝑖)

𝜏𝜇𝑡(𝑖)
𝐴𝑡
∗(𝑖)−𝜁

A
Υ [(

𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

− 1] [𝐿𝑡
R(𝑖) + 𝐿𝑡

ℛ(𝑖) + 𝐿𝑡
F] ≥ 0, 

which is not a function of 𝐿𝑡
A(𝑖), given 𝐿𝑡

R(𝑖). 

We can then combine the appropriation first order condition with the free entry condition 

to obtain: 

1

(1 + ℒ𝑡
A(𝑖))

2 (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗∗(𝑖)

)

𝜏

[
𝒹𝑡(𝑖)𝓀𝑡(𝑖)

𝜏𝜇𝑡(𝑖)
[(

𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

− 1]ℒ𝑡
A(𝑖) + 𝓃𝑡(𝑖)] = 1 −𝓂𝑡

A(𝑖). 

Since the left hand side is weakly positive, from the dual feasibility condition we know 

𝓂𝑡
A(𝑖) ∈ [0,1]. Now when 𝐿𝑡

A(𝑖) = 0, this becomes: 

𝓃𝑡(𝑖) = 1 −𝓂𝑡
A(𝑖), 

since in this case 𝐴𝑡
∗(𝑖) = 𝐴𝑡

∗∗(𝑖). Therefore when 𝐿𝑡
A(𝑖) = 0, 𝓃𝑡(𝑖) ≤ 1. 

We now prove the converse. Suppose then for a contradiction that 𝐿𝑡
A(𝑖) > 0, but 𝓃𝑡(𝑖) ≤

1. By complementary slackness, we must have 𝓂𝑡
A(𝑖) = 0, hence: 

1 ≥ 𝓃𝑡(𝑖) = (1 + ℒ𝑡
A(𝑖))

2

(
𝐴𝑡
∗∗(𝑖)

𝐴𝑡
∗(𝑖)

)

𝜏

−
𝒹𝑡(𝑖)𝓀𝑡(𝑖)

𝜏𝜇𝑡(𝑖)
[(

𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

− 1]ℒ𝑡
A(𝑖) 

≥ (1 + ℒ𝑡
A(𝑖))

2

(
𝐴𝑡
∗∗(𝑖)

𝐴𝑡
∗(𝑖)

)

𝜏

− [(
𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

− 1]ℒ𝑡
A(𝑖) 

= (1 + ℒ𝑡
A(𝑖)) [(1 + ℒ𝑡

A(𝑖)) + ℒ𝑡
A(𝑖) [(

𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

− 1]] − [(
𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

− 1]ℒ𝑡
A(𝑖), 

where we have used the facts that 𝒹𝑡(𝑖)𝓀𝑡(𝑖) ≤ 1 and 
1

𝜇𝑡(𝑖)
< 𝜏 to derive the second 

inequality. 
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Expanding the brackets then gives that: 

1 ≥ 1 + 2ℒ𝑡
A(𝑖) + (

𝐴𝑡
∗

𝐴𝑡
∗(𝑖)

)

𝜏

ℒ𝑡
A(𝑖)2, 

i.e. that 0 ≥ 2 + (
𝐴𝑡
∗

𝐴𝑡
∗(𝑖)
)
𝜏

ℒ𝑡
A(𝑖) which is a contradiction as (

𝐴𝑡
∗

𝐴𝑡
∗(𝑖)
)
𝜏

ℒ𝑡
A(𝑖) ≥ 0. 

We have proven then that providing 
1

𝜇𝑡(𝑖)
< 𝜏, 𝐿𝑡

A(𝑖) = 0 if and only if 𝓃𝑡(𝑖) ≤ 1. It just 

remains for us to solve for 𝐿𝑡
A(𝑖) when it is strictly positive. From the above, we have that, in 

this case: 

(
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

[𝓃𝑡(𝑖) − 1] = 2 [1 −
1

2
[1 +

𝒹𝑡(𝑖)𝓀𝑡(𝑖)

𝜏𝜇𝑡(𝑖)
] [1 − (

𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

]] ℒ𝑡
A(𝑖) + ℒ𝑡

A(𝑖)2. 

Hence: 

ℒ𝑡
A(𝑖) = − [1 −

1

2
[1 +

𝒹𝑡(𝑖)𝓀𝑡(𝑖)

𝜏𝜇𝑡(𝑖)
] [1 − (

𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

]]

+ √[1 −
1

2
[1 +

𝒹𝑡(𝑖)𝓀𝑡(𝑖)

𝜏𝜇𝑡(𝑖)
] [1 − (

𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

]]

2

+ (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

[𝓃𝑡(𝑖) − 1], 

since the lower solution is guaranteed to be negative as 𝓃𝑡(𝑖) > 1 when 𝐿𝑡
A(𝑖) > 0. 

7.2. The steady state for non-patent-protected industries 

In an industry 𝑖 which is not patent-protected and in which appropriation, but no research, 

is performed, from (3.1) and (3.3): 

𝒻𝑡(𝑖) + √𝒻𝑡(𝑖)2 + ℊ𝑡(𝑖) = ℒ𝑡
A(𝑖) = [1 −

(
𝐴𝑡+1
∗ (𝑖)

𝐴𝑡
∗(𝑖)

)
𝜏

− 1

1 − (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏 (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

]

−1

− 1. 

If we treat 𝔭1 ≔ 𝜏
𝜇𝑡(𝑖)

𝒹𝑡(𝑖)
− 1 ≈ 0 , 𝔭2 ≔ 𝐴𝑡

∗(𝑖)−𝜁
A
Υ𝑡𝐿𝑡

F ≈ 0  and 𝔭3 ≔ (
𝐴𝑡+1
∗ (𝑖)

𝐴𝑡
∗(𝑖)

)
𝜏

− 1 ≈ 0  as 

fixed, this leaves us with a cubic in (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

, for which only one solution will be feasible (i.e. 
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strictly less than 1). Taking a second order Taylor approximation of this solution in 𝔭1, 𝔭2 

and  𝔭3, reveals (after some messy computation), that: 

(
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

≈ 𝔭2(1 − (𝔭1 + 𝔭2)) = 𝐴𝑡
∗(𝑖)−𝜁

A
Υ𝑡𝐿𝑡

F (2 − 𝜏
𝜇𝑡(𝑖)

𝒹𝑡(𝑖)
− 𝐴𝑡

∗(𝑖)−𝜁
A
Υ𝑡𝐿𝑡

F) 

(The effect of 𝔭3 on (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

 is third order and hence it does not appear in this expression.) 

From this approximate solution for (
𝐴𝑡
∗(𝑖)

𝐴𝑡
∗ )

𝜏

 then, we have that the relative productivity of a 

non-protected industry is decreasing in its mark-up. Furthermore, from dropping to a first 

order approximation, we have that 𝐴𝑡
∗(𝑖)1+

𝜁A

𝜏 ≈ 𝐴𝑡
∗(Υ𝑡𝐿𝑡

F)
1

𝜏, so asymptotically non-protected 

industries are growing at [1 +
𝜁A

𝜏
]
−1

 times the growth rate of the frontier. 

7.3. The inventor-firm bargaining process 

We model the entire process of setting and paying rents as follows: 

1) Firms enter, paying the fixed cost. 

2) Firms who have entered conduct appropriation, then research. 

3) The “idea shock” for next period’s production, 𝑍𝑡+1, is realised and firms and patent 

holders learn its level. 

4) Finally, firms arrive at the patent-holder to conduct bargaining, with these arrivals taking 

place sequentially but in a random order. (For example, all firms phone the patent-

holder sometime in the week before production is to begin.) In this bargaining we 

suppose that the patent-holder has greater bargaining power, since they have a longer 
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outlook61 and since they lose nothing if bargaining collapses62. We also suppose that 

neither patent-holders nor firms are able to observe or verify either how many (other) 

firms paid the fixed cost, or what research and appropriation levels they chose. This is 

plausible because until production begins it is relatively easy to keep such things hidden 

(for example, by purchasing the licence under a spin-off company), and because it is 

hard to ascertain ahead of production exactly what product a firm will be producing. We 

assume bargaining takes an alternating offer form, (Rubinstein 1982) but that it happens 

arbitrarily quickly (i.e. in the no discounting limit). 

5) Firms pay the agreed rents if bargaining was successful. Since this cost is expended 

before production, we continue to suppose firms have to borrow in the period before 

production in order to cover it. Firms will treat it as a fixed cost, sunk upon entry, since 

our unobservability assumptions mean bargaining’s outcome will not be a function of 

research and appropriation levels. 

6) The next period starts, other aggregate shocks are realised and production takes place. 

7) The patent-holder brings court cases against any firms who produced but decided not to 

pay the rent. For simplicity, we assume the court always orders the violating firm to pay 

damages to the patent-holder, which are given as follows: 

a) When the courts believe rents were not reasonable (i.e.  𝐿𝑡
ℛ(𝑖) > 𝐿𝑡

ℛ∗(𝑖), where 

𝐿𝑡
ℛ∗(𝑖)𝑊𝑡  is the level courts determine to be “reasonable royalties”), they set 

damages greater than 𝐿𝑡
ℛ∗(𝑖)𝑊𝑡, as “the infringer would have nothing to lose, and 

everything to gain if he could count on paying only the normal, routine royalty non-

                                                      

61 Consider what happens as the time gap between offers increases. When this gap is large enough only one 

offer would be made per-period, meaning the patent-holder would make a take-it-or-leave-it offer giving 

(almost) nothing to the firm, which the firm would then accept. 
62 The firm owner may, for example, face restrictions from starting businesses in future if as a result of the 

bargaining collapse they are unable to repay their creditors. 
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infringers might have paid”63. We assume excess damages over 𝐿𝑡
ℛ∗(𝑖)𝑊𝑡 are less 

than the patent-holder’s legal costs however. 

b) When the courts consider the charged rent to have been reasonable (i.e. 𝐿𝑡
ℛ(𝑖) ≤

𝐿𝑡
ℛ∗(𝑖) ) the courts award punitive damages of more than 

max { 𝐿𝑡
ℛ∗(𝑖)𝑊𝑡, (

1

1−𝓅
)𝐿𝑡

ℛ(𝑖)𝑊𝑡, }, where 𝓅 is the bargaining power of the firm, in 

the sense of the generalized Nash bargaining solution.64 

Under this specification: 

𝐿𝑡
ℛ(𝑖) = min{𝐿𝑡

ℛ∗(𝑖), (1 − 𝓅)[𝐿𝑡
R(𝑖) + 𝐿𝑡

A(𝑖) + 𝐿𝑡
ℛ(𝑖) + 𝐿F]} 

since entry is fixed when bargaining takes place, since patent-holders know that bargaining 

to a rent level any higher than 𝐿𝑡
ℛ∗(𝑖)𝑊𝑡 will just result in them having to pay legal costs,65 

and since [𝐿𝑡
R(𝑖) + 𝐿𝑡

A(𝑖) + 𝐿𝑡
ℛ(𝑖) + 𝐿F]𝑊𝑡  is equal to the production period profits of each 

firm in industry 𝑖, by the free entry condition.66 Therefore, in equilibrium: 

 𝐿𝑡
ℛ(𝑖) = min{𝐿𝑡

ℛ∗(𝑖), 𝐿𝑡
ℛ†(𝑖)}, (7.1) 

   

where 𝐿𝑡
ℛ†(𝑖) is a solution to equations (3.2), (3.3) along with equation (3.4), (i.e. 𝐿𝑡

ℛ(𝑖) =

1−𝓅

𝓅
[𝐿𝑡
R(𝑖) + 𝐿𝑡

A(𝑖) + 𝐿F]) if one exists, or +∞ otherwise. Because damages are always 

greater than 𝐿𝑡
ℛ∗(𝑖)𝑊𝑡, these rents will be sufficiently low to ensure firms are always 

prepared to licence the patent at the bargained price in equilibrium. 

                                                      

63 Panduit Corp. v. Stahlin Brothers Fibre Works, Inc., 575 F.2d 1152, 1158 (6th Circuit 1978), cited in Pincus 

(1991). 

64 The level (
1

1−𝓅
) 𝐿𝑡

ℜ(𝑖)𝑊𝑡 is chosen to ensure that, with equilibrium rents, firms prefer not to produce at all 

rather than to produce without paying rents. 
65 The disagreement point is zero since it is guaranteed that 𝐿𝑡

ℜ(𝑖) ≤ 𝐿𝑡
ℜ∗(𝑖) and so punitive damages would be 

awarded were the firm to produce without paying rents, which, by construction, leaves them worse off than 

not producing. 
66 A similar expression can also be derived if we assume instead that courts guarantee infringers a fraction 𝓅 of 

production profits, or if we assume courts always award punitive damages but firms are able to hide a fraction 

𝓅 of their production profits. 
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Now suppose we are out of equilibrium and fewer firms than expected have entered. Since 

neither the patent-holder nor firms can observe how many firms have entered, and since 

firms arrive at the patent-holder sequentially, both sides will continue to believe that the 

equilibrium number of firms has entered and so rents will not adjust. On the other hand, 

suppose that (out of equilibrium) too many firms enter. When the first unexpected firm 

arrives at the patent-holder to negotiate, the patent-holder will indeed realise that too 

many firms have entered. However, since the firm they are bargaining with has no way of 

knowing this,67  the patent-holder can bargain for the same rents as in equilibrium. 

Therefore, even out of equilibrium: 

𝐿𝑡
ℛ(𝑖) = min{𝐿𝑡

ℛ∗(𝑖), 𝐿𝑡
ℛ†(𝑖)} 

where we stress 𝐿𝑡
ℛ†(𝑖) is not a function of the decisions any firm happened to take. This 

ensures that any solution of equations (3.2), (3.3) and (7.1) for research, appropriation and 

rents will also be an equilibrium, even allowing for the additional condition that the 

derivative of firm profits with respect to the number of firms must be negative at an 

optimum. 

We now just have to pin down “reasonable royalties”, 𝐿𝑡
ℛ∗(𝑖)𝑊𝑡. Certainly it must be the 

case that 𝐿𝑡
ℛ∗(𝑖) ≤ 𝐿𝑡

ℛ̅(𝑖), where 𝐿𝑡
ℛ̅(𝑖) is the level of rents at which 𝐽𝑡(𝑖) = 1, since rents so 

high that no one is prepared to pay them must fall foul of the courts’ desire to ensure 

licensees can make a profit. 68 However, since when 𝐽𝑡(𝑖) = 1 the sole entering firm (almost) 

may as well be the patent-holder themselves, where possible the courts will set 𝐿𝑡
ℛ∗(𝑖) 

sufficiently low to ensure that 𝐽𝑡(𝑖) > 1 in equilibrium, again following the idea that 

                                                      

67 Either they are a firm that thinks the equilibrium number of firms has entered, or they are a firm that thinks 

more than the equilibrium number of firms has entered, but that does not know whether the patent-holder 

has yet realised this. 
68 “…the very definition of a reasonable royalty assumes that, after payment, the infringer will be left with a 

profit.” Georgia-Pacific Corp. v. U.S. Plywood-Champion Papers Corp., 446 F.2d 295, 299 & n.1 (2d Cir.), cert. 

denied, 404 U.S. 870 (1971), cited in Pincus (1991). 
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licensees ought to be able to make a profit. When there is a 𝐽𝑡(𝑖) > 1 solution to equations 

(3.2), (3.3) and (3.4) already (i.e. 𝐿𝑡
ℛ†(𝑖) < ∞), the courts will just set 𝐿𝑡

ℛ∗(𝑖) at the rent level 

that would obtain in that solution, thus preventing the possibility of  𝐽𝑡(𝑖) = 1 being an 

equilibrium. It may be shown that for sufficiently large 𝑡 such a solution is guaranteed to 

exist, so in this case 𝐿𝑡
ℛ∗(𝑖) = 𝐿𝑡

ℛ†(𝑖) = 𝐿𝑡
ℛ(𝑖).69 

7.4. The de-trended model 

Below we give the equations of the stationary model to which the model described in 

section 3 converges as 𝑡 → ∞. 

7.4.1. Households 

 Stochastic discount factor: Ξ𝑡 =
Θ𝑡�̂�𝑡−1

Θ𝑡−1�̂�𝑡𝐺𝐴,𝑡
, where �̂�𝑡 ≔

𝐶𝑡

𝑁𝑡𝐴𝑡
 is consumption per person 

in labour supply units and 𝐺𝑉,𝑡 is the exponent of the growth rate of the variable 𝑉𝑡 at 𝑡. 

 Labour supply: Φ𝑡�̂�𝑡
S𝜈 =

�̂�𝑡

�̂�𝑡
, where �̂�𝑡

S ≔
𝐿𝑡
S

𝑁𝑡
 is labour supply per person and �̂�𝑡 ≔

𝑊𝑡

𝐴𝑡
 is 

the wage per effective unit of labour supply. 

 Euler equation: 𝛽𝑅𝑡𝔼𝑡[Ξ𝑡+1] = 1, where 𝑅𝑡 is the real interest rate. 

7.4.2. Aggregate relationships 

 Aggregate mark-up pricing: �̂�𝑡 =
1

1+𝜇𝑡−1
 where 𝜇𝑡−1 is the aggregate mark-up in period 

𝑡. 

                                                      

69 There may still be multiple solutions for rents (as (3.2), (3.3) and (3.4) might have multiple solutions), but of 

these only the one with minimal entry is really plausible, since this is both weakly Pareto dominant (firms 

always make zero profits and it may be shown that the patent-holder prefers minimal entry) and less risky for 

entering firms (if entering firms are unsure if the patent-holder will play the high rent or the low rent 

equilibrium, they are always better off assuming the high rent one since if that assumption is wrong they make 

strict profits, whereas had they assumed low rents but rents were in fact high they would make a strict loss). 
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 Mark-up aggregation: (
1

1+𝜇𝑡
)

1

𝜆
= (

1

1+𝜇𝑡
P)

1

𝜆
𝓈𝑡 + (

1

1+𝜂𝜆
)

1

𝜆 (1 − 𝓈𝑡) , where 𝜇𝑡
P = 𝜇𝑡(𝐼𝑡)  is 

the mark-up in any protected industry at 𝑡 + 1, and 𝓈𝑡 ≔ (1 − 𝓆)
𝓈𝑡−1

𝐺𝐼,𝑡
+ 1 −

1

𝐺𝐼,𝑡
 is the 

proportion of industries that will produce a patent protected product in period 𝑡 + 1. 

 Productivity aggregation: (
�̂�𝑡

1+𝜇𝑡−1
)

1

𝜆
= (

1

1+𝜇𝑡−1
P )

1

𝜆
𝓈𝑡−1 + (

�̂�𝑡
N

1+𝜂𝜆
)

1

𝜆
(1 − 𝓈𝑡−1) , where 

�̂�𝑡 ≔
𝐴𝑡

𝐴𝑡
∗ is aggregate productivity relative to the frontier70 and 

�̂�𝑡
N ≔ [(

1

𝐺𝐴∗,𝑡
)

1

𝜆
(

𝓆

1 𝓈𝑡−2 −(1−𝓆)
) + (

�̂�𝑡−1
N

𝐺𝐴∗,𝑡
)

1

𝜆
(1 −

𝓆

1 𝓈𝑡−2 −(1−𝓆)
)]

𝜆

 is the aggregate relative 

productivity of non-protected industries. 

7.4.3. Firm decisions 

 Strategic in-industry pricing: 𝜇𝑡
P = 𝜆

𝜂𝐽𝑡
P

𝐽𝑡
P−(1−𝜂)

, where 𝐽𝑡
P ≔ 𝐽𝑡(𝐼𝑡) is the number of firms 

in a protected industry performing research at 𝑡. 

 Firm research decisions: 
𝒹𝑡

𝓅𝜇𝑡
P 𝔼𝑡Ξ𝑡+1𝐺𝑌,𝑡+1�̂�𝑡+1

−
1

𝜆 𝑍𝑡+1ℒ̂𝑡
R

1+𝛾𝑍𝑡+1ℒ̂𝑡
R = (1 −𝓂𝑡

R)𝔼𝑡Ξ𝑡+1𝐺𝑌,𝑡+1�̂�𝑡+1
−
1

𝜆 , 

where ℒ̂𝑡
R ≔ 𝐴𝑡

∗−𝜁Ψ𝐿𝑡
R  is the amount of effective research conducted by firms in 

protected industries 𝒹𝑡  is the value of 𝒹𝑡(𝑖)  in protected industries and 𝑍𝑡  is the 

aggregate research-return shock. (This equation means that ℒ̂𝑡
R ≈

𝓅𝜇𝑡
P

𝒹𝑡−𝓅𝛾𝜇𝑡
P.) 

 Research and appropriation payoff: 𝐺𝐴∗,𝑡 = (1 + 𝛾𝑍𝑡ℒ̂𝑡−1
R )

1

𝛾. 

                                                      

70 As a consequence, we have that 𝐺𝐴,𝑡 =
𝐴𝑡

𝐴𝑡−1
𝐺𝐴∗,𝑡. 
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 Free entry of firms: 𝛽
1

𝐼𝑡𝐽𝑡
P

𝜇𝑡
P

1+𝜇𝑡
P (

1+𝜇𝑡

1+𝜇𝑡
P)

1

𝜆
𝔼𝑡Ξ𝑡+1𝐺𝑌,𝑡+1�̂�𝑡+1

−
1

𝜆 =
1

𝓅
ℒ̂𝑡
R �̂�𝑡

�̂�𝑡
, where 𝐼𝑡 ≔

𝐼𝑡

𝑁𝑡𝐴𝑡
∗−𝜁Ψ

 

is the measure of products relative to its trend,71 and �̂�𝑡 ≔
𝑌𝑡

𝑁𝑡𝐴𝑡
 is output per person in 

labour supply units. 

7.4.4. Inventor decisions 

 Inventor profits: are given recursively by: 

�̂�𝑡 =
1−𝓅

𝓅
ℒ̂𝑡
R�̂�𝑡𝐽𝑡

P + 𝛽(1 − 𝓆)𝔼𝑡Ξ𝑡+1𝐺𝐴,𝑡+1𝐺𝐴∗,𝑡+1
𝜁

�̂�𝑡+1, where �̂�𝑡 ≔
𝜋𝑡

𝐴𝑡𝐴𝑡
∗𝜁

. 

 Free entry of inventors: Either 𝐺𝐼,𝑡 ≥ 1 binds or Ψ𝐸𝜁ℒI�̂�𝑡 ≥ �̂�𝑡 does. 

7.4.5. Market clearing 

 Labour market clearing: 

�̂�𝑡
S = Ψ𝐸𝜁ℒ𝑡

I𝐼𝑡 (1 −
1

𝐺𝐼,𝑡
) + 𝐼𝑡𝓈𝑡𝐽𝑡

Pℒ̂𝑡
R

+ �̂�𝑡 [(
1

�̂�𝑡
)

1

𝜆𝑡

(
1 + 𝜇𝑡−1

1 + 𝜇𝑡−1
P
)

1+𝜆

𝜆

𝓈𝑡−1 + (
�̂�𝑡
N

�̂�𝑡
)

1

𝜆𝑡

(
1 + 𝜇𝑡−1
1 + 𝜂𝜆

)

1+𝜆

𝜆

(1 − 𝓈𝑡−1)]. 

 Goods market clearing: �̂�𝑡 = �̂�𝑡. 

7.5. The extended de-trended model 

Define 𝒶 ≔
1

(1−𝛼P)(1−𝜄P)
, 𝒷 ≔ (1 − 𝛼R)(1 − 𝜄R) , 𝒸 ≔ (

1−𝛼R

1−𝛼P
𝛼P𝜉KP − 𝛼R𝜉KR) (1 − 𝜄R) , ℯ ≔

𝜉L +
𝛼P

1−𝛼P
𝜉KP and make the normalisation Ψ = 𝐸 = 1. 

                                                      

71 This means 𝐺𝐼,𝑡 = 𝐺𝑁,𝑡𝐺𝐴∗,𝑡
−𝜁 𝐼𝑡

𝐼𝑡−1
. 
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7.5.1. Households 

 Budget constraint Lagrange multiplier: 
1

�̂̃�𝑡
= �̂�𝑡

C + 𝛽𝒽𝒽INT𝔼𝑡
𝑁𝑡+1Θ𝑡+1

𝑁𝑡Θ𝑡

1

𝐺𝐴,𝑡+1
𝒶 �̂̃�𝑡+1

, where 

�̂�𝑡
C

𝐴𝑡
𝒶𝐴𝑡

∗ℯ𝑁𝑡
  is the Lagrange multiplier on the budget constraint and �̂̃�𝑡 ≔

�̃�𝑡

𝐴𝑡
𝒶𝐴𝑡

∗ℯ = �̂�𝑡 −

𝒽
�̂�𝑡−1

𝐺𝐴,𝑡
𝒶 𝐺𝐴∗,𝑡

ℯ . 

 Stochastic discount factor: Ξ𝑡 =
Θ𝑡�̂�𝑡

C

Θ𝑡−1�̂�𝑡−1
C 𝐺𝐴,𝑡

𝒶 𝐺𝐴∗,𝑡
ℯ . 

 Labour supply: (1 + 𝜆L)�̂�1,𝑡 = �̂̃�𝑡

1+𝜈
1+𝜆L
𝜆L �̂�2,𝑡, where: 

�̂̃�𝑡 ≔
[�̂�𝑡

−
1
𝜆L−𝓋(

𝐺𝑃
𝐺𝑃,𝑡

𝐺𝑊
𝐺𝐴,𝑡
𝒶 𝐺

𝐴∗,𝑡
ℯ �̂�𝑡−1)

−
1
𝜆L

1−𝓋

]

−𝜆L

 (�̂̃�𝑡𝐴𝑡
𝒶𝐴𝑡

∗ℯ is the real wage set by a household 

that updates its wage at 𝑡), �̂�𝑡 ≔
𝑊𝑡

𝐴𝑡
𝒶𝐴𝑡

∗ℯ, and where �̂�1,𝑡 and �̂�2,𝑡 are the sums of costs 

and benefits respectively from the wage setting first order conditions.72 

 Euler equation: 𝛽𝑅𝑡𝔼𝑡[Ξ𝑡+1] = 1. 

 Investment decisions: for V ∈ {P,R}: 

1

𝐸𝑡
KV = Γ𝑡

�̂�𝑡
KV

𝛿V′(𝑢𝑡
V)
[1 − 𝑄KV(𝐺𝐼KV*,𝑡) − 𝐺𝐼KV,𝑡𝑄

KV′(𝐺𝐼KV*,𝑡)] +

𝛽𝔼𝑡Ξ𝑡+1Γ𝑡+1
�̂�𝑡+1
KV

𝐺
𝐴∗,𝑡

𝜉KV𝛿V′(𝑢𝑡+1
V )

𝐺
𝐼KV*,𝑡+1
2 𝑄KV′(𝐺𝐼KV*,𝑡+1), where �̂�𝑡

KV ≔ 𝑅𝑡
KV𝐴𝑡

∗𝜉KV  and 𝐺𝐼KV*,𝑡 =

𝐺𝐴∗,𝑡
𝜉KV 𝐸𝑡

KV

𝐸𝑡−1
KV 𝐺𝐼KV,𝑡 

                                                      

72  �̂�1,𝑡 = Φ𝑡 (�̂�𝑡

1+𝜆L
𝜆L �̃�𝑡

S)

𝜈

+ 𝛽𝓋𝔼𝑡
Θ𝑡+1𝑁𝑡+1

Θ𝑡𝑁𝑡
(

𝐺𝑃

𝐺𝑃,𝑡+1

𝐺𝑊

𝐺𝑊,𝑡+1
)
−
1+𝜆L
𝜆L �̃�𝑡+1

S

�̃�𝑡
S (

𝐺𝑃

𝐺𝑃,𝑡+1

𝐺𝑊

𝐺𝐴,𝑡+1
𝒶 𝐺𝐴∗,𝑡+1

ℯ )
−𝜈

1+𝜆L
𝜆L

�̂�1,𝑡+1 , �̂�2,𝑡 =

�̂�𝑡
C + 𝛽𝓋𝔼𝑡

Θ𝑡+1𝑁𝑡+1

Θ𝑡𝑁𝑡
(

𝐺𝑃

𝐺𝑃,𝑡+1

𝐺𝑊

𝐺𝑊,𝑡+1
)
−
1+𝜆L
𝜆L �̃�𝑡+1

S

�̃�𝑡
S

𝐺𝑃

𝐺𝑃,𝑡+1

𝐺𝑊

𝐺𝐴,𝑡+1
𝒶 𝐺𝐴∗,𝑡+1

ℯ �̂�2,𝑡+1. This formulation avoids any explicit log-

linearization and allows us to compute arbitrarily high order approximations to the model, for robustness 

checks. A similar formulation is used in Schmitt-Grohé and Uribe (2006). 
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 Utilisation decisions: for V ∈ {P,R}: 
�̂�𝑡
KV

𝛿V′(𝑢𝑡
V)
= 𝛽𝔼𝑡Ξ𝑡+1

�̂�𝑡+1
KV

𝐺
𝐴∗,𝑡

𝜉KV
[𝑢𝑡+1

V +
1−𝛿V(𝑢𝑡+1

V )

𝛿V′(𝑢𝑡+1
V )

]. 

 Capital accumulation: for V ∈ {P,R}: �̂�𝑡
V = (1 − 𝛿V(𝑢𝑡

V))
�̂�𝑡−1
V

𝐺𝑁,𝑡𝐺𝐴,𝑡
𝒶 𝐺

𝐴∗,𝑡

ℯ+𝜉KV
+ Γ𝑡𝐸𝑡

KV𝐼𝑡
KV[1 −

𝑄KV(𝐺𝐼KV,𝑡)] , where �̂�𝑡
V ≔

𝐾𝑡
V

𝑁𝑡𝐴𝑡
𝒶𝐴𝑡

∗ℯ+𝜉KV
 and 𝐼𝑡

KV =
𝐼𝑡
KV

𝑁𝑡𝐴𝑡
𝒶𝐴𝑡

∗ℯ  (hence 𝐺𝐼KV,𝑡 =

𝐺𝑁,𝑡𝐺𝐴,𝑡
𝒶 𝐺𝐴∗,𝑡

ℯ 𝐼𝑡
KV

𝐼𝑡−1
KV ). 

7.5.2. Aggregate relationships 

 Aggregate mark-up pricing: 
[𝑅𝑡

KP𝛼P�̂�𝑡
EP1−𝛼P]

1−𝜄P

𝜄P
𝜄P(1−𝜄P)

1−𝜄P[𝛼P
𝛼P(1−𝛼P)

1−𝛼P]
1−𝜄P

=
1

1+𝜇𝑡−1
 where �̂�𝑡

EP ≔

�̂�𝑡

𝐸𝑡
L[1−𝑄LP(

�̂�𝑡
TP

�̂�𝑡−1
TP 𝐺𝑁,𝑡𝐺𝐴∗,𝑡

𝜉𝐿 )]

 and �̂�𝑡
TP =

𝐿𝑡
TP

𝑁𝑡𝐴𝑡
∗𝜉𝐿

, where 𝐿𝑡
T ≔ 𝐴𝑡

∗𝜉L𝐸𝑡
L𝐿𝑡
S. 

 Mark-up aggregation: (
1

1+𝜇𝑡
)

1

𝜆
= (

1

1+𝜇𝑡
P)

1

𝜆
𝓈𝑡 + (

1

1+𝜂𝜆
)

1

𝜆 (1 − 𝓈𝑡), where 𝜇𝑡
P = 𝜇𝑡(𝐼𝑡)and 

𝓈𝑡 ≔ (1 − 𝓆)
𝓈𝑡−1

𝐺𝐼,𝑡
+ 1 −

1

𝐺𝐼,𝑡
. 

 Productivity aggregation: (
�̂�𝑡

1+𝜇𝑡−1
)

1

𝜆
= (

1

1+𝜇𝑡−1
P )

1

𝜆
𝓈𝑡−1 + (

�̂�𝑡
N

1+𝜂𝜆
)

1

𝜆
(1 − 𝓈𝑡−1) , where 

�̂�𝑡 ≔
𝐴𝑡

𝐴𝑡
∗ and �̂�𝑡

N ≔ [(
1

𝐺𝐴∗,𝑡
)

1

𝜆
(

𝓆

1 𝓈𝑡−2 −(1−𝓆)
) + (

�̂�𝑡−1
N

𝐺𝐴∗,𝑡
)

1

𝜆
(1 −

𝓆

1 𝓈𝑡−2 −(1−𝓆)
)]

𝜆

. 

7.5.3. Firm decisions 

 Strategic in-industry pricing: 𝜇𝑡
P = 𝜆

𝜂𝐽𝑡
P

𝐽𝑡
P−(1−𝜂)

, where 𝐽𝑡
P = 𝐽𝑡(𝐼𝑡). 

 Firm research decisions: 
𝒹𝑡

𝓅𝜇𝑡
P 𝔼𝑡Ξ𝑡+1𝐺𝑌,𝑡+1�̂�𝑡+1

−
1

𝜆 𝑍𝑡+1ℒ̂𝑡
R

1+𝛾𝑍𝑡+1ℒ̂𝑡
R = (1 −𝓂𝑡

R)𝔼𝑡Ξ𝑡+1𝐺𝑌,𝑡+1�̂�𝑡+1
−
1

𝜆 , 

where ℒ̂𝑡
R ≔ 𝐴𝑡

∗−𝜁𝑋𝑡
R𝜄𝑅 [𝐾𝑡

R𝛼𝑅𝐿𝑡
R1−𝛼𝑅]

1−𝜄𝑅
 is the amount of effective research conducted 

by firms in protected industries. 
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 Research and appropriation payoff: 𝐺𝐴∗,𝑡 = (1 + 𝛾𝑍𝑡ℒ̂𝑡−1
R )

1

𝛾. 

 Free entry of firms: 𝛽
1

𝐼𝑡𝐽𝑡
P

𝜇𝑡
P

1+𝜇𝑡
P (

1+𝜇𝑡

1+𝜇𝑡
P)

1

𝜆
𝔼𝑡Ξ𝑡+1𝐺𝑌,𝑡+1�̂�𝑡+1

−
1

𝜆 =
1

𝓅
ℒ̂𝑡
R �̂�𝑡

�̂�𝑡
, where 𝐼𝑡 ≔

𝐼𝑡

𝑁𝑡𝐴𝑡
𝒶(1−𝒷)

𝐴𝑡
∗ℯ−(𝒸+𝜁)

 is the measure of products relative to its trend,73 �̂�𝑡
GROSS ≔

𝑌𝑡
GROSS

𝑁𝑡𝐴𝑡
𝒶𝐴𝑡

∗ℯ is 

gross output relative to trend and �̂�𝑡 ≔
[𝑅𝑡

KR𝛼R�̂�𝑡
ER1−𝛼R]

1−𝜄R

𝜄R
𝜄R(1−𝜄R)

1−𝜄R[𝛼R
𝛼R(1−𝛼R)

1−𝛼R]
1−𝜄R

 is the marginal 

cost of a unit of research or invention, divided by 𝐴𝑡
𝒶𝒷𝐴𝑡

∗𝒸  (where �̂�𝑡
ER ≔

�̂�𝑡

𝐸𝑡
L[1−𝑄LR(

�̂�𝑡
TR

�̂�𝑡−1
TR 𝐺𝑁,𝑡𝐺𝐴∗,𝑡

𝜉𝐿 )]

 and �̂�𝑡
TR =

𝐿𝑡
TR

𝑁𝑡𝐴𝑡
∗𝜉𝐿

). 

7.5.4. Inventor decisions 

 Inventor profits: are given recursively by: 

�̂�𝑡 =
1−𝓅

𝓅
ℒ̂𝑡
R�̂�𝑡𝐽𝑡

P + 𝛽(1 − 𝓆)𝔼𝑡Ξ𝑡+1𝐺𝐴,𝑡+1
𝒶𝒷 𝐺𝐴∗,𝑡+1

𝒸+𝜁
�̂�𝑡+1, where �̂�𝑡 ≔

𝜋𝑡

𝐴𝑡
𝒶𝒷𝐴𝑡

∗𝒸+𝜁
. 

 Free entry of inventors: Either 𝐺𝐼,𝑡 ≥ 1 binds or ℒ𝑡
I �̂�𝑡 ≥ �̂�𝑡 does. 

7.5.5. Market clearing 

 R&D expenditure: RND𝑡 ≔ �̂�𝑡𝐼𝑡 [ℒ𝑡
I (1 −

1

𝐺𝐼,𝑡
) + ℒ̂𝑡

R𝓈𝑡𝐽𝑡
P]. 

 Labour market clearing: 𝐸𝑡
L�̂�𝑡
S = �̂�𝑡

TY + �̂�𝑡
TR, where �̂�𝑡

S ≔
𝐿𝑡
T

𝐴𝑡
∗𝜉L𝑁𝑡𝐸𝑡

L
. 

 Production labour market clearing: �̂�𝑡�̂�𝑡
TY = 𝐸𝑡

L(1 − 𝛼P)(1 − 𝜄P)ℐ𝑡�̂�𝑡
GROSS  where ℐ𝑡 ≔

𝓈𝑡−1

1+𝜇𝑡−1
P (

1

�̂�𝑡

1+𝜇𝑡−1

1+𝜇𝑡−1
P )

1

𝜆
+

1−𝓈𝑡−1

1+𝜂𝜆
(
�̂�𝑡
N

�̂�𝑡

1+𝜇𝑡−1

1+𝜂𝜆
)

1

𝜆
 is a weighted measure of average inverse gross 

mark-ups. 

                                                      

73 This means 𝐺𝐼,𝑡 = 𝐺𝑁,𝑡𝐺𝐴,𝑡
𝒶(1−𝒷)𝐺𝐴∗,𝑡

ℯ−(𝒸+𝜁) 𝐼𝑡

𝐼𝑡−1
. 
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 R&D labour market clearing: �̂�𝑡�̂�𝑡
TR = 𝐸𝑡

L(1 − 𝛼R)(1 − 𝜄R)RND𝑡. 

 Capital markets clearing: 𝑢𝑡
P�̂�𝑡−1

P �̂�𝑡
KP = 𝛼P(1 − 𝜄P)ℐ𝑡�̂�𝑡

GROSS , 𝑢𝑡
R�̂�𝑡−1

R �̂�𝑡
KR = 𝛼R(1 −

𝜄R)RND𝑡 

 Goods market clearing: �̂�𝑡 = �̂�𝑡
GROSS(1 − 𝜄Pℐ𝑡) − 𝜄RRND𝑡 − (1 − 𝜚GDP)𝐼𝑡

R = �̂�𝑡 + 𝐼𝑡
P +

𝜚GDP𝐼𝑡
R, where �̂�𝑡 is GDP over 𝑁𝑡𝐴𝑡

𝒶𝐴𝑡
∗ℯ and 𝜚GDP specifies the proportion of R&D capital 

investment that is measured in GDP. (Given R&D itself is not measured in GDP it is not 

obvious that this equals 1.) 

 Monetary rule: 

𝑅𝑡
NOM

𝑅NOM
=

(
𝑅𝑡
NOM

𝑅NOM
)
𝜌
𝑅NOM

[(
𝐺𝑃,𝑡

𝐺𝑃,𝑡
∗ )

ℳP

(
𝐸𝑡−1
KP 𝐺

𝐴∗
𝜉KP

𝐸𝑡
KP𝐺

𝐴∗,𝑡

𝜉KP
)

ℳPKP

(
𝐸𝑡−1
KR 𝐺

𝐴∗
𝜉KR

𝐸𝑡
KR𝐺

𝐴∗,𝑡

𝜉KR
)

ℳPKR

(
𝐺𝑊,𝑡

𝐺𝑊
)
ℳW

(
�̂�𝑡
KP

�̂�KP
)
ℳRKP

(
�̂�𝑡
KR

�̂� KR
)
ℳRKR

Θ𝑡
ℳΘ𝛿𝑡

−ℳ�̃� ]

1−𝜌
𝑅NOM

∙

[(
�̂�𝑡

�̂�
)
ℳY

(
𝐺𝑌,𝑡 𝐺𝑁,𝑡 

𝐺𝑌 𝐺𝑁 
)
ℳG

]
1−𝜌

𝑅NOM

exp 𝜖𝑅NOM,𝑡. 

7.5.6. Observation equations 

 Nominal output growth: 𝑔𝑌,𝑡 + 𝑔𝑃,𝑡 +meY,𝑡 −meY,𝑡−1 , where 𝑔𝑌,𝑡 =

log (
�̂�𝑡

�̂�𝑡−1
𝐺𝑁,𝑡𝐺𝐴,𝑡

𝒶 𝐺𝐴∗,𝑡
ℯ ). 

 Consumption price inflation: 𝑔𝑃,𝑡 +mePC,𝑡 −mePC,𝑡−1. 

 Investment price inflation: 𝑔𝑃,𝑡 + 𝑔𝑃I,𝑡 +mePI,𝑡 −mePI,𝑡−1, where: 

 𝐺𝑃I,𝑡 =

√
  
  
  
  
 
(
𝐸𝑡−1
KP �̂�𝑡−1

KP

𝐸𝑡
KP𝐺

𝐴∗,𝑡

𝜉KP
+𝜚GDP

𝐸𝑡−1
KR �̂�𝑡−1

KR

𝐸𝑡
KR𝐺

𝐴∗,𝑡

𝜉KR
)

(𝐼𝑡−1
KP +𝜚GDP𝐼𝑡−1

KR )

(𝐼𝑡
KP+𝜚GDP𝐼𝑡

KR)

(
𝐸𝑡
KP�̂�𝑡

KP𝐺
𝐴∗,𝑡

𝜉KP

𝐸𝑡−1
KP +𝜚GDP

𝐸𝑡
KR�̂�𝑡

KR𝐺
𝐴∗,𝑡

𝜉KR

𝐸𝑡−1
KR )

. 

 Population growth: 𝑔𝑁,𝑡 +meN,𝑡 −meN,𝑡−1. 

 Demeaned labour supply: 𝑙𝑡
S +meLS,𝑡. 
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 R&D share: log (
RND𝑡+𝜚RND𝐼𝑡

𝑅

�̂�𝑡
) + meRND,𝑡, where 𝜚RND is the proportion of R&D capital 

investment that is measured in the NIPA R&D measure. (𝜚GDP + 𝜚RND ≤ 1). 

 Consumption share: log (
�̂�𝑡

�̂�𝑡
) + meC,𝑡. 

 Labour share: log (
�̂�𝑡�̂�𝑡

S

�̂�𝑡
) + meL,𝑡. 

 Depreciation share: log (
𝛿Y(𝑢𝑡

Y)�̂�𝑡−1
Y

�̂�𝑡(𝐺𝑁,𝑡𝐺𝐴,𝑡
𝒶 𝐺

𝐴∗,𝑡

ℯ+𝜉KY𝐸𝑡
KY)

+ 𝜚GDP
𝛿R(𝑢𝑡

R)�̂�𝑡−1
R

�̂�𝑡(𝐺𝑁,𝑡𝐺𝐴,𝑡
𝒶 𝐺

𝐴∗,𝑡

ℯ+𝜉KR𝐸𝑡
KR)
) +meD,𝑡. 

 Demeaned nominal interest rates: log (
𝑅𝑡
NOM

𝑅NOM
) + meR,𝑡. 

 Capacity utilisation: 

𝑢𝑡
Y �̂�𝑡−1

Y

𝐺
𝐴∗,𝑡

𝜉KY 𝐸𝑡
KY
+𝑢𝑡

R𝜚GDP
�̂�𝑡−1
R

𝐺
𝐴∗,𝑡

𝜉KR𝐸𝑡
KR

�̂�𝑡−1
Y

𝐺
𝐴∗,𝑡

𝜉KY𝐸𝑡
KY
+𝜚GDP

�̂�𝑡−1
R

𝐺
𝐴∗,𝑡

𝜉KR𝐸𝑡
KR

+meU,𝑡. (The capital stocks enter here in 

order to correctly weight to produce the average utilisation.) 

 BAA-AAA Spread: 𝜍0 − 𝜍1 log Γ𝑡 +meS,𝑡. 

7.6. Data details 

 Nominal output growth (1947Q2 – 2011Q2), from NIPA table 1.1.5. 

 Consumption price inflation (1947Q2 – 2011Q2), including non-durables and durables 

(from NIPA table 1.1.4) and government consumption74 (from NIPA table 3.9.4) and 

excluding education75 (from NIPA tables 2.4.476 and 3.15.477). 

                                                      

74 We are implicitly making the optimistic assumption that government consumption is a perfect substitute for 

private consumption. This is a simplifying shortcut to save us modelling government consumption. 
75 Removing education from the consumption share brings it substantially closer to stationarity, so it is 

important to do the same for the price level too. The price disaggregation necessary to remove education was 

performed by inverting the Fisher formula, which, due to its approximate aggregation property (Diewert 1978) 

is sufficiently accurate. 
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 Investment price inflation (1947Q2 – 2011Q2), including education (data sources as for 

consumption price inflation). 

 Population growth (1948Q2 – 2011Q2), X-12 seasonally adjusted, from the BLS’s Civilian 

Non-institutional Population Over 16 series. 

 Labour supply per capita (1948Q1 – 2011Q2), from NIPA table 6.9, interpolated to 

quarterly using the Litterman (1983) method, with “Business Sector: Hours of All 

Persons” from the BEA as a high frequency indicator. 

 R&D share (1959Q1 – 2007Q4), given by R&D expenditure from NIPA R&D Satellite 

Account (1959-2007) table 2.1, over GDP from NIPA table 1.1.5, interpolated to 

quarterly using the Litterman (1983) method with GDP as the high frequency indicator. 

 Consumption share (1947Q1 – 2011Q2), given by consumption of durables and non-

durables (from NIPA table 1.1.5) plus government consumption (from NIPA table 3.9.5) 

minus education expenditure (from NIPA table 2.4.578 and NIPA table 3.15.579) all over 

GDP (from NIPA table 1.1.5).80 

 Labour share (1947Q1 – 2011Q2), given by compensation of employees paid from NIPA 

table 1.10, over GDP (from NIPA table 1.1.5). 

                                                                                                                                                                     

76 Interpolated to quarterly using the Litterman (1983) method, with consumption and investment prices as 

indicators (from NIPA table 1.1.4). 
77 Extrapolated back to 1947 using the Litterman (1983) method, with government consumption and 

investment prices (from NIPA table 3.9.4) and private education prices (from NIPA table 2.4.4) as indicators, 

then interpolated to quarterly using the same method with government consumption and investment prices 

(from NIPA table 3.9.4) as high frequency indicators. 
78 Interpolated to quarterly using the Litterman (1983) method, with consumption and investment as 

indicators (from NIPA table 1.1.5). 
79 Extrapolated back to 1947 using the Litterman (1983) method with log-linearly interpolated data from the 

National Centre for Education Statistics, Digest of Education Statistics 2010, table 29 as an indicator, along with 

government consumption and investment (from NIPA table 3.9.5) and private education expenditure (from 

NIPA table 2.4.5). Then interpolated using the same method with government consumption and investment 

(from NIPA table 3.9.5) as high frequency indicators. 
80 In fitting this to the model, we are implicitly treating net exports as investment. 



Medium-frequency cycles and the remarkable near trend-stationarity of output. 

Page 89 of 174 

 Depreciation share (1947Q1 – 2011Q2), given by consumption of fixed capital from NIPA 

table 1.10, over GDP (from NIPA table 1.1.5). 

 Nominal interest rates (1947Q1 – 2011Q2), in particular, the 3-month Treasury bill 

secondary market rate, from the FRB, release H.15. 

 Capacity utilisation (1967Q1 – 2011Q2), (total industry) from the FRB, release G.17, 

table 7. 

 BAA-AAA Spread (1947Q1 – 2011Q2), from the FRB, release H.15. 
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7.7. Estimated parameters 

Any parameters in bold are fixed rather than estimated. All values are reported to three 

significant figures, except those below 10−4 which are rounded down to zero, those which 

are of the form 1 + 𝑥, with |𝑥| < 0.1 in which case we give 𝑥 to three significant figures, 

percentages, which are given to one decimal place, and approximate standard errors (in 

brackets) which are given to two significant figures. 

Variable Value Variable Value 

𝜈 0.250 (0.0056) 𝛽 𝟎. 𝟗𝟗 

𝒽 0.253 (0.0041) 𝒽INT 0.0151 (0.0032) 

𝒽LS 0 (0) 𝓋 0.826 (0.0042) 

𝜆 0.320 (0.00054) 𝜆L 0.170 (0.0041) 

𝓅 0.0427 (0.00021) 𝓆 0.0374 (0.00030) 

𝜌𝑅NOM  0.615 (0.013) ℳP 1.0275 (0.0059) 

ℳPKP 0 (0) ℳPKR 0 (0) 

ℳRKP 0.0509 (0.0016) ℳRKR 0 (0) 

ℳΘ 0 (0) ℳδ̃ 0.0108 (0.0074) 

ℳY 0 (0) ℳG 0 (0) 

ℳW 0 (0)   

exp 𝜍0 2.57 (2.9 × 10−5) 𝜍1 872 (880) 

𝜚GDP 0.494 (0.013) 𝜚RND 0.506 (0.013) 

𝜁 0 (0) 𝜉L 0.0859 (0.0012) 

𝜉KP 0.0828 (0.00053) 𝜉KR 2.73 (0.0094) 

𝛼P 0.201 (0.00040) 𝛼R 0.996 (7.4 × 10−6) 

𝜄P 0.0427 (0.0011) 𝜄R 0.178 (0.0032) 

𝛿P(𝑢P) 0.0189 (7.5 × 10−5) 𝛿R(𝑢R) 0.0284 (0.00062) 

𝛿P
′
(𝑢P) 0.0413 (0.00011) 𝛿R

′
(𝑢R) 0.0501 (0.00063) 

𝛿P
′′
(𝑢P) 1.64 (0.035) 𝛿R

′′
(𝑢R) 133 (9.4) 

ⅆ

ⅆ𝛿
log 𝛿P(𝑢P) 

𝟏 ⅆ

ⅆ𝛿
log 𝛿R(𝑢R) 

64.2 (1.5) 

ⅆ

ⅆ𝛿
log 𝛿P

′
(𝑢P) 

64.2 (1.5) ⅆ

ⅆ𝛿
log 𝛿R

′
(𝑢R) 

0 (0) 

𝑄P
′′
(𝐺𝐼KP*) 0.00533 (0.0012) 𝑄R

′′
(𝐺𝐼KR*) 62.6 (4.0) 

𝑄LP
′
(𝐺𝐿TP) 

0.0875 (0.0047) 𝑄LR
′
(𝐺𝐿TR) 

0 (0) 

Table 4: Estimated parameters, excluding shocks. 
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Variable 𝑽 (i.e. steady-state) 𝝆𝑽 𝟏𝟎𝟎𝝈𝑽 p-value on  
1 lag LM-test81 

Φ 1.0349 (0.0047) 0.815 (0.010) 2.46 (0.16) 0 

Θ 𝟏 0.443 (0.0056) 0.0231 (0.0114) 𝟎. 𝟎𝟑𝟏𝟖 

𝐺N 1.00372 (1.4 × 10−5) 0.0675 (0.019) 0.103 (0.0021) 𝟎. 𝟏𝟒𝟔 

ℒI 7.26 (0.034) 0 (0) 0 (0) 0 

𝑍 𝟏 𝟎 0 (0) 0 

Γ 𝟏 0 (0) 0 (0) 0.000926 

𝐸L 𝟏 0.614 (0.0056) 0 (0) 𝟎. 𝟕𝟐𝟓 

𝐸KP 𝟏 0 (0) 0 (0) 0 

𝐸KR 𝟏 0.664 (0.0071) 0.000360 (0.00012) 0.000148 

𝐺𝑃,𝑡
∗  1.00851 (6.1 × 10−6) 0.887 (0.00027) 0 (0) 𝟎. 𝟏𝟔𝟏 

𝜂 0.169 (0.00024) 0.0605 (0.2) 0.0147 (0.012) 0 

𝛾 18.6 (0.054) 0 (0) 0 (0) 0 

exp 𝛿 𝟏 0.862  (0.0027) 0.403  (0.011) 𝟎. 𝟗𝟓𝟖 

𝑅𝑡
SHOCK 𝟏 𝟎 0.00824 (0.00075) 𝟎. 𝟒𝟔𝟒 

Table 5: Estimated parameters from non-measurement error shocks, tests of 
misspecification of their residuals. 

Each shock takes the form log 𝑉𝑡 = (1 − 𝜌𝑉) log 𝑉 + 𝜌𝑉 log 𝑉𝑡−1 + 𝜎𝑉𝜖𝑉,𝑡, where 
𝜖𝑣,𝑡~NIID(0,1). 

  

                                                      

81 Bold values indicate the cases in which we cannot reject the null hypothesis of no auto-correlation at 1%. 

The test uses heteroskedasticity robust standard errors. The lag length of 1 was preferred by the AIC, AICc and 

BIC criterions for all variables. 
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Variable 𝚽 𝚯 𝑮N 𝓛I 𝒁 𝚪 𝑬L 𝑬KP 𝑬KR 𝑮𝑷,𝒕
∗  𝜼 𝜸 𝑹𝒕

SHOCK 𝐞𝐱𝐩 �̃� 
Nom. output 
growth 

𝟏𝟕. 𝟗 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 𝟖𝟏. 𝟏 

Con. price 
inflation 

𝟑𝟕. 𝟓 0.0 𝟐. 𝟓 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 𝟓𝟗. 𝟔 

Inv. price 
inflation 

𝟑𝟕. 𝟏 0.0 𝟐. 𝟒 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 𝟔𝟎. 𝟏 

Population 
growth 

0.0 0.0 𝟏𝟎𝟎. 𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Lab. supply 
per capita 

𝟔𝟎. 𝟒 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 𝟑𝟖. 𝟖 

R&D 
share 

𝟐. 𝟏 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 𝟗𝟕. 𝟔 

Consumption 
share 

𝟒𝟓. 𝟎 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 𝟓𝟒. 𝟑 

Labour 
share 

𝟏. 𝟖 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 𝟗𝟕. 𝟗 

Depreciation 
share 

𝟒𝟓. 𝟑 0.0 𝟏. 𝟖 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 𝟓𝟐. 𝟕 

Nom. interest 
rates 

𝟒𝟏. 𝟓 0.0 𝟐. 𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 𝟓𝟔. 𝟒 

Capacity 
utilisation 

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 𝟗𝟗. 𝟗 

BAA-AAA 
Spread 

0.0 0.0 0.0 0.0 0.0 𝟏𝟎𝟎. 𝟎 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 6: Percentage non-measurement error variance decomposition of the observation 
variables.82 

                                                      

82 Bold values are larger than 1%. 
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Chapter 2: Learning from learners 
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Abstract: Traditional macroeconomic learning algorithms are misspecified when all agents 

are learning simultaneously. In this paper, we produce a number of learning algorithms that 

do not share this failing, and show that this enables them to learn almost any solution, for 

any parameters, implying learning cannot be used for equilibrium selection. As a by-product, 

we are able to show that when all agents are learning by traditional methods, all deep 

structural parameters of standard new-Keynesian models are identified, overturning a key 

result of Cochrane (2009; 2011). This holds irrespective of whether the central bank is 

following the Taylor principle, irrespective of whether the implied path is or is not explosive, 

and irrespective of whether agents’ beliefs converge. If shocks are observed then this result is 

trivial, so following Cochrane (2009) our analysis is carried out in the more plausible case in 

which agents do not observe shocks.  
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1. Introduction 

There is a contradiction at the heart of the traditional approach to macroeconomic learning 

(Marcet and Sargent (1989), Evans and Honkapohja (2001)). In this literature, each of the 

agents in an economy is supposed to run a regression that is correctly specified when all the 

other agents know the true law of motion. Were it indeed the case that only one agent in 

the economy had partial information about the economy’s law of motion, then this agent’s 

regression would always converge to the true law of motion, meaning that “learnability” in 

this weak sense is of no use for equilibrium selection. The literature supposes instead that 

all agents are learning at the same time, yet they continue to run a regression that is only 

correctly specified when everyone else has full information. As a result, these agents would 

be readily able to detect the misspecification in their regression, through evidence of serially 

correlated errors, or parameter non-constancy. This misspecification is most clear precisely 

when learning fails, meaning a finding of non-learnability via the traditional method only 

implies that agents would switch from that traditional method to a more sophisticated one. 

In this paper, we demonstrate the existence of a family of learning mechanisms that remain 

correctly specified when all agents are learning simultaneously. 

Along the way, we will answer three challenges raised by Cochrane (2009) (directly or 

otherwise). Firstly, we will show that the non-observability of shocks does not pose any 

fundamental challenges either to learning, or to the formation of rational expectations, and 

we give general conditions under which a rational expectations equilibrium is precisely 

implementable without observing shocks.2 Secondly, we show that serially correlated 

monetary policy shocks do not prevent Taylor-rule parameter identification, at least when 

everyone is learning at the same time, whether or not the central bank is following active 

policy. Finally, we demonstrate a learning mechanism capable of learning stationary minimal 

                                                      

2 In general a Kalman filter must be used as in Pearlman, Currie, and Levine (1986) or Ellison and Pearlman 

(2011), and impulse responses will differ. 
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state variable (McCallum 1983) solutions whenever they exist, and another that may 

converge towards any sunspot solution, including explosive ones, 3  though a simple 

extension of our mechanism will rule out the latter when (and only when) they are 

prohibited by transversality or non-explosiveness constraints. Since, new-Keynesian models 

generally have no such constraints ruling out explosive paths for inflation (Cochrane 2011),  

in such models there is no guarantee that the stationary minimal state variable solution will 

be learnt, meaning that Cochrane (2009) was correct to conclude that learnability could not 

“save” the standard logic of new-Keynesian models. 

The structure of our paper is as follows. In section 2 and the first appendix (7.1), we derive 

the general solution of a rational expectations model, under determinacy and 

indeterminacy, when shocks are unobserved. The resulting reduced form solution will be 

the basis of all of the learning mechanisms considered. The presence of sunspot shocks in 

the general solution will be key to our proof of structural parameter identification when 

agents are learning. In section 3, we show that an awareness that everyone else is learning 

is sufficient to achieve identification even when other agents are learning using a traditional 

method. Then in section 4, we introduce our family of sophisticated learning algorithms 

under which everyone in the economy realises everyone else is learning at the same time. 

                                                      

3 We cannot guarantee asymptotic convergence to explosive solutions, nonetheless beliefs will at least initially 

approach these solutions, and they will certainly diverge from beliefs under the stationary minimal state 

variable solution. 
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2. FREE solutions 

2.1. Motivating example 

Suppose, following Cochrane (2009), that the central bank follows the Taylor rule: 

 𝑖𝑡 = 𝑟 +
1

𝛽
(𝑥𝑡 − 𝛾 − 𝜎𝑠𝑡), (2.1) 

   

where 𝑥𝑡 is the inflation rate, 𝑟 is the constant real interest rate, 
𝛾

1−𝛽
 is the inflation target 

and 𝑠𝑡 is the monetary policy shock which is given by: 

𝑠𝑡 = 𝜌𝑠𝑡−1 + 𝜀𝑡, 

with 𝜀𝑡~NIID(0,1). From the Fisher equation, we also have that: 

 𝑖𝑡 = 𝑟 + 𝔼𝑡𝑥𝑡+1. 4 (2.2) 

   

Hence, from combining (2.1) and (2.2): 

𝑥𝑡 = 𝛽𝔼𝑡𝑥𝑡+1 + 𝛾 + 𝜎𝑠𝑡. 

More generally, there might also be a lag term in the model. Here, this would emerge if the 

central bank used the rule: 

𝑖𝑡 = 𝑟 +
1

𝛽
((1 − 𝛼)𝑥𝑡 + 𝛼∆𝑥𝑡 − 𝛾 − 𝜎𝑠𝑡) 

which punishes accelerating inflation, and leads to the general univariate model: 

 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛽𝔼𝑡𝑥𝑡+1 + 𝛾 + 𝜎𝑠𝑡. (2.3) 
   

We work with this general model not because we believe central banks respond to inflation 

acceleration, but because in its multivariate version this structure encompasses all linear 

macroeconomic models, and we wish to make clear nothing we say is specific to the 𝛼 = 0 

case. 

                                                      

4 Throughout this document, variables with 𝑡 subscripts are in the information set under which 𝔼𝑡 is taken. 
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The crucial thing to note about (2.3) is that since the transversality conditions of the 

consumer’s optimisation problem do not restrict inflation, when solving this model there is 

no justification for restricting ourselves to stationary solutions.5 

2.2. Solution 

For the time being, we suppose that all the agents in the economy have full knowledge of 

the values of 𝛼, 𝛽, 𝛾, 𝜌 and 𝜎, and may observe 𝑥𝑡 (and its lags), and 𝔼𝑡−1𝑥𝑡  (and its lags), at 

𝑡. In our motivating example, the observability of expectations just requires nominal interest 

rates to be observable, thanks to the constant real interest rate, and the Fisher equation, 

(2.2). In reality, expectations may still be observed thanks to the survey of professional 

forecasters (or, more plausibly, media reports based on economic pundit’s expectations). 

Expectations are also effectively observable if agents have access to prices from futures 

markets, or if they know that all other agents are forming expectations via the same 

mechanism. The traditional learning literature usually assumes homogeneous beliefs across 

agents, and we will continue to do so here, so in the models we work with, even in the 

absence of observable nominal and real interest rates, or observable futures contracts, 

aggregate expectations will always be observable. 

We do not assume however that agents may observe 𝑠𝑡 or 𝜀𝑡. As pointed out by Cochrane 

(2009), that most shocks in DSGE models should be observable is rather implausible, thus 

ruling out rational expectations equilibria (REE) which require the observability of shocks 

seems like a minimal sensible restriction. We call the set of resulting equilibria the feasible 

rational expectations equilibria (FREE) of the original model. The key trick that enables 

agents to form expectations without seeing shocks is the fact that current news about past 

                                                      

5 If the Taylor rule is the result of optimal policy on behalf of the central bank, then there will in general be a 

transversality constraint coming from the central bank’s optimisation problem that restricts inflation. But since 

it is consumer inflation expectations that determine the solution picked, the central bank’s transversality 

constraint does not rule out explosive solutions, conditional on them using a Taylor rule. 
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expectational errors is informative about the current shock. Thus, in general, agents will 

form expectations as a linear function of their lagged expectations. 

To see this, let us begin by defining the expectational error by 𝜂𝑡 ≔ 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡. Now, 

normally when solving rational expectations models we choose 𝜂𝑡 to rule out explosive 

solutions, but here this is not justified, due to the lack of a consumer transversality 

condition on inflation. Thus there is a REE to the model for any 𝜂𝑡 satisfying 𝔼𝑡−1𝜂𝑡 = 0. 

Without loss of generality then, we may assume (following Lubik and Schorfheide (2003)) 

that 𝜂𝑡 = 𝑚𝜀,𝑡−1𝜀𝑡 +𝑚𝜁,𝑡−1
′ 𝜁𝑡 , for some sunspot shock 𝜁𝑡  (possibly a vector) satisfying 

𝔼𝑡−1𝜁𝑡 = 0 , 𝔼𝑡−1𝜀𝑡𝜁𝑡 = 0  and 𝔼𝑡−1𝜁𝑡𝜁𝑡
′ = 𝐼 , and some possibly time-varying belief 

parameters 𝑚𝜀,𝑡−1 and 𝑚𝜁,𝑡−1, known at 𝑡 − 1. (There is no reason why agents should 

always believe in the same set of sunspot shocks.) 

Under the assumption then that 𝑚𝜀,𝑡−1 ≠ 0 for all 𝑡, subtracting 𝜌 times the first lag of (2.3) 

from (2.3), gives: 

 

𝑥𝑡 = (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1𝑥𝑡 + (1 − 𝜌)𝛾 + 𝜎𝜀𝑡 

= (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1𝑥𝑡 + (1 − 𝜌)𝛾

+ 𝜎
𝑥𝑡 − 𝔼𝑡−1𝑥𝑡 −𝑚𝜁,𝑡−1

′ 𝜁𝑡

𝑚𝜀,𝑡−1
. 

(2.4) 

   

Hence providing 𝛽 ≠ 06: 

 

𝔼𝑡𝑥𝑡+1 =
1

𝛽
(1 −

𝜎

𝑚𝜀,𝑡−1
)𝑥𝑡 −

1

𝛽
(𝛼 + 𝜌)𝑥𝑡−1 +

1

𝛽
𝛼𝜌𝑥𝑡−2

+ (𝜌 +
1

𝛽

𝜎

𝑚𝜀,𝑡−1
)𝔼𝑡−1𝑥𝑡 −

1

𝛽
(1 − 𝜌)𝛾 +

1

𝛽

𝜎

𝑚𝜀,𝑡−1
𝑚𝜁,𝑡−1
′ 𝜁𝑡, 

(2.5) 
 

   

which enables agents to form rational expectations without observing the value of shocks 

(i.e. 𝑠𝑡 or 𝜀𝑡). Thus providing 𝛽 ≠ 0, almost all of the model’s REE are FREE. 

                                                      

6 Automatic in the particular case under consideration, but in other models there may be particular 

parameters for which expectations cease to matter, and in the multivariate case, 𝛽 may not be invertible. 
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When |𝛼 + 𝛽| < 1, the unique stationary minimal state variable (MSV) solution corresponds 

to setting 𝑚𝜀,𝑡 ≡ 𝑚𝜀
MSV ≔ 𝜎 [

1

2
− 𝛽𝜌 +

1

2
√1 − 4𝛼𝛽]

−1

 and 𝑚𝜁,𝑡 ≡ 𝑚𝜁
MSV ≔ 0. To see this, 

let us first define: 

𝜐𝑡 ≔ 𝔼𝑡𝑥𝑡+1 − 𝑎1
MSV𝑥𝑡 − 𝑎2

MSV𝑥𝑡−1 − 𝑐
MSV 

where 𝑎1
MSV ≔ 𝜌 +

1−√1−4𝛼𝛽

2𝛽
, 𝑎2
MSV ≔ −𝜌

1−√1−4𝛼𝛽

2𝛽
 and 𝑐MSV ≔

2(1−𝜌)𝛾

1−2𝛽+√1−4𝛼𝛽
, so 𝔼𝑡𝑥𝑡+1 =

𝑎1
MSV𝑥𝑡 + 𝑎2

MSV𝑥𝑡−1 + 𝑐
MSV + 𝜐𝑡 for all 𝑡. 

Then, when 𝑚𝜀,𝑡 ≡ 𝑚𝜀
MSV and 𝑚𝜁,𝑡 ≡ 𝑚𝜁

MSV, from (2.5): 

𝔼𝑡𝑥𝑡+1 = 𝑎1
MSV𝑥𝑡 + 𝑎2

MSV𝑥𝑡−1 + 𝑐
MSV +

1 + √1 − 4𝛼𝛽

2𝛽
𝜐𝑡−1, 

i.e. 𝜐𝑡 =
1+√1−4𝛼𝛽

2𝛽
𝜐𝑡−1. Now when |𝛼 + 𝛽| < 1 and 𝛼𝛽 < 1 4⁄  (so 𝑥𝑡 is real), 

1+√1−4𝛼𝛽

2𝛽
> 1, 

therefore 𝑥𝑡 is stationary if and only if 𝜐𝑡 = 0 for all 𝑡, i.e. if and only if expectations always 

take this minimum state variable form. However, since current expectations are not 

constrained to render past expectations rational, if agents find themselves off the 𝜐𝑡 = 0 

path, it is still rational for them to jump back onto it, at least if 𝑥𝑡 is constrained to be 

stationary. 

Linear models such as this have two MSV solutions, however only one of them will be 

stationary under determinacy. In the below we refer to the MSV solution that is stationary 

under determinacy as the SMSV solution. 

2.3. Generalization 

All our analysis in the body of this paper will be confined to the univariate case; however, 

the tricks used above to express expectations as a function of observables carry over to the 

multivariate case, and the case in which at least some combinations of variables are 

constrained by transversality. This is discussed in the first appendix, section 7.1, where we 



Chapter 2 

Page 100 of 174 

provide a range of necessary and/or sufficient conditions for the existence of FREE solutions 

in multivariate models. Particularly intuitive results include the facts that: 

 if the model is completely indeterminate (perhaps because of a lack of transversality 

conditions), so there are as many degrees of freedom in expectations as there are 

variables, and there are at most as many shocks as variables, then almost all REE are 

FREE; 

 there is always a REE with the form 𝔼𝑡𝑥𝑡+1 = 𝑇−1,21𝑥𝑡−1 + 𝑇−1,22𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2 +

𝑇𝑠,2𝑠𝑡, which is always a FREE when dim 𝑠𝑡 = 1, and is a FREE more generally 

providing: 

o 𝑇𝑠,2 has linearly independent columns, 

o the number of explosive (or transversality violating) roots is greater or equal 

to dim 𝑠𝑡, 

o a further technical condition is satisfied; 

 if the unobserved shocks are not serially correlated, and if for any linear combination 

of shocks which does not appear in the transversality-violating block, that same 

linear combination does not appear anywhere in the model (i.e. agents can back out 

the value of relevant shocks from observing jump variables), then the model has at 

least one FREE, and a continuum under indeterminacy. 

In all cases, the FREE solution to the model takes the form: 

𝔼𝑡𝑥𝑡+1 = 𝒜1𝑥𝑡 +𝒜2𝑥𝑡−1 +𝒜3𝑥𝑡−2 + ℬ1𝔼𝑡−1𝑥𝑡 + ℬ2𝔼𝑡−2𝑥𝑡−1 + 𝒸 + 𝒹1,𝑡−1
′ 𝜁𝑡 , 

which is identical to the univariate case, except for the extra lag on expectations. 
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These results hopefully go some way to reassuring the reader that although from here on in 

we will be focussing on the univariate case, the non-observability of shocks does not cause 

any additional problems when we generalise to the multivariate case.7 

3. Learning (and identifying) from unsophisticated learners 

We now turn to the formation of expectations when the values of 𝛼, 𝛽, 𝛾, 𝜌, 𝜎, 𝑚𝜀,𝑡 and 

𝑚𝜁,𝑡 are not common knowledge. Before introducing our misspecification free learning 

methods in section 4, we address the issue of parameter identification when the agents in 

an economy are using a traditional learning method. For the duration of this section, we 

also assume it is common knowledge that 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡are constant across time, since the 

traditional models of macroeconomic learning cannot deal with actual laws of motion 

(ALMs) with time varying parameters. 

3.1. Set-up 

Under the saddle-path learning method of Ellison and Pearlman (2011), agents learn using 

the same rule they use to form expectations. Under the FREE solution to (2.3), given in 

equation (2.5), this suggests that agents should learn by estimating the regression model: 

 

𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝑎3𝑥𝑡−2 + 𝑏𝔼𝑡−1
∗ 𝑥𝑡 + 𝑐 + 𝑑1

′ 𝜁𝑡 + 𝜂𝑡+1,

𝜂𝑡+1~NIID(0, 𝜎𝜂
2), 

(3.1) 

   

where 𝔼𝑡−1
∗ 𝑥𝑡  is lagged aggregate (not-necessarily rational) expectations, which are 

observable for the reasons given previously. 

                                                      

7 These results are closely related to the conditions derived by Levine et al. (2012) for solutions under 

imperfect information to be identical to solutions under perfect information. The results of Levine et al. (2012) 

are at once more general than our results (as they allow for arbitrary informational assumptions, rather than 

assuming that only shocks are unobserved) and less general (as they are restricted to the solutions of 

determinate models, and depend on assorted strong invertability assumptions). 
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If agents observed shocks, then by replacing 𝜂𝑡+1  with 𝑚𝜀𝜀𝑡+1 +𝑚𝜁
′ 𝜁𝑡+1 , this would 

become an exact line fitting exercise, rather than a regression problem: after a finite 

number of periods agents would know the value of all parameters, thanks to the 

observability of 𝔼𝑡−1
∗ 𝑥𝑡. (We also need that there is at least some variation in 𝔼𝑡−1

∗ 𝑥𝑡 that is 

independent of the other terms, this will be true providing initial beliefs about 𝑎3 and/or 𝑑1 

are non-zero.) Thus when shocks are observed, learning is trivial. This further justifies our 

focus on the non-observable shock case in this paper. 

3.2. (Non-)Identification via OLS 

Given that it is common knowledge that 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡 are constant, the “true” model has 

6 + dim 𝜁𝑡 free parameters (𝛼, 𝛽, 𝛾, 𝜌, 𝜎, 𝑚𝜀, 𝑚𝜁), and by running the regression (3.1) 

agents will also learn 6 + dim 𝜁𝑡 parameters (𝑎1, 𝑎2, 𝑎3, 𝑏, 𝑐, 𝜎𝜂
2, 𝑑1), which is a necessary 

condition for the identification of all of the model’s parameters. This also means that if any 

variables are omitted from this regression (as they are in the traditional regressions used in 

the literature) then agents will have no information about at least one of the model’s 

parameters. 

Providing 𝜌 ≠ 1 and 𝜎 > 0, equating terms reveals that all the model’s parameters are 

uniquely identified if any only if either 𝛼 = 𝜌 = 0, or the following equation for 𝛽 has a 

unique solution:8 

𝛽3𝑎3 = (−𝛽
2𝑎2 − (𝛽𝑏 − 1 + 𝛽𝑎1))(𝛽𝑏 − 1 + 𝛽𝑎1). 

Tedious algebra reveals that this in turn holds if any only if 𝛼 ≠ 0, 𝜌 ≠ 0 and 𝛼𝛽 >
1

4
, which 

implies there is no non-explosive, real, minimal state variable solution for 𝑥𝑡. This confirms 

Cochrane’s (2009) result that Taylor rule parameters are not identified under determinacy 

                                                      

8 The equations also have a unique solution when either 𝛼 = 0 and 𝜌 =
1

𝛽
, or when 𝜌 = 0. However, these two 

cases are observationally equivalent. 
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via this simple form of OLS learning. Away from this case, there will either be two or three 

discrete solutions for the model’s parameters. 

However, we previously argued that sunspots were observable to agents. Hence, agents 

using the perceived law of motion (PLM) (3.1) are not using all available information. If they 

instead run the regression: 

 

𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝑎3𝑥𝑡−2 + 𝑏𝔼𝑡−1
∗ 𝑥𝑡 + 𝑐 + 𝑑1

′ 𝜁𝑡 + 𝑑0
′ 𝜁𝑡+1 +𝑚𝜀𝜀𝑡+1,

𝜀𝑡+1~NIID(0,1), 

(3.2) 

   

then all parameters will apparently be identified, providing 𝑑0 ≠ 0. For example, in the case 

where dim 𝜁𝑡 = 1 we have: 
1

𝛽
= 𝑎1 +

𝑑1

𝑑0
 and 𝜌 = 𝑏 −

𝑑1

𝑑0
. We also have the over-identifying 

restriction 𝑎3 + (𝑎1 +
𝑑1

𝑑0
) (𝑏 −

𝑑1

𝑑0
)
2

= −𝑎2 (𝑏 −
𝑑1

𝑑0
) . When dim 𝜁𝑡 > 1 , these equalities 

must hold for each non-zero component of 𝑑0 and the corresponding component of 𝑑1, 

giving further over-identifying restrictions. Unfortunately, since the estimated value of 𝑑0 

will be non-zero with probability one (even under a MSV solution with 𝑚𝜁 = 0), under (3.2) 

although it may seem like we have identified a non-MSV solution, we must continue to 

place positive probability on being in a MSV solution, so the identification here is illusory. 

Furthermore, agents generally have no grounds for believing that 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡 are indeed 

constant. This means that the standard errors on their parameter estimates should be 

bounded away from zero even asymptotically, further dashing any hope of identification. 

3.3. Identification by learning from learners 

Although agents cannot identify structural parameters via running either of the regressions 

given in the last section, if one sophisticated agent realises that everyone else is running 

these regressions in order to form expectations then that sophisticated agent will be able to 

identify parameters. 
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Since we did not use the rationality of expectations in deriving equation (2.4), it must always 

be the case that: 

 𝑥𝑡 = (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡
∗𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1

∗ 𝑥𝑡 + (1 − 𝜌)𝛾 + 𝜎𝜀𝑡. (3.3) 
   
The only thing stopping us from running a regression of this form in order to identify 𝛽 is the 

endogeneity of 𝔼𝑡
∗𝑥𝑡+1. But if agents are forming expectations using (3.1) or (3.2) then we 

know that 𝑑1,𝑡−1
′ 𝜁𝑡 is a valid instrument for 𝔼𝑡

∗𝑥𝑡+1 (where 𝑑1,𝑡−1 is the estimated values of 

𝑑1 using information up to period 𝑡 − 1 at the latest)9, since 𝜁𝑡 is uncorrelated with 𝜀𝑡 by 

assumption. Hence, one potential way of achieving identification would be to run a standard 

IV-regression. However, this is unlikely to be very efficient as it discards a lot of information. 

We can do considerably better here by considering the structure of the implied actual law of 

motion (ALM). Note that if everyone is forming expectations by running the regression (3.1) 

or (3.2), then: 

𝑥𝑡 = (1 − 𝛽𝑎1,𝑡−1)
−1
[(𝛼 + 𝜌 + 𝛽𝑎2,𝑡−1)𝑥𝑡−1 + (𝛽𝑎3,𝑡−1 − 𝛼𝜌)𝑥𝑡−2 + 𝛽(𝑏𝑡−1 − 𝜌)𝔼𝑡−1

∗ 𝑥𝑡

+ [(1 − 𝜌)𝛾 + 𝛽𝑐𝑡−1] + 𝛽𝑑1,𝑡−1
′ 𝜁𝑡 + 𝜎𝜀𝑡], 

where time subscripts on the regression coefficients again refer to agents’ estimates using 

information up to period 𝑡 − 1 at the latest. We do not specify at this point if these 

estimates are the result of recursive least squares (RLS—equivalent to OLS), constant gain 

least squares (CGLS), or some other estimation method. In the appendix, section 7.2 we 

analyse e-stability, which will determine convergence of the naïve agents’ beliefs under RLS; 

but this will not be important for the analysis of the convergence of the beliefs of our one 

sophisticated agent. 

                                                      

9 We are assuming that the OLS agents adopt the standard convention of forming expectations using 

parameter estimates from previous periods’ observations. When they are allowed to use current observations 

then we can proxy the estimates with current observations by the estimates with lagged ones to avoid further 

endogeneity issues. 
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Using the ALM above, we can estimate the model’s structural parameters by conditional 

maximum likelihood (ML). The conditional log-likelihood is given by: 

log 𝑓(𝑥1, … , 𝑥𝑇|𝑥0, 𝑥−1, 𝔼0
∗𝑥1, 𝜁1, … , 𝜁𝑇 , ℎ0, 𝜃) 

=∑log 𝑓(𝑥𝑡|𝑥𝑡−1, 𝑥𝑡−2, 𝔼𝑡−1
∗ 𝑥𝑡, 𝜁𝑡 , ℎ0, … , ℎ𝑡−1, 𝜃)

𝑇

𝑡=1

 

= −
𝑇

2
log 2𝜋  +∑[log|1 − 𝛽𝑎1,𝑡−1| − log 𝜎 −

1

2𝜎2
(𝑥𝑡 − 𝜇𝑡)

2]

𝑇

𝑡=1

 

where ℎ𝑡 = [𝑎1,𝑡 𝑎2,𝑡 𝑎3,𝑡 𝑏𝑡 𝑐𝑡 𝑑1,𝑡
′ ]′, 𝜃 = [𝛼 𝛽 𝛾 𝜌 𝜎]′,  

𝜇𝑡 ≔ (𝛼 + 𝜌)𝑥𝑡−1 − 𝛼𝜌𝑥𝑡−2 + 𝛽𝔼𝑡
∗𝑥𝑡+1 − 𝛽𝜌𝔼𝑡−1

∗ 𝑥𝑡 + (1 − 𝜌)𝛾, 

and: 

 𝔼𝑡
∗𝑥𝑡+1 = 𝑎1,𝑡−1𝑥𝑡 + 𝑎2,𝑡−1𝑥𝑡−1 + 𝑎3,𝑡−1𝑥𝑡−2 + 𝑏𝑡−1𝔼𝑡−1

∗ 𝑥𝑡 + 𝑐𝑡−1 + 𝑑1,𝑡−1
′ 𝜁𝑡 . (3.4) 

   

Note that in introducing the conditioning on ℎ0, … , ℎ𝑡−1 in the first equality we have used 

the fact that ℎ0, … , ℎ𝑡−1 are deterministic functions of 𝑥−1, … , 𝑥𝑡−1. 

The first order conditions then imply that10: 

 

0 =∑(𝑥𝑡−1 − �̂�𝑥𝑡−2)(𝑥𝑡 − �̂�𝑡)

𝑇

𝑡=1

 

0 =∑[𝔼𝑡
∗𝑥𝑡+1(𝑥𝑡 − �̂�𝑡) −

𝑎1,𝑡−1�̂�
2

1 − �̂�𝑎1,𝑡−1
]

𝑇

𝑡=1

 

0 =∑(𝑥𝑡−1 − �̂�𝑥𝑡−2 − �̂�𝔼𝑡−1
∗ 𝑥𝑡 − 𝛾)(𝑥𝑡 − �̂�𝑡)

𝑇

𝑡=1

 

0 =∑(𝑥𝑡 − �̂�𝑡)

𝑇

𝑡=1

, �̂�2 =
1

𝑇
∑(𝑥𝑡 − �̂�𝑡)

2

𝑇

𝑡=1

 

(3.5) 

   

Since the second equation is a polynomial of at least order 𝑇 in 𝛽, in general these 

equations will have to be solved numerically. However, providing parameters are indeed 

                                                      

10 As usual, hats denote estimates. 
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identified, the resulting estimates will have all the usual desirable properties of ML 

estimates (consistency, efficiency, asymptotic normality). 

To show that the ML estimator does indeed identify parameters, we give an alternative 

estimator that we are able to prove to be consistent. Since the existence of a consistent 

estimator implies identification (Gabrielsen 1978), this is sufficient for the consistency and 

asymptotic normality of the ML estimator. This alternative estimator will also have a 

recursive form, making it convenient for the case in which everyone realises everyone else is 

learning. 

Let 𝜃 ≔ [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5]
′ = [(1 − 𝜌)𝛾 𝛼 + 𝜌 −𝛼𝜌 𝛽 −𝛽𝜌]′  be a vector of 

parameters to be estimated, and let: 

 𝑧𝑡 ≔ [1 𝑥𝑡−1 𝑥𝑡−2 (
𝑎2,𝑡−1𝑥𝑡−1 + 𝑎3,𝑡−1𝑥𝑡−2 +

𝑏𝑡−1𝔼𝑡−1
∗ 𝑥𝑡 + 𝑐𝑡−1 + 𝑑1,𝑡−1

′ 𝜁𝑡
) 𝔼𝑡−1

∗ 𝑥𝑡]
′

. (3.6) 

   
Suppose for the moment that an oracle told us the value of 𝛽. Then by running the 

regression: 

 (1 − 𝛽𝑎1,𝑡−1)𝑥𝑡 = 𝑧𝑡
′𝜃 + 𝜎𝜀𝑡, 𝜀𝑡~NIID(0,1), (3.7) 

   
we could identify all parameters, even if we forgot what the oracle had told us as soon as 

the regression had been run. In particular �̂� is the standard deviation of the shock, �̂� = 𝜃4, 

�̂� = −
�̂�5

�̂�
= −

�̂�5

�̂�4
, 𝛾 =

�̂�1

1−�̂�
=

�̂�1�̂�4

�̂�4+�̂�5
, and �̂� is given by either 𝜃2 − �̂� =

�̂�2�̂�4+�̂�5

�̂�4
 or −

�̂�3

�̂�
=
�̂�3�̂�4

�̂�5
. 

(The two estimates of 𝛼  may be near-optimally combined to give �̂� =

�̂�3�̂�4�̂�5𝑠𝜃,22+�̂�4(�̂�2�̂�4+�̂�5)𝑠𝜃,33−(�̂�2�̂�4�̂�5+�̂�3�̂�4
2+�̂�5

2)𝑠𝜃,23

�̂�5
2𝑠𝜃,22+�̂�4

2𝑠𝜃,33−2�̂�4�̂�5𝑠𝜃,23
, where [

𝑠𝜃,22 𝑠𝜃,23
𝑠𝜃,32 𝑠𝜃,33

]  is the estimated 

covariance matrix of [
𝜃2
𝜃3
].) 

Now let 𝑍𝑇 ≔ [
𝑧1
′

⋮
𝑧𝑇
′
], 𝑥 ≔ [

𝑥1
⋮
𝑥𝑇
] and 𝑦 ≔ [

𝑎0𝑥1
⋮

𝑎𝑇−1𝑥𝑇
]. Then the (OLS) estimated value of 𝜃 is 

given by: 

𝜃 = (𝑍𝑇
′ 𝑍𝑇)

−1𝑍𝑇
′ (𝑥 − 𝑦𝛽). 
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To show consistency of this estimator, let us begin by defining a vector of “pseudo-

instruments” (variables that we would like to use in place of 𝑧𝑡, were they observable): 

𝒹𝑡 ≔ [1
𝜎𝜀𝑡−1

1 − 𝛽𝑎1,𝑡−2

𝜎𝜀𝑡−2
1 − 𝛽𝑎1,𝑡−3

𝑑1,𝑡−1
′ 𝜁𝑡

𝑑1,𝑡−2
′ 𝜁𝑡−1

1 − 𝛽𝑎1,𝑡−2
]

′

. 

Denote by 𝔼+𝑉 the unconditional expectation of 𝑉 that would have obtained were 𝑎1,𝑡, 𝑎2,𝑡, 

𝑎3,𝑡, 𝑏𝑡, 𝑐𝑡 and 𝑑1,𝑡 non-stochastic for all 𝑡. Then if 𝐽𝑡 ≔ 𝔼+𝒹𝑡𝒹𝑡
′ , 

𝐽𝑡 = diag [1
𝜎2

(1 − 𝛽𝑎1,𝑡−2)
2

𝜎2

(1 − 𝛽𝑎1,𝑡−3)
2 𝑑1,𝑡−1

′ 𝑑1,𝑡−1
𝑑1,𝑡−2
′ 𝑑1,𝑡−2

(1 − 𝛽𝑎1,𝑡−2)
2] , 11 

and if 𝐾𝑡 ≔ (𝔼+𝒹𝑡𝒹𝑡
′)−1𝔼+𝒹𝑡𝑧𝑡

′, 

𝐾𝑡 =

[
 
 
 
 
 
1 ? ? ? ?
0 1 0 𝑎2,𝑡−1 + 𝑏𝑡−1𝑎1,𝑡−2 𝑎1,𝑡−2

0 𝑞𝑡−2 1 (𝑎2,𝑡−1 + 𝑏𝑡−1𝑎1,𝑡−2)𝑞𝑡−2 + 𝑎3,𝑡−1 + 𝑏𝑡−1𝑎2,𝑡−2 𝑎2,𝑡−2 + 𝑎1,𝑡−2𝑞𝑡−2
0 0 0 1 0
0 𝛽 0 𝛽𝑎2,𝑡−1 + 𝑏𝑡−1 1 ]

 
 
 
 
 

, 

where 𝑞𝑡−2 =
𝛼+𝜌+𝛽𝑎2,𝑡−2+𝛽(𝑏𝑡−2−𝜌)𝑎1,𝑡−3

1−𝛽𝑎1,𝑡−2
, and ? denotes a term omitted for the sake of 

space. We also define 𝐽𝑇 ≔ ∑ 𝐽𝑡
𝑇
𝑡=1 , and �̃�𝑇 ≔ 𝐽𝑇

−1∑ 𝐽𝑡𝐾𝑡
𝑇
𝑡=1 , so if 𝐷 ≔ [

𝒹1
′

⋮
𝒹𝑇
′
], 𝐽𝑇 = 𝔼

+𝐷′𝐷 

and �̃�𝑇 = (𝔼
+𝐷′𝐷)−1𝔼+𝐷′𝑍𝑇. These definitions are valid as 𝐽𝑇  is diagonal, with a strictly 

positive diagonal, for all 𝑡 . (Though the elements of the diagonal may tend to 0 

asymptotically.) A sufficient condition for the invertability of both 𝐾𝑇 and �̃�𝑇, for all 𝑇, is 

that 𝛽 ≠ 1, in which case the eigenvalues of 𝐾𝑡 and �̃�𝑇 must be bounded away from 0 

asymptotically. 

                                                      

11 The diag operator maps vectors to diagonal matrices with a diagonal with the same elements as the vector, 

and maps matrices to a vector with the same elements as their diagonal. 
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If we go on to define: 

𝑈𝑇 ≔ 𝑍𝑇 − 𝐷(𝐷
′𝐷)−1𝐷′𝑍𝑇 , 

then 𝐷′𝑈 = 0 and: 

𝑍𝑇
′ 𝑍𝑇 = 𝑍𝑇

′𝐷(𝐷′𝐷)−1𝐷′𝐷(𝐷′𝐷)−1𝐷′𝑍𝑇 + 𝑈𝑇
′𝑈𝑇 . 

If it were valid to drop the 𝔼+ operators from our expressions for 𝐽𝑇  and �̃�𝑇, asymptotically, 

then we would have: 

 Pr ( lim
𝑇→∞

(�̃�𝑇
′ 𝐽𝑇�̃�𝑇 + 𝑈𝑇

′𝑈𝑇 − 𝑍𝑇
′ 𝑍𝑡) = 0) = 1. (3.8) 

   
Dropping the 𝔼+ operators in this way might be valid, for example, if agents were learning a 

sunspot solution via RLS, and eventually the dependence between their estimates was 

sufficiently weak that 𝑎1,𝑡, 𝑎2,𝑡, etc. were “near exogenous”, in some loose sense. However, 

rather than making such specific assumptions, we will instead just assume the validity of 

(3.8), since (3.8) encompasses many other cases, including ones in which plim
𝑇→∞

�̃�𝑇 does not 

even exist, as it will not under constant gain learning. 

Given (3.8), by applying Theorem 1 of Lai and Wei (1982) to the regression (3.7), providing: 

1) there exists 𝛿 > 0 such that lim sup
𝑡→∞

max{1,𝑎1,𝑡
2 }

𝑡1−𝛿min{1,𝑑1,𝑡
′ 𝑑1,𝑡}

< ∞,12 and 

2) there exists 𝛿′ ≥ 0 such that lim sup
𝑡→∞

𝑧𝑡
′𝑧𝑡

𝑡𝛿
′ < ∞,13 

then 𝜃
𝑎.𝑠.
→ 𝜃. Note that 2) already covers all sub-exponential explosion in 𝑧𝑡

′𝑧𝑡. We do not as 

yet have a proof of consistency for the case with an exponential (or super-exponential) 

explosion, but our simulation results below certainly suggest that 𝛽 can still be consistently 

estimated in this case (though obviously 𝛾 cannot be). 

                                                      

12 Sufficient as ∑ 𝑡−(1−𝛿)∞
𝑡=1 = ∞ for all 𝛿 ≥ 0. 

13  Sufficient as lim
𝑇→∞

∑ 𝑡𝛿
′𝑇

𝑡=1

𝑇1+𝛿
′ < ∞ , lim

𝑇→∞

log 𝑇

∑ 𝑡−(1−𝛿)𝑇
𝑡=1

= 0  for all 𝛿 > 0 , and since tr 𝑧𝑡𝑧𝑡
′  is guaranteed to be 

between the largest eigenvalue of 𝑧𝑡𝑧𝑡
′ and 5 times this quantity. 



Learning from learners 

Page 109 of 174 

Furthermore, under slightly stronger assumptions 𝐽𝑇
1
2⁄ �̃�𝑇𝜃 will be asymptotically normally 

distributed, implying that we have 
1

√log𝑇
 convergence in the worst case. 

It is easy to see that these sufficient conditions will hold under any non-exponentially-

explosive learning algorithm, with slower than 
1

√𝑇
 convergence, such as constant gain least 

squares, or stochastic gradient learning. Under recursive least squares, there exists 𝛿 ≥ 0 

such that 𝑡
1−𝛿

2 𝑑1,𝑡 converges in distribution to a normal, (Marcet and Sargent 1992), with 

𝛿 = 0 only if the real parts of the eigenvalues of the “𝑇” matrix are all less than 1 2⁄ .14 When 

𝛿 > 0 here, our sufficient conditions will be satisfied, but in the other case, Theorem 1 of Lai 

and Wei (1982) no longer applies. From their reasoning, we do however have that 

lim sup
𝑡→∞

(𝜃 − 𝜃)
′
(𝜃 − 𝜃) < ∞, even here, so at worst, beyond a certain point in time 

standard errors on 𝜃  would cease improving. Additionally, we note that a sufficient 

condition for consistency in this case is that: 

 lim sup
𝑇→∞

‖𝐽𝑇
−1 2⁄ �̃�𝑇

′−1𝑈𝑇
′𝑈𝑇�̃�𝑇

−1𝐽𝑇
−1 2⁄ ‖ < ∞, (3.9) 

   
by Theorem 3 of Lai and Wei (1982). This will hold, for example, if 𝛼 = 𝜌 = 0, so it may be 

thought of as an additional weak-dependency condition. 

We have demonstrated then a range of conditions under which 𝜃 is a consistent estimator 

of 𝜃, in our oracle-aided regression, equation (3.7). Now suppose there is no oracle, but we 

have received infinitely many periods of data. If we guessed a value for 𝛽, we could repeat 

the “oracle” exercise with the guessed value and we would end up with an alternative 

estimate for 𝛽 (namely 𝜃3). We can thus think of this as a fixed-point problem. In general 

our guess of 𝛽 and the estimated value will not coincide, but we know that they must 

coincide at least once, namely when our guess is the true value. Thus if the (infinite-data) 

                                                      

14 These eigenvalues are given in the appendix, 7.2. 
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fixed-point problem has a unique solution for 𝛽, then we know that value must be the true 

value. Hence, if in finite samples this fixed-point problem also has a unique solution, that 

solution must be a consistent estimator of 𝛽, at least when the conditions discussed above 

hold. 

We proceed to establish the uniqueness of the solution to the fixed-point problem, by 

establishing a closed form solution. Let 𝑒4 ≔ [0 0 0 1 0]′. Then the fixed-point 

problem may be expressed as finding the value of �̂� for which: 

�̂� = 𝑒4
′(𝑍′𝑍)−1𝑍′(𝑥 − 𝑦�̂�). 

Consequently: 

�̂� =
𝑒4
′(𝑍′𝑍)−1𝑍′𝑥

1 + 𝑒4
′(𝑍′𝑍)−1𝑍′𝑦

. 

Armed with a consistent estimator of �̂�, all other parameters may be estimated consistently 

by following our oracle procedure. In particular, the consistent estimator of 𝜃 is: 

 

𝜃2SLS = (𝑍′𝑍)−1𝑍′ [𝑥 − 𝑦
𝑒4
′(𝑍′𝑍)−1𝑍′𝑥

1 + 𝑒4
′(𝑍′𝑍)−1𝑍′𝑦

] 

= (𝐼 + (𝑍′𝑍)−1𝑍′𝑦𝑒4
′)−1(𝑍′𝑍)−1𝑍′𝑥 

= (𝑍′𝑍 + 𝑍′𝑦𝑒4
′)−1𝑍′𝑥, (3.10) 

 
   

which turns out to be equal to the 2SLS-IV estimator when (𝑎2,𝑡−1𝑥𝑡−1 + 𝑎3,𝑡−1𝑥𝑡−2 +

𝑏𝑡−1𝔼𝑡−1
∗ 𝑥𝑡 + 𝑐𝑡−1 + 𝑑1,𝑡−1

′ 𝜁𝑡) is used as an instrument for 𝔼𝑡
∗𝑥𝑡+1. 

This gives us the following proposition: 

Proposition 1: Suppose the economy is made up of agents that are all forming expectations 

through running regressions of the form of (3.1) or (3.2), with dim 𝜁𝑡 > 0. Let 𝜃2SLS be the 

estimator defined by equation (3.10), and suppose that: 

1) the weak-dependence condition (3.8) holds, 
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2) there exists 𝛿 > 0 such that lim sup
𝑡→∞

𝑚𝑎𝑥{1,𝑎1,𝑡
2 }

𝑡1−𝛿𝑚𝑖𝑛{1,𝑑1,𝑡
′ 𝑑1,𝑡}

< ∞, and 

3) there exists 𝛿′ ≥ 0 such that lim sup
𝑡→∞

𝑧𝑡
′𝑧𝑡

𝑡𝛿
′ < ∞, 

Then if one of the following conditions holds: 

a) the agents learn by any algorithm with slower than 1
√𝑡
⁄  convergence, such as 

constant gain least squares, stochastic gradient learning, or recursive least squares in 

the case in which the eigenvalues of the “𝑇” matrix (defined in appendix 7.2) are 

greater than 1 2⁄ , 

b) the agents learn a sunspot solution, 

c) the agents learn by recursive least squares, or another algorithm under which √𝑡𝑑1,𝑡
′  

converges in distribution, and the second weak-dependence condition (3.9) holds, 

then the 2SLS-like estimator 𝜃2SLS is consistent. 

Since the existence of a consistent estimator implies parameter identification under 

maximum likelihood, we have the following immediate corollary: 

Corollary 1.1: Under the conditions of Proposition 1, the maximum likelihood estimator 

given by the solution to the FOCs, (3.5) is consistent. 

Note that the consistency of these estimators is in spite of the convergence of 𝑎1,𝑡, 𝑎2,𝑡, etc. 

rather than because of this convergence. Indeed, the worse the learning process that is 

determining 𝑎1,𝑡, 𝑎2,𝑡, etc., the faster this more sophisticated agent will learn the structural 

parameters of the model. So for example, if almost all agents are using stochastic gradient 

learning or constant gain least squares, then learning structural parameters is likely to be 

particularly easy. Likewise if 𝑎1,𝑡, 𝑎2,𝑡, etc. never converge then learning the structural 

parameters is again likely to be fast. This result is related to Cochrane’s (2009) claim that 
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with unsophisticated learning it is only in the explosive case that structural parameters may 

be identified, but here we have identification quite generally. 

3.4. Learning from MSV learners 

It is natural to wonder the extent to which our results are driven by the fact that the agents 

in the economy are learning and forming expectations using equation (3.1) or (3.2), rather 

than the more traditional MSV form: 

 𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝑐 +𝑚𝜀𝜀𝑡+1, 𝜀𝑡+1~NIID(0,1). (3.11) 
   
Since many REE do not have a representation in this form, by estimating (3.11) the agents in 

the economy are already putting a prior probability of zero on any non-fundamental 

solution, which is certainly not justified in the absence of transversality constraints limiting 

𝑥𝑡 to asymptotic stationarity. Nonetheless, even given these priors, when agents observe a 

stationary realisation of 𝑥𝑡 they will still not be able to work out the value of 𝛽, as there are 

observationally equivalent MSV solutions. So, it remains an interesting question whether or 

not 𝛽 can be identified from examining these learners. 

The argument of the previous section would suggest using 𝑎2,𝑡−1𝑥𝑡−1 + 𝑐𝑡−1  as an 

instrument for 𝔼𝑡
∗𝑥𝑡+1. Proving the general validity of this instrument in the MSV set-up is 

tricky, however. This is clearest when 𝛼 = 𝜌 = 0, in which case, asymptotically 𝑥𝑡+1 =

𝑚𝜀𝜀𝑡+1 , if parameters converge. With no serial correlation in 𝑥𝑡 , finding “pseudo-

instruments” (i.e. potential elements of 𝒹𝑡) that are correlated with 𝔼𝑡
∗𝑥𝑡+1 and 𝔼𝑡−1

∗ 𝑥𝑡, but 

not with 𝜀𝑡−1 or 𝜀𝑡−2 is non-trivial. 
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Suppose that 
1

𝜅𝑎(𝑡)
[
𝑎1,𝑡 − 𝑎1,∞
𝑎2,𝑡 − 𝑎2,∞

] tends in distribution to some non-degenerate distribution, 

as 𝑡 → ∞, for some function 𝜅𝑎(𝑡), and some constants 𝑎1,∞ and 𝑎2,∞. Then under any 

“reasonable” estimator (including the RLS, CGLS etc. estimators): 

 

lim inf
𝑡→∞

𝜅𝑎(𝑡)
2 cov(𝑎1,𝑡, 𝜀𝑡𝜀𝑡−1) > 0, 

lim inf
𝑡→∞

𝜅𝑎(𝑡)
2 cov(𝑎2,𝑡, 𝜀𝑡𝜀𝑡−2) > 0, & 

lim sup
𝑡→∞

𝜅𝑎(𝑡)
2 cov(𝑎2,𝑡, 𝜀𝑡𝜀𝑡−1) = 0. 

(3.12) 

 

Thus if we define: 

𝒹𝑡 ≔ [1
𝜎𝜀𝑡−1

1 − 𝛽𝑎1,𝑡−2

𝜎𝜀𝑡−2
1 − 𝛽𝑎1,𝑡−3

𝜎𝜅𝑎(𝑡)
2𝜀𝑡−1
2 𝜀𝑡−3

1 − 𝛽𝑎1,𝑡−2

𝜎𝜅𝑎(𝑡)
2𝜀𝑡−1𝜀𝑡−2𝜀𝑡−4

1 − 𝛽𝑎1,𝑡−2
]

′

, (3.13) 

   

then providing lim inf
𝑡→∞

𝑡1−𝛿𝜅𝑎(𝑡)
2 > 0 for some 𝛿 > 0, the previous proof goes through.15 

Of course, under recursive least squares learning 𝜅𝑎(𝑡) =
1

√𝑡
 when the eigenvalues of the 

“𝑇” matrix are less than 1 2⁄ , so this sufficient condition does not hold. 

While the second weak-dependence condition (3.9) could be generalised to this case, it 

seems highly implausible that it would hold here, due to the convoluted nature of our 

“pseudo-instruments”.16 The convoluted nature of these pseudo-instruments also suggests 

that our actual-instrument vector, 𝑧𝑡 may be a rather poor instrument. One other possibility 

that could be used as an additional instrument is 𝑎1,𝑡−1, since it is correlated with the first 

term of 𝔼𝑡
∗𝑥𝑡+1. Indeed, it is easy to see that whether agents are learning from (3.11), or one 

of our more general laws, (3.1) or (3.2), the asymptotically optimal choice of instruments is: 

𝑧𝑡
∗ ≔ [

𝑧𝑡
𝑎1,𝑡−1𝑧𝑡

] 

                                                      

15 We also need to adjust the definition of 𝔼𝑡
+ so that only the 𝑎1,𝑡 in the denominator of the ALM of 𝑥𝑡 is 

treated as non-stochastic. 
16 Since completing this paper, we discovered the results of Christopeit and Massmann (2010) who were able 

to prove consistency in an RLS learning of the MSV solution context, for a simple model, using a more direct 

technique. In future work we intend to investigate whether their proof techniques may be generalised to cover 

regressions such as these. 
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since 𝔼𝑡𝑥𝑡+1 = 𝐹𝑧𝑡
∗ + 𝑎1,𝑡−1𝜀𝑡 for some non-stochastic, constant matrix 𝐹, and this is not 

true for any proper subset of these instruments. We then have the following generalisation 

of Proposition 1 and Corollary 1.1 for this choice of instruments: 

Proposition 2: Suppose the economy is made up of agents that are all forming expectations 

through running regressions of the form of (3.1), (3.2) or (3.11). Let 𝑧𝑡
∗ = [𝑧𝑡

′ 𝑎1,𝑡−1𝑧𝑡
′]′, 

where 𝑧𝑡 is defined by equation (3.6), and let 𝑌 ≔ 𝑍 + 𝑦𝑒4
′ , 𝑍∗ ≔ [𝑧1

∗ ⋯ 𝑧𝑇
∗ ]′, and: 

𝜃𝑇
AEIV ≔ (𝑌′𝑍∗(𝑍∗

′
𝑍∗)

−1
𝑍∗

′
𝑌)

−1

𝑍∗(𝑍∗
′
𝑍∗)

−1
𝑍∗

′
𝑥. 

Then if either: 

i) (3.1) or (3.2) is being used, and conditions 1), 2) and 3) of Proposition 1 hold, or: 

ii) (3.11) is being used and: 

1) the weak-dependence condition (3.8) holds (with 𝒹𝑡 defined by (3.13)), and, 

2) there exists δ′ ≥ 0 such that lim sup
𝑡→∞

𝑎1,𝑡
2

𝑡𝛿
′ < ∞ and lim sup

𝑡→∞

𝑧𝑡
′𝑧𝑡

𝑡𝛿
′ < ∞, 

and one of the following further conditions holds also: 

a) the agents learn by any reasonable17 algorithm which converges in distribution, but 

slower than 1
√𝑡
⁄ , such as stochastic gradient learning, or recursive least squares in 

the case in which the eigenvalues of the “𝑇” matrix (defined in appendix 7.2) are 

greater than 1 2⁄ , 

b) the agents learn a sunspot solution, 

                                                      

17 Where a reasonable algorithm is defined as one for which (3.12) is satisfied. 
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c) the agents learn by recursive least squares on regression (3.1) or (3.2), or another 

algorithm under which √𝑡𝑑1,𝑡
′  converges in distribution, dim 𝜁𝑡 > 0 and the second 

weak-dependence condition (3.9) holds, 

then the estimator  𝜃𝑇
AEIV is consistent and asymptotically efficient. 

Corollary 2.1: Under the conditions of Proposition 2, the maximum likelihood estimator 

given by the solution to the FOCs, (3.5) is consistent. 

3.5. Simulation evidence 

In light of the slightly obscure nature of some our theoretical conditions, particularly in the 

recursive least squares (RLS) case, we now present some simulation evidence of the 

estimator’s success in identifying the key 𝛽 parameter. Figure 1 gives results for economies 

populated with RLS learners estimating equation (3.2), and Figure 2 gives results for 

economies populated with RLS learners estimating the MSV form, equation (3.11). 

In order to show the estimates performance, for each parameterisation (different rows of 

the two figures) we generate 214 simulation paths (each of length 28), and then apply each 

estimator considered to each of the resulting paths. 
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In both figures, each of the first three columns corresponds to a different estimator. For 

both figures, column 1 is our original 2SLS estimator, column 2 is the asymptotically efficient 
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Figure 1: Distribution properties of the estimates of 𝜷, from 𝟐𝟏𝟒 runs, when agents 
estimate equation (3.2) using OLS. 
See text (section 3.5) for full details. 
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IV one (henceforth, AEIV) and column 3 is the ML estimator18. In each graph of the first 

three columns, we plot the 2.5%, 5.0%, 7.5%,… , 97.5% percentiles of the estimator’s 

distribution. For convenience, the quartiles are given in solid rather than dotted lines. The 

final column of both figures gives the 95% trimmed root mean squared error (RMSE) of the 

estimators.19 In this column, the dotted line corresponds to the 2SLS estimator, the dashed 

to the AEIV one, and the solid to the ML one. 

In each simulation run, there was a “burn-in” time of 32 periods during which time 

expectations were set to their value under the SMSV solution (defined in section 2.2), plus 

∑ 𝜁𝑡,𝑖
dim𝜁𝑡
𝑖=1 + 𝜁𝑡

B, where 𝜁𝑡
B is an additional, unobservable, NIID(0,1) shock. This was done 

purely in order to help the OLS learners converge, and our estimators were only run on 

simulated data from the end of the burn-in period. Additionally, the OLS learners’ estimates 

were constrained to have each parameter in [−1000,1000] , to prevent numerically 

unstable hyper-explosions with super-exponential growth. This is in the spirit of the 

“projection facility” invoked by Marcet and Sargent (1989). 

The first two rows of graphs in Figure 1, and the first row in Figure 2, are all generated with 

𝛼 = 0.2, 𝛽 = 0.7, 𝜌 = 0.9, 𝜎 = 0.001 and 𝔼𝑥𝑡 = 0.005. These parameters mean there is a 

unique stationary MSV solution, which is also the only e-stable MSV solution. The graphs in 

the first row of Figure 1 are with dim 𝜁𝑡 = 0, while those in the second have dim 𝜁𝑡 = 1. 

Obviously, in Figure 2 we always set dim 𝜁𝑡 = 0. As was expected, the ML estimator 

dominates the other two, which are practically indistinguishable here. The initial rate of 

convergence is very quick for all three estimators, but beyond a certain point, convergence 

                                                      

18 Obtaining a global solution to the numerical maximum likelihood was too slow to permit us to perform as 

many replications as necessary. Instead then, we start the local maximisation algorithm at the AEIV solution, 

denoted �̂�𝑡
AEIV , and constrain the ML estimate of 𝛽  to be between max[{0} ∪

{1 𝑎1,𝑡−1⁄ |�̂�𝑡
AEIV > 1 𝑎1,𝑡−1⁄ , 1 ≤ 𝑡 ≤ 𝑇}] and min[{0} ∪ {1 𝑎1,𝑡−1⁄ |�̂�𝑡

AEIV < 1 𝑎1,𝑡−1⁄ , 1 ≤ 𝑡 ≤ 𝑇}]. 
19 I.e. the RMSE after first discarding any observations below the 2.5% percentile or above the 97.5% 

percentile These outliers are trimmed to limit the damage caused by the numerical errors that are introduced 

by the occasional explosive, or near-explosive, path. 
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certainly seems to slow, in line with our 
1

√log𝑇
 convergence finding. However, although the 

rate of improvement is slow, the level of the RMSE is low enough that this is unlikely to be a 

problem in practice. 

In the next row of both figures, we repeat the exercise with 𝛼 = 0.5121, 𝛽 = 0.4789 and 

𝜌 = 0.2405. These values were selected as they result in dynamics under full-information 

that are observationally equivalent to our original ones. Convergence here is slower since 
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Figure 2: Distribution properties of the estimates of 𝜷, from 𝟐𝟏𝟒 runs, when agents 

estimate equation (3.11) using OLS. 
See text (section 3.5) for full details. 

Sample length Sample length Sample length Sample length 

AEIV estimator ML estimator 

d
im
𝜁
𝑡
=
0

, 𝛼
=
0
.2

, 

𝛽
=
−
1
.2

, 𝜌
=
0
.9

 

d
im
𝜁
𝑡
=
0

, 𝛼
=
0
.2

, 

𝛽
=
1
.2

, 𝜌
=
0
.9

 



Learning from learners 

Page 119 of 174 

two of the eigenvalues of the “𝑇” map are now greater than 1 2⁄ . There is also clearly large 

upwards bias in finite samples when agents are estimating (3.11). Surprisingly, it appears 

the AEIV estimator dominates the ML one in this case, whichever equation is being 

estimated. Nonetheless, asymptotically our estimators appear to have very similar 

properties. 

In the penultimate row of the figures we show the results when 𝛼 = 0.2, 𝛽 = −1.2 and 𝜌 =

0.9. This is in the indeterminate region of the parameter space, but still in a region in which 

the MSV solution is e-stable. Performance appears similar to performance in the 𝛽 = 0.7 

case. 

Finally, in the last row of both figures we show the behaviour of our estimators in an 

indeterminate region of the parameter space in which the SMSV is not e-stable. (In 

particular we set 𝛼 = 0.2, 𝛽 = 1.2 and 𝜌 = 0.9.) The underlying instability of the system 

makes identification easier for our sophisticated agent, giving us better performance than in 

any other case, whichever equation is being estimated. 

The graphs make clear that even in small samples, when agents are estimating (3.2) all three 

estimators are approximately unbiased, whatever the true parameters, and whatever the 

value of dim 𝜁𝑡. Moreover, the estimators are highly peaked around the true value, meaning 

that the RMSE significantly overstates the median absolute error. Hence, people using these 

estimators can expect their estimated values to be closer to the truth than is suggested by 

the standard errors. 

4. Learning from sophisticated learners 

Having established that our ML and 2SLS-like estimators can successfully identify the 

structural parameters of the model, we now use these techniques to describe our family of 

misspecification free learning algorithms. Under these algorithms, each agent in the 
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economy will realise that everyone else is learning at the same time as them, and indeed, 

they will take advantage of this fact to identify the model’s structural parameters. By 

learning these structural parameters, rather than a reduced form equation, agents will be 

able to disentangle learning which particular solution to the model is being used from the 

time variation in reduced form parameters caused by simultaneous learning. 

4.1. General results 

Suppose for the moment that 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡 are public knowledge and hence do not have to 

be estimated, even when no one knows any of the other structural parameters. 

Suppose further that everyone is learning using the ML or 2SLS-like estimator from section 

3.3. Providing agents continue to use an expression of the form of (3.4) to form 

expectations, where now 𝑎1,𝑡 etc. will be functions of estimated structural parameters, this 

will be valid. In particular, we might suppose that agents treat their estimate of structural 

parameters as the true values and set: 

 

𝑎1,𝑡 =
1

�̂�𝑡
(1 −

�̂�𝑡
𝑚𝜀,𝑡

) , 𝑎2,𝑡 = −
1

�̂�𝑡
(�̂�𝑡 + �̂�𝑡), 𝑎3,𝑡 =

1

�̂�𝑡
�̂�𝑡�̂�𝑡,  

𝑏𝑡 = �̂�𝑡 +
1

�̂�𝑡

�̂�𝑡
𝑚𝜀,𝑡

, 𝑐𝑡 = −
1

�̂�𝑡
(1 − �̂�𝑡)𝛾𝑡, 𝑑1,𝑡 =

1

�̂�𝑡

�̂�𝑡
𝑚𝜀,𝑡

𝑚𝜁,𝑡. 

(4.1) 
 

   

(4.1) is reasonable since the actual law of motion implied by equations (2.4) and (3.4) is: 

𝑥𝑡+1 = (1 − 𝛽𝑎1,𝑡)
−1
[(𝛼 + 𝜌 + 𝛽𝑎2,𝑡 + 𝛽(𝑏𝑡 − 𝜌)𝑎1,𝑡−1)𝑥𝑡

+ (𝛽𝑎3,𝑡 − 𝛼𝜌 + 𝛽(𝑏𝑡 − 𝜌)𝑎2,𝑡−1)𝑥𝑡−1 + 𝛽(𝑏𝑡 − 𝜌)𝑎3,𝑡−1𝑥𝑡−2

+ 𝛽(𝑏𝑡 − 𝜌)𝑏𝑡−1𝔼𝑡−1
∗ 𝑥𝑡 + [(1 − 𝜌)𝛾 + 𝛽𝑐𝑡 + 𝛽(𝑏𝑡 − 𝜌)𝑐𝑡−1] + 𝛽𝑑1,𝑡

′ 𝜁𝑡+1

+ 𝛽(𝑏𝑡 − 𝜌)𝑑1,𝑡−1
′ 𝜁𝑡 + 𝜎𝜀𝑡+1], 

and so when agents use (4.1), if the agents estimates of structural parameters converge in 

probability to their true values, then 𝔼𝑡𝑥𝑡+1 − 𝔼𝑡
∗𝑥𝑡+1 converges in probability to zero. 
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If agents believe in the SMSV for some reason, then we might suppose they set: 

 

𝒻𝑡 = √max{0,1 − 4�̂�𝑡�̂�𝑡} , 𝑎1,𝑡 = �̂�𝑡 +
1 − 𝒻𝑡

2�̂�𝑡
, 𝑎2,𝑡 = −�̂�𝑡

1 − 𝒻𝑡

2�̂�𝑡
,  

𝑎3,𝑡 = 0, 𝑏𝑡 = 0, 𝑐𝑡 =
2(1 − �̂�𝑡)𝛾𝑡

1 − 2�̂�𝑡 + 𝒻𝑡
, 𝑑1,𝑡 = 0. 

(4.2) 
 

   

If they do this, again as estimates of structural parameters converge in probability to their 

true values, 𝔼𝑡𝑥𝑡+1 − 𝔼𝑡
∗𝑥𝑡+1 will converge in probability to zero. 

Furthermore, from Proposition 2 we immediately have the following two corollaries: 

Corollary 2.2: Suppose that 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡 are in all agent’s period 𝑡 information set, and 

𝑚𝜀,𝑡 ≠ 0 for all 𝑡. Then if: 

1) all agents form expectations using (3.4) and (4.1), 

2) conditions 1), 2) and 3) of Proposition 1 hold, 

3) there exists 𝛿 > 0 such that lim inf
𝑡→∞

𝑡1−𝛿𝑚𝜁,𝑡 > 0, and, 

4) agents estimate structural parameters using either the AEIV estimator defined in 

Proposition 2, or the ML estimator given by the solution to the FOCs, (3.5), 

then all estimates of structural parameters will converge in probability to the true values, 

and agents’ expectations will converge in probability to their values under the full 

information, rational expectations solution. 

Corollary 2.3: If: 

1) all agents form expectations using (3.4) and (4.2), 

2) conditions 1) and 2) of Proposition 2 hold, and, 

3) agents estimate structural parameters using either the AEIV estimator defined in 

Proposition 2, or the ML estimator given by the solution to the FOCs, (3.5), 
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then all estimates of reduced form parameters will converge in probability to the true 

values, and agents’ expectations will converge in probability to their values under the full 

information, rational expectations, SMSV solution. 

Note that Corollary 2.3 only guarantees convergence of reduced form parameters, not 

structural ones. This is because if reduced form parameters converge too quickly, 

Proposition 2 does not apply. Since there are more structural parameters than reduced 

form ones in the MSV case, it is quite possible for the reduced form parameters to converge 

without the structural ones converging. Guaranteeing convergence of reduced form 

parameters is sufficient for expectations to converge to the SMSV solution, however. 

To guarantee the existence of a learning algorithm that will learn an arbitrary solution, we 

need the following supplemental corollary of Corollary 2.2:  

Corollary 2.4: Suppose that agents do not know 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡, and each agent 𝑖 forms the 

estimate �̂�𝜀,𝑡(𝑖) and �̂�𝜁,𝑡(𝑖) (respectively) of these parameters at 𝑡. Suppose further that 

the mechanism they use for learning these parameters means that either: 

1) there exists some 𝑇 ∈ ℤ such that for all 𝑡 ≥ 𝑇, and all agents 𝑖 and 𝑗, �̂�𝜀,𝑡(𝑖) =

�̂�𝜀,𝑡(𝑗) and �̂�𝜁,𝑡(𝑖) = �̂�𝜁,𝑡(𝑗), or, 

2) for all agents 𝑖 and 𝑗 𝑝𝑙𝑖𝑚
𝑡→∞

�̂�𝜀,𝑡(𝑖)

�̂�𝜀,𝑡(𝑗)
= 1 and 

𝑝𝑙𝑖𝑚
𝑡→∞

(�̂�𝜁,𝑡(𝑖)−�̂�𝜁,𝑡(𝑗))
′
(�̂�𝜁,𝑡(𝑖)−�̂�𝜁,𝑡(𝑗))

�̂�𝜁,𝑡(𝑖)
′�̂�𝜁,𝑡(𝑖)

= 0,20 

then if 𝑚𝜀,𝑡(𝑖) ≠ 0 for all 𝑡 and 𝑖, and conditions 1), 2) and 4) of Corollary 2.2 are satisfied, 

then all estimates of reduced form parameters will converge in probability to the true 

values, and agents’ expectations will converge in probability to their values under the full 

                                                      

20 Condition 1) is strictly encompassed by condition 2), but the former will be more useful in practice. 
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information, rational expectations solution. If in addition condition 3) of Corollary 2.2 is 

satisfied, then all estimates of structural parameters will also converge. 

The proof of the result under condition 1) of this proposition follows from Proposition 2. 

Under condition 2) the result follows from the fact that condition 2) implies that 

asymptotically the measurement error induced by treating an idiosyncratic estimate as an 

aggregate one is dominated by the signal, so the estimates will remain consistent, at least 

when 𝑥𝑡 is non-explosive. 

The set of learning mechanisms covered by Corollary 2.3 and Corollary 2.4 includes a very 

large number of plausible learning mechanisms. In the below, we mention three of 

particular interest. 

4.2. Guaranteed learning of SMSV solutions 

Corollary 2.3 guarantees convergence to any SMSV solution, given minimal conditions. 

Again, since these technical conditions are a little opaque, in Figure 3 we present simulation 

evidence demonstrating the broad convergence of our algorithm. The rows of Figure 3 

correspond to the same rows of Figure 2 (identical parameters were used). 

As in section 3.5, we make 214 simulation runs, each of length 28. For the sake of numerical 

stability, we again use a projection facility, with all reduced form and structural parameters 

constrained to lie in the interval [−1000,1000]. We also have an eight period burn-in, 

during which expectations are given by their SMSV solution, plus 𝜁𝑡 (always a scalar). For all 

simulations, we use the ML algorithm for parameter estimation, due to its greater 

efficiency.21 

                                                      

21 Again, we only search for a local maximum, using the constraints as set up in footnote 18. To further 

increase the chance of finding a global maximum however, each period we try starting the optimisation 

routine at two different points: last period’s estimate, and the AEIV solution. 
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The first column of Figure 3 presents the distribution of the difference between the 

expectations formed by our sophisticated agents, and the expectations that would be 

formed by fully informed, fully rational agents in the same economy, normalised by the full 

information one-step ahead standard deviation. The second column presents the 

distribution of the difference between our agents’ expectations and the SMSV solution,22 

with the same normalisation. In all cases, it is clear that we have rapid convergence to the 

SMSV solution, and even faster convergence to rationality. 

                                                      

22 Given by 𝔼𝑡
MSV𝑥𝑡+1 = 𝑎1

MSV𝑥𝑡 − 𝑎2
MSV𝑥𝑡−1 − 𝑐

MSV 
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Figure 3: Results from simulations of sophisticated SMSV learners, from 𝟐𝟏𝟒 runs. 
See text (section 4.2) for full details. 
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The third column presents the 95% trimmed RMSE in agents’ estimates of 𝛽, and the fourth 

column does the same for 𝑎1
MSV. In line with our theoretical results, while 𝛽 does not appear 

to converge, agents’ estimates of 𝑎1
MSV converge to the truth in all cases. (The RMSE in 𝛽 is 

nonetheless very small.) Finally, the fifth column presents the mean p-value from a (one-

sample) bootstrapped LM test of serial correlation in expectational errors, at one lag. If 

information is being used fully efficiently, there should be no serial correlation, and these 

mean p-values should be equal to 0.5. While our found p-values are not quite so high, in all 

cases they are comfortably above 0.2 at all lags, so an econometrician would not reject the 

null of no serial correlation, at any standard significance level. Thus although this 

sophisticated learning algorithm is still not quite fully rational, it is close enough to 

rationality that users of it could not detect their own deviations from rationality. 

Under standard OLS learning, there are non-learnable stationary MSV solutions such as the 

one in the final row of Figure 3, so by this measure the present learning algorithm is an 

improvement. However, it is in no sense an answer to Cochrane’s (2009) challenge for 

learnability to “save new-Keynesian models”. This learning algorithm is only reasonable if 

agents already believe that the solution is of the SMSV form, an assumption that is not 

justified by anything in the model. That dramatically different results may obtain with 

different learning mechanisms is made clear by the next one presented. 

4.3. Learning any sunspot solution (with positive density) 

Suppose, that agent 𝑖 believes that as well as having access to all the same information as 

them, everyone else in the economy also had access to the additional information that 

𝑚𝜀,𝑡 ≡ 𝑚𝜀,0 and 𝑚𝜁,𝑡 ≡ 𝑚𝜁,0, where 𝑚𝜀,0 and 𝑚𝜁,0 are constants, unknown to agent 𝑖. 
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Let us define: 

 ℯ𝑡 ≔
�̂�𝑡−1
�̂�𝑡−1

[
1

�̂�𝑡−1
𝑥𝑡 + �̂�2,𝑡−1𝑥𝑡−1 + �̂�3,𝑡−1𝑥𝑡−2 + �̂�𝑡−1𝔼𝑡−1

∗ 𝑥𝑡 + �̂�𝑡−1 − 𝔼𝑡
∗𝑥𝑡+1], (4.3) 

   
then: 

[ℯ𝑡 𝜁𝑡
′] [
𝑚𝜀,𝑡−1
𝑚𝜁,𝑡−1

] ≈ 𝑥𝑡 − 𝔼𝑡−1
∗ 𝑥𝑡 ≕ 𝜂𝑡

∗, 

where the approximation is exact when 𝑚𝜀,𝑡−1 = 𝑚𝜀,0. (Away from this point, agent 𝑖’s 

estimate of 𝑎1,𝑡 will differ from the true value, introducing error into their estimates of 𝛼𝑡, 

etc..) The natural estimate of 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡 is then: 

[
�̂�𝜀,𝑡
�̂�𝜁,𝑡

] = [
ℯ1 𝜁1

′

⋮ ⋮
ℯ𝑡 𝜁𝑡

′
]

+

[
𝜂1
∗

⋮
𝜂𝑡
∗
], 

where superscript +  denotes the Moore-Penrose pseudo-inverse. 23  By the standard 

properties of least squares estimates, this will converge on the truth, and indeed despite the 

presence of the approximation in the previous equation this will happen exactly in finite 

time, providing estimates of other parameters are updated recursively.24 

In the case we are chiefly concerned with, everyone is learning simultaneously, so by the 

properties of the Moore-Penrose pseudo-inverse, we will have �̂�𝜀,𝑡 ≡ �̂�𝜀,1 =
ℯ1

ℯ1
2+𝜁1

′𝜁1
𝜂1
∗ and 

�̂�𝜁,𝑡 ≡ �̂�𝜁,1 =
𝜁1

ℯ1
2+𝜁1

′𝜁1
𝜂1
∗, ex-post justifying the constancy assumption that motivated the 

learning method. By varying initial beliefs we may attain any value for 𝜂1
∗, and hence any 

value for �̂�𝜀,1 and �̂�𝜁,1. So with stochastic initial beliefs (a public signal perhaps), any 

                                                      

23 This is of course the standard linear regression formula when 𝑡 ≥ dim 𝜁𝑡. 
24 In this situation, agent 𝑖 should update their estimates of 𝑎1,1 in all periods 𝑡 with 𝑡 ≥ 1. I.e. in period 𝑡, they 

should estimate 𝑎1,1 as 
1

�̂�1
(1 −

�̂�1

�̂�𝜀,𝑡
). Based on this revised estimate of 𝑎1,1, they can then re-estimate 𝛼2, etc., 

and then 𝑎1,2, etc., and so on. Armed with this set of new estimates, they can then re-estimate 𝑚𝜀,𝑡 and 𝑚𝜁,𝑡, 

repeating the entire procedure until they converge on a fixed point. After 1 + dim 𝜁𝑡  periods have elapsed, 

there may possible be multiple such fixed points, however, the next period, with probability 1 only one will 

remain. 
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solution is attainable with positive density, and expectations will converge to rationality 

with probability one (at least given the relevant technical conditions), by Corollary 2.4.25 

This learning method is readily extended to the case in which agents believe that 𝑚𝜀,𝑡 and 

𝑚𝜁,𝑡 are constant until a certain event occurs. Possible candidates for these events include 

changes of central bank governors, changes of governments, financial crashes and natural 

disasters. In this case, each time the event occurs, a new draw for �̂�𝜀,𝑡 and �̂�𝜁,𝑡 will be 

                                                      

25 The solutions with �̂�𝜁,1 = 0 are not guaranteed to converge, but the set of such solutions is of measure zero 

in the whole space. 
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Figure 4: Results from simulations of sophisticated sunspot learners, from 𝟐𝟏𝟒 runs. 
See text (section 4.3) for full details. 
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taken, and they will remain fixed at those values until the event occurs again. In the extreme 

case in which the event occurs every period, we have that �̂�𝜀,𝑡 =
ℯ𝑡

ℯ𝑡
2+𝜁𝑡

′𝜁𝑡
𝜂𝑡
∗ and �̂�𝜁,𝑡 =

𝜁𝑡

ℯ𝑡
2+𝜁𝑡

′𝜁𝑡
𝜂𝑡
∗ . Since 𝔼𝑡−1𝜂𝑡

∗2 − (�̂�𝜀,𝑡−1
2 + �̂�𝜁,𝑡−1

′ �̂�𝜁,𝑡−1)  tends to 0  as 𝑡 → ∞ , this means 

𝔼𝑡−1(𝜂𝑡+1
∗ 2) − 𝔼𝑡−1(𝜂𝑡

∗2) tends to 0 too, so the variance of expectational errors follows a 

random walk asymptotically, providing endogenous stochastic volatility. 

In Figure 4 we show simulations of this learning method, with the exact same set-up as in 

section 4.2. (We do not bound �̂�𝜀,𝑡 or �̂�𝜁,𝑡 however.) Since initial estimates of ℯ𝑡 are highly 

inaccurate, we assume all agents update their estimates of �̂�𝜀,𝑡 and �̂�𝜁,𝑡 in each of the first 

8 periods after the end of the burn-in (i.e. periods 9 to 16), but not in any future period. 

In the two cases in which only the SMSV solution is stationary, expectations asymptotically 

diverge from rationality. However, there is an initial period of rapid convergence, so it is 

hard to know if this divergence is merely driven by the numerical errors stemming from the 

explosive behaviour of 𝑥𝑡. (Either hypothesis would be consistent with our theoretical 

results, as these do not cover cases in which 𝑥𝑡 grows exponentially or faster.) In the two 

“indeterminate” cases, expectations rapidly converge to rationality, though not to the MSV 

solution, implying a sunspot solution has been learnt. While structural parameter estimates 

are very close to the truth in all cases, they do not appear to be converging. This again is 

consistent with our theoretical results if reduced form parameters have converged too 

quickly. Finally, note that there is even less evidence of serial correlation in this sunspot 

case, so again the agents in the model would not be able to detect their own departure 

from rationality. 
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4.4. Learning in the presence of transversality constraints 

Finally, suppose that in the model under consideration, 𝑥𝑡 is restricted by a transversality 

constraint. (To recap, this is not the case for inflation.) Then if agents are ever confident 

they are in an indeterminate region of the parameter space, they should switch to the SMSV 

solution. This suggests that agents should begin using the sunspot learning method from the 

previous section. If however their estimates ever imply that |�̂�𝑡 + �̂�𝑡| < 1, then they should 

switch to forming MSV expectations. If at a later date they again come to believe that 
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Figure 5: Results from simulations of sophisticated transversality learners, from 𝟐𝟏𝟒 
runs. See text (section 4.4) for full details. 
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|�̂�𝑡 + �̂�𝑡| > 1, they should switch back to the general sunspot solution, with updated values 

for �̂�𝜀,𝑡 and �̂�𝜁,𝑡. 

Figure 5 presents simulations of this learning method. Performance is an amalgam of the 

previous two cases, with convergence to the SMSV solution under determinacy, and 

convergence to a sunspot solution otherwise. 

5. Conclusion 

This paper has set forward a family of macroeconomic learning algorithms that are correctly 

specified, even along the transition path. Our simulations and theoretical results imply that 

vastly more equilibria are learnable via these algorithms than via traditional learning 

methods, implying that learnability cannot be used for equilibrium selection. We have also 

demonstrated that from observing traditional macroeconomic learners we may identify all a 

model’s structural parameters, providing those traditional learners are running a regression 

that encompasses the general solution to the model. 

The new estimators produced in this paper have many practical applications. In future 

empirical work we hope to use them to assess whether the Federal Reserve has ever 

pursued a policy satisfying the Taylor principle, something that was not possible until now 

due to the non-identification of the key parameter given unobserved, auto-correlated 

monetary policy shocks. We also hope to look for empirical evidence on whether real world 

macroeconomic learning is best described by the traditional algorithm or one of our new, 

misspecification-free methods. 
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7. Appendices 

7.1. FREE solutions for arbitrary linear models 

We now extend the structure of (2.3) to the general multivariate case: 

Κ𝑥𝑡 = Α𝑥𝑡−1 + Β𝔼𝑡𝑥𝑡+1 + 𝛾 + Σ𝑠𝑠𝑡 

where: 

𝑠𝑡 = Ρ𝑠𝑡−1 + Σ𝜀𝜀𝑡 

for the arbitrary matrices Κ, Α, Β, Ρ, Σ𝑠 and Σ𝜀, the vector 𝛾 and the shock 𝜀𝑡~NIID(0, 𝐼). 

Initially, we suppose that there are no transversality conditions restricting any of the 

components of 𝑥𝑡. 

Again defining the expectational error by 𝜂𝑡 ≔ 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡, when Β and Σ𝑠 have linearly 

independent columns, from the properties of the Moore-Penrose pseudoinverse (denoted 

by +), we have that: 

𝔼𝑡𝑥𝑡+1 = Β
+(Κ + Σ𝑠ΡΣ𝑠

+Β)𝑥𝑡 − Β
+(Α + Σ𝑠ΡΣ𝑠

+Κ)𝑥𝑡−1 + Β
+Σ𝑠ΡΣ𝑠

+Α𝑥𝑡−2

− Β+Σ𝑠(𝐼 − Ρ)Σ𝑠
+𝛾 − Β+Σ𝑠Σ𝜀𝜀𝑡 − Β

+Σ𝑠ΡΣ𝑠
−1Β𝜂𝑡. 

As before, without loss of generality we may assume that 𝜂𝑡 = 𝑀𝜀,𝑡−1𝜀𝑡 +𝑀𝜁,𝑡−1𝜁𝑡, for 

some sunspot shock 𝜁𝑡 uncorrelated with 𝜀𝑡 (and satisfying 𝔼𝑡−1𝜁𝑡 = 0, 𝔼𝑡−1𝜁𝑡𝜁𝑡
′ = 𝐼). 

Then, if 𝑀𝜀,𝑡−1 has linearly independent columns: 

𝔼𝑡𝑥𝑡+1 = Β
+(Κ − Σ𝑠Σ𝜀𝑀𝜀,𝑡−1

+ )𝑥𝑡 − Β
+(Α + Σ𝑠ΡΣ𝑠

+Κ)𝑥𝑡−1 + Β
+Σ𝑠ΡΣ𝑠

+Α𝑥𝑡−2

+ Β+(Σ𝑠ΡΣ𝑠
+Β + Σ𝑠Σ𝜀𝑀𝜀,𝑡−1

+ )𝔼𝑡−1𝑥𝑡 − Β
+Σ𝑠(𝐼 − Ρ)Σ𝑠

+𝛾

+ Β+Σ𝑠Σ𝜀𝑀𝜀,𝑡−1
+ 𝑀𝜁,𝑡−1𝜁𝑡 . 

This expression no longer contains either 𝜀𝑡  or 𝑠𝑡 . Thus, when Β  and Σ𝑠  have linearly 

independent columns, almost all rational expectations solutions to the original model are 

FREE, i.e. they are implementable by agents who cannot observe the model’s fundamental 

shocks.  
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More generally, there will be transversality conditions restricting some variables, and Β and 

Σ𝑠  will not have linearly independent columns. To solve this case, we closely follow 

Mavroeidis and Zwols’s (2007) presentation of Lubik and Schorfheide’s (2003) extension to 

the irregular case of Sims’s (2002) method for solving rational expectations models, which is 

itself more general than that of Blanchard and Kahn (1980). The majority of the results here 

that are not due to Mavroeidis, Zwols, Lubik, Schorfheide or Sims were first shown in an 

earlier working paper by this author (Holden 2008). 

With the model set-up as before, let us define 𝑣𝑡 ≔ [
𝑥𝑡

𝔼𝑡𝑥𝑡+1
], Γ0 ≔ [

Κ −Β
𝐼 0

], Γ1 ≔ [
Α 0
0 𝐼

], 

𝜇 ≔ [
𝛾
0
],  Ψ ≔ [

Σ𝑠
0
] and Π ≔ [

0
𝐼
]. We then have the general canonical form we will solve 

here: 

Γ0𝑣𝑡 = Γ1𝑣𝑡−1 + 𝜇 + Ψ𝑠𝑡 +Π𝜂𝑡 . 

In deriving the conditions for the existence of a rational expectations equilibria (REE) below, 

we will not assume anything about the structure of 𝑣𝑡 , 𝜂𝑡 , Γ0 , Γ1 , 𝜇, Ψ, Π, Ρ, Σ𝑠  or Σ𝜀 

(beyond the fact that 𝜂𝑡 must be chosen subject to 𝔼𝑡−1𝜂𝑡 = 0). We will also be able to 

derive sufficient conditions for the existence of a FREE in this fully general case. However, in 

deriving necessary conditions we will assume that 𝑣𝑡 = [
𝑥𝑡

𝔼𝑡𝑥𝑡+1
] and 𝜂𝑡 = 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡, as 

in the above. 

By the generalized complex Schur decomposition (also known as the QZ decomposition) 

(Quarteroni, Sacco, and Saleri 2000) of the matrices Γ0 and Γ1, there always exist possibly 

complex matrices 𝑄, 𝑍, Λ = (𝜆𝑖,𝑗)𝑖,𝑗 and Ω = (𝜔𝑖,𝑗)𝑖,𝑗 such that 𝑄𝐻Λ𝑍𝐻 = Γ0, 𝑄𝐻Ω𝑍𝐻 = Γ1, 

𝑄 and 𝑍 are unitary, Λ and Ω are upper triangular and a superscript 𝐻 denotes conjugate 

transpose. 

Now let 𝑤𝑡 = 𝑍
𝐻𝑣𝑡 for all 𝑡 ∈ ℤ, then if we pre-multiply the canonical form by 𝑄 we have: 

Λ𝑤𝑡 = Ω𝑤𝑡−1 + 𝑄(𝜇 + Ψ𝑠𝑡 +Π𝜂𝑡). 
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Providing Γ0 and Γ1 do not have zero eigenvalues corresponding to the same eigenvector26 

the QZ decomposition always exists and the set {|
𝜔𝑖𝑖

𝜆𝑖𝑖
| |𝑖 ∈ {1,… , dim𝑣𝑡}} ⊆ ℝ ∪ {∞} is 

unique even though the decomposition itself is not (Sims 2002). Thus, without loss of 

generality we may assume that for 𝑖 < 𝑗, |
𝜔𝑖𝑖

𝜆𝑖𝑖
| < |

𝜔𝑗𝑗

𝜆𝑗𝑗
|. Let �̅� be the number of 𝑖 for which 

|
𝜔𝑖𝑖

𝜆𝑖𝑖
| ≤ 1 and consider a partition of the matrices under consideration in which in each case 

the top left block is of dimension �̅� × �̅�27. 

We may then write: 

 [
Λ11 Λ12
0 Λ22

] [
𝑤1,𝑡
𝑤2,𝑡

] = [
Ω11 Ω12
0 Ω22

] [
𝑤1,𝑡−1
𝑤2,𝑡−1

] + [
𝑄1∙
𝑄2∙
] (𝜇 + Ψ𝑠𝑡 + Π𝜂𝑡). (7.1) 

   
The second block of this equation is purely explosive by construction. More generally, we 

may follow Sims (2002) and allow explosive combinations of variables that do not violate 

transversality to enter into the upper block. In New-Keynesian models, inflation rates will 

generally be such a variable. 

                                                      

26 This means that there is one or more equation that places no restrictions on either 𝑣𝑡 or 𝑣𝑡−1. This will 

create an additional source of indeterminacy in 𝑣𝑡 and may also imply that one or more components of 𝜀𝑡 and 

𝜂𝑡 are linear combinations of the others. We, like both Sims and Lubik & Schorfheide, will not further 

investigate this avenue. 
27 This means that we are not treating unit roots as explosive. Doing this avoids some minor technical 

complications. 
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If agents expect a non-transversality violating path for 𝑣𝑡, from solving forward, following 

Sims (2002) and Mavroeidis and Zwols (2007), we must have: 

𝑤2,𝑡 = 𝔼𝑡𝑤2,𝑡 = −𝔼𝑡∑(Ω22
−1Λ22)

𝑘−1Ω22
−1𝑄2∙(𝜇 + Ψ𝑠𝑡+𝑘 + Π𝜂𝑡+𝑘)

∞

𝑘=1

 

= −∑(Ω22
−1Λ22)

𝑘Ω22
−1𝑄2∙ΨΡ

1+𝑘𝑠𝑡

∞

𝑘=0

− [∑(Ω22
−1Λ22)

𝑘

∞

𝑘=0

]Ω22
−1𝑄2∙𝜇 

= 𝑆Ρ𝑠𝑡 + (Λ22 − Ω22)
−1𝑄2∙𝜇, 

where 𝑆 is the solution to the Stein equation28: 

Ω22
−1Λ22𝑆Ρ − 𝑆 = Ω22

−1𝑄2∙Ψ 

and where the sums are well defined since the eigenvalues of Ω22
−1Λ22 are strictly in the unit 

circle by construction (and Ω22 is invertible by construction). Note that for 𝑆 to have linearly 

independent columns, it is necessary that dim𝑤2,𝑡 ≥ dim 𝑠𝑡. 

Consequently (following Mavroeidis and Zwols (2007)), 𝔼𝑡+1𝑤2,𝑡 = 𝔼𝑡𝑤2,𝑡, and so: 

−𝔼𝑡+1∑(Ω22
−1Λ22)

𝑘−1Ω22
−1𝑄2∙(𝜇 + Ψ𝑠𝑡+𝑘 + Π𝜂𝑡+𝑘)

∞

𝑘=1

= −𝔼𝑡∑(Ω22
−1Λ22)

𝑘−1Ω22
−1𝑄2∙(𝜇 + Ψ𝑠𝑡+𝑘 + Π𝜂𝑡+𝑘)

∞

𝑘=1

 

i.e. Ω22𝑆Σ𝜀𝜀𝑡+1 = 𝑄2∙Π𝜂𝑡+1 (7.2) 
   
(using the fact that Ω22 is of full rank and the definition of 𝑆). This is the key constraint 

limiting expectations. If Ρ = 0, then 𝑆 = −Ω22
−1𝑄2∙Ψ so under the normalisation Σ𝜀 = 𝐼, it 

collapses to the expression given in Lubik and Schorfheide (2003). 

                                                      

28  This equation has a unique solution providing none of the eigenvalues of Ρ  are in the set 

{|
𝜔𝑖𝑖

𝜆𝑖𝑖
| |𝑖 ∈ {�̅� + 1,… , dim 𝑣𝑡}}, which holds automatically providing the autoregressive process for 𝜀𝑡 is non-

explosive. The (non-numerically robust) solution is given by: vec 𝑆 = (Ρ′⊗Ω22
−1Λ22 − 𝐼)

−1 vec Ω22
−1𝑄2∙Ψ. 
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By the singular value decomposition (SVD) (Horn and Johnson 1985) of 𝑄2∙Π and Ω22𝑆Σ𝜀 we 

can write 𝑄2∙Π = 𝑈𝐷𝑉
𝐻 = [𝑈∙1 𝑈∙2] [

𝐷11 0
0 0

] [
𝑉∙1
𝐻

𝑉∙2
𝐻] = 𝑈∙1𝐷11𝑉∙1

𝐻 and  Ω22𝑆Σ𝜀 = �̂��̂��̂�
𝐻 =

[�̂�∙1 �̂�∙2] [
�̂�11 0
0 0

] [
�̂�∙1
𝐻

�̂�∙2
𝐻
] = �̂�∙1�̂�11�̂�∙1

𝐻  where 𝑈 , 𝑉 , �̂�  and �̂�  are unitary and 𝐷11  and �̂�11 

have strictly positive diagonals and zeroes elsewhere, and where 𝐻 denotes the Hermitian 

transpose. Pre-multiplying the constraint (7.2) by 𝑈∙1𝑈∙1
𝐻 then gives that: 

𝑈∙1𝑈∙1
𝐻Ω22𝑆Σ𝜀𝜀𝑡+1 = 𝑈∙1𝑈∙1

𝐻𝑄2∙Π𝜂𝑡+1 = 𝑈∙1𝑈∙1
𝐻𝑈∙1𝐷11𝑉∙1

𝐻𝜂𝑡+1 = 𝑈∙1𝐷11𝑉∙1
𝐻𝜂𝑡+1 = 𝑄2∙Π𝜂𝑡+1 

= Ω22𝑆Σ𝜀𝜀𝑡+1 

(by the constraint and the unitarity of 𝑈). Thus since 𝜀𝑡+1 may take the value �̂�∙1�̂�11
−1𝜐 for 

any 𝜐, by the unitarity of �̂�, we must have: 

 𝑈∙1𝑈∙1
𝐻�̂�∙1 = �̂�∙1. (7.3) 

   
This condition is also sufficient for the existence of a solution, which we now demonstrate 

by exhibiting an explicit solution. 

Let 𝑞 ≔ rank𝑄2∙Π, so that 𝐷11 is of dimension 𝑞 × 𝑞. Then following Lubik and Schorfheide 

(2003), we posit the following set of solutions for the forecast errors 𝜂𝑡: 

 𝜂𝑡 = [𝑉∙1 𝑉∙2] [
𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ𝜀
𝑀𝜀,𝑡−1

] 𝜀𝑡 + [𝑉∙1 𝑉∙2] [
0

𝑀𝜁,𝑡−1
] 𝜁𝑡 , (7.4) 

   
where 𝜁𝑡 is an arbitrary vector of sunspot shocks, uncorrelated with 𝜀𝑡, and 𝑀𝜀,𝑡−1 and 

𝑀𝜁,𝑡−1  are arbitrary matrices of size (dim𝜂𝑡 − 𝑞) × dim 𝜀𝑡  and (dim𝜂𝑡 − 𝑞) × dim 𝜁𝑡 

respectively, known at 𝑡 − 1. (The possibility of time variation in 𝑀𝜀,𝑡−1 and 𝑀𝜁,𝑡−1 was not 

noticed by Lubik and Schorfheide (2003).) 
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When the condition (7.3) holds, by the unitarity of 𝑉 we have that: 

𝑄2∙Π𝜂𝑡 = 𝑈∙1𝐷11𝑉∙1
𝐻𝜂𝑡 

= (𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙1𝐷11

−1𝑈∙1
𝐻Ω22𝑆Σ𝜀 + 𝑈∙1𝐷11𝑉∙1

𝐻𝑉∙2𝑀𝜀,𝑡−1)𝜀𝑡 + 𝑈∙1𝐷11𝑉∙1
𝐻𝑉∙2𝑀𝜁,𝑡−1𝜁𝑡  

= 𝑈∙1𝑈∙1
𝐻Ω22𝑆Σ𝜀𝜀𝑡 = 𝑈∙1𝑈∙1

𝐻�̂�∙1�̂�11�̂�∙1
𝐻𝜀𝑡 = �̂�∙1�̂�11�̂�∙1

𝐻𝜀𝑡 = Ω22𝑆Σ𝜀𝜀𝑡 

and so the constraint (7.2) does indeed hold. It is immediate from this solution for the 

forecast errors that the model has a unique solution if and only if 𝑞 = dim𝜂𝑡. 

In order for there to be a FREE solution, we must be able to express 𝜀𝑡 as a function of 𝜂𝑡 

and 𝜁𝑡. If we pre-multiply the above solution for 𝜂𝑡 by [Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻, using condition 

(7.3) and the unitarity of 𝑉 we have that: 

[
𝑆Σ𝜀
𝑀𝜀,𝑡−1

] 𝜀𝑡 = [
Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻𝜂𝑡 − [
0

𝑀𝜁,𝑡−1
] 𝜁𝑡 . 

Therefore, a FREE solution will certainly exist if [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

] has linearly independent columns 

for all 𝑡, since when this holds, from standard results on the Moore-Penrose pseudo-inverse 

we have that: 

𝜀𝑡 = [
Σ𝜀
𝐻𝑆𝐻𝑆Σ𝜀

𝑀𝜀,𝑡−1
𝐻 𝑀𝜀,𝑡−1

]

−1

[[Σ𝜀
𝐻𝑆𝐻Ω22

−1𝑈∙1𝐷11 𝑀𝜀,𝑡−1
𝐻 ]𝑉𝐻𝜂𝑡 −𝑀𝜀,𝑡−1

𝐻 𝑀𝜁,𝑡−1𝜁𝑡] 

and so it is as if 𝜀𝑡 is in even the limited information set. 

When dim 𝜂𝑡 − 𝑞 ≥ dim 𝜀𝑡,  [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

] will have linearly independent columns for almost all 

𝑀𝜀,𝑡−1.29 More generally, we require that rank 𝑆Σ𝜀 + dim𝜂𝑡 − 𝑞 ≥ dim 𝜀𝑡. 

                                                      

29 With 𝑞 = 0, this gives a generalisation of our initial result to the case in which Β and Σ𝑠  do not have full rank. 
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Now by (7.3), 𝑄2∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ𝜀 = Ω22𝑆Σ𝜀, thus span 𝑆Σ𝜀 = spanΩ22𝑆Σ𝜀 ⊆ span𝑄2∙Π 

and so rank 𝑆Σ𝜀 ≤ rank𝑄2∙Π = 𝑞. Thus, if it is to be the case that [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

] has linearly 

independent columns, we must have that: 

dim 𝜀𝑡 − (dim𝜂𝑡 − 𝑞) ≤ rank 𝑆Σ𝜀 ≤ rank𝑄2∙Π = 𝑞, 

which implies dim 𝜀𝑡 ≤ dim𝜂𝑡 . In the special case in which dim 𝜀𝑡 = dim𝜂𝑡 , these 

inequalities become equalities, meaning that we must have spanΩ22𝑆Σ𝜀 = span𝑄2∙Π, and 

hence �̂�∙1�̂�∙1
𝐻𝑈∙1 = 𝑈∙1, by (7.3). 

The fact that [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

] having linearly independent columns implies dim 𝜀𝑡 ≤ dim 𝜂𝑡 makes 

clear that this condition is not necessary for the existence of a FREE. For example, suppose 

Σ𝜀 = 0, then a FREE must exist independently of the dimension of dim 𝜀𝑡 when 𝑀𝜀,𝑡−1 ≡ 0. 

In order to derive necessary conditions (and tighter sufficient ones) we must first solve for 

𝑣𝑡. We begin by pre-multiplying (7.1) by [𝐼 −𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻], which gives: 

[Λ11 Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22] [
𝑤1,𝑡
𝑤2,𝑡

] 

= [Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22] [
𝑤1,𝑡−1
𝑤2,𝑡−1

] + (𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙)(𝜇 + Ψ𝑠𝑡 + Π𝜂𝑡) 

= [Ω11 Ω12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Ω22] [
𝑤1,𝑡−1
𝑤2,𝑡−1

] + (𝑄1∙ − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻𝑄2∙)(𝜇 + Ψ𝑠𝑡)

+ 𝑄1∙Π𝑉∙2(𝑀𝜀,𝑡−1𝜀𝑡 +𝑀𝜁,𝑡−1𝜁𝑡) 

(using the unitary of 𝑈 and 𝑉, and equation (7.4)). 
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Hence, if we stack the equation above with the solution for the transversality-violating 

terms, and pre-multiply by: 

[𝑍∙1Λ11
−1 𝑍∙2 − 𝑍∙1Λ11

−1(Λ12 − 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻Λ22)], 

(valid as Λ11 is invertible by construction) we have: 

𝑣𝑡 = 𝑍∙1Λ11
−1[Ω11𝑍∙1

𝐻 + (Ω12 − 𝐽Ω22)𝑍∙2
𝐻]𝑣𝑡−1

+ [𝑍∙1Λ11
−1(𝑄1∙ − 𝐽𝑄2∙) + [𝑍∙2 − 𝑍∙1Λ11

−1(Λ12 − 𝐽Λ22)](Λ22 − Ω22)
−1𝑄2∙]𝜇

+ [𝑍∙1Λ11
−1(𝑄1∙ − 𝐽𝑄2∙)Ψ + [𝑍∙2 − 𝑍∙1Λ11

−1(Λ12 − 𝐽Λ22)]𝑆Ρ]𝑠𝑡

+ 𝑍∙1Λ11
−1𝑄1∙Π𝑉∙2𝑉∙2

𝐻𝜂𝑡, 

where 𝑍 has been partitioned conformably with 𝑤𝑡 and where 𝐽 ≔ 𝑄1∙Π𝑉∙1𝐷11
−1𝑈∙1

𝐻. 

For brevity, we rewrite this solution for 𝑣𝑡 as: 

 𝑣𝑡 = 𝑇−1𝑣𝑡−1 + 𝑇𝜇 + 𝑇𝑠𝑠𝑡 + 𝑇𝜂𝜂𝑡, (7.5) 

   
where 𝑇−1, 𝑇𝜇, 𝑇𝑠 and 𝑇𝜂 are defined by matching terms. 

Let us assume then that 𝑣𝑡 = [
𝑥𝑡

𝔼𝑡𝑥𝑡+1
] and 𝜂𝑡 = 𝑥𝑡 − 𝔼𝑡−1𝑥𝑡 , as in the general linear 

expectational model we presented at the start of this appendix. Then if we define 𝑇𝜀,𝑡−1 ≔

𝑇𝜂𝑉∙2𝑀𝜀,𝑡−1 and 𝑇𝜁,𝑡−1 ≔ 𝑇𝜂𝑉∙2𝑀𝜁,𝑡−1 and partition all the 𝑇∙ matrices conformably with 𝑣𝑡, 

we have: 

 

𝔼𝑡𝑥𝑡+1 = 𝑇−1,21𝑥𝑡−1 + 𝑇−1,22𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2 + 𝑇𝑠,2𝑠𝑡 + 𝑇𝜂,2𝜂𝑡 

= 𝑇−1,21𝑥𝑡−1 + 𝑇−1,22𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2 + 𝑇𝑠,2𝑠𝑡 + 𝑇𝜀,𝑡−1,2𝜀𝑡 + 𝑇𝜁,𝑡−1,2𝜁𝑡. 
(7.6) 
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When either Ρ = 0, or when 𝑠𝑡−1 is observed, the feasibility of this solution requires that 

agents can work out (𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2)𝜀𝑡, given knowledge of 𝑥𝑡, 𝜂𝑡 and 𝜁𝑡. By taking the 

SVD of (𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2)  and [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]  it is straightforward to show that a sufficient 

condition for feasibility is that: 

 ker 𝑆Σ𝜀 ∩ ker𝑀𝜀,𝑡−1 ⊆ ker[𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2], (7.7) 

   
in which case: 

[𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2]𝜀𝑡 = [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻𝜂𝑡 − [
0

𝑀𝜁,𝑡−1
] 𝜁𝑡], 

and: 

𝔼𝑡𝑥𝑡+1 = [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻𝑥𝑡 + 𝑇−1,21𝑥𝑡−1 + 𝑇𝑠,2Ρ𝑠𝑡−1

+ [𝑇−1,22 − [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻] 𝔼𝑡−1𝑥𝑡 + 𝑇𝜇,2

+ [𝑇𝜁,𝑡−1,2 − [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[
0

𝑀𝜁,𝑡−1
]] 𝜁𝑡 , 

which is in a “semi”-FREE form. 

In fact, when Ρ = 0, we can provide a more intuitive sufficient condition, under the 

normalisation that Σ𝜀 = 𝐼 . In this case,  ker 𝑆Σ𝜀 = ker 𝑆 = ker𝑄2∙Ψ  and so for 𝓋 ∈

ker 𝑆Σ𝜀 ∩ ker𝑀𝜀,𝑡−1, Ψ𝑣 = 𝑄1∙
𝐻𝑄1∙Ψ𝑣 and hence: 

𝑄1∙
𝐻Λ11𝑍∙1

𝐻(𝑇𝑠Σ𝜀 + 𝑇𝜀,𝑡−1)𝑣 = 𝑄1∙
𝐻Λ11𝑍∙1

𝐻𝑍∙1Λ11
−1𝑄1∙ [Ψ + Π𝑉 [

𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ𝜀
𝑀𝜀,𝑡−1

]] 𝑣 = Ψ𝑣 

Hence if 𝓋 ∈ ker 𝑆Σ𝜀 ∩ ker𝑀𝜀,𝑡−1 ∩ kerΨ , 𝑄1∙
𝐻Λ11𝑍∙1

𝐻(𝑇𝑠Σ𝜀 + 𝑇𝜀,𝑡−1)𝑣 = 0  which (from 

pre-multiplying by [0 𝐼]𝑍∙1Λ11
−1𝑄1∙ ) implies (𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2)𝑣 = 0 . Thus, a sufficient 

condition for feasibility is that: 

ker𝑄2∙Ψ∩ ker𝑀𝜀,𝑡−1 ⊆ ker𝑄2∙Ψ∩ ker𝑀𝜀,𝑡−1 ∩ kerΨ = kerΨ ∩ ker𝑀𝜀,𝑡−1. 
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Consequently, a sufficient condition for feasibility for any 𝑀𝜀,𝑡−1 is that: 

ker𝑄2∙Ψ = kerΨ. 

This states that if there is some linear combination of shocks which does not appear in the 

transversality-violating block, then that same linear combination does not appear anywhere 

in the model. This reveals that it is deviations from the saddle path that enable agents to 

back out the values of shocks. 

We now turn to the general case in which we do not assume that Ρ = 0 or that 𝑠𝑡 is 

observed even with a lag. Our first claim is that (7.7) is a necessary condition for the 

existence of a FREE. Suppose for a contradiction that (7.7) does not hold, but that: 

𝔼𝑡𝑥𝑡+1 = ℛ𝑡−1𝑥𝑡 + 𝒮𝑡−1𝜁𝑡 + other terms known at 𝑡 − 1, 

so the expectation can be formed without knowing the value of 𝜀𝑡 . Since ker 𝑆Σ𝜀 ∩

ker𝑀𝜀,𝑡−1 ⊈ ker(𝑇𝑠,2 + 𝑇𝜀,𝑡−1,2) , there must exist some 𝓋 ≠ 0  such that 𝑆Σ𝜀𝓋 =

𝑀𝜀,𝑡−1𝓋 = 0, but (𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2)𝓋 ≠ 0. 

Then from (7.6) and the fact that 𝜁𝑡 is uncorrelated with 𝜀𝑡, Cov𝑡−1(ℛ𝑡−1𝑥𝑡 , 𝓋𝓋
𝐻𝜀𝑡|𝑠𝑡−1) =

Cov𝑡−1(𝔼𝑡𝑥𝑡+1, 𝓋𝓋
𝐻𝜀𝑡|𝑠𝑡−1) = (𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2)𝔼𝑡−1𝜀𝑡𝜀𝑡

𝐻𝓋𝓋𝐻 = (𝑇𝑠,2Σ𝜀 + 𝑇𝜀,2)𝓋𝓋
𝐻 ≠

0. Hence, by our assumption: 

0 ≠ Cov𝑡−1(ℛ𝑡−1𝑥𝑡, 𝓋𝓋
𝐻𝜀𝑡|𝑠𝑡−1) = Cov𝑡−1(ℛ𝑡−1(𝜂𝑡 + 𝔼𝑡−1𝑥𝑡), 𝓋𝓋

𝐻𝜀𝑡|𝑠𝑡−1) 

= 𝔼𝑡−1ℛ𝑡−1𝜂𝑡𝜀𝑡
𝐻𝓋𝓋𝐻 = ℛ𝑡−1 𝔼𝑡−1 [𝑉 [

𝐷11
−1𝑈∙1

𝐻Ω22𝑆Σ𝜀
𝑀𝜀,𝑡−1

] 𝜀𝑡 + 𝑉 [
0

𝑀𝜁,𝑡−1
] 𝜁𝑡] 𝜀𝑡

𝐻𝓋𝓋𝐻 = 0 

(using equation (7.4)), as 𝑆Σ𝜀𝓋 = 𝑀𝜀,𝑡−1𝓋 = 0 and 𝜁𝑡 is uncorrelated with 𝜀𝑡. This gives the 

required contradiction. 
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Finally, we show that (7.7) and ker 𝑇𝑠,2 = {0} are jointly sufficient. First note that if 

ker 𝑇𝑠,2 = {0}, then 𝑇𝑠,2
+ 𝑇𝑠,2 = 𝐼. Then, from substituting 𝔼𝑡−1𝑥𝑡 out of the top line of (7.6), 

using the definition of 𝜂𝑡, subtracting 𝑇𝑠,2Ρ𝑇𝑠,2
+  times the equation’s lag, then using again the 

definition of 𝜂𝑡: 

𝔼𝑡𝑥𝑡+1 = [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑥𝑡 + [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ 𝑇−1,22]𝑥𝑡−1 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇−1,21𝑥𝑡−2

+ [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑇𝜇,2 + 𝑇𝑠,2Σ𝜀𝜀𝑡 + [𝑇𝜂,2 − 𝑇−1,22 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ ]𝜂𝑡

− 𝑇𝑠,2Ρ𝑇𝑠,2
+ [𝑇𝜂,2 − 𝑇−1,22]𝜂𝑡−1, 

or equivalently (again by the definition of 𝜂𝑡): 

𝔼𝑡𝑥𝑡+1 = 𝑇𝜂,2𝑥𝑡 + [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇𝜂,2]𝑥𝑡−1 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ 𝑇−1,21𝑥𝑡−2 + [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑇𝜇,2

+ [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ − 𝑇𝜂,2]𝔼𝑡−1𝑥𝑡 + 𝑇𝑠,2Ρ𝑇𝑠,2

+ [𝑇𝜂,2 − 𝑇−1,22]𝔼𝑡−2𝑥𝑡−1

+ 𝑇𝑠,2Σ𝜀𝜀𝑡. 

Hence, since 𝑉∙2
𝐻𝜂𝑡 = 𝑀𝜀,𝑡−1𝜀𝑡 +𝑀𝜁,𝑡−1𝜁𝑡: 

𝔼𝑡𝑥𝑡+1 = [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇𝜂,2]𝑥𝑡−1 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ 𝑇−1,21𝑥𝑡−2 + [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ ]𝑇𝜇,2

+ [𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ − 𝑇𝜂,2]𝔼𝑡−1𝑥𝑡 + 𝑇𝑠,2Ρ𝑇𝑠,2

+ [𝑇𝜂,2 − 𝑇−1,22]𝔼𝑡−2𝑥𝑡−1

+ [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2]𝜀𝑡 + 𝑇𝜁,𝑡−1,2𝜁𝑡. 
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By (7.7) then we have the FREE solution: 

𝔼𝑡𝑥𝑡+1 = [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻𝑥𝑡 + [𝑇−1,21 − 𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇𝜂,2]𝑥𝑡−1 

−𝑇𝑠,2Ρ𝑇𝑠,2
+ 𝑇−1,21𝑥𝑡−2 + [𝐼 − 𝑇𝑠,2Ρ𝑇𝑠,2

+ ]𝑇𝜇,2 

+[𝑇−1,22 + 𝑇𝑠,2Ρ𝑇𝑠,2
+ − 𝑇𝜂,2

− [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[Ω22
−1𝑈∙1𝐷11 0
0 𝐼

] 𝑉𝐻] 𝔼𝑡−1𝑥𝑡  

+𝑇𝑠,2Ρ𝑇𝑠,2
+ [𝑇𝜂,2 − 𝑇−1,22]𝔼𝑡−2𝑥𝑡−1

+ [𝑇𝜁,𝑡−1,2 − [𝑇𝑠,2Σ𝜀 + 𝑇𝜀,𝑡−1,2] [
𝑆Σ𝜀
𝑀𝜀,𝑡−1

]
+

[
0

𝑀𝜁,𝑡−1
]] 𝜁𝑡 , 

which establishes the result. 

A final remark is that the condition (7.7) holds if and only if: 

ker 𝑆Σ𝜀 ∩ ker𝑀𝜀,𝑡−1 ⊆ ker 𝑇𝑠,2Σ𝜀 

by the definition of 𝑇𝜀,𝑡−1,2. Under determinacy, this in turn holds if and only if ker 𝑆 ⊆

ker 𝑇𝑠,2. 

7.2. E-stability analysis 

Following Marcet and Sargent (1989) and Evans and Honkapohja (2001), we calculate the 

eigenvalues of the Jacobian of the mapping from the PLM (3.1) to the actual law of motion 

(ALM) (2.3). This mapping takes the form: 

𝑇

[
 
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑏
𝑐
𝑑1
′ ]
 
 
 
 
 

=
1

1 − 𝛽𝑎1

[
 
 
 
 
 
 
𝛼 + 𝜌 + 𝛽(𝑎2 + (𝑏 − 𝜌)𝑎1)

𝛽(𝑎3 + (𝑏 − 𝜌)𝑎2) − 𝛼𝜌

𝛽(𝑏 − 𝜌)𝑎3
𝛽(𝑏 − 𝜌)𝑏

(1 − 𝜌)𝛾 + 𝛽𝑐(1 + 𝑏 − 𝜌)

𝛽(𝑏 − 𝜌)𝑑1
′ ]

 
 
 
 
 
 

, 
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since: 

(1 − 𝛽𝑎1)𝑥𝑡+1

= (𝛼 + 𝜌 + 𝛽(𝑎2 + (𝑏 − 𝜌)𝑎1))𝑥𝑡 + (𝛽(𝑎3 + (𝑏 − 𝜌)𝑎2) − 𝛼𝜌)𝑥𝑡−1

+ 𝛽(𝑏 − 𝜌)𝑎3𝑥𝑡−2 + 𝛽(𝑏 − 𝜌)𝑏𝔼𝑡−1𝑥𝑡 + ((1 − 𝜌)𝛾 + 𝛽𝑐(1 + 𝑏 − 𝜌))

+ 𝛽(𝑏 − 𝜌)𝑑1𝜁𝑡 + 𝜎𝜀𝑡+1 + 𝛽𝑑1𝜁𝑡+1. 

The set of fixed points of 𝑇 comprises three discrete islands, two of which are single points 

with 𝑎3 = 𝑏 = 𝑑1 = 0 (i.e. the MSV solutions). These only exist when 𝛼𝛽 ≤
1

4
. The third 

island is of dimension 1 + dim 𝜁𝑡 , capturing the degrees of freedom under indeterminacy. 

If we define 𝒻 ≔ √max{0,1 − 4𝛼𝛽}, then the real-parts of the eigenvalues in the three 

cases are: 

 For the two MSV solutions, indexed by 𝜆 ∈ {
1±𝒻

2𝛽
} (and assuming 𝛼𝛽 ≤

1

4
): 

0,
𝛽(1 − 𝜌)

1 − 𝛽(𝜌 + 𝜆)
,

𝛽(𝛼 − 𝜌(1 − 𝛽𝜌))

(1 − 𝛽(𝜌 + 𝜆))
2 , −

𝛽𝜌

1 − 𝛽(𝜌 + 𝜆)
 

 For the sunspot solution (where 𝑏 is a free parameter): 

1, −
𝑏

𝜌 − 𝑏
, 1 −

1

𝜌 − 𝑏
, 1 −

|𝜌 − 𝑏| ± (𝜌 − 𝑏)𝒻

2𝛽|𝜌 − 𝑏|(𝜌 − 𝑏)
. 

By the results of Evans and Honkapohja (2001), least squares learning will not converge if 

any of the eigenvalues’ real parts are greater than one. These are similar to, but not 

identical to, the conditions Evans and Honkapohja (2001) derive for the MSV PLM in their 

proposition 8.3, under the assumption that the shock is observable. 

For convergence in the sunspot case, we at last need the following conditions to hold: 𝑏 ≤

𝜌, 0 ≤ 𝜌, 0 ≤ 𝛼, 0 < 𝛽. Providing these conditions hold, the 𝑇 map will not have any 

eigenvalues with real parts greater than one, and those eigenvalues for which the real part 

equals one will have zero complex parts (a further necessary condition for convergence, 

without this there may be stable cycles under learning). Note that these parameter 
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restrictions include the most economically relevant case from our motivating example of the 

Taylor rule, where we would expect 0 ≤ 𝜌 < 1, 𝛼 = 0 and 𝛽 > 0. However, they also 

includes many explosive regions (when 𝛼 is large), and regions exhibiting stable cycles in 

which 𝜌 is fully identified (i.e. 𝛼𝛽 >
1

4
, which requires large 𝛽). 

Define 𝜙 ≔ [𝑎1 𝑎2 𝑎3 𝑏 𝑐 𝑑1]
′ . The system is weakly e-stable at the solution 

[
1

𝛽
+ (𝜌 − �̃�) −

𝛼+𝜌

𝛽

𝛼𝜌

𝛽
�̃� −

𝛾(1−𝜌)

𝛽
�̃�]
′

 for fixed �̃� and �̃� if and only if the differential 

equation �̇� = 𝑇𝜙 − 𝜙 is locally stable at this solution, where the dot denotes a derivative 

with respect to “virtual-time” 𝜏. 

Defining: 

𝜓 ≔

[
 
 
 
 
 
1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

𝜙 −

[
 
 
 
 
 
 
 
 
 
 
1

𝛽
+ (𝜌 − �̃�)

−
𝛼 + 𝜌

𝛽
𝛼𝜌

𝛽

�̃�

−
𝛾(1 − 𝜌)

𝛽

�̃�′ ]
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 𝑎1 −

1

𝛽
− (𝜌 − 𝑏)

𝑎2 +
𝛼 + 𝜌

𝛽

𝑎3 −
𝛼𝜌

𝛽

𝑏 − �̃�

𝑐 +
𝛾(1 − 𝜌)

𝛽

𝑑1
′ − �̃�′ ]

 
 
 
 
 
 
 
 
 
 

, 

we then have that: 

�̇� = −
1

𝜓1 − 𝜓4 + (𝜌 − �̃�)

[
 
 
 
 
 
 
 
 
 
 
 𝜓2 + 𝜓1 (𝜓1 +

1

𝛽
+ 𝜌)

𝜓3 + 𝜓1 (𝜓2 −
𝛼 + 𝜌

𝛽
)

𝜓1 (𝜓3 +
𝛼𝜌

𝛽
)

𝜓1(𝜓4 + �̃�)

𝜓5 + 𝜓1 (𝜓5 −
𝛾(1 − 𝜌)

𝛽
)

𝜓1(𝜓6 + �̃�
′) ]

 
 
 
 
 
 
 
 
 
 
 

. 
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Combining the third and fourth equations then gives that: 

𝜓4(𝜏) + �̃�

𝜓3(𝜏) +
𝛼𝜌

𝛽

=
𝜓4(0) + �̃�

𝜓3(0) +
𝛼𝜌

𝛽

=
𝑏(0)

𝑎3(0)
. 

Using this equation, we can substitute 𝜓4 out of the above differential equation. We can 

also ignore the final equation since it is the only one containing 𝜓6, meaning that if the 

other components converge to something, so will 𝜓6. The resulting four-equation system 

has real eigenvalues components: 

𝛽

𝐶𝛼 − 𝛽
,

𝛽

𝜌(𝐶𝛼 − 𝛽)
,

1 ± √max{0,1 − 4𝛼𝛽}

2𝜌(𝐶𝛼 − 𝛽)
 

when evaluated at the (zero) steady-state, where 𝐶 ≔
𝑏(0)

𝑎3(0)
. Given the necessary conditions 

already derived (�̃� ≤ 𝜌, 0 ≤ 𝜌, 0 ≤ 𝛼 and 0 < 𝛽), for these real eigenvalues components to 

be strictly negative, we require that 𝛼𝐶 − 𝛽 ≤ 0. However, since we only require local 

convergence, we may assume that 𝑏 and 𝑎3 begin close enough to their steady state for us 

to have 𝐶 =
𝛽�̃�

𝛼𝜌
+ 𝛽𝜖 for some 𝜖, small in magnitude. Then 𝛼𝐶 − 𝛽 ≤ 0 if and only if �̃� ≤

𝜌(1 − 𝛼𝜖). We can always find an 𝜖 for which this holds (i.e. start sufficiently close to the 

solution) providing �̃� < 𝜌 or 𝛼 = 0 and �̃� ≤ 𝜌. 

We now turn to the second PLM, (3.2). Since the two PLMs only differ in a term that is 

unknown at 𝑡, period 𝑡 expectations of 𝑥𝑡+1 are identical under both PLMs, meaning that 

the 𝑇 -map is just as before, but with one extra component, taking 𝑑0
′  to 

𝛽

1−𝛽𝑎1
𝑑1
′ . 

Consequently, a solution is weakly (strongly) e-stable under the PLM (3.2) if and only if it is 

weakly (strongly) e-stable under the PLM (3.1).30 

                                                      

30  This follows from integrating the corresponding differential equation, to give 𝑑0(𝜏) =

𝑒−𝜏 ∫
𝛽

1−𝛽𝑎1(𝑡)
𝑑1(𝑡)𝑒

𝑡 𝑑𝑡
𝜏

0
+ 𝑑0(0)𝑒

−𝜏. Hence as 𝜏 → ∞, 𝑑0(𝜏) → lim
𝑡→∞

𝛽

1−𝛽𝑎1(𝑡)
𝑑1(𝑡). 
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Abstract: This paper presents a fast, simple and intuitive algorithm for simulation of dynamic 

stochastic general equilibrium models with inequality constraints. The algorithm handles 

both the computation of impulse responses, and stochastic simulation, and can deal with 

arbitrarily many bounded variables. Furthermore, the algorithm is able to capture the 

precautionary motive associated with the risk of hitting such a bound. To illustrate the 

usefulness and efficiency of this algorithm we provide a variety of applications including to 

models incorporating a zero lower bound (ZLB) on nominal interest rates. Our procedure is 

much faster than comparable methods and can readily handle large models. We therefore 
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1. Introduction 

New Keynesian (NK) Dynamic Stochastic General Equilibrium (DSGE) models are today's 

standard framework for analysing central bank policies.3 The nominal and real rigidities in 

these models mean central banks may improve welfare through monetary policy. 

Traditionally, DSGE models are log-linearised, which results in both computational and 

analytic tractability. However, the simplicity of this approach also neglects important non-

linearities, not-least inequality constraints, of which the zero lower bound (ZLB) on interest 

rates is the most prominent example. In this paper, we present an efficient algorithm for 

simulating DSGE models subject to arbitrarily many inequality constraints , at arbitrary 

accuracy, at least away from the bound. 

Macroeconomic analysis had ignored the zero lower bound almost completely before the 

experience of Japan in the 1990s, since the bulk of macroeconomists believed the constraint 

would bind only for a short time span (if at all). Under this presumption, the effects would 

be negligible, and so ignoring the bound seemed to be a reasonable simplification. However, 

the interest rates in Japan during the 1990s, as well as those in the US over the last few 

years, disabused researchers and policymakers of this popular fallacy. 

In the aftermath of the crisis, the transmission of monetary policy under the ZLB became an 

important matter for central banks and academia. To cope with the bound, researchers 

either solve such non-linear models using global approximation methods (which come at a 

dramatic increase in computational costs , and scale exceptionally poorly) or use 

deterministic setups. This paper provides a fast, simple and intuitive algorithm to deal with 

inequality constraints in perturbation approximations to DSGE models, which correctly 

captures the precautionary motives associated with such bounds . The code is designed to 

work with Dynare (Adjemian et al. 2011), so incorporating it into existing models is trivial. 

                                                 

3 See Clarida et al. (1999) for an early l iterature review on NK models. 
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The method is not only useful for deriving impulse response functions (IRFs), but can also be 

used for stochastic simulations, opening up the possibility of particle filter based estimation 

of models with inequality constraints. The method endogenously determines when the 

constraint will bind, and can handle constraints that may bind in multiple disjoint runs, or 

that may not begin to bind until long after the initial impulse. The general idea is to 

introduce “shadow price shocks”, which hit the bounded variables every time the constraint 

is violated, and “push” these variables back to zero. To ensure the solution is consistent with 

rational expectations, these shocks are expected by agents in advance, so they may be 

thought of as a kind of endogenous news shock. 

This algorithm is not solely useful for modelling a ZLB on interest rates, but can be used for 

any model including constrained variables. Holden (2010), for example, uses it to constrain 

invention rates to be positive in a model of endogenous growth. In addition, Funke and 

Paetz (2012) use this technique to evaluate threshold loan-to-value policies in Hong Kong, 

where policymakers decrease the loan-to-value ratio, when property price inflation exceeds 

a certain value. In Chen et al. (2012), the same method is used to model the People’s Bank 

of China’s interest rate corridor on retail lending and deposit rates. 

The rest of the paper is organized as follows. In section 2, the algorithm is described and 

related to the existing literature. Section 3 assesses the accuracy of the procedure in a 

variety of models for which high accuracy solutions are available, and section 4 goes on to 

provide some sample applications to larger models. The final section concludes. 

2. The numerical method 

2.1. The existing literature 

Due to the recent experience of the US and Europe, the literature on (stochastic) simulation 

of models with a ZLB has grown rapidly in the past few years. The most important 

contributions include Eggertsson and Woodford (2003), Erceg and Lindé (2010), Braun and 
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Körber (2011), Christiano et al. (2011) and Fernández-Villaverde et al. (2012). In what 

follows, we highlight the similarities and differences between the approaches employed in 

these papers and the method presented in this paper.4 

The first generation of papers used variants of the method proposed by Eggertsson and 

Woodford (2003), in an appendix. This relied on a piecewise linear approximation to the 

model, with the model being driven by a two-state Markov chain with an absorbing state. 

Once the ZLB is hit, there is a positive probability in each period that the discount factor 

jumps to its long run value, at which point the ZLB will never be hit again. Obviously, this is a 

highly restrictive assumption. A version of this algorithm without the restriction has been 

proposed by Jung et al. (2005), and implemented in full generality in Dynare by Guerrieri  

and Iacoviello (2012). Nonetheless, the algorithm still relies on a linear approximation, 

which the results of Braun et al. (2012) suggest may lead to unreliable conclusions in the 

presence of the ZLB. 

The next generation of papers used nonlinear perfect foresight solvers. These include 

Coenen et al. (2004), Braun and Körber (2011) and the “extended path” method of 

Adjemian and Juillard (2011). These solve the model’s nonlinear equations, under the 

assumption that eventually (e.g. after 100 periods) the model is guaranteed to have 

returned to steady state. Such methods fully capture the nonlinearities of the model, but 

because they solve under perfect foresight, they omit any “precautionary motives” including 

those that arise from the risk of hitting the ZLB. Furthermore, since the model has to have 

returned to steady state up to machine precision by the final period considered, they 

require a very large number of nonlinear equations to be solved. This means they tend to 

both be prohibitively slow, and unstable, with the algorithm frequently failing to find a 

solution to the equations. 

                                                 

4 See the introduction in Braun et al. (2012) for a survey on models including a zero lower bound. An early 

analysis of the zero lower bound in a deterministic model can also be found in Fuhrer and Madigan (1997). 
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A third strand of the literature considers global approximations to models containing 

inequality constraints, with Fernández-Villaverde et al. (2012) doing this for a small scale NK 

model, using the Smolyak collocation method of Krueger et al. (2011). Global methods 

successfully capture both the model’s nonlinearities and precautionary motives; however, 

they are subject to a curse of dimensionality that renders them infeasible in the medium 

scale NK models we usually consider. While global methods  that avoid the curse of 

dimensionality have been developed by Maliar et al. (2011), these rely on an endogenous 

grid constructed from the model’s ergodic set, which is likely to lead to low accuracy at the 

ZLB if this bound is only hit occasionally. 

Our method represents a compromise between the accuracy of global methods, and the 

speed and scalability of linear ones, much like standard high order perturbation 

approximations. The paper that is probably most closely related to our work is  Erceg and 

Lindé (2010), which we were not aware of until after the completion of the first version of 

our algorithm in Holden (2010). The authors rely on techniques, explained in an unpublished 

mimeo of James Hebden, Jesper Lindé and Lars Svensson, which, like our algorithm, are 

based on the idea of adding shocks to the bounded variable. Since we have not seen this 

mimeo, we are unable to relate our work to this algorithm, but we are confident that our 

method is novel in several respects. Firstly, it is designed to take advantage of existing 

algorithms both for simulating DSGE models (e.g. those of Dynare), and algorithms for 

quadratic programming, leading to its high speed. Secondly, it is generalized to permit any 

number of constrained variables. Thirdly, it is extended for use in stochastic simulations, 

permitting us to derive average IRFs, and opening up the possibility of estimating bounded 

models. Finally, it is generalized to perturbation approximations of arbitrary order, which is 

what enables the algorithm to capture precautionary incentives, thus improving on the 

accuracy of nonlinear perfect foresight algorithms. 
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2.2. Our basic IRF algorithm with a single bound 

Suppose we have a rational expectations model in the variables 𝑥1,𝑡 ,… , 𝑥𝑛,𝑡 , and we are 

interested in the response to the shock, 𝜖𝑡. Initially, we will suppose further that all of the 

model’s equations are linear, except one that takes the form: 

 𝑥1,𝑡 = max{0, 𝜇1 + 𝜙−1
′ 𝑥𝑡−1 + 𝜙0

′ 𝑥𝑡 + 𝜙1
′ 𝔼𝑡 𝑥𝑡+1 − (𝜙−1

′ + 𝜙0
′ + 𝜙1

′ )𝜇}, (2.1) 
   

where 𝑥𝑡 is the vector [𝑥1,𝑡 ,  𝑥2,𝑡 ,  … ,  𝑥𝑛,𝑡]
′
, 𝜇 = [𝜇1,  𝜇2,  … ,  𝜇𝑛]

′
 is a vector stacking the 

variables’ steady state values and 𝜇1 > 0. We can transform any linear model with a bound 

into this form through the addition of appropriate auxiliary variables.5 

Now, a shock that drives 𝑥1,𝑡  to 0 for some number of periods is like a combination of the 

original shock, and a news shock stating 𝑥1,𝑡  will be higher than expected for some duration. 

We call these news shocks “shadow price shocks” as in a model with bounded assets, they 

represent the Lagrange multiplier on the constraint. The key to the simplicity of our 

algorithm is the fact that in linear models, the IRF to a linear combination of shocks is equal 

to the same linear combination of each shock’s IRF.6 

Let us start by defining 𝑣𝑗 to be the column vector containing the relative impulse response 

of variable 𝑥𝑗 to the shock, ignoring the ZLB. Let 𝑇 ∗ be the number of periods after which 

the constraint is no longer expected to bind. Note that this will in general be much smaller 

than the time it takes to return to steady state. We assume that the IRF vectors are of 

length 𝑇, where 𝑇 ≥ 𝑇∗.  

                                                 

5 So, if the bounded equation stated that 𝑥𝑡 = max{𝑥𝑡 ,𝑦𝑡
} (where ~ denotes unconstrained variables), with 

𝑥𝑡 > 𝑦𝑡  in steady state, we would add an auxiliary variable defined as 𝑥𝑡 − 𝑦𝑡 , noting that 𝑥𝑡 = 𝑦𝑡 +

max{0, 𝑥𝑡 − 𝑦𝑡
}. The models of Funke and Paetz (2012) and Chen et al. (2012) include variables that are 

bounded at a positive value, for example. When 𝑥𝑡 = 𝑦𝑡  in steady state, we instead add the variable 𝑦𝑡 − 𝑥𝑡, 

and note that 𝑥𝑡 = 𝑥𝑡 + max{0,𝑦𝑡 − 𝑥𝑡
}. If the model is in levels, rather than in logs, it may be preferable to 

define auxiliary variables as ratios rather than differences. In this case, rather than adding shadow shocks, we 

must multiply by their exponentials. 
6 The algorithm presented here was first explained in the appendix of Holden (2010). The various extensions 

we describe were not covered in that paper, however. 
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The first step of our algorithm is to replace equation (2.1) of the model with: 

 𝑥1,𝑡 = 𝜇1 + 𝜙−1
′ 𝑥𝑡−1 + 𝜙0

′ 𝑥𝑡 + 𝜙1
′ 𝔼𝑡 𝑥𝑡+1 − (𝜙−1

′ + 𝜙0
′ + 𝜙1

′ )𝜇 + ∑ 𝜖𝑠,𝑡−𝑠
SP

𝑇∗−1

𝑠=0

, (2.2) 

   
where 𝜖𝑠,𝑡

SP  is a newly introduced shadow price shock at horizon 𝑠, for 𝑠 = 0, … , 𝑇∗ − 1. 

Since 𝜖𝑠,𝑡
SP  is known at 𝑡, but does not “hit” until 𝑡 + 𝑠, it will function as a news shock, as 

required. In an impulse response exercise, all news arrives in period 0, so we want to find 

values for these shadow shocks such that 𝜖𝑠,𝑡
SP = 0 except perhaps when 𝑡 = 0. 

In order to exploit the linearity of IRFs in linear models, we also store the impulse responses 

to these new shadow price shocks. In particular, we let 𝑚𝑗,𝑠 be a column vector containing 

the relative impulse response of variable 𝑥𝑗,𝑡  to the shock 𝜖𝑠,𝑡
SP . We then horizontally stack 

these vectors into the matrix 𝑀𝑗 = [𝑚𝑗,0 , 𝑚𝑗,1, … , 𝑚𝑗,𝑇∗−1]. With this matrix, we can now 

calculate the impulse responses to a simultaneous shock to 𝜖𝑡  of magnitude 1 and to 𝜖𝑠,𝑡
SP  of 

magnitude 𝛼𝑠 (for each 𝑠 = 0, … , 𝑇∗ − 1), for an arbitrary 𝛼 = [𝛼0,𝛼1,… , 𝛼𝑇∗−1]′, without 

any further simulation of the model. In particular, the IRF to this combination of shocks for 

variable 𝑥𝑗 will be equal to 𝜇𝑗 + 𝑣𝑗 + 𝑀𝑗𝛼 . 

Our task then is just to find a value for 𝛼 that is consistent with the model and with rational 

expectations. For the constraint to be satisfied, it certainly has to be the case that 𝜇1 + 𝑣1 +

𝑀1𝛼 ≥ 0𝑇  (where 0𝑇 is a length 𝑇 vector of 0s). Additionally, we require that 𝛼 ≥ 0𝑇∗, as 

shadow shocks must increase the (lower) bounded variable.7 Finally, a complementary 

slackness type condition must hold: the shadow shock at horizon 𝑠 can only be non-zero if 

the bound binds at that horizon. 

                                                 

7 We assume throughout that the diagonal of the 𝑀1 matrix is strictly positive, so a shadow shock at horizon 𝑠 

increases the bounded variable at horizon 𝑠. When this does not hold, (as it may not, for example, at long 

horizons in sufficiently rich NK models), the sign with which the shadow shock enter equation (2.2) must be 

fl ipped. 



Chapter 3 

Page 154 of 174 

We can express this as: 

 𝛼′[𝜇∗ + 𝑣∗ + 𝑀∗ 𝛼] = 0𝑇∗ , (2.3) 

   
where 𝜇∗ ≔ 𝜇11𝑇∗, 𝑣∗ is the first 𝑇 ∗ elements of 𝑣1 and 𝑀∗ is the upper 𝑇∗ × 𝑇 ∗ sub-matrix 

of 𝑀1. To solve for an 𝛼 that satisfies these constraints, we run the following quadratic 

programming problem: 

 𝛼∗ ≔ arg min
𝛼≥0𝑇∗

𝜇∗+𝑣∗+𝑀 ∗𝛼≥0𝑇∗

[𝛼′(𝜇∗ + 𝑣∗) +
1

2
𝛼′(𝑀∗ + 𝑀∗′)𝛼], (2.4) 

   
where the solution is considered admissible if the minimand is 0 at the optimum (i.e. 

equation (2.3) is satisfied).8 Since there are well-established, fast, robust algorithms for 

quadratic programming, this is then a straightforward problem.9 

The standard properties of quadratic programming problems imply that a sufficient 

condition for the existence of a unique solution to (2.4) is that 𝑀∗ + 𝑀∗ ′ is positive definite. 

In our experience, this is satisfied in only the simplest models. When 𝑀∗ + 𝑀∗ ′ is not 

positive definite, we cannot rule out the existence of multiple solutions. In these cases , 

which solution is returned will depend on the precise properties of the quadratic 

programming algorithm used. However, for most models the construction of our problem 

will lead the algorithm to select the solution in which the components of 𝛼 are as small as 

possible, which will also tend to minimise the amount of time the constraint binds.  If 

desired, explicit guarantees on the solution selected may be enforced via homotopy 

methods,10 though this will increase the time cost of our algorithm.  

                                                 

8 The constraint 𝜇∗ + 𝑣∗ + 𝑀∗𝛼 ≥ 0𝑇 ∗ may also be replaced with 𝜇1 + 𝑣1 + 𝑀1𝛼 ≥ 0𝑇  to check there are no 

bound violations after 𝑇 ∗. 
9 In MATLAB, these are provided by the “quadprog” command. 
10 To guarantee selecting the equilibrium in which ‖𝛼‖

2 is minimal, we replace 𝑀∗ + 𝑀∗′
 by 𝑀∗ + 𝑀∗ ′

+ 𝜆𝐼, 

where 𝜆 → 0 is the homotopy parameter. To guarantee selecting the equilibrium in which ‖𝛼‖
1 is minimal, we 

replace 𝜇∗ + 𝑣∗ by 𝜇∗ + 𝑣∗ + 𝜆1𝑇 ∗ , where 𝜆 → 0 is the homotopy parameter. 
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It is also possible that there will be no admissible solution to (2.4), at least for sufficiently 

large shocks. This will happen if there are “complementarities” between constraints: e.g. 

hitting one constraint increases the chance of hitting another constraint and vice versa. 

Obviously, this is much more likely when there are multiple bounds , rather than merely 

multiple horizons. A necessary condition for the existence of an admissible solution to (2.4) 

for arbitrarily large shocks is that there exists some 𝛼 ≥ 0𝑇∗ such that 𝑀∗ 𝛼 ≥ 1𝑇∗ . In simple 

models the anticipation effects of hitting the bound in future are weak, so this condition will 

be satisfied, but in medium scale models, we will generally not be able to provide such a 

guarantee. 

2.3. Dealing with multiple bounds 

The algorithm previously described may be readily generalised to cases with multiple 

bounds. Suppose that in the set-up above, rather than just 𝑥1,𝑡  being bounded, each of the 

variables 𝑥1,𝑡 , 𝑥2,𝑡 , … , 𝑥𝑛∗,𝑡  is bounded, with a corresponding equation taking the form of 

(2.1). Much as before, we add shadow shocks to each of these equations (giving a total of 

𝑛∗ 𝑇 ∗ extra shocks), and we horizontally concatenate the impulse responses of variable 𝑥𝑗,𝑡  

to each of the shadow shocks in the equation for 𝑥𝑙,𝑡  into the matrix 𝑀𝑗,𝑙. We then define 

𝑀𝑗,𝑙
∗  to be the upper 𝑇∗ × 𝑇∗ sub-matrix of 𝑀𝑗,𝑙, and 𝑀∗ to be the 𝑛∗𝑇∗ × 𝑛∗ 𝑇∗ block-matrix 

with (𝑗, 𝑙)th block 𝑀𝑗,𝑙
∗  for 𝑗, 𝑙 ∈ {1, … , 𝑛∗ }. Likewise, we define 𝜇𝑙

∗ ≔ 𝜇𝑙1𝑇∗ , 𝑣𝑙
∗ to be the first 

𝑇∗ elements of 𝑣𝑙, and 𝜇∗ and 𝑣∗ to be the length 𝑛∗𝑇∗ block vectors with 𝑙th block 𝜇𝑙
∗ and 

𝑣𝑙
∗, respectively. With these (re-)definitions, an admissible solution to (2.4) again gives us 

the required combination of shadow shocks to enforce all bounds, and the uniqueness and 

existence conditions are identical as well. 
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2.4. Stochastic simulation 

The algorithm of the previous sections may be readily extended to the stochastic simulation 

of bounded, linear models.11 As before we begin by adding shadow price shocks to the 

equations defining bounded variables. Now suppose we have simulated up to period 𝑡 − 1. 

In a linear model, agents’ expectations at 𝑡 of the state of the economy at 𝑡 + 1, 𝑡 + 2, … are 

the same as they would be were the variance of all shocks equal to 0 from 𝑡 + 1  onwards. 

This will not be exactly true in a model with bounds, since the bounds will tend to increase 

the means of lower bounded variables. However, since (log-)linearisation has already 

removed any effects of uncertainty on the mean, if we solve assuming there are no shocks 

after period 𝑡, our approximation error is likely to be of the same order as that of a 

linearised model without constraints,12  at least providing the precautionary incentives 

stemming from the risk of hitting the bound are fairly weak. 

Thus, much as in the IRF case, we first simulate the model to find the path by which it would 

return to the steady-state, in the absence of bounds, and with no shocks arriving after 

period 𝑡. If the constraints are not violated along this path, then our simulated value for 

period 𝑡 is fine, and we may move on to period 𝑡 + 1. Otherwise, shadow shocks must be 

added. The algorithm for doing this is identical to that described above for IRFs, except that 

the simulated return paths of the economy’s variables take the role of 𝜇∗ + 𝑣∗ above. (We 

again use the 𝑀𝑗,𝑙
∗  matrices formed from the impulse responses to shadow shocks.) The 

found solution to the quadratic programming problem gives a valid, new value for variables 

at 𝑡, enabling us to go on to the next period. Note that it is now no longer the case that the 

“news” contained in shadow shocks is guaranteed to come true, since other shocks may 

arrive in the meantime pushing us away from the bounds. Consequently, 𝛼0 no longer 

represents the found value of today’s shadow price shock. Rather, it is equal to the 

                                                 

11 The algorithm described here was first publicly described by Tom Holden at http://bit.ly/I0nAHf. 
12 An identical approximation is made in the non-linear case by Adjemian and Juil lard (2011). 

http://bit.ly/I0nAHf
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cumulated history of shadow price shocks that hit in period 0  (i.e. 𝜖0,0
SP + 𝜖1,−1

SP + ⋯ +

𝜖𝑇∗−1,−𝑇∗+1
SP ). 

2.5. Average IRFs 

Using our simulation algorithm we can go on to produce average IRFs, i.e. IRFs that give a 

measure of the average response of the model to a one standard deviation shock, rather 

than a measure of the response in steady-state. (The two measures agree in the absence of 

bounds.) To do this, we run a stochastic simulation of the model, and then rerun the same 

simulation with the same shocks in all periods except one, in which we add 1 to the shock of 

interest. The difference between these two simulations gives one sample IRF, and the 

average of many such sample IRFs gives us our average IRF.13 

2.6. Estimating Bounded Models 

Our method for simulating models incorporating a zero lower bound naturally leads to an 

algorithm for particle filter based estimation of them. Indeed, since the observation 

equations are still linear in the state, and the transition equations are near linear, this is 

likely to be far more efficient than particle filter estimation of second order approximations 

to standard DSGE models (as in Fernández-Villaverde and Rubio-Ramírez (2010)). Indeed, 

since our solution method readily delivers last period’s expectation of today’s shadow price 

shock, we can write down a close approximation to the model for which the transition 

equations are linear in today’s shock. For this approximated model, the optimal particle 

filter “proposal distribution” may be derived analytically, giving us a near optimal proposal 

distribution for the actual model, and enabling us to get high accuracy out of a small 

number of particles. We intend to assess the practical performance of this method in future 

work. 

                                                 

13  This is the algorithm used by Dynare for constructing IRFs in non-linear models. See 

http://www.dynare.org/DynareWiki/IrFs . 

http://www.dynare.org/DynareWiki/IrFs
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2.7. Generalisation to approximations of arbitrary order 

The recent work of Braun et al. (2012) brought to light some serious problems with log-

linearised solutions to models with a ZLB. They illustrate that the log-linearised equilibrium 

conditions can be misleading with respect to the existence and uniqueness of equilibrium, 

and may lead to “wrong” dynamics under the ZLB. For example, they show that in a simple 

NK model with Rotemberg (1996) quadratic price adjustment cost, the “paradox of toil”14 

disappears in the fully nonlinear model, at least when solved under perfect foresight. The 

authors pinpoint the resource cost of price adjustment, which is zero in a linearised model, 

as being the key to this discrepancy. The paper shows that these costs work as automatic 

stabilizers that reduce the variation in marginal costs and inflation, and decrease the 

government spending multiplier at the ZLB. 

In fact, even fully nonlinear perfect foresight solutions may be misleading at the ZLB.  For 

example, Adjemian and Juillard (2011) evaluate the accuracy of the (fully non-linear perfect 

foresight) extended path approach in a small-scale DSGE model and show that the accuracy 

drops significantly when the ZLB is hit regularly. Furthermore, using global methods, 

Fernández-Villaverde et al. (2012) find that when the interest rate stays at the ZLB for a 

prolonged time period, the government spending multiplier does indeed become large, 

contrary to the claims of Braun et al. (2012), again suggesting that the assumption of perfect 

foresight may itself be a source of substantial inaccuracy in the presence of a ZLB. Our 

algorithm provides an answer to these worries, as it may be readily generalised to “pruned”  

perturbation approximations (Kim et al. 2008) of arbitrary order, and these approximations 

may be so constructed as to capture the precautionary motive arising from the risk of hitting 

the ZLB in future. 

                                                 

14 A fall  in employment after a labour tax cut at the ZLB. See Eggertsson and Woodford (2003). 
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The key to ensuring our algorithm works at higher orders, is that in a 𝑑th order pruned 

perturbation approximation, shocks of the form 𝜖𝑡
𝑑  only enter linearly,15 hence, if we use 

shocks of the form (𝜖𝑠,𝑡
SP)

𝑑
 as shadow shocks, then our algorithm will work much as before, 

with the expected path implied by the pruned perturbation approximation taking the place 

of the expected path under perfect foresight. Using shocks of the highest available order as 

shadow shocks is also consistent with perturbation approximation theory, since with 

Gaussian shocks the probability of hitting the ZLB is 𝜊(𝜎 𝑑) for any 𝑑 ∈ ℕ, where 𝜎 is the 

perturbation parameter controlling the variance of shocks. 

To capture the precautionary motive arising from the risk of hitting the ZLB in future we 

require 𝑑 to be even, since in that case (𝜖𝑠 ,𝑡
SP )

𝑑
 is positive in expectation.16 This enables us to 

capture the effects of the ZLB on each series’ mean, removing the deficiency in our 

stochastic simulation algorithm previously noted. To do this requires us to first solve a fixed-

point problem to ensure that the variance of 𝜖𝑠,𝑡
SP  used in constructing the perturbation 

approximation actually agrees with the variance that is implied by the simulated mean 

values of 𝛼 . In practice, the fixed-point problem is solved by standard numerical 

optimisation algorithms, at low accuracies since each residual evaluation requires the 

computation of simulated moments. We also found it helpful to treat the non-stochastic 

steady-state inflation target as an additional parameter to be optimised, to hold the mean 

level of inflation constant. 

It is also possible to approximate around the risky steady state, following Juillard (2011), 

within our algorithm. This enables the model’s responses to reflect better the differences in 

all equations’ slope close to the ZLB. 

                                                 

15 See equation (36) of (Kim et al. 2008). 

16 Our algorithm will  not always generate positive values for (𝜖𝑠,𝑡
SP )

𝑑
 as news may not be realised. However, 

since 𝜖𝑠,𝑡
SP  only enters into the transition equations when raised to the power of 𝑑, this will  not result in 

complex numbers entering into the simulated paths. 
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At sufficiently high (even) orders of perturbation approximation, our algorithm (using either 

the non-stochastic steady state or the risky steady state) must beat any perfect foresight 

method in terms of accuracy, since it captures the effects of uncertainty on the variables’ 

means. Indeed, we show in the next section that even at order 2 our algorithm beats the 

extended path in standard models. Our algorithm is likely to be particularly useful for the 

analysis of “paradox of toil”-type effects, since it enables the analysis of the effects of the 

ZLB even in second order approximations to large models. 

3. Accuracy 

3.1. A borrowing constraints model 

We begin with a very simple model taken from Guerrieri and Iacoviello (2012). 

An individual’s income follows the process log 𝑌𝑡 = 𝜌 log 𝑌𝑡−1 + 𝜎√1 − 𝜌2𝜀𝑡 , where 

𝜀𝑡~NIID(0,1), 𝜎 = 0.03 and 𝜌 = 0.9. This income may be used for consumption 𝐶𝑡  or 

saving, and it also acts as collateral. There is a collateral constrain on total borrowing, 𝐵𝑡, 

that states that 𝐵𝑡 ≤ 𝑀𝑌𝑡, with 𝑀 = 2. Consumers maximise the utility function: 

𝑈 = 𝔼𝑡 ∑ 𝛽𝑠 log 𝐶𝑡+𝑠

∞

𝑠=0

, 

with 𝛽 = 0.94, subject to the collateral constraint and subject to the budget constraint 𝐶𝑡 =

𝑌𝑡 + 𝐵𝑡 − 𝑅𝐵𝑡−1, with 𝑅 = 1.05. In normal times, the collateral constraint binds, so in place 

of the standard Euler equation we use the equations: 

𝐴𝑡 = max {0,
1

(1 + 𝑀)𝑌𝑡 − 𝑅𝐵𝑡−1

− 𝔼𝑡

𝛽𝑅

𝐶𝑡+1

} 

1

𝐶𝑡

= 𝔼𝑡

𝛽𝑅

𝐶𝑡+1

+ 𝐴𝑡  

where 𝐴𝑡  is an auxiliary variable. 
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Pr (

𝐵𝑡

𝑌𝑡

> 1.98) 
𝔼 log 𝐶𝑡  √Varlog 𝐶𝑡  Corr(log 𝐶𝑡 , log 𝑌𝑡) 

Linear17 100% −0.1054 0.0480 0.75 

Log-linear18 100% −0.1043 0.0475 0.77 

Piecewise linear17 88% −0.1051 0.0426 0.82 

Extended path 89% −𝟎. 𝟏𝟎𝟒𝟓 0.0431 0.84 

Our algorithm order 118 88% −0.1040 0.0427 0.85 

Our algorithm order 218 𝟖𝟓% −0.1046 𝟎.𝟎𝟒𝟐𝟎 𝟎. 𝟖𝟔 

Value function17 79% −0.1045 0.0403 0.86 

Table 1: An accuracy comparison in the simple borrowing constraints model of Guerrieri 
and Iacoviello (2012). 

 

In Table 1 above we present a comparison of the results of our algorithms with the 

piecewise linear algorithm of Guerrieri and Iacoviello (2012) and the extended path method 

of Adjemian and Juillard (2011). All values except those taken from Guerrieri and Iacoviello 

(2012) were generated from a run of 10000 periods. The shaded cells with bold text show 

the results coming closest to the value function iteration results, and the shaded cells 

without bold text show the next closest values. Our second order algorithm comes closest to 

the value function iteration results along three out of the four metrics considered, and is a 

runner up in that fourth case. Indeed, for this model, even our first order algorithm beats 

the extended path algorithm in three cases out of four. However, it is only really the second 

order version that can come close to matching the percentage of time in which the 

constraint binds, by virtue of taking into account the incentive to save to avoid it. 

3.2. An NK model 

We now turn to the NK model of Fernández-Villaverde et al. (2012). This is a standard 

nonlinear NK model with sticky prices, labour choice, flexible wages, Taylor rule monetary 

policy and a stochastic share of government spending in output. The equilibrium conditions 

for this model are given in the first appendix, section 7.1, and we calibrate to the same 

standard values as Fernández-Villaverde et al. (2012). 

                                                 

17 Taken from Guerrieri  and Iacoviello (2012). 
18 With 𝑌𝑡 and 𝐶𝑡 simulated in logs. 
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To assess our accuracy, we treat the solution of Fernández-Villaverde et al. (2012) as the 

“truth”, and measure the deviations between their simulated paths 19  and the paths 

generated by our algorithms (with all variables in logs) and the extended path method of 

Adjemian and Juillard (2011). All paths were length 30000 periods. We report the norms of 

these errors for consumption, nominal interest rates and inflation in Tables 2, 3 and 4 

respectively. (Cells are formatted as before.) 

 1 norm 2 norm ∞ norm 

Log-linear 364.0 1.011 0.03816 

Extended path 311.0 0.7575 0.01792 

Our algorithm order 1 336.7 0.8120 0.03593 

Our algorithm order 2 𝟐𝟕𝟔.𝟏 𝟎. 𝟔𝟗𝟐𝟒 𝟎. 𝟎𝟏𝟕𝟖𝟎 

Table 2: Norms of the approximation errors in log consumption in the NK model of 
Fernández-Villaverde et al. (2012). 

 1 norm 2 norm ∞ norm 

Capped log-linear20 314.4 0.8344 0.01096 

Extended path 𝟑𝟏𝟏.𝟔 0.8240 0.01064 

Our algorithm order 1 314.4 0.8344 0.01096 

Our algorithm order 2 313.8 𝟎. 𝟖𝟏𝟒𝟒 𝟎. 𝟎𝟏𝟎𝟓𝟎 

Table 3: Norms of the approximation errors in log gross nominal interest rates in the NK 

model of Fernández-Villaverde et al. (2012). 

 1 norm 2 norm ∞ norm 

Log-linear 217.7 0.6021 0.01576 

Extended path 𝟐𝟎𝟔.𝟓 𝟎. 𝟓𝟓𝟓𝟓 0.01387 

Our algorithm order 1 212.8 0.5695 0.01381 

Our algorithm order 2 208.2 0.5621 𝟎.𝟎𝟎𝟗𝟐𝟎𝟑 

Table 4: Norms of the approximation errors in log inflation in the NK model of Fernández-
Villaverde et al. (2012). 

 

At second order, our algorithm beats the extended path algorithm for consumption 

whichever norm is used. This is unsurprising since consumption is sensitive to risk. For the 

nominal interest rate, it beats the extended path method with respect to the 2 norm or the 

∞ norm, but not with respect to the 1 norm. This implies the extended path algorithm is 

                                                 

19 We would like to thank Grey Gordon for providing us with this data. 
20 We replace the interest rate generated by the log-linear simulation with the maximum of 0 and the 

generated value. 
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capable of closely following interest rates a lot of the time, but occasionally it is a long way 

off, perhaps because of its difficulties in tracking consumption. Finally, for the inflation rate, 

the extended path method is more accurate with respect to all norms except the ∞ norm. It 

is also only with respect to the ∞ norm of the inflation error that our first order algorithm is 

capable of beating the extended path one. 

The evidence then is a little mixed here, with six instances in which our second order 

algorithm wins, and three instances in which the extended path one does. However, 

whereas the extended path algorithm took 7 hours and 25 minutes, ours completed in only 

2 hours and 34 minutes on an identical system, with the vast majority of that time in the 

“fixed cost” stage of finding the correct variance for the shadow shocks. In summary, then, 

we find that our second order algorithm is both marginally more accurate, and significantly 

faster, and so it seems right to conclude that our second order algorithm is the natural 

choice for NK models. 

4. Sample applications 

In order to illustrate the usefulness of the algorithm provided in section 2, we apply it to two 

popular linear DSGE models. The first is the stylised two-country setting of Clarida et al. 

(2002), which we choose in order to show that our method can easily handle multiple 

constraints. The second is the estimated Smets and Wouters (2003) model of the Euro area, 

which acts as an illustration of the speed of our algorithm, even for large models. In future 

versions of this paper we will also analyse second order approximations to these models. 

4.1. The ZLB in the two-country model of Clarida et al. (2002) 

The framework used in the following is a completely symmetric version of the Clarida et al. 

(2002) model with sticky prices in both countries, and perfect risk-sharing. We add domestic 

and foreign preference shocks as exogenous drivers, and introduce a fraction of backward-

looking price-setters as in Galí and Gertler (1999). The model is described in full in the 
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appendix, section 7.2, along with its calibration. This calibration is standard with the 

exception of the elasticity of intertemporal substitution which takes a high value (i.e. a low 

value for risk aversion) in order to generate strong co-movement across countries. As a 

result, we do not claim that the simulations provide a realistic story of the transmission of 

shocks during the recent (nor any other) financial crises; we provide these simulations 

purely for illustrative reasons. 

In Figure 1, we show the IRFs of the benchmark model, ignoring the ZLB (solid line), and the 

model imposing the ZLB via our algorithm (dashed line), to a negative domestic preference 

shock of magnitude 0.65. We choose such a strong shock to ensure that both countries’ 

ZLBs are hit. 

 

 

 

Figure 1: Perfect foresight IRFs to a domestic demand shock in the two-country model of 

Clarida et al. (2002). (Dashed line imposes the ZLB, solid line does not.)21 

 
The fall in domestic demand induces output in both countries to fall. This leads to falling 

inflation in both countries and hence the central banks decrease the interest rates to boost 

demand. However, in the presence of the ZLB, the central banks are unable to decrease the 

interest rate strongly enough to generate a negative real interest rate, and consequently the 

recession is even more severe. This is further amplified by even larger downturns of both 

inflation rates. Since the foreign nominal interest rate hits the ZLB, a strong foreign 

recession is generated, despite the model’s otherwise feeble transmission mechanism. 

3.1 The ZLB in the Two-Countr y Clar ida et al. (2002 ) Model 12

leads to falling in–ation in both countr ies and hence the central banks decrease the

interest rates to boost demand. In the case of a ZLB, the central banks are unab le

to decrease the interest rate strong enough to gener ate a negativ e real interest

rate, and as a consequence the recession becomes much stronger . Obviously, this

also implies stronger downtur ns of both in–ation rates. Interestingly , the contag ion

from the domestic recession on the foreign countr y in this case becomes so strong,

that even the foreign nominal intere st rate hits the ZLB , and the otherwise mild

transmission turns into a strong recession. Producing Figure 1 took roughly a

half second, using a desktop PC with an Intel Core i7 930 CPU with 2.8 GHz,

illustr ating the efficiency of our algor ithm.
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interest rates are measured in percent.

For the average IRFs descr ibed in 2 we set the standard deviations of domestic

and foreign preference shocks to 0 25, run 400 simulations of the model, and added

0 25 to the domest ic preference shoc k in per iod 101. In Figure 2.3 the results for

= 0 25 and = 0 5 are illustr ated. 18 Obviously , in the case of a ZLB the

average responses to 400 simulations differ substant ially from the responses of

a model ignor ing the bound, which are given by the dashed lines . Since inter est

rates have a lower limit, negativ e shocks have a stronger impact than positiv e ones.

This also implies that the average interest rate response must be higher , when zero

represents the minim um. Consequently , the average responses of in–ation rates

and output gaps are much more severe, since each time the domestic preference

shoc k in per iod 101 coincides accidentally with any other negativ e disturban ce,

the ZLB binds longer . Compar ing the IRFs in Figure 2 nicely illustrates the impact

of the shock size in case of a non-linear constr aint.

18Producing both scenar ios takes 8m42s .
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Producing Figure 1 took roughly a half second on a standard desktop PC, illustrating just 

how low is the computation cost of imposing the ZLB. 

In Figure 2, we go on to simulate this model (with the standard deviation of both shocks set 

equal to 0.2), for 220 quarters, dropping the first 100, a process that took less than two 

seconds. The shaded areas of the figure show periods when both bounds are hit 

simultaneously, illustrating that recessions become substantially more severe in these 

situations.  

 
 

 

 
Figure 2: Simulations from the two-country model of Clarida et al. (2002). 

(Dashed line imposes the ZLB, solid line does not.)21 

 

Finally, in Table 5 we show the simulated moments of both the benchmark model (ignoring 

the ZLBs) and the constrained one, evaluated from a sample of 50,000 periods. Using our 

algorithm this took only 7 minutes and 24 seconds, whereas the extended path algorithm 

took 37 minutes and 19 seconds to produce identical results, running on the same 

machine.22 

                                                 

21 Output gaps and inflation are measured in percentage deviations from equilibrium, and interest rates are 

measured in percent. 
22 The relative speed of our algorithm becomes even more apparent if we decrease the standard deviations of 

both shocks to 0.1, as then our algorithm needs only 4m36s, while the extended path method still  takes 

31m52s. 
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 Home country Foreign country 

 Output Inflation Nom. int. Output Inflation Nom. int. 

Benchmark mean −0.07 −0.01 0.97 0.01 0.00 1.01 

Constrained mean −3.75 −1.17 1.12 −3.55 −1.10 1.14 

Benchmark std. dev. 6.90 1.58 1.33 6.88 1.57 1.31 

Constrained std. dev. 14.80 4.13 1.06 14.54 4.03 1.06 

Table 5: Moments from the two-country model of Clarida et al. (2002). 

 

Table 5 makes clear the magnitude of the increase in the volatility of both output gaps and 

inflation when we impose the ZLB on interest rates, as well as the large recessionary 

impact.23 We stress again that we do not claim these values to be realistic. Rather, we 

presented the previous graphs and Table 5 to make clear the importance of the ZLB, and 

underline the tiny cost of imposing it using the method proposed in this paper.  

Having shown the workings of the algorithm in a very stylized example, we now turn to a 

more realistic application, using the seminal Smets and Wouters (2003) model of the Euro 

Area. 

4.2. The ZLB in the Smets and Wouters (2003) model 

Modern macroeconomic models are getting progressively larger, so it is important that our 

algorithm can handle big models, of which the Smets and Wouters (2003) model is the 

canonical example. It also enables us to get a more realistic impression of the importance of 

the ZLB for the analysis of DSGE models. 

We briefly recap the features of the model, but refer the reader to the paper for further 

details. It features sticky prices and wages, capital adjustment costs, variable capital 

utilisation and habit formation in consumption. The stochastic side of the model consists of 

ten exogenous shocks: six persistent shocks (technology, investment, preferences, labor 

supply, government spending and an inflation objective shock), all modelled as standard 

                                                 

23 Obviously, the assumption of completely symmetric countries implies that the moments of domestic and 

foreign variables should converge to equal values as we increase the number of periods. 
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AR(1) -processes, and four short-run i.i.d. shocks (wage mark-ups, price mark-ups, Tobin's 

Q, and a monetary policy shock). 

Since the original paper uses detrended data for estimation, the inflation target is set to 

zero. As this implies a very low steady state interest rate, we would find ourselves at the ZLB 

implausibly often. Hence, we add a positive annual inflation target of 1.8% to the Taylor 

rule, implying a quarterly steady state interest rate of 1.451%. Since the official target of 

the ECB is below, but near 2%, we believe this to be an adequate representation of 

Europe’s monetary policy. All other model parameters are calibrated according to the 

reported posterior mode in Smets and Wouters (2003).24 

Smets and Wouters (2003) find that preference and productivity shocks are the chief drivers 

of fluctuations in nominal interest rates. It makes sense then to look at productivity shocks 

to illustrate how things change when the ZLB is imposed. In Figure 3, we plot the IRF to a 

large positive productivity shock (4.9 times the shock’s estimated standard deviation). Since 

natural output increases faster than actual output, this produces a large negative output 

gap, and the ZLB is hit. Hitting the ZLB dampens the response of investment, and so rather 

than output returning to trend within four years  (as it would in the absence of the ZLB), 

instead it takes around eight years for the output gap to close. 

 

                                                 

24 The model code is taken from the extensive model database described in Cwik et al. (2012). 
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Figure 3: Impulse response to a large positive productivity shock in the Smets and 
Wouters (2003) model. (Dashed line imposes the ZLB, solid line does not.)25 

 
Obviously a realisation of a shock that is 4.9 times the shock’s standard deviation is not 

particularly plausible, so one may wonder about the importance of the ZLB within the Smets 

and Wouters (2003) model. To assess this we ran a simulation of length 250,000 periods and 

noted when the ZLB was hit. With our preferred specification for the inflation target ( 1.8%), 

the implied probability of hitting the ZLB was only 0.01%. With an inflation target of 1.5% 

this increased to 0.02%, and with a target of 1.2% it hit 0.04%. This most likely reflects the 

absence of a financial accelerator mechanism from the Smets and Wouters (2003) model, 

and the fact that the data on which they estimated excluded the recent financial crisis.  

However, although the probability of hitting the ZLB is very low in the Smets and Wouters 

(2003) model, the implications when it is hit can be severe. This is illustrated in Figure 4 

which presents simulated paths for a period of 15 years during which the ZLB was hit. This 

figure also illustrates the increasing effect of the ZLB as the inflation target is decreased. 

 

                                                 

25 The output gap, employment, investment and consumption are measured in percentage deviations from 

equilibrium, the interest rate  and inflation are measured in percent; inflation and the interest rate are 

annualised. 
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Figure 4: Simulations from the Smets and Wouters (2003) model. (Dark line does not 

impose the ZLB, others correspond to imposing the ZLB with inflation targets of 1.8%, 1.5% 
and 1.2%)24 

 

The solid black line represents the benchmark scenario, ignoring the bound; the grey lines 

represent scenarios with a ZLB for different inflation targets (the lighter the line, the lower 

the inflation target). For a 1.8% percent inflation target, the ZLB is hit in the 13th quarter, 

and holds for only two periods. In this case, the simulated path is nearly identical to the 

benchmark one ignoring the ZLB. However, the lower the inflation target, the more severe is 

the fall in prices and aggregate activity. For an inflation target of 1.2%, the ZLB binds for one 

year. During this period, monetary policy is unable to prevent a drop in investment, 

resulting in investment staying below equilibrium for eleven and a half years. Moreover, 

employment stays below its long-term steady state for about nine years. The conclusion of 

this exercise is that with a high enough inflation target, hitting the ZLB is incredibly unlikely, 

and so the expected welfare loss from the bound is minimal. However, once the bound is 

hit, the impact can be very strong and highly persistent, as we are presently seeing in reality. 

Finally, the Smets and Wouters (2003) model gives us another opportunity to present our 

algorithm’s speed advantage. With the first two inflation targets, our algorithm only took 10 

minutes and 33 seconds, for 250,000 periods, rising to 22 minutes and 17 seconds with an 

inflation target of 1.2%. By contrast, the extended path algorithm of Adjemian and Juillard 
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(2011) took 3 hours and 45 minutes just to simulate 50000 periods, after which it crashed. 

Clearly, only our algorithm is viable on models of the scale of Smets and Wouters (2003). 

5. Conclusion 

This paper provides a fast, simple and intuitive method for the simulations of DSGE models 

with inequality constraints, based on the introduction of “shadow price shocks” which hit 

the bounded variables whenever the constraints are violated. We showed that at second 

order, the algorithm is more accurate than all methods except fully global ones, and we 

showed that the second order algorithm also leads in terms of speed, at least when 

compared to other algorithms of similar accuracy. At first order we illustrated that the 

speed was even greater, enabling it to be reliably used on the largest models around today. 

We believe our algorithm will prove useful to a very wide variety of models including 

bounded variables, and we hope to investigate its application to the estimation of such 

models in future work. 
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7. Appendices 

7.1. The NK model of Fernández-Villaverde et al. (2012) 

Households choose consumption 𝐶𝑡  and labour supply 𝐿𝑡 to maximise their utility, given the 

wage 𝑊𝑡 , the rate of inflation Π𝑡  and the nominal interest rate 𝑅𝑡. This leads to the FOCs: 

1

𝐶𝑡

= 𝔼𝑡

𝛽𝑡+1𝑅𝑡

𝐶𝑡+1Π𝑡+1

, 𝜓𝐿 𝑡
𝜗𝐶𝑡 = 𝑊𝑡 . 

Firms choose prices to maximise profits. This leads them to set a relative price Π𝑡
∗ satisfying: 

MC𝑡 =
𝑊𝑡

𝐴𝑡

, 𝜀𝑥1,𝑡 = (𝜀 − 1)𝑥2,𝑡 , 

𝑥1,𝑡 =
MC𝑡𝑌𝑡

𝐶𝑡

+ 𝜃𝔼𝑡𝛽𝑡+1 Π𝑡+1
𝜀 𝑥1,𝑡+1, 𝑥2,𝑡 = Π𝑡

∗ (
𝑌𝑡

𝐶𝑡

+ 𝜃𝔼𝑡𝛽𝑡+1

Π𝑡+1
𝜀−1

Π𝑡+1
∗

𝑥2,𝑡+1), 

where 𝐴𝑡  is productivity, MC𝑡  is marginal costs and 𝑌𝑡  is output. 

The central bank follows a standard Taylor rule, with monetary policy shock 𝑀𝑡, and 

government spending is a stochastic fraction 𝑆𝑔,𝑡  of total output: 

𝑅𝑡 = max {1, 𝑅1−𝜌𝑟𝑅𝑡−1
𝜌𝑟 [(

Π𝑡

Π
)

𝜙𝜋

(
𝑌𝑡

𝑌
)

𝜙𝑦

]

1−𝜌𝑟

𝑀𝑡} , 𝐺𝑡 = 𝑆𝑔,𝑡𝑌𝑡 . 

Inflation and price dispersion evolve according to: 

1 = 𝜃Π𝑡
𝜀−1 + (1 − 𝜃)(Π𝑡

∗)1−𝜀 , 𝜐𝑡 = 𝜃Π𝑡
𝜀 + (1 − 𝜃)(Π𝑡

∗)−𝜀 . 
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Finally, market clearing in goods and labour markets imply: 

𝑌𝑡 = 𝐶𝑡 + 𝐺𝑡 , 𝑌𝑡 =
𝐴𝑡𝐿 𝑡

𝜐𝑡

. 

The stochastic processes 𝛽𝑡, 𝐴𝑡, 𝑀𝑡  and 𝑆𝑔,𝑡  are all log AR(1). 

7.2. Our modified version of the two-country model of Clarida et al. 

(2002) 

Let �̃�𝑡 , 𝜋𝑡  and 𝑖𝑡  represent the domestic output gap, inflation rate and interest rate 

respectively, and let �̃�𝑡
∗, 𝜋𝑡

∗ and 𝑖𝑡
∗ denote their foreign equivalents. Let 𝜈𝑡  and 𝜈𝑡

∗ be home 

and foreign demand shocks. When both countries are symmetric, the linearised model is 

described by the following four equations, and another four in which the roles of home and 

foreign country are swapped: 

�̃�𝑡 = 𝔼𝑡�̃�𝑡+1 − 𝜎0
−1(𝑖𝑡 − 𝔼𝑡𝜋𝑡+1 − 𝜅0𝔼𝑡Δ�̃�𝑡+1

∗ + 𝜅0(1 − 𝜌𝜈 )𝜈𝑡 − 𝑖)̅, 

𝜋𝑡 = Φ(𝜃𝛽𝔼𝑡𝜋𝑡+1 + 𝜏𝜋𝑡−1) + 𝜆�̃�𝑡 , 

𝑖𝑡 = max{0, 𝑖 ̅ + (1 − 𝜙𝑖)(𝜙𝜋𝜋𝑡 + 𝜙𝑦�̃�𝑡 ) + 𝜙𝑖(𝑖𝑡−1 − 𝑖)̅}, 

𝜈𝑡 = 𝜌𝜈 𝜈𝑡−1 + 𝜀𝑡
𝜈 . 

These represent the Euler equation, the NK Phillips curve, the Taylor rule and the evolution 

of the exogenous shock, respectively. 
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The parameters used in the equations above are the following functions of the structural 

parameters: 

𝜅0 =
𝜎 − 1

2
, 𝜎0 = 𝜎 − 𝜅0, 𝜅 = 𝜎 − 𝜅0 + 𝜑, 𝜆 =

(1 − 𝜃)(1 − 𝛽𝜃)

𝜃
𝜅, 𝑖 ̅ =

1

𝛽
 

Φ =
1

𝜃 + 𝜏(1 − 𝜃(1 − 𝛽))
, 

where 𝜎 ≔ 1
3⁄  is the inverse elasticity of intertemporal substitution in consumption, 26 𝜑 ≔

1 is the inverse Frisch elasticity of labour supply, 𝛽 ≔ 0.99 is the discount factor, 𝜃 ≔ 3
4⁄  is 

the probability a firm’s price must remain fixed and 𝜏 ≔ 1
10⁄  is the fraction of backwards  

looking price setters. We also set 𝜙𝜋 ≔ 1.5, 𝜙𝑦 ≔ 0.125 and 𝜙𝑖 ≔ 0.8 in the central bank’s 

reaction function and the shocks’ persistence as 𝜌𝜈 ≔ 0.7. 

                                                 

26 The model implicitly assumes a unitary substitution elasticity between domestic and foreign goods. Hence, 

for values of 𝜎 smaller than one, any increase in foreign production is accompanied by an increase in domestic 

production, since the negative effect due to the implied real appreciation is dominated by the fall  in the real 

interest rate stemming from an increase in domestic consumer price inflation. With 𝜎 = 1 (i .e. log utility) both 

effec ts balance each other out, since in that case 𝜅0 = 0, meaning there is no transmission at all . We could 

derive similar results for lower substitution elasticities and higher values of 𝜎 , but we maintain this 

parameterisation to keep the model close to that of Clarida et al. (2002). 
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