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1. Introduction 

Almost any macroeconomic model one might write down contains an occasionally 
binding constraint somewhere. These range from the positivity constraint on 
investment and the upper bound on hours, in simple real business cycle models, to the 
occasionally binding borrowing constraints on households, firms or banks in models 
of financial frictions. In recent times, one of the most prominent occasionally binding 
constraint (OBC) has been the zero lower bound (ZLB) on nominal interest rates. 

While models with occasionally binding constraints may be simulated 
computationally with global approaches, these do not scale well to larger models, and 
they have no convergence guarantees for non-optimal economies such as New 
Keynesian models. Additionally, traditional approaches to simulating larger models, 
such as perturbation, cannot capture OBCs. While there have been recent advances in 
simulating models with OBCs (e.g. Holden (2010), Holden and Paetz (2012), Judd, 
Maliar, and Maliar (2012) or Guerrieri and Iacoviello (2015)), as yet there is still no 
algorithm that is capable, for any model, of determining in finite time if it has a 
solution, and finding it if it does. Furthermore, while the literature contains fast 
algorithms (such as that of Holden and Paetz (2012) and Guerrieri and Iacoviello 
(2015)) and accurate ones (such as that of Judd, Maliar, and Maliar (2012)), it arguably 
still lacks an algorithm in the sweet spot of reliable accuracy with sufficient speed to 
be used in the daily business of policy by policy makers accustomed to working with 
large models. 

In this paper, we attack the problem of understanding the behaviour of models with 
occasionally binding constraints by developing new computational tools to handle 
them. These build upon the theoretical results on such models from a companion 
paper (Holden 2016). We prove that for otherwise linear models with a fixed terminal 
condition, under perfect foresight, the problem of finding if there is a solution, and if 
so what it is, may be represented as the solution to a mixed integer linear 
programming problem. This gives the first algorithm for such problems which is 
guaranteed to complete in finite time. We also prove results on the computational 
complexity of the problem which imply that finding a perfect foresight solution is 
computationally as difficult as mixed integer linear programming, implying that this 
representation is in a sense the best possible. We go on to exploit the particular 
properties of pruned perturbation approximations (Kim et al. 2008) to convert this 
robust perfect foresight solver into a general solution algorithm for non-linear 
dynamic stochastic models. To complement this paper, we provide a toolkit 
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(“DynareOBC”) implementing the described algorithm which provides robust, 
accurate and scalable simulation of models with OBCs.2 

Our theoretical results on the computational complexity of finding a solution to 
models with occasionally binding constraints imply that were there an algorithm 
which could solve general non-stochastic models with OBCs in an amount of time that 
is polynomial in the number of states in the model, then such an algorithm could also 
be used for solving in polynomial time any problem the solution of which could be 
verified in polynomial time. This would imply, for example, efficient methods of 
breaking all standard forms of cryptography used to secure internet banking. Of 
course, neither we nor the computer science profession believe that such a polynomial 
time algorithm can exist, hence this provides a proof by contradiction of the “curse of 
dimensionality” for this class of models. It also raises doubts about the realism of 
assuming rational expectations in these situations. 

With the caveat of these theoretical results on maximum speed, we go on to present 
an algorithm for solving general models with occasionally binding constraints, as 
efficiently as is possible. In the otherwise linear, perfect foresight case, this is given by 
our representation of the solution as that of a mixed integer linear programming 
problem, a problem for which incredibly efficient solvers already exist. The key idea 
of the algorithm is that an OBC provides a source of endogenous news about the 
future. When a shock hits, driving the economy to the bound in some future periods, 
that tells us that in those future periods, the (lower) bounded variable will be higher 
that it would be otherwise.3 The integer programming aspect of the problem comes 
because whether or not we are at the bound one period is a yes-no binary variable. 

Our algorithm for finding the required news shocks to impose the zero lower bound 
is guaranteed to return a solution in finite time when one exists, and when there is no 
solution, the algorithm returns a certificate of this in finite time instead. This contrasts 
with approaches based on a fixed point iteration for which non-existence is not 
normally detectable in finite time, since one cannot rule out that the algorithm would 
converge if only it were left for another hour/day/year. Furthermore, where there are 
multiple solutions, our algorithm always returns one minimising an intuitive criterion, 
with a free parameter that enables the user to select the desired “type” of equilibrium. 
This algorithm may be applied to stochastic models using the idea of the extended 
path algorithm of Fair and Taylor (1983), and can take future uncertainty into account 
following the stochastic extended path algorithm of Adjemian and Juillard (2013), as 
discussed below. 

                                                 
2 DynareOBC is available from: https://github.com/tholden/dynareOBC and is discussed further in section 3.4. 
3 The idea of imposing the zero lower bound by adding news shocks is also present in Holden (2010), Hebden et al. (2011), Holden 
and Paetz (2012) and Bodenstein et al. (2013). News shocks were introduced to the literature by Beaudry and Portier (2006). 

https://github.com/tholden/dynareOBC
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For models that are non-linear even apart from the constraint, we exploit the 
convenient properties of pruned perturbation approximations (Kim et al. 2008), which 
enables the base algorithm to be applied to higher order approximations with only 
minimal modifications. Although this does not capture the risk of hitting the bound, 
it does at least help capture the fact that at the bound, the economy is a substantial 
distance from steady-state, and so the slopes of variables’ responses will have changed. 

To capture the effects of future uncertainty, such as precautionary motives to avoid 
the bound, we use a modified version of the stochastic extended path algorithm of 
Adjemian and Juillard (2013) that is designed to exploit both the special properties of 
our inner solution algorithm, and the special properties of pruned perturbation. 
Whereas in the original Adjemian and Juillard (2013) approach, integrating over 𝑆𝑆 
periods of future uncertainty required a number of solutions to the perfect foresight 
problem that was exponential in both 𝑆𝑆  and the number of shocks, we are able to 
integrate over the same number of periods of future uncertainty with only polynomial 
in 𝑆𝑆  solutions of the perfect foresight problem. In practice, this means that we can 
integrate over enough periods of future uncertainty to capture even one hundred 
periods of future uncertainty, and even in medium scale models. 

Strictly, the original (2013) stochastic extended path approach is not fully consistent 
with rationality, since it is equivalent to assuming that agents act as if the uncertainty 
in all future periods would be resolved next period. However, we will see that in 
practice it performs well. The authors of the original stochastic path method now have 
a more complicated version that is fully consistent with rationality (Adjemian and 
Juillard 2016), however it appears to be too computationally expensive to be used in 
large models with even moderate numbers of periods of future uncertainty, so we 
continue to use the original method, which nonetheless provides a good 
approximation. 

Our paper is structured as follows. In the following section, we present our solution 
algorithm for otherwise linear perfect foresight models, and discuss the 
computational complexity of the problem. We then extend this to non-linear, non-
perfect foresight models in section 3. In section 4 we go on to assess the algorithm’s 
numerical accuracy and speed, and discuss its relationship to other algorithms in the 
literature. Section 5 concludes. All files needed for the replication of this paper’s 
numerical results are included in the “Examples” directory of the author’s 
DynareOBC toolkit.4 

                                                 
4 These files may be viewed online at https://github.com/tholden/dynareOBC/tree/master/Examples.  

https://github.com/tholden/dynareOBC/tree/master/Examples
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2. Computation of solutions in the otherwise linear case 

In this section, we present the key theoretical results that establish representations 
of the perfect foresight solution of an otherwise linear model with occasionally 
binding constraints. We start by defining the problem to be solved, and examining its 
relationship both to the problem without OBCs, and to a related problem with news 
shocks to the bounded variable. Using the news shock representation, we demonstrate 
that solving the model with OBCs is equivalent to solving a linear complementarity 
problem. This material closely follows this paper’s companion theoretical paper 
(Holden 2016), and the reader is referred to that paper for proofs and further details. 

Given the linear complementarity representation, we then examine the 
computational complexity of the problem. Finally, we show that this linear 
complementarity representation is in turn representable as the solution to a mixed 
integer linear programming problem. 
2.1. Problem set-ups 

We start by describing the problem set-up without bounds. Suppose that for 𝑡𝑡 ∈ ℕ+, 
(i.e. 𝑡𝑡 ∈ ℕ, 𝑡𝑡 > 0), the first order conditions of some model may be represented as: 

�𝐴𝐴̂ + �̂�𝐵 + 𝐶𝐶�̂�̂�𝜇 = 𝐴𝐴�̂�𝑥�̂�𝑡−1 + 𝐵𝐵𝑥𝑥�̂�𝑡 + 𝐶𝐶�̂�𝔼𝑡𝑡𝑥𝑥�̂�𝑡+1 + 𝐷𝐷� 𝜀𝜀𝑡𝑡, 
where �̂�𝜇 ∈ ℝ�̂�𝑛 and 𝑥𝑥�̂�𝑡 ∈ ℝ�̂�𝑛, 𝜀𝜀𝑡𝑡 ∈ ℝ𝑚𝑚, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0 for all 𝑡𝑡 ∈ ℕ+, and suppose that 𝑥𝑥0̂ is 
given as an initial condition. Throughout this paper, we will refer to first order 
conditions such as these as “the model”, conflating them with the optimisation 
problem(s) which gave rise to them. 

Furthermore, suppose that 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1 , as in an impulse response or perfect 
foresight simulation exercise. Additionally, we assume the existence of a terminal 
condition of the form 𝑥𝑥�̂�𝑡 → �̂�𝜇 as 𝑡𝑡 → ∞, coming, for example, from the source model’s 
transversality constraints. In a New Keynesian model, this terminal condition might 
also capture a belief in the credibility of the central bank’s long-run inflation target. 

For 𝑡𝑡 ∈ ℕ+, define 𝑥𝑥𝑡𝑡 ≔ � 𝑥𝑥�̂�𝑡
𝜀𝜀𝑡𝑡+1

�, 𝜇𝜇 ≔ ��̂�𝜇
0

�, 𝐴𝐴 ≔ �𝐴𝐴̂ 𝐷𝐷�
0 0

�, 𝐵𝐵 ≔ ��̂�𝐵 0
0 𝐼𝐼

�, 𝐶𝐶 ≔ �𝐶𝐶̂ 0
0 0

�, 

then, for 𝑡𝑡 ∈ ℕ+: 
(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1, (1) 

and we have the extended initial condition 𝑥𝑥0 = �𝑥𝑥0̂
𝜀𝜀1

� , and the extended terminal 

condition 𝑥𝑥𝑡𝑡 → 𝜇𝜇  as 𝑡𝑡 → ∞ . Expectations have disappeared since there is no 
uncertainty after period 0. Thus, the problem of solving the original model has the 
same form as that given in: 

Problem 1 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 
𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+, equation (1) holds. 
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We make the following assumption in all of the following: 

Assumption 1 For any given 𝑥𝑥0 ∈ ℝ𝑛𝑛, Problem 1 has a unique solution, which takes 
the form 𝑥𝑥𝑡𝑡 = (𝐼𝐼 − 𝐹𝐹)𝜇𝜇 + 𝐹𝐹𝑥𝑥𝑡𝑡−1, for 𝑡𝑡 ∈ ℕ+, where 𝐹𝐹 = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐴𝐴, and where all of 
the eigenvalues of 𝐹𝐹 are weakly inside the unit circle. 

Sims’s (2002) generalisation of the standard Blanchard-Kahn (1980) conditions is 
necessary and sufficient for this. Further, to avoid dealing specially with the knife-
edge case of exact unit eigenvalues (even if they are constrained to the part of the 
model that is solved forward), in the following we rule it out with the subsequent 
assumption, which is, in any case, a necessary condition for perturbation to produce a 
consistent approximation to a source non-linear model, and which is also necessary 
for the linear model to have a unique steady-state: 

Assumption 2 det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) ≠ 0. 

The combination of Assumption 1 and Assumption 2 imply that all of the eigenvalues 
of 𝐹𝐹 are strictly inside the unit circle. 

We are interested in models featuring occasionally binding constraints. We will 
concentrate on models featuring a single zero lower bound type constraint in their first 
equation, which we treat as defining the first element of 𝑥𝑥𝑡𝑡. Generalising from this 
special case is straightforward, and is discussed in section 2.3. First, let us write 𝑥𝑥1,𝑡𝑡, 
𝐼𝐼1,⋅ , 𝐴𝐴1,⋅ , 𝐵𝐵1,⋅ , 𝐶𝐶1,⋅  for the first row of 𝑥𝑥𝑡𝑡 , 𝐼𝐼 , 𝐴𝐴 , 𝐵𝐵 , 𝐶𝐶  (respectively) and 𝑥𝑥−1,𝑡𝑡 , 𝐼𝐼−1,⋅ , 𝐴𝐴−1,⋅ , 
𝐵𝐵−1,⋅, 𝐶𝐶−1,⋅ for the remainders. Likewise, we write 𝐼𝐼⋅,1 for the first column of 𝐼𝐼, and so 
on. Then we are interested in the solution to: 

Problem 2 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛  is given. Find 𝑇𝑇 ∈ ℕ  and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛  for 𝑡𝑡 ∈ ℕ+  such 
that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇��, 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1 + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡 + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1, 

and such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇. 

Note that in this problem we are implicitly ruling out any solutions which get 
permanently stuck at an alternative steady-state, by assuming that the terminal 
condition remains as before. In the monetary policy context, this amounts to assuming 
that the central banks’ (positive) long-run inflation target is credible, as the alternative 
steady-state features deflation. 

Since 𝑥𝑥1,𝑡𝑡 → 𝜇𝜇1 as 𝑡𝑡 → ∞, it is without loss of generality to assume the existence of a 
𝑇𝑇 ∈ ℕ such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇, but this 𝑇𝑇 will play an important role in the below, 
so we introduce it now. We continue to assume that there is no uncertainty after period 
0 , so, in this non-linear model, the path of the endogenous variables will not 
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necessarily match up with the path of their expectation in a richer model in which 
there was uncertainty after period 0. 

 In many models, the occasionally binding constraint comes from the KKT 
conditions of an optimisation problem. We provide several examples of translating 
KKT conditions into the max operator form in section 4.3 and 4.4. The intuition is that 
one can use the model’s equations to find the value the (lower) constrained variable 
would take were there no constraint and were the Lagrange multiplier on the 
constraint equal to zero today. This gives a “shadow” value of the constrained variable, 
and the actual value it takes will be the maximum of the bound and this shadow value. 
An alternative approach is to replace complementary slackness conditions of the form 
𝑓𝑓 (𝑥𝑥)𝜆𝜆 = 0, where 0 ≤ 𝑓𝑓 (𝑥𝑥) and 0 ≤ 𝜆𝜆, with equations of the form 0 = max�−𝑓𝑓 (𝑥𝑥), −𝜆𝜆�. 

We will analyse Problem 2 with the help of solutions to the auxiliary problem: 

Problem 3 Suppose that 𝑇𝑇 ∈ ℕ, 𝑥𝑥0 ∈ ℝ𝑛𝑛 and 𝑦𝑦0 ∈ ℝ𝑇𝑇 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛, 𝑦𝑦𝑡𝑡 ∈ ℝ𝑇𝑇 
for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇, 𝑦𝑦𝑡𝑡 → 0, as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦1,𝑡𝑡−1, 
𝑦𝑦𝑇𝑇,𝑡𝑡 = 0, ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1. 

This may be thought of as a version of Problem 1 with news shocks up to horizon 𝑇𝑇 
added to the first equation. The value of 𝑦𝑦𝑡𝑡,0 gives the news shock that hits in period 
𝑡𝑡, i.e. 𝑦𝑦1,𝑡𝑡−1 = 𝑦𝑦𝑡𝑡,0 for 𝑡𝑡 ≤ 𝑇𝑇, and 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇. 
2.2. The linear complementarity representation 

For future reference, let 𝑥𝑥𝑡𝑡
(3,𝑘𝑘) be the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇, 𝑦𝑦0 = 𝐼𝐼⋅,𝑘𝑘 (i.e. 

a vector which is all zeros apart from a 1  in position 𝑘𝑘 ). Then, we show in Holden 
(2016) that by linearity, for arbitrary 𝑦𝑦0 the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given 
by: 

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = � 𝑦𝑦𝑘𝑘,0�𝑥𝑥𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇�

𝑇𝑇

𝑘𝑘=1
. 

Furthermore, if 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 satisfies: 
𝑀𝑀𝑡𝑡,𝑘𝑘 = 𝑥𝑥1,𝑡𝑡

(3,𝑘𝑘) − 𝜇𝜇1, ∀𝑡𝑡, 𝑘𝑘 ∈ {1, . . , 𝑇𝑇}, (2) 
i.e. 𝑀𝑀 horizontally stacks the (column-vector) relative impulse responses to the news 
shocks, then this result implies that for arbitrary 𝑦𝑦0, the path of the first variable in the 
solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: �𝑥𝑥1,1:𝑇𝑇�′ = 𝜇𝜇1 + 𝑀𝑀𝑦𝑦0, where 𝑥𝑥1,1:𝑇𝑇 is the 
row vector of the first 𝑇𝑇  values of the first component of 𝑥𝑥𝑡𝑡 . Furthermore, for both 
arbitrary 𝑥𝑥0 and 𝑦𝑦0, the path of the first variable in the solution to Problem 3 is given 
by: �𝑥𝑥1,1:𝑇𝑇�′ = 𝑞𝑞 + 𝑀𝑀𝑦𝑦0, where 𝑞𝑞 ≔ �𝑥𝑥1,1:𝑇𝑇

(1) �
′
 and 𝑥𝑥𝑡𝑡

(1) is the unique solution to Problem 
1, for the given 𝑥𝑥0 . 5  This ease in solving Problem 3 given 𝑦𝑦0  will be crucial to the 
efficiency of our solution algorithm for Problem 2. 

                                                 
5 This representation was also exploited by Holden (2010) and Holden and Paetz (2012). 
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The two problems are linked by the following proposition which we prove in Holden 
(2016): 

Proposition 1 The following hold: 
1) Let 𝑥𝑥𝑡𝑡

(3)  be the unique solution to Problem 3 when initialized with some 𝑥𝑥0, 𝑦𝑦0 . 
Then 𝑥𝑥𝑡𝑡

(3) is a solution to Problem 2 when initialized with 𝑥𝑥0 if and only if 𝑦𝑦0 ≥ 0, 
𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ with 𝑡𝑡 > 𝑇𝑇. 
2) Let 𝑥𝑥𝑡𝑡

(2) be any solution to Problem 2 when initialized with 𝑥𝑥0. Then there exists a 
𝑦𝑦0 ∈ ℝ𝑇𝑇   such that 𝑦𝑦0 ≥ 0 , 𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0 , 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 , such that 𝑥𝑥𝑡𝑡

(2)  is the 
unique solution to Problem 3 when initialized with 𝑥𝑥0, 𝑦𝑦0. 

(Holden 2016) 

Proposition 1 establishes that providing we initially choose 𝑇𝑇 sufficiently high, to 
find a solution to Problem 2, it is sufficient to solve the following problem instead: 

Problem 4 Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇  and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  are given. Find 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 ≥ 0 , 
𝑦𝑦 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 0 and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0. We call this the linear complementarity problem 
(LCP) �𝑞𝑞, 𝑀𝑀�. (Cottle 2009) 

Since the computational complexity of this problem will be determined by the 
properties of the 𝑀𝑀 matrix, we would like to determine if the particular structure of 
our 𝑀𝑀 matrix implies any such properties. Unfortunately, however, it turns out that we 
can infer nothing about 𝑀𝑀 just from knowing that it stacks impulse responses to news 
shocks in some model. In particular, we prove the following proposition in online 
appendix A: 

Proposition 2 For any matrix ℳ ∈ ℝ𝑇𝑇×𝑇𝑇, there exists a model in the form of Problem 
2 with a number of state variables given by a quadratic in 𝑇𝑇, such that 𝑀𝑀 = ℳ  for that 
model, where 𝑀𝑀  is defined as in equation (2) , and such that for all 𝓆𝓆 ∈ ℝ𝑇𝑇 , there 
exists an initial state for which 𝑞𝑞 = 𝓆𝓆 , where 𝑞𝑞 is the path of the bounded variable when 
constraints are ignored. 

2.3. Generalisations to richer otherwise linear models 
It is straightforward to generalise these results to less restrictive otherwise linear 

models with occasionally binding constraints. 
Firstly, if the constraint is on a variable other than 𝑥𝑥1,𝑡𝑡, or in another equation than 

the first, then it is immediately clear that all of the results must go through as before 
(just by relabelling and rearranging). Furthermore, if the constraint takes the form of 
𝑧𝑧1,𝑡𝑡 = max�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡� , where 𝑧𝑧1,𝑡𝑡 , 𝑧𝑧2,𝑡𝑡  and 𝑧𝑧3,𝑡𝑡  are linear expressions in the 
contemporaneous values, lags and leads of 𝑥𝑥𝑡𝑡 , then, assuming without loss of 
generality that 𝑧𝑧3,⋅ > 𝑧𝑧2,⋅  in steady-state, we have that 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡� . 
Hence, adding a new auxiliary variable 𝑥𝑥𝑛𝑛+1,𝑡𝑡, with the associated equation 𝑥𝑥𝑛𝑛+1,𝑡𝑡 =
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𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡, and replacing the constrained equation with 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡�, we 
have a new equation in the form covered by our original results. Moreover, if rather 
than a max we have a min, we just use the fact that if 𝑧𝑧1,𝑡𝑡 = min�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡�, then −𝑧𝑧1,𝑡𝑡 =
max�−𝑧𝑧2,𝑡𝑡, −𝑧𝑧3,𝑡𝑡�, which is in the form covered by the generalisation just established. 

We may also readily deal with multiple occasionally binding constraints, following 
the representation used in Holden and Paetz (2012). Suppose there are 𝑐𝑐 constrained 
variables in the model. For 𝑎𝑎 ∈ {1, … , 𝑐𝑐} , let 𝑞𝑞(𝑎𝑎)  be the path of the 𝑎𝑎 th constrained 
variable in the absence of all constraints. For 𝑎𝑎, 𝑏𝑏 ∈ {1, … , 𝑐𝑐}, let 𝑀𝑀(𝑎𝑎,𝑏𝑏) be the matrix 
created by horizontally stacking the column vector relative impulse responses of the 
𝑎𝑎 th constrained variable to magnitude 1  news shocks at horizon 0, … , 𝑇𝑇 − 1  to the 
equation defining the 𝑏𝑏th constrained variables. For example, if 𝑐𝑐 = 1 so there is a single 
constraint, then we would have that 𝑀𝑀(1,1) = 𝑀𝑀 as defined in equation (2). Finally, let: 

𝑞𝑞 ≔
⎣
⎢⎢
⎡𝑞𝑞(1)

⋮
𝑞𝑞(𝑐𝑐)⎦

⎥⎥
⎤ , 𝑀𝑀 ≔

⎣
⎢⎡

𝑀𝑀(1,1) ⋯ 𝑀𝑀(1,𝑐𝑐)

⋮ ⋱ ⋮
𝑀𝑀(𝑐𝑐,1) ⋯ 𝑀𝑀(𝑐𝑐,𝑐𝑐)⎦

⎥⎤, 

and let 𝑦𝑦  be a solution to the LCP �𝑞𝑞, 𝑀𝑀� . Then the vertically stacked paths of the 
constrained variables in a solution which satisfies these constraints is given by 𝑞𝑞 + 𝑀𝑀𝑦𝑦, 
and again any solution satisfying the constraints corresponds to a solution to the LCP. 
2.4. On the difficulty of the problem 

Before presenting the computational algorithm for solving the linear 
complementarity problem, we give a note of caution. If no properties of the matrix 𝑀𝑀 
are known a priori, then Problem 4 is provably a computationally difficult problem; 
more formally, it may be shown to be “strongly-NP complete” (Chung 1989), and this 
remains true even if 𝑀𝑀 is restricted to be a “P0-matrix” (Kojima et al. 1991). The class 
of P0-matrices is defined in Holden (2016), but for here it suffices to note that the best 
behaved LCPs (i.e. those with a unique equilibrium for all 𝑞𝑞) are those in which 𝑀𝑀 is a 
P-matrix, where the definition of a P0-matrix just replaces a strict inequality in the 
definition of a P-matrix with a weak one. Thus, an arbitrarily small step away from the 
well behaved P-matrix class is sufficient to produce a strongly-NP complete problem. 

Strongly-NP completeness means that even if the inputs 𝑞𝑞 and 𝑀𝑀 have descriptions 
which are of a polynomial length in 𝑇𝑇, then if we could solve Problem 4 in an amount 
of time that was polynomial in 𝑇𝑇, we could also solve in polynomial time any problem 
for which the solution could be verified in polynomial time. In the language of 
computer science, this would mean that “P=NP”, something almost all computer 
scientists believe to be false. The strength of computer scientists’ conviction that this is 
not true is best exemplified by the fact that were P=NP, all commonly used forms of 
cryptography (such as those used to secure internet banking) could potentially be 
defeated. 
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Since there is a bijection between solutions for Problem 4 and solutions for Problem 
2, this means that while forming expectations in linear models without occasionally 
binding constraints is computationally easy (polynomial algorithms exist for it), in 
models with OBCs, forming expectations may be incredibly difficult. It also means 
that we should be sceptical of claims of computational efficiency from other 
algorithms for solving models with OBCs. A proof that such algorithms actually ran 
in time polynomial in the number of state variables of the model, on all models, would 
again function as a proof that “P=NP”, since we showed in Proposition 2 that there is 
a model corresponding to any 𝑇𝑇 × 𝑇𝑇  𝑀𝑀  matrix, featuring polynomial in 𝑇𝑇  state 
variables. 

A natural response to this is that in macroeconomics, we are only concerned with 
approximate solutions, whereas the previous computational complexity results were 
for exact solutions. In fact, allowing approximation error will not change these results. 
Note that a sufficiently accurate approximation to the solution would tell us when the 
constraint binds in the exact solution. However, the difficulty of the exact LCP comes 
from the fact that there are 2𝑇𝑇 possible combinations of periods in which the constraint 
might bind, so no solution procedure can “quickly” tell us the periods constraint 
binds. Hence, the approximate problem cannot be easier than the original problem. 
More formally, we establish the following proposition in online appendix B: 

Proposition 3 For any problem in the form of Problem 2, let 𝒟𝒟∗ ⊆ ℝ𝑛𝑛, and 𝑝𝑝∗: 𝒟𝒟∗ →
𝒟𝒟∗ be an exact policy function for Problem 2, by which we mean that: 
1. For all 𝑥𝑥 ∈ 𝒟𝒟∗: 

𝑥𝑥1 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑝𝑝∗(𝑥𝑥) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)� − 𝜇𝜇��, 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥 + 𝐵𝐵−1,⋅𝑝𝑝∗(𝑥𝑥) + 𝐶𝐶−1,⋅𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)�. 

2. For all 𝑥𝑥0 ∈ 𝒟𝒟∗, if 𝑥𝑥𝑡𝑡 = 𝑝𝑝∗(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+, then 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 
3. For all 𝑥𝑥0 ∉ 𝒟𝒟∗, there is no (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞ ⊆ ℝ𝑛𝑛 solving the given instance of Problem 2. 
Suppose that for all 𝜅𝜅, 𝜖𝜖 > 0, and for any problem in the form of Problem 2, we can 
calculate in time polynomial in 𝑛𝑛 a set 𝒟𝒟𝜅𝜅,𝜖𝜖 ⊆ ℝ𝑛𝑛 with 𝒟𝒟∗ ⊆ 𝒟𝒟𝜅𝜅,𝜖𝜖 and an approximate 
policy function 𝑝𝑝𝜅𝜅,𝜖𝜖: 𝒟𝒟𝜅𝜅,𝜖𝜖 → ℝ𝑛𝑛 , where membership of 𝒟𝒟𝜅𝜅,𝜖𝜖  may be tested in time 
polynomial in 𝑛𝑛, where 𝑝𝑝𝜅𝜅,𝜖𝜖 may be evaluated in time polynomial in 𝑛𝑛, and where for 
all 𝑥𝑥 ∈ 𝒟𝒟∗  with �𝑥𝑥 − 𝜇𝜇�∞ < 𝜅𝜅 , �𝑝𝑝∗(𝑥𝑥) − 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥)�∞ < 𝜖𝜖 , then P=NP, i.e. all problems 
verifiable in polynomial time may be solved in polynomial time. 

Providing one believes (along with almost all of the computer science profession) that 
P≠NP, this provides a reductio ad absurdum of our assumption that there was a 
general procedure capable of providing the policy function 𝑝𝑝𝜅𝜅,𝜖𝜖 in polynomial time. 
Thus, for example, global methods will never escape the curse of dimensionality in 
general models with OBCs, even using methods explicitly designed to do this such as 
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that of Judd, Maliar, and Maliar (2012). In fact, even proving the finiteness of 
algorithms for solving these problems is non-trivial (see e.g. Csizmadia and Illés 2006), 
and, for example, there is no reason to believe that the iterations in Guerrieri and 
Iacoviello (2015) will converge in finite time on all models. 

Admittedly, for some special classes further discussed in online appendix C, it has 
been shown that the problem is solvable in polynomial time in 𝑇𝑇 . However, as 
discussed further in that appendix, it turns out that checking whether 𝑀𝑀 is in one of 
the relevant special cases is itself not possible in polynomial time, so this is of little 
use. The combination of the results of that appendix and the results of Holden (2016) 
imply that were there a general algorithm running in time polynomial in the number 
of state variables for testing if a particular model always had a unique solution or 
always had a unique solution when away from the bound, then that algorithm would 
also serve as a proof that P=NP, since Proposition 2 implies that a model could be 
constructed producing any given 𝑇𝑇 × 𝑇𝑇  𝑀𝑀  matrix, with polynomial in 𝑇𝑇  state 
variables. 
2.5. The mixed integer linear programming representation 

Given that there is no reason to believe that there is a polynomial time algorithm to 
solve the LCPs we encounter, it is important that we choose an algorithm, which, 
although it may not complete in polynomial time in the worst case, is nonetheless as 
computationally efficient as possible, particularly on average. One way to do this is to 
reduce the problem of finding an LCP to the solution of a problem for which highly 
efficient algorithms and computational libraries are available. One such problem is 
mixed integer linear programming (MILP), for which algorithms are included in most 
major optimisation suites (e.g. CPLEX, Gurobi, XPress MP, MOSEK, etc.). 
Conveniently, we can reduce the LCP problem to the MILP one in a way that gives not 
only a solution when one exists, but also a definite answer on whether or not there is 
a solution. This is an improvement over more naïve approaches, such as those of 
Holden (2010), Holden and Paetz (2012) or Guerrieri and Iacoviello (2015), for which 
a failure of convergence may just mean that the optimiser got stuck at some local 
minimum. 

To motivate the MILP representation, suppose that 𝑦𝑦 solves the LCP �𝑞𝑞, 𝑀𝑀�. Then 
𝑦𝑦 ≥ 0 , 0 ≤ 𝑞𝑞 + 𝑀𝑀𝑦𝑦  and if 𝑦𝑦𝑗𝑗 > 0  then �𝑞𝑞 + 𝑀𝑀𝑦𝑦�𝑗𝑗 = 0 . Now let �̃�𝜔 > 0  be an arbitrary 
constant, let 𝛼𝛼 ≔ min��𝑦𝑦�∞

−1, �̃�𝜔�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞
−1� > 0, (where ‖⋅‖∞ is the usual sup norm), let 

𝑦𝑦̂ ≔ 𝛼𝛼𝑦𝑦 , let 1𝑇𝑇×1  be a 𝑇𝑇 × 1  vector of ones, and let 𝑧𝑧 ∈ {0,1}𝑇𝑇  be such that for all 𝑗𝑗 ∈
{1, … , 𝑇𝑇} , 𝑧𝑧𝑗𝑗 = 1  if and only if 𝑦𝑦𝑗𝑗 > 0  (i.e. 𝑧𝑧  is an indicator for being away from the 
bound). Then 0 ≤ 𝑦𝑦̂ ≤ 1𝑇𝑇×1  and 0 ≤ 𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ 𝛼𝛼�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞ ≤ �̃�𝜔1𝑇𝑇×1.  Now, if 𝑧𝑧𝑗𝑗 = 0 
for some 𝑗𝑗 ∈ {1, … , 𝑇𝑇}, then 𝑦𝑦𝑗𝑗 = 0.  Hence, in fact, 0 ≤ 𝑦𝑦̂ ≤ 𝑧𝑧. Likewise, if 𝑧𝑧𝑗𝑗 = 1, then 
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𝑦𝑦𝑗𝑗 > 0, so since 𝑦𝑦 solves the LCP, 0 = 𝛼𝛼�𝑞𝑞 + 𝑀𝑀𝑦𝑦�𝑗𝑗 = �𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦�̂𝑗𝑗. Hence, similarly, 0 ≤
𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ �̃�𝜔(1𝑇𝑇×1 − 𝑧𝑧). 

Moreover, for any 𝛼𝛼̃ > 𝛼𝛼, we claim that there is no 𝑧𝑧 ∈ {0,1}𝑇𝑇 such that 0 ≤ 𝛼𝛼�̃�𝑦 ≤ 𝑧𝑧 
and 0 ≤ 𝛼𝛼�̃�𝑞 + 𝑀𝑀�𝛼𝛼�̃�𝑦� ≤ �̃�𝜔(1𝑇𝑇×1 − 𝑧𝑧). To see this, suppose for a contradiction that there 
were. Then 𝛼𝛼�̃𝑦𝑦�∞ ≤ 1, so 𝛼𝛼 < 𝛼𝛼̃ ≤ �𝑦𝑦�∞

−1. Hence, 𝛼𝛼 = �̃�𝜔�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞
−1. But, by assumption 

𝛼𝛼�̃𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞ ≤ �̃�𝜔 , hence �̃�𝜔�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞
−1 = 𝛼𝛼 < 𝛼𝛼̃ ≤ �̃�𝜔�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞

−1 , which gives the 
required contradiction. 

Therefore, 𝛼𝛼, 𝑦𝑦,̂ 𝑧𝑧 are feasible for the following MILP problem (though they may not 
necessarily be the solution): 

Problem 5 Suppose �̃�𝜔 > 0, 𝑞𝑞 ∈ ℝ𝑇𝑇 and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 are given. Find 𝛼𝛼 ∈ ℝ, 𝑦𝑦̂ ∈ ℝ𝑇𝑇, 𝑧𝑧 ∈
{0,1}𝑇𝑇  to maximise 𝛼𝛼  subject to the following constraints: 𝛼𝛼 ≥ 0 , 0 ≤ 𝑦𝑦̂ ≤ 𝑧𝑧 , 0 ≤ 𝛼𝛼𝑞𝑞 +
𝑀𝑀𝑦𝑦̂ ≤ �̃�𝜔(1𝑇𝑇×1 − 𝑧𝑧) . We call this the mixed integer linear programming (MILP) 
representation of the LCP �𝑞𝑞, 𝑀𝑀�. 

A version of this representation with �̃�𝜔 = 1  was first given by Pardalos and Rosen 
(1988), and its properties in that special case were proven by Rosen (1990). 

We now establish that solutions of the MILP representation are solutions of the LCP. 
Suppose that 𝛼𝛼, 𝑦𝑦,̂ 𝑧𝑧 solve Problem 5. If 𝛼𝛼 = 0, then there is no 𝛼𝛼 > 0 such that 0 ≤ 𝑦𝑦̂ ≤
𝑧𝑧 , 0 ≤ 𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ �̃�𝜔(1𝑇𝑇×1 − 𝑧𝑧) . Now, we showed above that if the LCP �𝑞𝑞, 𝑀𝑀�  had a 
solution, then there would be an 𝛼𝛼 > 0 , 𝑦𝑦 ̂ and 𝑧𝑧  which were feasible for Problem 5, 
hence, this 𝛼𝛼 > 0 provides a lower bound on the solution to Problem 5. Thus, if 𝛼𝛼 = 0, 
the LCP cannot have a solution. 

Alternatively, suppose 𝛼𝛼 > 0 . Then if for some 𝑗𝑗 ∈ {1, … , 𝑇𝑇} , 𝑧𝑧𝑗𝑗 = 1 , then 0 =
�𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦�̂𝑗𝑗, and if for some 𝑗𝑗 ∈ {1, … , 𝑇𝑇}, 𝑧𝑧𝑗𝑗 = 0, then 𝑦𝑦�̂�𝑗 = 0. Thus, 𝑦𝑦̂ ∘ �𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦�̂ = 0. 
Finally, define 𝑦𝑦 ≔ 𝑦𝑦̂

𝛼𝛼 ≥ 0, hence 𝑦𝑦̂ = 𝛼𝛼𝑦𝑦, 0 ≤ 𝑞𝑞 + 𝑀𝑀𝑦𝑦 and 𝑦𝑦 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 0, i.e. 𝑦𝑦 solves 
the LCP �𝑞𝑞, 𝑀𝑀�. 

This establishes the following result: 

Proposition 4 Suppose �̃�𝜔 > 0, 𝑞𝑞 ∈ ℝ𝑇𝑇 and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 are given. If 𝑦𝑦 solves Problem 4, 
then the solution to Problem 5 has  𝛼𝛼 ≥ min��𝑦𝑦�∞

−1, �̃�𝜔�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞
−1�. If the solution to 

Problem 4 is unique, then this last inequality holds with equality, and 𝑦𝑦̂ = 𝛼𝛼𝑦𝑦 , 𝑧𝑧 =

�
1 if 𝑦𝑦𝑗𝑗 > 0
0 if 𝑦𝑦𝑗𝑗 = 0 in the solution to Problem 5. Conversely, if 𝛼𝛼, 𝑦𝑦,̂ 𝑧𝑧 solve Problem 5, then if 

𝛼𝛼 = 0, Problem 4 has no solution, and if 𝛼𝛼 > 0, then 𝑦𝑦 ≔ 𝑦𝑦̂
𝛼𝛼 solves Problem 4. 

This result establishes that we can use the MILP representation both to find out if 
the LCP problem has a solution, and to find a solution when one exists. Furthermore, 
by varying �̃�𝜔 we can determine which solution is returned, when there are multiple. 
In the limit as �̃�𝜔 → 0 , the MILP solver will return the solution which minimises 
�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞, and in the limit as �̃�𝜔 → ∞, the MILP solver will return the solution to the 
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LCP which minimises �𝑦𝑦�∞ . The former objective would ensure that the returned 
solution does not generate large fluctuations in the path of the constrained variable, 
and the latter would reduce the fluctuations in other variables. Intermediate values of 
�̃�𝜔  result in a solution being returned that features balanced concern for these two 
extremes. In practice, we suggest choosing �̃�𝜔 = 𝜔𝜔�𝑞𝑞�∞  where 𝜔𝜔 > 0  is another 
constant, to ensure that the solution returned scales appropriately with 𝑞𝑞. We suggest 
𝜔𝜔 = 1000 , which places heavy weight on minimising �𝑦𝑦�∞ , without inducing 
numerical instabilities. It would also be possible to make 𝜔𝜔  stochastic in order to 
capture sunspot solutions to the model. 

We can further constrain the solution returned in the presence of multiplicity by 
solving Problem 5 first with 𝑇𝑇 = 0 (i.e. testing if 𝑞𝑞 ≥ 0), then with 𝑇𝑇 = 1, and so on. 
Doing this ensures that the time to finally escape the bound is minimised, and this is 
the approach that is followed by default in the author’s DynareOBC toolkit. While this 
means that we may have to solve multiple LCPs in the worst case in which the required 
𝑇𝑇 is large, by ensuring that on average we only have to solve small LCPs, it may still 
increase average performance. 

3. Algorithms for general non-linear models, without perfect 
foresight 

Up to now, we have solely been concerned with the perfect foresight solution of 
models which were linear apart from the occasionally binding constraint. In this 
section, we will apply these insights to the solution of general non-linear models, 
allowing for future uncertainty, i.e. we attempt to solve the following general problem: 

Problem 6 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given and that 𝑓𝑓 : ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑐𝑐 × ℝ𝑚𝑚 → ℝ𝑛𝑛, 
𝑔𝑔, ℎ: ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑐𝑐 × ℝ𝑚𝑚 → ℝ𝑐𝑐  are given continuously 𝑑𝑑 ∈ ℕ+  times 
differentiable functions. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 and 𝑟𝑟𝑡𝑡 ∈ ℝ𝑐𝑐 for 𝑡𝑡 ∈ ℕ+ such that for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝔼𝔼𝑡𝑡𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�, 
𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡 max�ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�, 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�� 

where 𝜀𝜀𝑡𝑡~NIID(0, Σ), where the max operator acts elementwise on vectors, and where 
the information set is such that for all 𝑡𝑡 ∈ ℕ+, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0 and 𝔼𝔼𝑡𝑡𝜀𝜀𝑡𝑡 = 𝜀𝜀𝑡𝑡. 

We construct our algorithm in two steps. First, we present an algorithm which 
accounts for the effects of uncertainty that would be present even without the bound, 
but which treats hitting the bound as a probability zero event. Then, we extend the 
aforementioned algorithm to capture the risk of hitting the bound in the future. The 
algorithms are implemented in the author’s open source “DynareOBC” toolkit, 6 

                                                 
6 Available from http://github.org/tholden/dynareOBC. 

http://github.org/tholden/dynareOBC
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which extends Dynare (Adjemian et al. 2011) with the ability to deal with OBCs, and 
which is further discussed in section 3.4. 
3.1. Dealing with non-linearity other than the bounds 
Setup and assumptions Given a non-linear, but 𝑑𝑑 ∈ ℕ  times continuously 
differentiable model, a common practice in macroeconomics is to take a perturbation 
approximation to the model around its deterministic steady-state. Given that high 
order perturbation approximations are often unstable, the use of a “pruned” 
approximation (Kim et al. 2008) is usually advisable. We will proceed along similar 
lines, taking a perturbation approximation to the model ignoring the bound, and then 
imposing the bound on the approximated model. The advantage for our purposes of 
the pruned approximation is that the result is linear in an augmented state space, 
which will assist us transferring results from the linear case to the non-linear one. 

We start by making a further assumption that is necessary for us to be able to 
construct a perturbation approximation to the model without the bound. 

Assumption 3 In the setup of Problem 6, there exists 𝜇𝜇𝑥𝑥 ∈ ℝ𝑛𝑛 and 𝜇𝜇𝑟𝑟 ∈ ℝ𝑐𝑐 such that: 
0 = 𝑓𝑓 �𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0�, 

𝜇𝜇𝑟𝑟 = max�ℎ�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0�, 𝑔𝑔�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0��, 
and such that for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, �ℎ�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0��𝑎𝑎 ≠ �g�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0��𝑎𝑎. 

This is necessary because if any of the constraints just bind in steady-state, then the 
equation defining the corresponding element of 𝜇𝜇𝑟𝑟  is not differentiable at 
�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0�, preventing us from taking a perturbation approximation. 

Henceforth, we suppose without loss of generality that ℎ�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0� ≪
𝑔𝑔�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0�. We claim that we may further assume without loss of generality 
that ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡� ≡ 0. First, note we can rewrite the equation defining 𝑟𝑟𝑡𝑡 as: 

𝑟𝑟𝑡𝑡 = ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡� + 𝔼𝔼𝑡𝑡 max�0, 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡� − ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡��. 
Then if we define 𝑥𝑥�̂�𝑡 ≔ �

𝑥𝑥𝑡𝑡
𝑟𝑟𝑡𝑡

� for all 𝑡𝑡 ∈ ℕ, and: 

𝑔𝑔̂�𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡� ≔ 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡� − ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�, 
𝑓𝑓 �̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡� ≔ 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑔𝑔1�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡� + 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡�, 

then for all 𝑡𝑡 ∈ ℕ+: 
0 = 𝔼𝔼𝑡𝑡𝑓𝑓 �̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡�, 𝑟𝑟�̂�𝑡 = 𝔼𝔼𝑡𝑡 max�0, 𝑔𝑔̂�𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡��, 

which is again in the form of Problem 6. Thus, without loss of generality, we can 
indeed assume that ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡� ≡ 0, meaning that we work with the system: 

0 = 𝔼𝔼𝑡𝑡𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�, 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡 max�0, 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡��, 
where g�𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0� ≫ 0. 
First order approximations Now, suppose that we believe that a first order 
approximation gives adequate accuracy away from the bound. This system is locally 
𝑑𝑑 ≥ 1 times differentiable in a neighbourhood of �𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0�, so we can certainly 
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take a first order approximation around this point. Doing this gives the following 
approximation for the equation for 𝑟𝑟𝑡𝑡: 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑟𝑟 + 𝑔𝑔1�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑥𝑥� + 𝑔𝑔2�𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑥𝑥� + 𝑔𝑔3𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇𝑥𝑥� + 𝑔𝑔4�𝑟𝑟𝑡𝑡 − 𝜇𝜇𝑟𝑟� + 𝑔𝑔5𝜀𝜀𝑡𝑡, 
where 𝑔𝑔1, … , 𝑔𝑔5 are the matrices of partial derivatives of 𝑔𝑔 with respect to its first to 
fifth arguments, respectively. This approximation obviously completely ignores the 
bound. Thus, we propose to increase its accuracy by imposing the bound on the 
linearized equations, i.e. by instead working with the equation: 

𝑟𝑟𝑡𝑡 = max�0, 𝜇𝜇𝑟𝑟 + 𝑔𝑔1�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑥𝑥� + 𝑔𝑔2�𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑥𝑥� + 𝑔𝑔3𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇𝑥𝑥� + 𝑔𝑔4�𝑟𝑟𝑡𝑡 − 𝜇𝜇𝑟𝑟� + 𝑔𝑔5𝜀𝜀𝑡𝑡�. 
This gives a system of equations in nearly the same form as that for which we 
developed a solution algorithm in section 2, the only difference being the presence of 
expectations operators and uncertainty. In our base approach, we deal with these 
following the extended path algorithm of Fair and Taylor (1983). I.e., if we are currently 
in period 𝑡𝑡 of a simulation, we assume that the agents in the model believe that for all 
𝑠𝑠 > 𝑡𝑡, 𝜀𝜀𝑠𝑠 = 0. Thus, in each period of a simulation run, we merely have to solve a perfect 
foresight problem of the form of Problem 2, using the methods of section 2. We then 
advance one period, draw new shocks, and repeat the process. 

We can also use a slightly modified form of the representation of Problem 3 to track 
the endogenous “news” that is coming from the bound, following Holden and Paetz 
(2012). In particular, we are effectively replacing the bounded equations with 
equations of the form: 

𝑟𝑟𝑎𝑎,𝑡𝑡 = 𝔼𝔼𝑡𝑡�𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡��𝑎𝑎 + 𝐼𝐼1,⋅𝑦𝑦𝑡𝑡
(𝑎𝑎), 

for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, where, for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}: 
𝑦𝑦𝑇𝑇,𝑡𝑡

(𝑎𝑎) = 𝜂𝜂𝑇𝑇,𝑡𝑡
(𝑎𝑎), ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡

(𝑎𝑎) = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1
(𝑎𝑎) + 𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎),   
implying that 𝑦𝑦1,𝑡𝑡

(𝑎𝑎) = ∑ 𝜂𝜂𝑖𝑖,𝑡𝑡−𝑖𝑖
(𝑎𝑎)𝑇𝑇

𝑖𝑖=1 , where 𝜂𝜂𝑖𝑖,𝑡𝑡
(𝑎𝑎) contains the news about the likelihood of 

the 𝑎𝑎 th bound binding in period 𝑡𝑡 + 𝑖𝑖 . Whereas the 𝑦𝑦 s found by the LCP solver will 
always be positive, the implied 𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎) need not necessarily be positive, as shocks may hit 
today which result in the economy moving away from the bound. 
Higher order approximations Applying the methods of section 2 to models solved 
with a higher order approximation is slightly more difficult than in the linear case. 

Recall that in linear models, we started by introducing news shocks to the bounded 
equation(s) and stacking the impulse responses to these news shocks into the 𝑀𝑀 
matrix. In order to use these impulse responses to tell us about the path of the bounded 
variable, we exploited the fact that the impulse response to a linear combination of 
shocks is the same linear combination of the individual impulse responses. It was this 
linearity that gave the 𝑞𝑞 + 𝑀𝑀𝑦𝑦 representation of the path of the bounded variable. 

Now, consider what would happen in a pruned or non-pruned second order 
approximation following a similar linear combination of shocks. Under such an 
approximation, it is no longer true in general that the impulse response to a linear 
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combination of shocks is a linear combination of the impulse responses, since the 
second order approximation captures interactions between the shocks. However, if the 
partial derivative of 𝑓𝑓  and 𝑔𝑔 with respect to each of the shocks being combined is zero, 
then the shocks only have second or higher order effects, hence, any interaction 
between them would be a fourth order effect or higher, and so would not be captured 
contemporaneously by the second order approximation. The period after the shocks 
hit, though, linearity would again be broken if a non-pruned second order 
approximation had been taken, since the slope of the response of the states to their 
lags vary with the states’ levels. This is not true under a second order pruned 
perturbation approximation though, since under such an approximation, the solution 
takes the form: 

𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0) + 𝑥𝑥𝑡𝑡
(1) + 𝑥𝑥𝑡𝑡

(2), 𝑥𝑥𝑡𝑡
(1) = 𝛼𝛼𝑥𝑥𝑡𝑡−1

(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 

𝑥𝑥𝑡𝑡
(2) = 𝛼𝛼𝑥𝑥𝑡𝑡−1

(2) +
1
2 𝛽𝛽22�𝑥𝑥𝑡𝑡−1

(1) ⊗ 𝑥𝑥𝑡𝑡−1
(1) � + 𝛽𝛽20�𝑥𝑥𝑡𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� +
1
2 𝛽𝛽00(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

where 𝑥𝑥(0) ∈ ℝ𝑛𝑛 is a constant, 𝑥𝑥𝑡𝑡
(1) is the first order component of the approximation, 

𝑥𝑥𝑡𝑡
(2)  is the second order component of the approximation, and where 𝛽𝛽0  has zero 

columns corresponding to each shock with respect to which the partial derivatives of 
𝑓𝑓  and 𝑔𝑔 is zero (Kim et al. 2008). Thus, 𝑥𝑥𝑡𝑡

(1) does not respond to any shocks for which 
the partial derivatives of 𝑓𝑓   and 𝑔𝑔  are zero, and hence 𝑥𝑥𝑡𝑡

(2)  and 𝑥𝑥𝑡𝑡  are linear in such 
shocks. 

In light of this discussion, in order to preserve the 𝑞𝑞 + 𝑀𝑀𝑦𝑦 representation, we just 
need to define 𝑀𝑀  as stacking the impulse responses of the bounded equation(s) to 
news shocks which hit the bounded equation(s) raised to the power of two, rather than 
in levels. This generalises to higher order pruned perturbation approximations as one 
would expect. Hence, in a 𝑑𝑑th order pruned perturbation approximation, we replace 
the bounded equations with equations of the form 𝑟𝑟𝑎𝑎,𝑡𝑡 = 𝔼𝔼𝑡𝑡�𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡��𝑎𝑎 +
𝐼𝐼1,⋅𝑦𝑦𝑡𝑡

(𝑎𝑎), for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, where, now, for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}: 
𝑦𝑦𝑇𝑇,𝑡𝑡

(𝑎𝑎) = 𝜅𝜅�𝜂𝜂𝑇𝑇,𝑡𝑡
(𝑎𝑎)�𝑑𝑑, ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡

(𝑎𝑎) = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1
(𝑎𝑎) + 𝜅𝜅�𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎)�𝑑𝑑, 
where 𝜅𝜅 is a very small constant in order to ensure that the presence of the additional 
shocks does not have an unwanted risk effect elsewhere in the model. We obviously 
scale the impulse responses which make up 𝑀𝑀 by 1𝜅𝜅 to correct for this. In practice, we 
do not actually need to augment the model we approximate (in, e.g. Dynare) with all 
of these additional equations. This is because in the limit as 𝜅𝜅 → 0 , the generated 
impulse responses tend to the impulse responses used to construct the 𝑀𝑀 matrix at 
first order.7 

Hence, in order to impose the bound in non-linear models solved by perturbation, 
we can proceed much as we did at first order. At each time step, we first evaluate the 

                                                 
7 As the instant response must be the same, and the subsequent response is given by 𝑥𝑥𝑡𝑡 − 𝑥𝑥(0) = 𝛼𝛼�𝑥𝑥𝑡𝑡−1 − 𝑥𝑥(0)� in both cases. 
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expected path of the bounded variable(s) in the absence of bounds, and stack the 
results in 𝑞𝑞 . Thanks to the augmented state space representation of pruned 
perturbation solutions, this is possible without any Monte-Carlo simulation, as we 
show in online appendix D. Then, we use the 𝑀𝑀 matrix derived from the first order 
approximation, and calculated as in section 2.2 in the LCP �𝑞𝑞, 𝑀𝑀�. Finally, we use the 
solution to this LCP to calculate the required offsets to each variable this period, again 
based on the first order approximation to the model. Since we are not actually 
augmenting the model’s state space, even for high degree approximations to the 
model, imposing the bound will not slow down simulation much more than it does at 
order one. 
3.2. Integrating over future uncertainty 

The downside to the approach discussed in the previous section is that the news 
shocks that hit the bounded equation(s) will not be conditionally mean zero, i.e. 
𝔼𝔼𝑡𝑡−1�𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎)�𝑑𝑑 ≠ 0. For example, in a model with a zero lower bound on nominal interest 
rates, stochastic discount factors (i.e. 𝛽𝛽𝑡𝑡 is stochastic), and persistence in these discount 
factors, the higher is the state of the discount factor, the higher the chances of hitting 
the bound today, thus 𝔼𝔼𝑡𝑡−1�𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎)�𝑑𝑑  will be decreasing in this state. This failure of 
rationality with respect to expectations at the bound stems from the fact that we are 
still treating the bound in a pseudo-perfect foresight manner. In each period, agents 
act as if they believed that no future news shocks would ever hit the bounded equation. 
Due to the strict convexity of the 𝑥𝑥 ↦ max{0, 𝑥𝑥} mapping and Jensen’s inequality, this 
manifests itself as a systematic downward bias in expectations of 𝑟𝑟𝑡𝑡. 

To rectify this bias, we need to integrate over future uncertainty to calculate the 
expectation of the cumulated news shocks (the elements of 𝑦𝑦). We do this following 
the original stochastic extended path approach of Adjemian and Juillard (2013). In 
period 𝑡𝑡, this approach approximates the value of 𝑥𝑥𝑡𝑡 in the model of Problem 6 by the 
solution to the system: 

0 = 𝔼𝔼𝑡𝑡𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�, 
𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡 max�ℎ�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡�, 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡��, 

∀s ∈ ℕ+, 0 = 𝑓𝑓 �𝑥𝑥𝑡𝑡+𝑠𝑠−1, 𝑥𝑥𝑡𝑡+𝑠𝑠, 𝑥𝑥𝑡𝑡+𝑠𝑠+1, 𝑟𝑟𝑡𝑡+𝑠𝑠, κ𝑠𝑠𝜀𝜀𝑡𝑡+𝑠𝑠�, 
∀s ∈ ℕ+,
𝑟𝑟𝑡𝑡 = max�ℎ�𝑥𝑥𝑡𝑡+𝑠𝑠−1, 𝑥𝑥𝑡𝑡+𝑠𝑠, 𝑥𝑥𝑡𝑡+𝑠𝑠+1, 𝑟𝑟𝑡𝑡+𝑠𝑠, 𝜀𝜀𝑡𝑡+𝑠𝑠�, 𝑔𝑔�𝑥𝑥𝑡𝑡+𝑠𝑠−1, 𝑥𝑥𝑡𝑡+𝑠𝑠, 𝑥𝑥𝑡𝑡+𝑠𝑠+1, 𝑟𝑟𝑡𝑡+𝑠𝑠, κ𝑠𝑠𝜀𝜀𝑡𝑡+𝑠𝑠��, 

where 𝜅𝜅0, 𝜅𝜅1, … control the degree of future uncertainty considered. This is equivalent 
to supposing that in period 𝑡𝑡 agents believe that in period 𝑡𝑡 + 1 they will be told the 
value of all future shocks (i.e. 𝜀𝜀𝑡𝑡+1, 𝜀𝜀𝑡𝑡+2, …). From the perspective of period 𝑡𝑡, all future 
shocks are uncertain, meaning that this should capture well the effect of risk. Further 
justification for this approach comes from the fact that if the model is linear, and 𝜅𝜅0 =
𝜅𝜅1 = ⋯, then by the law of iterated expectations, there is no approximation at all. 



Page 18 of 32 

However, in our context this will be much easier than in the general fully non-linear 
context of Adjemian and Juillard (2013). In particular, in the basic algorithm of that 
paper, to integrate over 𝑆𝑆 periods of future uncertainty, in a model with 𝑚𝑚 shocks, they 
have to solve the perfect foresight model 𝑝𝑝𝑚𝑚𝑚𝑚 times, for some constant 𝑝𝑝 ≥ 2. While 
they are able to reduce this somewhat through the removal of low weighted 
quadrature nodes to produce a sparse tree of shocks, the resulting distribution of paths 
will significantly under-estimate the true variance of the model, and they still have to 
solve the perfect foresight model many more times when the number of shocks is high. 

In our context, we will be able to do much better. In particular, we will be able to 
attain comparable accuracy with the evaluation of only a polynomial in 𝑆𝑆 number of 
solutions of the perfect foresight problem, regardless of the number of shocks in the 
model. Furthermore, since solving an LCP is much easier than solving a general fully 
non-linear perfect foresight problem, each of these solutions is orders of magnitude 
faster for us. The key to our invariance to the number of shocks in the model is the fact 
that in the absence of any bounds, we are able to write down a closed form expression 
for the conditional covariance of the bounded variables, thanks to the properties of 
pruned perturbation solutions. To be slightly more specific, suppose that 𝑤𝑤𝑡𝑡,𝑠𝑠 is the 
value the bounded variables would take at 𝑠𝑠  if the constraints did not apply from 
period 𝑡𝑡  onwards. Then, we are able to calculate cov𝑡𝑡�𝑤𝑤𝑡𝑡,𝑡𝑡+𝑖𝑖, 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑗𝑗� , for 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 ∈ ℕ , 
without any numerical integration. The derivation of this is contained in online 
appendix E. 

For clarity of presentation, let us assume that there is a single bounded variable. As 
ever, the generalisation to multiple bounded variables will be straightforward. Now, 
ideally we would like to integrate over infinitely many periods of future uncertainty, 
but clearly this is not practical in reality. Instead, Adjemian and Juillard (2013) 
advocate integrating over 𝑆𝑆 ∈ ℕ+  periods of future uncertainty, and then ignoring 
uncertainty from period 𝑆𝑆 + 1 onwards. By introducing a “discontinuity” in time of 
this sort, we would risk getting spurious movement in the expected path of variables 
around 𝑆𝑆  periods into the future. Indeed, this occurred in some early numerical 
experiments that took this approach. Instead then, we apply a smooth windowing 
function to the variance of shocks. In particular, if the “true” shock covariance matrix 
is Σ, then when considering uncertainty at horizon 𝑘𝑘, we instead use: 

Σ�𝑘𝑘 ≔
1
2 �1 + cos �𝜋𝜋

min{𝑘𝑘 − 1, 𝑆𝑆}
𝑆𝑆 �� Σ. 

Even with a time varying covariance matrix, it is still straightforward to calculate: 
Ω𝑡𝑡 ≔ var𝑡𝑡[[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑚𝑚]′], 

following the calculations in online appendix E. Then for the purposes of integration, 
we make the approximation that: 

[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑚𝑚]′~N(𝔼𝔼𝑡𝑡[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑚𝑚]′, Ω𝑡𝑡). 
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Of course the cosine window is ad hoc, but so too is the step-function window used 
by Adjemian and Juillard (2013). The legitimacy of both come from the fact that as 𝑆𝑆 
increases, the approximation error should fall. One further argument in favour of our 
cosine window is that it is widely used in signal processing due to its low distortion 
in the frequency domain (see e.g. Harris 1978). In this literature, it is termed the Hann 
or Hanning window. We also note that for most DSGE models, the additional error 
coming from the normal approximation will be minimal, since it is exact at first order, 
and higher order approximations are usually dominated by their first order terms. 

Given this normal approximation, integration is then relatively straightforward. We 
first take the Schur decomposition of Ω𝑡𝑡, giving Ω𝑡𝑡 = 𝑈𝑈𝐷𝐷𝑈𝑈′, where 𝑈𝑈 is an orthogonal 
matrix and 𝐷𝐷 ≥ 0 is diagonal, with the elements sorted in decreasing order. To reduce 
the integration dimension without overly affecting accuracy, we set any elements of 𝐷𝐷 
which are less than some small multiple (e.g. 1%) of the maximum element of 𝐷𝐷 to 
zero, as these components are unlikely to have a big impact. Indeed, when 𝑆𝑆 is very 
large, it may be advisable to set all but the 𝑆𝑆 ̂largest elements of 𝐷𝐷 to zero, which means 
the cost of integration will scale in 𝑆𝑆 ̂ not 𝑆𝑆 . After these steps we that that 𝐷𝐷 =
�𝐷𝐷11 0

0 0
�, where dim 𝐷𝐷11 = 𝑆𝑆̂ × 𝑆𝑆 ̂for some 𝑆𝑆̂ ≤ 𝑆𝑆. Conformably partitioning 𝑈𝑈 as 𝑈𝑈 =

[𝑈𝑈⋅1 𝑈𝑈⋅2] ,and defining Λ ≔ 𝑈𝑈⋅1�𝐷𝐷11 , we then have that ΛΛ′ ≈ Ω𝑡𝑡 . Then if 
𝜁𝜁~N�0, 𝐼𝐼𝑚𝑚̂� , then (𝔼𝔼𝑡𝑡[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑚𝑚]′) + Λ𝜁𝜁   has approximately the same 
distribution as [𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑚𝑚]′ . We have thus transformed the problem of 
integrating over the distribution of [𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑚𝑚]′ to that of integrating over the 
𝑆𝑆 ̂independent standard normals making up 𝜁𝜁 . We do this using either quasi-Monte 
Carlo methods, the sparse nested Gaussian cubature rules of Genz and Keister (1996), 
or the equal weight degree 3 monomial cubature rule with 2𝑆𝑆̂ + 1 nodes8. Of course, 
ideally we would like to break the domain of integration into pieces on which the 
integrand was differentiable, but this is not computationally practical for even 
moderately large 𝑆𝑆.̂9 We discuss the respective merits of these rules in the following 
section. 

Whichever approach to integration is taken, we end with an approximation to the 
expected value of the “𝑦𝑦 ” vector of cumulated news shocks needed to impose the 
bound. This 𝑦𝑦 will imply a set of news shocks that hit today, just as it does when we 

                                                 
8 While there is a degree 3 monomial cubature rule with only 2𝑆𝑆 ̂nodes, including the 0 node generally increases accuracy at no 
cost, since we are evaluating the point anyway. As well as the 0 node, we evaluate at ± 1

2
�2 + 4𝑆𝑆 ̂with respect to each coordinate, 

which is easily shown to give a degree 3 rule. The use of monomial rules has been promoted by e.g. Judd and Skrainka (2011). 
9 For example, with 𝑆𝑆̂ = 1, there are at least as many discontinuities as there are non-zero elements in Λ. While we could get the 
full set of discontinuities at arbitrary dimension using a parametric linear complementarity problem solver such as that of Jones 
and Morrari (2006) which works providing that 𝑀𝑀 is general positive semi-definite, this is computationally intractable for 𝑆𝑆 ̂or 𝑇𝑇 
bigger than (about) ten, and integrating over all of these regions separately is computationally intractable even for much smaller 
𝑆𝑆.̂ 
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ignore future uncertainty. We can thus proceed with the simulation exactly as we do 
in the case without integrating over future uncertainty. 
3.3. Cubature rules 
Degree 3 monomial rule  The equal weight degree 3 monomial cubature rule with 
2𝑆𝑆̂ + 1 nodes rule exactly integrates all degree 3 monomials in the components of 𝜁𝜁 . 
While a third order approximation to the cumulated news shocks, 𝑦𝑦, as a function of 
𝜁𝜁  may do a poor job at capturing this highly non-linear (and even non-differentiable) 
mapping, in practice the approximation to the integral is often surprisingly accurate. 
This is in a large part due to the robustness of the integration rule which stems from 
its equal, positive weights. All known higher degree integration rules that do not use 
more than polynomial in 𝑆𝑆 ̂nodes also feature negative weights on at least some nodes 
(Cools 2003), which means that their result is not guaranteed to lie within the convex 
hull of the source evaluations, and, in this case in which we are integrating a positive 
function (𝑦𝑦), it further means the result can have the wrong sign. 
Genz and Keister (1996) rules  The Genz and Keister (1996) rules allow one to choose 
the maximum degree of monomial that should be integrated exactly, up to a maximum 
order of 51 . The number of points used is Ο�𝑆𝑆�̂�𝐾� , where 2𝐾𝐾 + 1  is the degree of 
monomial that is integrated exactly. When 𝐾𝐾 > 0 and 𝑆𝑆̂ > 1, the rule features negative 
weights on at least one node, which means it is susceptible to the problems mentioned 
above. However, it has a few points in its favour. Firstly, by using negative weights, the 
rule is able to ensure that the maximum over the absolute vectors of integration points 
is independent of 𝑆𝑆.̂ This contrasts with the aforementioned rule in which the higher 
is 𝑆𝑆,̂ the further into the tails of the distribution one has to evaluate the integrand. 
Given the extreme non-linearity of the integrand, evaluating far into the tails can lead 
the equal weighted integration rule to produce a heavily upwards biased estimate of 
the integral. Secondly, by using a higher degree rule, we can generally obtain a better 
approximation to the integrand, despite its non-differentiability. Finally, the Genz and 
Keister (1996) rules are nested, which means that we can use an adaptive integration 
degree without wasting evaluations, continuing to increase the degree until 
approximate convergence. In practice, the results of these rules often repeatedly flip 
from biased down to biased up as the degree increases, due to the discontinuities. To 
lessen this, DynareOBC gives the option of averaging integral estimates of adjacent 
orders, which still integrates polynomials of the lower of the two orders exactly.  
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Quasi-Monte Carlo The final integration method we consider is quasi-Monte Carlo, 
generating points from a Sobol sequence (Sobol 1967). Given that the functions we are 
integrating are absolutely continuous (as they are piecewise polynomial, with a finite 
number of manifolds of non-differentiability), quasi-Monte Carlo with 21+𝑙𝑙 − 1 draws 
will produce an error that decays as Ο �𝑙𝑙�̂�𝑆

2𝑙𝑙�. With the Sobol sequence, the choice of 

21+𝑙𝑙 − 1  integration points for some 𝑙𝑙 ∈ ℕ  also ensures that the points are exactly 
mean zero, hopefully lessening overall bias. However, on functions that are well 
approximated by a polynomial, quasi-Monte Carlo will generally require far more 
evaluations of the integrand for a similar accuracy than the Genz and Keister (1996) 
rules would. Which dominates in practice will depend on the precise integrand, which 
in turn will depend on the model and its current state. At times where the bound is 
either highly likely to bind or highly likely not to bind, whatever future shocks hit, it 
is likely that the Genz and Keister (1996) rules will dominate, however, at times when 
the bound is only binding with moderate probability, quasi-Monte Carlo’s “dumb” 
approach may give it better performance. 
3.4. Further details on the DynareOBC toolkit 

Code implementing all of the cubature algorithms discussed here is contained in the 
author’s “DynareOBC” toolkit which is a suite of MATLAB files designed to augment 
the abilities of Dynare (Adjemian et al. 2011).  The toolkit may be freely downloaded 
from http://github.org/tholden/dynareOBC, and this site also contains complete 
documentation for its assorted options.10 To use it, one merely has to include a “max”, 
“min” or “abs” in the MOD file describing the DSGE model to be simulated, and then 
to invoke DynareOBC with the MATLAB command “dynareOBC 
ModFileName.MOD”. 

Internally, DynareOBC uses the “YALMIP” (Löfberg 2004) MATLAB toolkit as an 
interface to a wide variety of open source and commercial mixed integer linear 
programming solvers. The distribution of DynareOBC comes with a variety of open 
source solvers, so DynareOBC is certainly not dependent on any particular commercial 
packages (other than MATLAB itself). DynareOBC also attempts to obtain a 
parametric solution to the LCP �𝑞𝑞, 𝑀𝑀� for 𝑞𝑞 which only violate the bound in at most 
the first few periods, using the MPT toolkit (Herceg et al. 2013), which in turn uses an 
algorithm due to Jones and Morrari (2006). The resulting parametric solution takes the 
form of a compiled MEX function, which, when passed a 𝑞𝑞, returns the 𝑦𝑦 that solves 
the LCP. This reduces the number of times the LCP needs to be solved in inner loops, 
increasing performance. 

                                                 
10 A PDF of the toolkit’s documentation is available from: https://github.com/tholden/dynareOBC/raw/master/ReadMe.pdf. 

http://github.org/tholden/dynareOBC
https://github.com/tholden/dynareOBC/raw/master/ReadMe.pdf
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Furthermore, DynareOBC includes efficient code for testing whether 𝑀𝑀  is a P-
matrix, based on an algorithm of Tsatsomeros and Li (2000), and can also test if 𝑀𝑀 is 
an S-matrix or (strictly) semi-monotone, properties which all play important roles in 
the theoretical results on existence and uniqueness established in Holden (2016). 
Additionally, DynareOBC contains code for accurately simulating integrals over non-
linear functions of the model’s variables, facilitating, for example, the calculation of 
Jin and Judd (2002) style accuracy checks. Thus, DynareOBC functions as an easy to 
use, one stop shop for all queries one might have of a model with OBCs. 

4.  Performance of our algorithm 

4.1. General comments 
The accuracy of the numerical algorithm presented in this paper is almost an 

immediate consequence of results from the prior literature. In particular, Guerrieri and 
Iacoviello (2015) showed the surprising accuracy of a perfect foresight solution to an 
otherwise linear approximation to a stochastic non-linear model with occasionally 
binding constraints. When a first order approximation is taken to the underlying 
model, and there is a unique solution, our method will produce exactly the same 
answers as that of Guerrieri and Iacoviello (2015).11,12 Relative to their method, our 
method improves along four dimensions. Firstly, our method is guaranteed to produce 
a result in finite time. Secondly, it gives guarantees about which solution is selected 
when there are multiple. Thirdly, it also applies to higher order pruned perturbation 
solutions to the underlying model. Given the evidence that higher order pruned 
perturbations solutions are considerably more accurate than first order 
approximations (see e.g. Lan and Meyer-Gohde 2013b), this is likely to produce 
substantial accuracy gains, particularly as OBCs are usually located far from the 
steady-state. Finally, our method takes future uncertainty into account, meaning that 
it captures precautionary effects, unlike the Guerrieri and Iacoviello (2015) method. 
That integrating over future uncertainty usually increases accuracy in non-linear 
models has been established by Adjemian and Juillard (2013), so here too substantial 
accuracy gains are almost certain. 

Nonetheless, in the rest of this section, we give some further brief indications of the 
accuracy and speed of our approach, by applying the implementation of it in the 
DynareOBC toolkit to three indicative models with OBCs. We restrict ourselves to 
models for which standard dynamic programming results imply there is a unique 
solution to the fully nonlinear model, since the presence of multiple solutions makes 
fair accuracy comparisons nearly impossible, as one cannot guarantee that both 

                                                 
11 This point was noted by Guerrieri and Iacoviello (2015) with respect to the solution algorithm by Holden and Paetz (2012). 
12 A numerical demonstration of their equivalence in this situation is contained in the “Tests” sub-folder of DynareOBC. 
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methods are returning the same solution. Likewise, we restrict ourselves to models for 
which an exact or near exact solution is available, to ensure that our results are not 
driven by poor quality accuracy measures. Away from these very well behaved 
problems, other algorithms will often fail to converge, while ours will always give an 
answer in finite time. For this reason, we do not present speed comparisons, since on 
a broad enough set of examples, our algorithm would always dominate. 
4.2. A model with a closed form solution 

We first apply our method to a model for which we can calculate an exact closed 
form solution, giving very reliable accuracy measures. The model has the property 
that integrating over a single period of uncertainty is enough for accuracy, making it 
an ideal test of the performance of different cubature rules. 

Suppose the representative household in an economy chooses consumption 𝐶𝐶𝑡𝑡 and 
zero net supply bond holdings 𝐵𝐵𝑡𝑡 to maximise: 

𝔼𝔼𝑡𝑡 � 𝛽𝛽𝑘𝑘 𝐶𝐶𝑡𝑡+𝑘𝑘
1−𝛾𝛾 − 1
1 − 𝛾𝛾

∞

𝑘𝑘=0
, 

subject to the restriction that: 
𝐴𝐴𝑡𝑡 + 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑡𝑡−1 = 𝐶𝐶𝑡𝑡 + 𝐵𝐵𝑡𝑡 

for all 𝑡𝑡 ∈ ℤ, where 𝐴𝐴𝑡𝑡’s evolution is given by: log 𝐴𝐴𝑡𝑡 = log 𝐴𝐴𝑡𝑡−1 + 𝑔𝑔𝑡𝑡, where 
𝑔𝑔𝑡𝑡 = max�0, �1 − 𝜌𝜌�𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡−1 + 𝜀𝜀𝑡𝑡� 

and 𝜀𝜀𝑡𝑡~N�0, 𝜎𝜎2� . This specification may be thought of as capturing the fact that 
technologies cannot be un-invented. Market clearing implies 𝐴𝐴𝑡𝑡 = 𝐶𝐶𝑡𝑡 and 𝐵𝐵𝑡𝑡 = 0 for all 
𝑡𝑡 ∈ ℤ, and from this, a closed form expression for 𝑅𝑅𝑡𝑡 may be derived.13 Using this, we 
define simulation errors as the gap between the true value of log 𝑅𝑅𝑡𝑡 and the simulated 
value. 14  In Table 1, we report errors along simulated paths of length 1000 , after 
discarding an initial 100  periods of burn-in, where for simulation, we used the 
following parameters: 𝛽𝛽 ≔ 0.99 , 𝛾𝛾 ≔ 5 , 𝑔𝑔̅ ≔ 0.005 , 𝜌𝜌 ≔ 0.95  and 𝜎𝜎 ≔ 0.007 . All 
cubature runs involve integrating over a single period of future uncertainty, which is 
sufficient here. We also report errors from the model with the bound removed, for 
comparison. 

                                                 
13  In particular, 𝑅𝑅𝑡𝑡 = �𝛽𝛽 ��1 − Φ�𝜇𝜇𝑡𝑡

𝜎𝜎 �� + �1 − Φ �𝛾𝛾𝜎𝜎2−𝜇𝜇𝑡𝑡
𝜎𝜎 �� exp �𝛾𝛾2𝜎𝜎2

2 − 𝛾𝛾𝜇𝜇𝑡𝑡���
−1

 , where 𝜇𝜇𝑡𝑡 = (1 − 𝜌𝜌)𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡  and Φ  is the standard 

normal cumulative distribution function. 
14 We also recorded errors in 𝑔𝑔𝑡𝑡, but these were essentially zero for all simulation runs. 
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Bound in 
Model 

Orde
r Cubature 

Seconds
15 

Log10 Mean 
Abs Error 

Log10 Root 
Mean 

Squared Error 
Log10 Max 
Abs Error 

Log10 Mean 
Abs Error at 

Bound16 
No 1 N/A 66 -3.213 -3.213 -3.213  
No 2 N/A 62 -16.82 -16.63 -15.78  
No 3 N/A 53 -16.70 -16.57 -15.95  
Yes 1 No 141 -2.435 -2.218 -1.882 -1.882 
Yes 2 No 139 -2.425 -2.194 -1.862 -1.862 
Yes 3 No 140 -2.425 -2.194 -1.862 -1.862 

Yes 1 
Monomial, Degree 

3 
274 -3.136 -3.073 -2.725 -3.131 

Yes 2 
Monomial, Degree 

3 
1537 -3.378 -3.172 -2.706 -3.893 

Yes 3 
Monomial, Degree 

3 
1397 -3.378 -3.172 -2.706 -3.893 

Yes 2 Sparse, Degree 3 1794 -3.016 -2.777 -2.415 -2.415 
Yes 2 Sparse, Degree 5 1840 -3.016 -2.777 -2.415 -2.415 
Yes 2 Sparse, Degree 7 2009 -3.280 -3.032 -2.663 -2.663 
Yes 2 QMC, 15 Points 1965 -3.040 -2.895 -2.664 -2.664 
Yes 2 QMC, 63 Points 3184 -3.394 -3.260 -3.020 -3.020 
Yes 2 QMC, 1023 Points 5197 -3.804 -3.638 -3.351 -3.351 

Table 1: Accuracy in the model of bounded productivity growth 

As may be seen from Table 1, our algorithm is generally very fast, as imposing the 
bound only doubles the running time without cubature. While this is a very simple 
model, the advantage of our algorithm is that running times are almost independent 
of the complexity of the model, so similar running times can be expected with even 
much larger models. These results also show that our algorithm is quite accurate, 
providing cubature is used. Without cubature, accuracy is below the accuracy of the 
first order approximation to the model without a bound. Since without cubature, at 
first order, our method will give identical answers to that of Guerrieri and Iacoviello 
(2015), this suggests that neither their algorithm nor ours without cubature can deliver 
comparable accuracy to that delivered by linearization in models without bounds. 
However, with cubature and a second order approximation, we can deliver errors that 
are lower in the model with the bound than those in the first order approximation to 
the model without the bound. As might be expected, quasi-Monte Carlo with many 
points is the most accurate integration method, but it does come at a significant time 
cost. 

                                                 
15 All timings are “wall” time, and include time spent starting the parallel pool, time spent compiling code (although written in 
MATLAB, DynareOBC generates and compiles C code for key routines), and time spent calculating accuracy. Code was run on 
one of the following (very similar) twenty core machines: 2x E5-2670 v2 2.5GHz, 64GB RAM; or 2x E5-2660 v3 2.6GHz, 128GB 
RAM. Use of machines with network attached storage means that there may be some additional variance in these timings.  
16 Errors conditional on the bounded variable being less than 0.0001. The numbers for this column would be identical had we 
reported root mean squared errors or maximum absolute errors, conditional on being at the bound. 
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4.3. A model for which log-linearization gives an exact solution in the 
absence of bounds 

We next apply our procedure to a model for which log-linearization gives the exact 
solution when bounds are removed, but which features quite different behaviour 
when bounds are included, due to precautionary effects. This helps us to isolate the 
inaccuracy coming from the presence of an occasionally binding constraint. 

The model is a real business cycle model with a 100% depreciation rate (following 
Brock and Mirman (1972)), endogenous labour supply, and a lower bound on capital.  
The bound on capital may be thought of as an extreme case of a capital adjustment 
cost, with output falling to zero if the new level of capital is below the bound. To be 
more specific, the social planner chooses consumption, 𝐶𝐶𝑡𝑡 , labour effort, 𝐿𝐿𝑡𝑡 , and 
capital, 𝐾𝐾𝑡𝑡, to maximise: 

𝔼𝔼𝑡𝑡 � 𝛽𝛽𝑘𝑘

⎣
⎢⎡log 𝐶𝐶𝑡𝑡+𝑘𝑘 −

𝐿𝐿𝑡𝑡+𝑘𝑘
1+𝜈𝜈

1 + 𝜈𝜈⎦
⎥⎤

∞

𝑘𝑘=0
, 

subject to the capital constraint 𝐾𝐾𝑡𝑡 ≥ 𝜃𝜃𝐾𝐾𝑡𝑡−1, and to the budget constraint, 
𝐶𝐶𝑡𝑡 + 𝐾𝐾𝑡𝑡 = 𝑌𝑌𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐾𝐾𝑡𝑡−1

𝛼𝛼 𝐿𝐿𝑡𝑡
1−𝛼𝛼, 

where productivity, 𝐴𝐴𝑡𝑡, evolves according to 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1
𝜌𝜌 exp 𝜀𝜀𝑡𝑡, where 𝜀𝜀𝑡𝑡~N�0, 𝜎𝜎2�. 

The first order conditions of the model imply that (1 − 𝛼𝛼) 𝑌𝑌𝑡𝑡
𝐶𝐶𝑡𝑡

= 𝐿𝐿𝑡𝑡
1+𝜈𝜈 and that: 

1
𝐶𝐶𝑡𝑡

− 𝜆𝜆𝑡𝑡 = 𝛼𝛼𝛽𝛽𝔼𝔼𝑡𝑡
𝑌𝑌𝑡𝑡+1

𝐶𝐶𝑡𝑡+1𝐾𝐾𝑡𝑡
− 𝛽𝛽𝜃𝜃𝔼𝔼𝑡𝑡𝜆𝜆𝑡𝑡+1, 

where 𝜆𝜆𝑡𝑡  is the KKT-multiplier on the borrowing constraint. To convert the KKT 
conditions into a form amenable to simulation by our algorithm, note that the bound 
implies that 1

𝐶𝐶𝑡𝑡
= 1

𝑌𝑌𝑡𝑡−𝐾𝐾𝑡𝑡
≥ 1

𝑌𝑌𝑡𝑡−𝜃𝜃𝐾𝐾𝑡𝑡−1
 , and the positivity of 𝜆𝜆𝑡𝑡  implies that 1

𝐶𝐶𝑡𝑡
≥

𝛼𝛼𝛽𝛽𝔼𝔼𝑡𝑡
𝑌𝑌𝑡𝑡+1

𝐶𝐶𝑡𝑡+1𝐾𝐾𝑡𝑡
− 𝛽𝛽𝜃𝜃𝔼𝔼𝑡𝑡𝜆𝜆𝑡𝑡+1 . Furthermore, by the KKT conditions, at least one of these 

constraints always binds. Hence, 
1
𝐶𝐶𝑡𝑡

= max �
1

𝑌𝑌𝑡𝑡 − 𝜃𝜃𝐾𝐾𝑡𝑡−1
, 𝛼𝛼𝛽𝛽𝔼𝔼𝑡𝑡

𝑌𝑌𝑡𝑡+1
𝐶𝐶𝑡𝑡+1𝐾𝐾𝑡𝑡

− 𝛽𝛽𝜃𝜃𝔼𝔼𝑡𝑡𝜆𝜆𝑡𝑡+1�. 

In the following, we set 𝛼𝛼 = 0.3, 𝛽𝛽 = 0.99, 𝜈𝜈 = 2, 𝜃𝜃 = 0.99, 𝜌𝜌 = 0.95 and 𝜎𝜎 = 0.01. 
In order to have a comparator for accuracy tests, we first solve the model globally to 

a high degree of accuracy, using value function iteration on a fine grid. Full details of 
the global solution procedure are given in appendix F, where we also plot the value 
and policy functions for the problem. Note, that as 𝐾𝐾𝑡𝑡−1 → ∞ , in order to avoid 
violating the constraint, the solution must feature 𝐿𝐿𝑡𝑡 → ∞ . Thus, whereas in the 
original model without bound, the value function is monotonic increasing in capital, 
in the model with bound, the value function is decreasing in capital for large enough 
capital levels. This significantly changes behaviour when away from the bound, as the 
planner will increase consumption now to avoid having too much capital in future. 
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To assess the extent to which integrating over future uncertainty captures these 
effects, we compare the value of consumption implied by the global solution 
procedure to that implied by our solution procedure with different values for 𝑆𝑆 (the 
number of periods of future uncertainty considered). In particular, we again report 
errors along simulated paths of length 1000, after discarding an initial 100 periods of 
burn-in, where now our error measure is the difference between the value of log 𝐶𝐶𝑡𝑡 
implied by our algorithm at order 2,17 and that implied by the global procedure. 

 

 
Figure 1: Effect on accuracy of increasing the number of periods of uncertainty considered 

 
The log10 mean absolute values of these errors over the simulation path are shown 

in Figure 1 for the fastest, median and slowest integration rules used for the previous 
model, with 𝑆𝑆 = 0, … ,22 . It may be seen that integrating over future uncertainty 
produces reasonable accuracy gains in this model, with accuracy initially increasing 
as more periods of future uncertainty are considered. Accuracy eventually plateaus 
out for all integration rules as other sources of inaccuracy come to dominate, such as 
the limited order of the perturbation approximation, the imperfections of the 
integration, and the fact that the original stochastic extended path algorithm is only 
an approximation to full rationality. Nonetheless, with ten or more periods of 
uncertainty, both the monomial and sparse integration rules more than double the 
accuracy of the algorithm without cubature. 

                                                 
17 While the model without bounds may be exactly simulated via log-linearization, the bound introduces additional non-log-
linearities which means there are substantial gains from higher order approximations. 
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For some idea of the relative speeds of these integration rules, we note that with 22 
periods of uncertainty considered, solving and simulating 1100  periods with the 
monomial rule required a total of 2778 seconds, doing so with the sparse rule took a 
total of 4361 seconds, and doing the same with the quasi-Monte Carlo rule completed 
in a total of 13350 seconds.18 All of these times are fast enough that they are unlikely 
to cause any real inconvenience to users of the algorithm, and of course running times 
were much faster with fewer periods of uncertainty. We also stress again that in larger 
models, the user can still expect similar running times, as the cost of our algorithm is 
related to the number of periods at the bound, rather than directly to the number of 
state variables. 

Surprisingly, for this model, it seems that the faster, monomial rule actually 
produces the most accurate results of the three approaches, at medium horizons, in 
terms of mean absolute error.19 This is perhaps due to the fact that the monomial rule 
places more weight on the tails of the distribution, better capturing the area in which 
the model is at the bound. These results suggest that this fast monomial rule may often 
have adequate performance in practice, removing the need to ever use slower 
integration rules such as quasi-Monte Carlo. 
4.4. A model which is otherwise linear 

The previous two models featured non-linearities other than the bound, giving an 
additional source of inaccuracy. We finish by considering a model which is linear other 
than its bounds, to give the clearest picture of the effects of increasing the integration 
horizon. We choose one with four bounds, to further illustrate that our method can 
readily scale up to several bounds. 

Suppose the social planner in a small open economy chooses consumption 𝐶𝐶𝑡𝑡 , 
disposal 𝐷𝐷𝑡𝑡 and bond holdings 𝐵𝐵𝑡𝑡, to maximise: 

𝔼𝔼𝑡𝑡 � 𝛽𝛽𝑘𝑘 �−
1
2 (1 − 𝐶𝐶𝑡𝑡)2 −

𝜙𝜙
2 𝐵𝐵𝑡𝑡

2�
∞

𝑘𝑘=0
, 

subject to the budget constraint: 
𝐶𝐶𝑡𝑡 + 𝐷𝐷𝑡𝑡 + 𝐵𝐵𝑡𝑡 − 𝑅𝑅𝐵𝐵𝑡𝑡−1 = 𝑌𝑌𝑡𝑡 = max{𝑌𝑌, 𝐴𝐴𝑡𝑡}, 

the positivity constraints: 
0 ≤ 𝐶𝐶𝑡𝑡, 0 ≤ 𝐷𝐷𝑡𝑡, 

and the certain repayment of interest constraint: 
∀𝑘𝑘 ∈ ℕ+, Pr

𝑡𝑡
�(𝑅𝑅 − 1)𝐵𝐵𝑡𝑡 ≤ 𝑌𝑌𝑡𝑡+𝑘𝑘� = 1. 

Preferences here feature a cost of holding large positive or negative asset positions, as 
is common in the open economy literature (see e.g. Schmitt-Grohé and Uribe 2003), 
which will ensure that agents cannot accumulate enough savings to stay at 𝐶𝐶𝑡𝑡 = 1 

                                                 
18 These are again wall times, from a run on the hardware listed in footnote 15. 
19 The sparse and quasi Monte Carlo rules have very slightly lower maximum absolute error at long horizons, however. 
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forever, with probability one. The production function incorporates a back-stop 
technology (e.g. agriculture), to ensure that income is strictly positive with probability 
one. 

We suppose that productivity evolves according to: 
𝐴𝐴𝑡𝑡 = �1 − 𝜌𝜌�𝜇𝜇 + 𝜌𝜌𝐴𝐴𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, 

where 𝜀𝜀𝑡𝑡~NIID�0, 𝜎𝜎2�, with 𝜎𝜎 > 0. Hence, there is a positive probability that 𝐴𝐴𝑡𝑡 < 𝑌𝑌, 
regardless of the value of 𝐴𝐴𝑡𝑡−1 . Consequently, the certain repayment of interest 
condition implies that: 

𝐵𝐵𝑡𝑡 ≥ −
𝑌𝑌

𝑅𝑅 − 1. 

 Writing 𝜆𝜆𝐶𝐶,𝑡𝑡 and 𝜆𝜆𝐷𝐷,𝑡𝑡 for the Lagrange multipliers on the positivity constraints on 
consumption and disposal, respectively, and 𝜆𝜆𝑌𝑌,𝑡𝑡 for the Lagrange multiplier on the 
budget constraint, the first order conditions of the problem imply that 𝜆𝜆𝐷𝐷,𝑡𝑡 = 𝜆𝜆𝑌𝑌,𝑡𝑡 , 
𝜆𝜆𝐶𝐶,𝑡𝑡 = 𝜆𝜆𝑌𝑌,𝑡𝑡 − (1 − 𝐶𝐶𝑡𝑡), and that 𝜙𝜙𝐵𝐵𝑡𝑡 + 𝜆𝜆𝑌𝑌,𝑡𝑡 = (𝑅𝑅 − 1)𝜆𝜆𝐵𝐵,𝑡𝑡 + 𝛽𝛽𝑅𝑅𝔼𝔼𝑡𝑡𝜆𝜆𝑌𝑌,𝑡𝑡+1. Now, if 𝐶𝐶𝑡𝑡 > 0, 
then 𝜆𝜆𝐶𝐶,𝑡𝑡 = 0 , so 𝐶𝐶𝑡𝑡 = 1 − 𝜆𝜆𝑌𝑌,𝑡𝑡 . Hence, 𝐶𝐶𝑡𝑡 = max�0,1 − 𝜆𝜆𝑌𝑌,𝑡𝑡� . Similarly, if 𝐵𝐵𝑡𝑡 > − 𝑌𝑌

𝑅𝑅−1 , 
then 𝜆𝜆𝐵𝐵,𝑡𝑡 = 0, so 𝐵𝐵𝑡𝑡 = 1

𝜙𝜙 �𝛽𝛽𝑅𝑅𝔼𝔼𝑡𝑡𝜆𝜆𝑌𝑌,𝑡𝑡+1 − 𝜆𝜆𝑌𝑌,𝑡𝑡�. Hence: 

𝐵𝐵𝑡𝑡 = max �−
𝑌𝑌

𝑅𝑅 − 1 ,
1
𝜙𝜙 �𝛽𝛽𝑅𝑅𝔼𝔼𝑡𝑡𝜆𝜆𝑌𝑌,𝑡𝑡+1 − 𝜆𝜆𝑌𝑌,𝑡𝑡��. 

For convenience, we define: 
𝑋𝑋𝑡𝑡 ≔ 𝐶𝐶𝑡𝑡 + 𝐷𝐷𝑡𝑡. 

Then, from the complementary slackness condition of 𝐷𝐷𝑡𝑡 and 𝜆𝜆𝐷𝐷,𝑡𝑡: 
0 = min�𝐷𝐷𝑡𝑡, 𝜆𝜆𝐷𝐷,𝑡𝑡� = min�𝑋𝑋𝑡𝑡 − 𝐶𝐶𝑡𝑡, 1 − 𝐶𝐶𝑡𝑡 + 𝜆𝜆𝐶𝐶,𝑡𝑡�. 

If 𝐶𝐶𝑡𝑡 = 0, then we have that 0 = min�𝑋𝑋𝑡𝑡, 1 + 𝜆𝜆𝐶𝐶,𝑡𝑡� = 𝑋𝑋𝑡𝑡, so 𝐶𝐶𝑡𝑡 = 0 = min{𝑋𝑋𝑡𝑡, 1}, and if 
𝐶𝐶𝑡𝑡 > 0 , then 𝜆𝜆𝐶𝐶,𝑡𝑡 = 0 , so we have that 0 = min{𝑋𝑋𝑡𝑡 − 𝐶𝐶𝑡𝑡, 1 − 𝐶𝐶𝑡𝑡} , implying that 𝐶𝐶𝑡𝑡 =
min{𝑋𝑋𝑡𝑡, 1} in this case too. Hence, in either case we can rewrite the 𝐶𝐶𝑡𝑡 equation as: 

min{1, 𝑋𝑋𝑡𝑡} = 𝐶𝐶𝑡𝑡 = max�0,1 − 𝜆𝜆𝑌𝑌,𝑡𝑡�. 
Finally, the budget constraint may be rewritten in terms of 𝑋𝑋𝑡𝑡 as: 

𝑋𝑋𝑡𝑡 + 𝐵𝐵𝑡𝑡 − 𝑅𝑅𝐵𝐵𝑡𝑡−1 = 𝑌𝑌𝑡𝑡 = max{𝑌𝑌, 𝐴𝐴𝑡𝑡}. 
This gives a system of equations in 𝐵𝐵𝑡𝑡 , 𝑋𝑋𝑡𝑡 , 𝜆𝜆𝑌𝑌,𝑡𝑡  and 𝐴𝐴𝑡𝑡  involving four occasionally 
binding constraints. In the following, we set 𝛽𝛽 = 0.99, 𝜇𝜇 = 0.5, 𝜌𝜌 = 0.95, 𝜎𝜎 = 0.05, 𝑌𝑌 =
0.25, 𝑅𝑅 = 𝛽𝛽−1 and 𝜙𝜙 = 𝑅𝑅 − 1.20 

As before, we first solve the model globally to a high degree of accuracy, using value 
function iteration on a fine grid. Full details of the global solution procedure are given 
in appendix G, where we again plot the value and policy functions for the problem. 
To assess the improvement in accuracy from integrating over future uncertainty, we 
compare the value of 𝑋𝑋𝑡𝑡 implied by the global solution procedure to that implied by 
our solution procedure at order 1, with different values for 𝑆𝑆 (the number of periods 

                                                 
20 𝑅𝑅 = 𝛽𝛽−1 implies that 𝐵𝐵𝑡𝑡 = 0 in steady-state. 𝜙𝜙 = 𝑅𝑅 − 1 simplifies some expressions for the solution in the absence of bounds. 
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of future uncertainty considered), along simulated paths of length 1000 , after 
discarding an initial 100 periods of burn-in. 
 

 
Figure 2: Effect on accuracy of increasing the number of periods of uncertainty considered 

 
The log10 maximum absolute values of these errors over the simulation path are 

shown in Figure 2 for the monomial and sparse integration rules, with 𝑆𝑆 = 0, … ,45. 
Since there are no other sources of inaccuracy here, integrating over future uncertainty 
produces substantial accuracy gains, with accuracy nearly three times higher with 
large numbers of periods of considered uncertainty, compared to the case without 
cubature. The eventual plateau in accuracy is driven by the imperfections of our 
integration rules and the fact that the original stochastic extended path algorithm is 
only an approximation to full rationality. With unbounded computer power, we could 
run quasi-Monte Carlo integration with (e.g.) 22𝑚𝑚+1 − 1 points, and the result would 
give an arbitrarily accurate approximation to the integral with high enough 𝑆𝑆 . In 
practice, this is unnecessary however, as our results here suggest that there are already 
very substantial returns to integrating over future uncertainty using integration rules 
with far fewer points, and even extremely accurate integration would not solve the fact 
that the original stochastic extended path algorithm is only an approximation to full 
rationality. 

Due to the presence of four bounds in this model, the LCPs which are solved each 
period are larger than those in a model with a single bound. Furthermore, the 
structure and parameters of the model mean that the model spends long runs at the 
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bound, further increasing the computational cost. However, despite this, the running 
times are still fast enough to be practical. With 45 periods of considered uncertainty, if 
the monomial integration rule is used, it completes a simulation of 1100 periods in a 
total of 1383 seconds, and with the sparse rule, it completes in a total of 2855 seconds.21 
This illustrates that our algorithm readily scales up to models with multiple bounds. 

5. Conclusion 

This paper has presented the first algorithm for the perfect foresight solution of 
otherwise linear models with occasionally binding constraints that always completes 
in finite time, and which is able to detect when the model has no solution. The paper 
went on to exploit this underlying solver to produce a robust, accurate and scalable 
simulation algorithm for general nonlinear models with occasionally binding 
constraints that accounted for future uncertainty. Code implementing all of the 
algorithms discussed here is contained in the author’s “DynareOBC” toolkit which 
augments the abilities of Dynare (Adjemian et al. 2011) with the ability to solve models 
with OBCs.  

We also derived results on the computational complexity of the problem which 
suggest that for large models, there is unlikely to be an alternative computational 
approach which is significantly faster. These computational complexity results also 
imply that when the model does not always have a unique solution (i.e. 𝑀𝑀 is not a P-
matrix, in the language of Holden (2016)), then computing expectations is a 
computationally difficult problem. Given that Holden (2016) showed that in standard 
New Keynesian models with a ZLB, under inflation targeting there is not always a 
unique solution, though there is under price-level targeting, then this implies that 
computing expectations is likely to be much easier for agents under price-level 
targeting than under inflation targeting. Given that there are often substantial welfare 
costs to failures in forming expectations rationally, this provides further arguments in 
favour of price level targeting to those contained in Holden (2016). 
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Online Appendices to: “Computation of solutions to 
dynamic models with occasionally binding 
constraints.” 

Tom D. Holden, School of Economics, University of Surrey 

A. Construction of a model with arbitrary 𝑴𝑴 matrix 

Let ℳ ∈ ℝ𝑇𝑇×𝑇𝑇. Consider a model with the following equations: 
𝒶𝒶𝑡𝑡 = max�0, 𝒷𝒷𝑡𝑡�, 

𝒶𝒶𝑡𝑡 = 1 + � � ℳ𝑗𝑗,𝑘𝑘�𝒸𝒸𝑗𝑗−1,𝑘𝑘−1,𝑡𝑡 − 𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡�
𝑇𝑇

𝑘𝑘=1

𝑇𝑇

𝑗𝑗=1
+ 𝒹𝒹0,𝑡𝑡, 

𝒸𝒸0,0,𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡, 
𝒸𝒸0,𝑘𝑘,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝒸𝒸0,𝑘𝑘−1,𝑡𝑡+1, ∀𝑘𝑘 ∈ {1, … , 𝑇𝑇}, 

𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡 = 𝒸𝒸𝑗𝑗−1,𝑘𝑘,𝑡𝑡−1, ∀𝑗𝑗 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘 ∈ {0, … , 𝑇𝑇}, 
𝒹𝒹𝑘𝑘,𝑡𝑡 = 𝒹𝒹𝑘𝑘+1,𝑡𝑡−1, ∀𝑘𝑘 ∈ {0, … , 𝑇𝑇 − 1}, 

𝒹𝒹𝑇𝑇,𝑡𝑡 = 0 
with steady-state 𝒶𝒶⋅ = 𝒷𝒷⋅ = 1, 𝒸𝒸𝑗𝑗,𝑘𝑘,⋅ = 0, 𝒹𝒹𝑘𝑘,⋅ = 0 for all 𝑗𝑗, 𝑘𝑘, ∈ {0, … , 𝑇𝑇}. Defining: 

𝑥𝑥𝑡𝑡 ≔ �𝒶𝒶𝑡𝑡 𝒷𝒷𝑡𝑡 �vec 𝒸𝒸⋅,⋅,𝑡𝑡�′ 𝒹𝒹⋅,𝑡𝑡
′ �′ 

and dropping expectations, this model is then in the form of Problem 2. 
Now consider the model’s Problem 3 type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �
𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇
, 

where 𝑦𝑦⋅,⋅  is defined as in Problem 3. Thus, if 𝒸𝒸𝑗𝑗,𝑘𝑘,0 = 0  and 𝒹𝒹𝑘𝑘,0 = 0  for all 𝑗𝑗, 𝑘𝑘 ∈
{0, … , 𝑇𝑇}, then for all 𝑡𝑡 ∈ ℕ+, 𝑗𝑗, 𝑘𝑘 ∈ {0, … , 𝑇𝑇}: 

𝒸𝒸0,𝑘𝑘,𝑡𝑡 = �𝑦𝑦𝑡𝑡+𝑘𝑘,0 if 𝑡𝑡 + 𝑘𝑘 ≤ 𝑇𝑇
0 if 𝑡𝑡 + 𝑘𝑘 > 0

, 

𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡 = �
𝒸𝒸0,𝑘𝑘,𝑡𝑡−𝑗𝑗 if 𝑡𝑡 − 𝑗𝑗 > 0

0 if 𝑡𝑡 − 𝑗𝑗 ≤ 0
= �𝑦𝑦𝑡𝑡+𝑘𝑘−𝑗𝑗,0 if 𝑡𝑡 − 𝑗𝑗 > 0, 𝑡𝑡 + 𝑘𝑘 − 𝑗𝑗 ≤ 𝑇𝑇

0 otherwise
. 

Hence, for all 𝑡𝑡 ∈ ℕ+, 𝑗𝑗, 𝑘𝑘 ∈ {1, … , 𝑇𝑇}: 

𝒸𝒸𝑗𝑗−1,𝑘𝑘−1,𝑡𝑡 − 𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡 = �𝑦𝑦𝑡𝑡+𝑘𝑘−𝑗𝑗,0 if 𝑡𝑡 − 𝑗𝑗 = 0, 𝑡𝑡 + 𝑘𝑘 − 𝑗𝑗 ≤ 𝑇𝑇
0 otherwise

= �𝑦𝑦𝑘𝑘,0 if 𝑡𝑡 = 𝑗𝑗
0 otherwise

. 

Therefore, for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}: 

𝒶𝒶𝑡𝑡 − 1 = � ℳ𝑡𝑡,𝑘𝑘𝑦𝑦𝑘𝑘,0

𝑇𝑇

𝑘𝑘=1
. 

Consequently, if 𝑦𝑦𝑘𝑘,0 = 𝐼𝐼⋅,𝑙𝑙  for some 𝑙𝑙 ∈ {1, … , 𝑇𝑇} , then 𝒶𝒶𝑡𝑡 − 1 = ℳ𝑡𝑡,𝑙𝑙  (i.e. the relative 
impulse response to a news-shock at horizon 𝑙𝑙) is the 𝑙𝑙th column of ℳ . 

Finally, note that in the model’s Problem 1 equivalent, if 𝒸𝒸𝑗𝑗,𝑘𝑘,0 = 0  for all 𝑗𝑗, 𝑘𝑘 ∈
{0, … , 𝑇𝑇}, then for all 𝑡𝑡 ∈ ℕ+, 𝒶𝒶𝑡𝑡 = 𝒷𝒷𝑡𝑡 = 𝒹𝒹0,𝑡𝑡 = 𝒹𝒹𝑡𝑡,0. Hence, if 𝒹𝒹⋅,0 = 𝓆𝓆  for some 𝓆𝓆 ∈ ℝ𝑇𝑇, 
then 𝑞𝑞 = 𝓆𝓆  for this model. 
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B. Proof that the existence of a polynomial time approximate solution 
would imply P=NP 

Suppose that we have some solution procedure which accepts problems in the form 
of Problem 2 (and possibly other problems) together with a radius 𝜅𝜅 and an accuracy 
level 𝜖𝜖, and, in time polynomial in 𝑛𝑛, returns a set 𝒟𝒟𝜅𝜅,𝜖𝜖 ⊆ ℝ𝑛𝑛 membership of which 
may be evaluated in time polynomial in 𝑛𝑛, and a policy function 𝑝𝑝𝜅𝜅,𝜖𝜖: 𝒟𝒟𝜅𝜅,𝜖𝜖 ⊆ ℝ𝑛𝑛 → ℝ𝑛𝑛 
that may be evaluated in time polynomial in 𝑛𝑛 and that satisfies: 

�𝑝𝑝∗(𝑥𝑥) − 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥)�∞ < 𝜖𝜖, 
for all 𝑥𝑥 ∈ 𝒟𝒟∗ ⊆ 𝒟𝒟𝜖𝜖  with �𝑥𝑥 − 𝜇𝜇�∞ < 𝜅𝜅 , and where 𝑝𝑝∗: 𝒟𝒟∗ → 𝒟𝒟∗  is an exact policy 
function, i.e. a function satisfying: 

1. For all 𝑥𝑥 ∈ 𝒟𝒟∗: 
𝑥𝑥1 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑝𝑝∗(𝑥𝑥) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)� − 𝜇𝜇��, 

�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥 + 𝐵𝐵−1,⋅𝑝𝑝∗(𝑥𝑥) + 𝐶𝐶−1,⋅𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)�. 
2. For all 𝑥𝑥0 ∈ 𝒟𝒟∗, if 𝑥𝑥𝑡𝑡 = 𝑝𝑝∗(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+, then 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 
3. For all 𝑥𝑥0 ∉ 𝒟𝒟∗, there is no 𝑥𝑥1, 𝑥𝑥2, … ∈ ℝ𝑛𝑛 which solve this instance of Problem 

2. 
Now consider the following “knapsack”-type problem from Chung (1989): 

Problem 7 Suppose 𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2, 𝑏𝑏 ∈ ℕ+  are given. Find 𝑧𝑧1, … , 𝑧𝑧𝑇𝑇−2 ∈ {0,1}  such that 
∑ 𝑎𝑎𝑗𝑗𝑧𝑧𝑗𝑗

𝑇𝑇−2
𝑗𝑗=1 = 𝑏𝑏. 

Chung (1989) shows that there exists 𝓆𝓆 ∈ ℤ𝑇𝑇, ℳ ∈ ℤ𝑇𝑇×𝑇𝑇, such that Problem 7 has a 
solution if and only if the LCP �𝓆𝓆, ℳ�  has a solution, where 𝓆𝓆   and ℳ   may be 
computed from 𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2 and 𝑏𝑏 in time polynomial in 𝑇𝑇. Furthermore, the details of 
the proof in Chung (1989) reveal that for any 𝑦𝑦 ∈ ℝ𝑇𝑇  that solves the LCP �𝓆𝓆, ℳ� , 
𝑦𝑦𝑇𝑇−1 = 𝑦𝑦𝑇𝑇 = 0 , and setting 𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡

𝑎𝑎𝑡𝑡
  for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}  solves Problem 7. Since 

𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2 ∈ ℕ+  and 𝑧𝑧1, … , 𝑧𝑧𝑇𝑇−2 ∈ {0,1} , this implies that 𝑦𝑦𝑡𝑡 ∈ {0, 𝑎𝑎𝑡𝑡} ⊆ ℕ  for 𝑡𝑡 ∈
{1, … , 𝑇𝑇 − 2} . Moreover, by Proposition 2, given 𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2  and 𝑏𝑏  we can thus 
construct a model in the form of Problem 2 in polynomial time in 𝑇𝑇 , featuring 
polynomial in 𝑇𝑇 state variables, and such that for an appropriately chosen initial state, 
setting 𝑧𝑧𝑡𝑡 = 𝑥𝑥1,𝑡𝑡

𝑎𝑎𝑡𝑡
  for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}  solves Problem 7 if it has a solution (where 𝑥𝑥1,𝑡𝑡 

gives the path of the bounded variable in the constructed model). Additionally, by 
inspecting the proof of Proposition 2 from appendix A, we see that since 𝓆𝓆 ∈ ℤ𝑇𝑇, ℳ ∈
ℤ𝑇𝑇×𝑇𝑇, and 𝑦𝑦𝑡𝑡 ∈ ℕ for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}, it must be the case that for all 𝑡𝑡 ∈ ℕ, 𝑥𝑥𝑡𝑡 ∈
ℤ𝑛𝑛 (for some 𝑛𝑛 ∈ ℕ), so the model is always integer valued. 

To complete the proof, we set 𝜖𝜖 ≔ 1
2 , 𝜅𝜅 ≔ �𝑥𝑥0 − 𝜇𝜇�∞ + 1  and construct the policy 

function 𝑝𝑝𝜅𝜅,𝜖𝜖  for the constructed model. By assumption, we can do this in time 
polynomial in 𝑇𝑇. Using this we can construct an exact solution for 𝑧𝑧𝑡𝑡 as follows. Set 
𝑥𝑥0̂ ≔ 𝑥𝑥0. Now suppose we have defined 𝑥𝑥�̂�𝑡−1 for some 𝑡𝑡 ∈ ℕ+. We first test if 𝑥𝑥�̂�𝑡−1 ∈
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𝒟𝒟𝜅𝜅,𝜖𝜖 . If it is not, then we terminate the procedure with a “no solution” message. 
Otherwise, we set each element of 𝑥𝑥�̂�𝑡  to be equal to the nearest integer to the 
corresponding element of 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥�̂�𝑡−1). We then test if �𝑥𝑥�̂�𝑡 − 𝜇𝜇� < 𝜅𝜅. If it is, we proceed, 
otherwise, we redefine 𝜅𝜅 ≔ �𝑥𝑥�̂�𝑡 − 𝜇𝜇�∞ + 1 , and restart. After an amount of time 
bounded by a polynomial in 𝑇𝑇, we will have either terminated with a “no solution” 
message, or have successfully defined 𝑥𝑥�̂�𝑡  for 𝑡𝑡 ∈ {0, … , 𝑇𝑇 − 2} , where for all 𝑡𝑡 ∈
{0, … , 𝑇𝑇 − 2}, we will have found some 𝜅𝜅 for which �𝑥𝑥�̂�𝑡 − 𝜇𝜇� < 𝜅𝜅. In this case, we then 
define 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
  for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}  and test whether it solves Problem 7. If it does, 

report a “solution found” message, otherwise, report a “no solution” message. We 
now prove that this procedure works. 

We first prove that if 𝑥𝑥0 ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛  then 𝑥𝑥�̂�𝑡 = 𝑥𝑥𝑡𝑡 ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛  for all 𝑡𝑡 ∈ ℕ , by 
induction on 𝑡𝑡. The inductive base case is trivial. Suppose for the inductive step that 
for some 𝑡𝑡 ∈ ℕ+ , 𝑥𝑥�̂�𝑡−1 = 𝑥𝑥𝑡𝑡−1 ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛 . Then 𝑥𝑥�̂�𝑡−1 ∈ 𝒟𝒟𝜅𝜅,𝜖𝜖 , so 𝑥𝑥�̂�𝑡  is defined and is 
equal to the (elementwise) nearest integer to 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥�̂�𝑡−1). Then since as 𝑥𝑥�̂�𝑡−1 ∈ 𝒟𝒟∗ and 
�𝑥𝑥�̂�𝑡−1 − 𝜇𝜇� < 𝜅𝜅 , �𝑝𝑝∗(𝑥𝑥�̂�𝑡−1) − 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥�̂�𝑡−1)�∞ < 1

2 , and 𝑝𝑝∗: 𝒟𝒟∗ ∩ ℤ𝑛𝑛 → 𝒟𝒟∗ ∩ ℤ𝑛𝑛 , it must be 
the case that 𝑥𝑥�̂�𝑡 = 𝑝𝑝∗(𝑥𝑥�̂�𝑡−1) ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛. This establishes the inductive hypothesis, and 
hence if we set 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
 for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2} then test whether it solves Problem 7, we 

will find that it does, giving a solution, after only polynomial in 𝑇𝑇 calculations. 
Now suppose that 𝑥𝑥0 ∈ ℤ𝑛𝑛, but 𝑥𝑥0 ∉ 𝒟𝒟∗. There are two possibilities. Either we will 

find some 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 1}  for which 𝑥𝑥�̂�𝑡 ∉ 𝒟𝒟𝜖𝜖 , and hence 𝑥𝑥�̂�𝑡 ∉ 𝒟𝒟∗ , or we will 
successfully calculate 𝑥𝑥1̂,𝑡𝑡 for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}. By the previous result, in the former 
case we will have found in polynomial time in 𝑇𝑇 a proof that 𝑥𝑥0 ∉ 𝒟𝒟∗, and hence that 
there is no solution to Problem 7. In the latter case, we can again set 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
 for 𝑡𝑡 ∈

{1, … , 𝑇𝑇 − 2} and test whether it solves Problem 7, and we will find (in polynomial in 
𝑇𝑇 calculations) that it does not, giving an alternative polynomial time in 𝑇𝑇 proof that 
𝑥𝑥0 ∉ 𝒟𝒟∗, and hence that there is no solution to Problem 7. 

We have thus established that the procedure described (calculating 𝑥𝑥1̂, … , 𝑥𝑥�̂�𝑇−2 and 
then testing whether 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
 solves Problem 7), enables us to answer the question of 

whether Problem 7 has a solution in an amount of time that is polynomial in 𝑇𝑇. But 
Problem 7 is NP-complete (Karp 1972), and hence this implies that P=NP. 

C. Special cases with polynomial time solutions 

Polynomial time algorithms exist for the LCP if 𝑀𝑀 is general positive semi-definite 
(Kojima, Mizuno, and Yoshise 1989). However, it appears that 𝑀𝑀 is general positive 
semi-definite in only very few macroeconomic models, so this is of minimal relevance. 
Furthermore, if either condition 1 or condition 2 of Proposition 5 of Holden (2016) is 
known to be satisfied, then we can find out if a solution exists in polynomial time, by 
solving the feasibility problem. Moreover, a polynomial time algorithm exists (Illés, 
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Nagy, and Terlaky 2010) which will give a certificate that one of the following is true, 
for a given 𝑞𝑞 and real number 𝜅𝜅̅ ≥ 0: 
• For any 𝜅𝜅 ≤ 𝜅𝜅,̅ 𝑀𝑀 is not a member of the matrix class 𝑃𝑃∗(𝜅𝜅), defined in the paper. 

(Note that for 𝜅𝜅1 < 𝜅𝜅2, 𝑃𝑃∗(𝜅𝜅1) ⊆ 𝑃𝑃∗(𝜅𝜅2), and that the class of sufficient matrices is the 
union of the classes of 𝑃𝑃∗(𝜅𝜅) matrices for all 𝜅𝜅 ≥ 0.) 

• The LCP �𝑞𝑞, 𝑀𝑀� has no solution. 
• The LCP �𝑞𝑞, 𝑀𝑀� has the solution 𝑦𝑦. 
Thus for “most” sufficient matrices we can find a solution (or a certificate that there is 
none), in polynomial time. It has been conjectured that in fact this holds for all 
sufficient matrices (Fukuda 2015). 

Unfortunately, no algorithm is known for finding out if 𝑀𝑀 is sufficient in polynomial 
time. Indeed, it has also been shown (Coxson 1994; Tseng 2000) that it is “co-NP 
complete” to test if 𝑀𝑀  is non-degenerate, a P-matrix, a P0-matrix, semi-monotone, 
strictly semi-monotone, column sufficient or row sufficient, where all of these classes 
are as defined in Holden (2016). This means that were a polynomial time (in 𝑇𝑇 ) 
algorithm available for these things then we would have a proof that P=NP. 

D. The augmented state-space representation of a pruned perturbation 
solution 

We seek to convert the model into the form: 
𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧�̃�𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡, 

𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡, 
where 𝔼𝔼𝑡𝑡−1𝜉𝜉𝑡𝑡 = 0, and where throughout, �s over variables denote the subset of state 
variables. We proceed by taking each order of approximation in turn. We assume that 
the original model has 𝑙𝑙  state variables. Of the assorted algorithms available for 
pruning, it appears that Lan and Meyer-Gohde’s (2013a) algorithm is the most 
accurate (Lan and Meyer-Gohde 2013b), and so both the discussion below, and the 
implementation in DynareOBC is based on this approach, however, everything we say 
would also go through with alternative pruning algorithms. 
Order 1 At order 1: 

𝑥𝑥𝑡𝑡
(1) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 
𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥𝑡𝑡

(1), 
so if we define: 

𝑧𝑧𝑡𝑡 ≔ 𝑥𝑥𝑡𝑡
(1), 𝑧𝑧�̃�𝑡 ≔ 𝑥𝑥�̃�𝑡

(1), 𝑜𝑜 ≔ 0, 𝑃𝑃 ≔ 𝛼𝛼, 𝑄𝑄 ≔ 𝛽𝛽0, 𝜉𝜉𝑡𝑡 ≔ 𝜀𝜀𝑡𝑡, 𝑢𝑢 ≔ 𝜇𝜇𝑥𝑥,
𝑉𝑉 ≔ 𝐼𝐼𝑛𝑛, 

then we are done. 
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Order 2 At order 2: 
𝑥𝑥𝑡𝑡

(1) = 𝛼𝛼𝑥𝑥�̃�𝑡−1
(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 

𝑥𝑥𝑡𝑡
(2) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(2) +
1
2 𝛽𝛽22�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + 𝛽𝛽20�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� +
1
2 𝛽𝛽00(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0) + 𝑥𝑥𝑡𝑡
(1) + 𝑥𝑥𝑡𝑡

(2), 
for some constant 𝑥𝑥(0). 

Now, note that: 
𝑥𝑥�̃�𝑡

(1) ⊗ 𝑥𝑥�̃�𝑡
(1) = �𝛼𝛼�̃�𝑥�̃�𝑡−1

(1) + 𝛽𝛽0̃𝜀𝜀𝑡𝑡� ⊗ �𝛼𝛼�̃�𝑥�̃�𝑡−1
(1) + 𝛽𝛽0̃𝜀𝜀𝑡𝑡� 

= 𝛼𝛼�̃�𝑥�̃�𝑡−1
(1) ⊗ 𝛼𝛼�̃�𝑥�̃�𝑡−1

(1) + 𝛼𝛼�̃�𝑥�̃�𝑡−1
(1) ⊗ 𝛽𝛽0̃𝜀𝜀𝑡𝑡 + 𝛽𝛽0̃𝜀𝜀𝑡𝑡 ⊗ 𝛼𝛼�̃�𝑥�̃�𝑡−1

(1) + 𝛽𝛽0̃𝜀𝜀𝑡𝑡 ⊗ 𝛽𝛽0̃𝜀𝜀𝑡𝑡 
= (𝛼𝛼̃ ⊗ 𝛼𝛼)̃�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + �𝛼𝛼̃ ⊗ 𝛽𝛽0̃��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� + �𝛽𝛽0̃ ⊗ 𝛼𝛼�̃�𝜀𝜀𝑡𝑡 ⊗ 𝑥𝑥�̃�𝑡−1
(1) �

+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡) 
= (𝛼𝛼̃ ⊗ 𝛼𝛼)̃�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + ��𝛼𝛼̃ ⊗ 𝛽𝛽0̃� + �𝛽𝛽0̃ ⊗ 𝛼𝛼�̃𝐾𝐾𝑚𝑚,𝑙𝑙��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡�
+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡) 

= (𝛼𝛼̃ ⊗ 𝛼𝛼)̃�𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝑥𝑥�̃�𝑡−1

(1) � + ��𝛼𝛼̃ ⊗ 𝛽𝛽0̃� + 𝐾𝐾𝑙𝑙,𝑙𝑙�𝛼𝛼̃ ⊗ 𝛽𝛽0̃�𝐾𝐾𝑙𝑙,𝑚𝑚𝐾𝐾𝑚𝑚,𝑙𝑙��𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡�

+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡) 
= (𝛼𝛼̃ ⊗ 𝛼𝛼)̃�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙��𝛼𝛼̃ ⊗ 𝛽𝛽0̃��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡�
+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

where 𝐾𝐾𝑙𝑙,𝑚𝑚 ∈ ℝ𝑙𝑙𝑚𝑚×𝑙𝑙𝑚𝑚 is the commutation matrix for 𝑙𝑙 × 𝑚𝑚 matrices, i.e. it is the unique 
matrix such that for all 𝐷𝐷 ∈ ℝ𝑙𝑙×𝑚𝑚, 𝐾𝐾𝑙𝑙,𝑚𝑚 vec 𝐷𝐷 = vec 𝐷𝐷′ (Magnus and Neudecker 1979). 
Thus, if we define: 

𝑧𝑧𝑡𝑡 ≔

⎣
⎢⎢
⎢
⎡ 𝑥𝑥𝑡𝑡

(1)

𝑥𝑥𝑡𝑡
(2)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1)⎦
⎥⎥
⎥
⎤

, 𝑧𝑧�̃�𝑡 ≔

⎣
⎢⎢
⎢
⎡ 𝑥𝑥�̃�𝑡

(1)

𝑥𝑥�̃�𝑡
(2)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1)⎦
⎥⎥
⎥
⎤

, 

𝑃𝑃 ≔
⎣
⎢⎢
⎡

𝛼𝛼 0 0

0 𝛼𝛼
1
2 𝛽𝛽22

0 0 𝛼𝛼̃ ⊗ 𝛼𝛼⎦̃
⎥⎥
⎤

, 𝑄𝑄 ≔

⎣
⎢
⎢
⎢
⎡

𝛽𝛽0 0 0

0
1
2 𝛽𝛽00 𝛽𝛽20

0 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃ �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙��𝛼𝛼̃ ⊗ 𝛽𝛽0̃�⎦
⎥
⎥
⎥
⎤

, 

𝜉𝜉𝑡𝑡 ≔
⎣
⎢⎢
⎡

𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⎦

⎥⎥
⎤ , 𝑜𝑜 ≔

⎣
⎢⎢
⎢
⎡

0
1
2 𝛽𝛽00 vec Σ

�𝛽𝛽0̃ ⊗ 𝛽𝛽0̃� vec Σ⎦
⎥⎥
⎥
⎤

, 

𝑢𝑢 ≔ 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0), 𝑉𝑉 ≔ [𝐼𝐼 𝐼𝐼 0], 
then we are done. 



Online Appendices: Page 6 of 12 

Order 3 At order 3: 
𝑥𝑥𝑡𝑡

(1) = 𝛼𝛼𝑥𝑥�̃�𝑡−1
(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 

𝑥𝑥𝑡𝑡
(2) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(2) +
1
2 𝛽𝛽22�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + 𝛽𝛽20�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� +
1
2 𝛽𝛽00(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

𝑥𝑥𝑡𝑡
�1,𝜎𝜎2� = 𝛼𝛼𝑥𝑥�̃�𝑡−1

�1,𝜎𝜎2� +
1
2 𝛽𝛽𝜎𝜎2,0𝜀𝜀𝑡𝑡 +

1
2 𝛽𝛽𝜎𝜎2,1𝑥𝑥�̃�𝑡−1

(1) , 

𝑥𝑥𝑡𝑡
(3) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(3) +
1
6 𝛽𝛽333,1�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝑥𝑥�̃�𝑡−1

(1) � +
1
6 𝛽𝛽000(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡)

+
1
2 𝛽𝛽330,1�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡� +

1
2 𝛽𝛽300�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡� + 𝛽𝛽22�𝑥𝑥�̃�𝑡−1
(2) ⊗ 𝑥𝑥�̃�𝑡−1

(1) �

+ 𝛽𝛽20�𝑥𝑥�̃�𝑡−1
(2) ⊗ 𝜀𝜀𝑡𝑡�, 

𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0) + 𝑥𝑥𝑡𝑡
(1) + 𝑥𝑥𝑡𝑡

(2) + 𝑥𝑥𝑡𝑡
�1,𝜎𝜎2� + 𝑥𝑥𝑡𝑡

(3), 
for the same constant 𝑥𝑥(0) as at order 2, providing the shocks have zero skewness (e.g. 
they are normally distributed). By similar calculations to those at second order, we 
then have that if we define: 

 𝑧𝑧𝑡𝑡
3 ≔ 𝔼𝔼𝑠𝑠

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥𝑡𝑡

(1)

𝑥𝑥𝑡𝑡
(2)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1)

𝑥𝑥𝑡𝑡
�1,𝜎𝜎2�

𝑥𝑥𝑡𝑡
(3)

𝑥𝑥�̃�𝑡
(2) ⊗ 𝑥𝑥�̃�𝑡

(1)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1) ⊗ 𝑥𝑥�̃�𝑡
(1)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,   

𝑃𝑃 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛼𝛼 0 0 0 0 0 0

0 𝛼𝛼
1
2 𝛽𝛽22 0 0 0 0

0 0 𝛼𝛼̃ ⊗ 𝛼𝛼̃ 0 0 0 0
1
2 𝛽𝛽𝜎𝜎2,1 0 0 𝛼𝛼 0 0 0

1
2 𝛽𝛽300(𝐼𝐼𝑙𝑙 ⊗ vec Σ) 0 0 0 𝛼𝛼 𝛽𝛽22

1
6 𝛽𝛽333,1

⎝
⎜⎛𝛽𝛽2̃0 ⊗ 𝛽𝛽0̃ +

1
2 𝐾𝐾𝑙𝑙,𝑙𝑙�𝛼𝛼̃ ⊗ 𝛽𝛽0̃0�

⎠
⎟⎞ (𝐼𝐼𝑙𝑙 ⊗ vec Σ) 0 0 0 0 𝛼𝛼̃ ⊗ 𝛼𝛼̃

1
2 𝛽𝛽2̃2 ⊗ 𝛼𝛼̃

��𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙� ⊗ 𝐼𝐼𝑙𝑙 + 𝐾𝐾𝑙𝑙2,𝑙𝑙��𝛼𝛼̃ ⊗ 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝐼𝐼𝑙𝑙 ⊗ vec Σ) 0 0 0 0 0 𝛼𝛼̃ ⊗ 𝛼𝛼̃ ⊗ 𝛼𝛼⎦̃
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑄𝑄11 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛽𝛽0 0 0

0
1
2 𝛽𝛽00 𝛽𝛽20

0 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃ �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙��𝛼𝛼̃ ⊗ 𝛽𝛽0̃�
1
2 𝛽𝛽𝜎𝜎2,0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑄𝑄22 ≔

⎣
⎢⎢
⎢⎢
⎢
⎡ 𝛽𝛽20

1
2 𝛽𝛽330,1

1
2 𝛽𝛽300

1
6 𝛽𝛽000

𝛼𝛼̃ ⊗ 𝛽𝛽0̃
1
2 𝛽𝛽2̃2 ⊗ 𝛽𝛽0̃ + �𝛽𝛽2̃0 ⊗ 𝛼𝛼�̃�𝐼𝐼𝑙𝑙 ⊗ 𝐾𝐾𝑚𝑚,𝑙𝑙� 𝛽𝛽2̃0 ⊗ 𝛽𝛽0̃ +

1
2 𝐾𝐾𝑙𝑙,𝑙𝑙�𝛼𝛼̃ ⊗ 𝛽𝛽0̃0�

1
2 𝛽𝛽0̃0 ⊗ 𝛽𝛽0̃

0 �𝐼𝐼𝑙𝑙 ⊗ �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙� + 𝐾𝐾𝑙𝑙,𝑙𝑙2��𝛼𝛼̃ ⊗ 𝛼𝛼̃ ⊗ 𝛽𝛽0̃� ��𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙� ⊗ 𝐼𝐼𝑙𝑙 + 𝐾𝐾𝑙𝑙2,𝑙𝑙��𝛼𝛼̃ ⊗ 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃� 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃⎦
⎥⎥
⎥⎥
⎥
⎤

, 

𝑄𝑄 ≔ �𝑄𝑄11 0
0 𝑄𝑄22

�, 

𝜉𝜉𝑡𝑡 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡

𝑥𝑥�̃�𝑡−1
(2) ⊗ 𝜀𝜀𝑡𝑡

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡

𝑥𝑥�̃�𝑡−1
(1) ⊗ (𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ)

𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑜𝑜 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
1
2 𝛽𝛽00 vec Σ

�𝛽𝛽0̃ ⊗ 𝛽𝛽0̃� vec Σ
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑢𝑢 ≔ 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0), 𝑉𝑉 ≔ [𝐼𝐼 𝐼𝐼 0 𝐼𝐼 𝐼𝐼 0 0], 

then again we are done. 
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E. The conditional covariance of future variables under a pruned 
perturbation solution 

First, suppose that: 
𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧𝑡𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡 

where 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑘𝑘 = 0 for 𝑘𝑘 > 0. Then: 

𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+𝑘𝑘 = � 𝑃𝑃𝑗𝑗𝑜𝑜
𝑘𝑘−1

𝑗𝑗=0
+ 𝑃𝑃𝑘𝑘𝑧𝑧𝑡𝑡, 

so: 

𝑧𝑧𝑡𝑡+𝑘𝑘 − 𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+𝑘𝑘 = � 𝑃𝑃𝑘𝑘−𝑗𝑗𝑄𝑄𝜉𝜉𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1
. 

Consequently: 

cov𝑡𝑡�𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏� = � � 𝑃𝑃𝑎𝑎−𝑖𝑖𝑄𝑄�𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ �𝑄𝑄′𝑃𝑃′𝑏𝑏−𝑗𝑗

𝑏𝑏

𝑗𝑗=1

𝑎𝑎

𝑖𝑖=1
 

If 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ = 0 for 𝑖𝑖 ≠ 𝑗𝑗, then this simplifies to: 

cov𝑡𝑡�𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏�

= 𝑃𝑃𝑎𝑎−min{𝑎𝑎,𝑏𝑏}

⎣
⎢⎡ � 𝑃𝑃min{𝑎𝑎,𝑏𝑏}−𝑖𝑖𝑄𝑄�𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑖𝑖

′ �𝑄𝑄′𝑃𝑃′min{𝑎𝑎,𝑏𝑏}−𝑖𝑖
min{𝑎𝑎,𝑏𝑏}

𝑖𝑖=1 ⎦
⎥⎤ 𝑃𝑃′𝑏𝑏−min{𝑎𝑎,𝑏𝑏}. 

Now, in the previous section of these appendices (D), we showed that at order 1, 2 
and 3 the pruned perturbation solutions may be represented in the form: 

𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧�̃�𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡 
where 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑘𝑘 = 0  for 𝑘𝑘 > 0 . It is trivial to add zero columns to 𝑃𝑃  so that we instead 
have: 

𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧𝑡𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡, 
thus, we just need to evaluate 𝔼𝔼𝑡𝑡�𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗

′ � in order to have a closed form expression 
for cov𝑡𝑡�𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏�, then from this and the fact that 𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡, we would have that: 

cov𝑡𝑡�𝑥𝑥𝑡𝑡+𝑎𝑎, 𝑥𝑥𝑡𝑡+𝑏𝑏� = cov𝑡𝑡�𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡+𝑏𝑏� = 𝑉𝑉 cov𝑡𝑡�𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏� 𝑉𝑉′. 
We now proceed to evaluate 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗

′  for orders 1 and 2. We skip the third order case 
as a second order approximation to the conditional covariance is normally sufficient 
for reasonable accuracy, and as the third order conditional covariance is very slow to 
calculate. 
Order 1 At order 1, 𝜉𝜉𝑡𝑡 ≔ 𝜀𝜀𝑡𝑡, thus: 

𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ = �

Σ if 𝑖𝑖 = 𝑗𝑗
0 if 𝑖𝑖 ≠ 𝑗𝑗. 

Order 2 At order 2: 

𝜉𝜉𝑡𝑡 ≔
⎣
⎢⎢
⎡

𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⎦

⎥⎥
⎤, 
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thus 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ = 0 if 𝑖𝑖 ≠ 𝑗𝑗, and by theorem 4.3 of Magnus and Neudecker (1979): 

𝔼𝔼𝑠𝑠𝜉𝜉𝑡𝑡𝜉𝜉𝑡𝑡
′ = 𝔼𝔼𝑠𝑠

⎣
⎢⎢
⎡

1 ⊗ 𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⎦

⎥⎥
⎤

�1 ⊗ 𝜀𝜀𝑡𝑡
′ 𝜀𝜀𝑡𝑡

′ ⊗ 𝜀𝜀𝑡𝑡
′ − (vec Σ)′ 𝑥𝑥�̃�𝑡−1

(1)′ ⊗ 𝜀𝜀𝑡𝑡
′� 

=
⎣
⎢
⎢
⎡ Σ 0 𝔼𝔼𝑠𝑠𝑥𝑥�̃�𝑡−1

(1)′ ⊗ Σ
0 �𝐼𝐼𝑚𝑚2 + 𝐾𝐾𝑚𝑚,𝑚𝑚�(Σ ⊗ Σ) 0

𝔼𝔼𝑠𝑠𝑥𝑥�̃�𝑡−1
(1) ⊗ Σ 0 𝔼𝔼𝑠𝑠�𝑥𝑥�̃�𝑡−1

(1) 𝑥𝑥�̃�𝑡−1
(1)′ � ⊗ Σ⎦

⎥
⎥
⎤

. 

F. Global solution procedure for the capital constrained model 

The value function is: 

𝑉𝑉(𝐾𝐾, 𝐴𝐴) = max
𝐶𝐶,𝐿𝐿 s.t.

𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿1−𝛼𝛼−𝐶𝐶≥𝜃𝜃𝐾𝐾

�log 𝐶𝐶 −
𝐿𝐿1+𝜈𝜈

1 + 𝜈𝜈 + 𝛽𝛽𝔼𝔼𝑉𝑉�𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿1−𝛼𝛼 − 𝐶𝐶, 𝐴𝐴𝜌𝜌 exp 𝜀𝜀�� 

= max
𝐶𝐶 s.t.

�(𝐴𝐴𝐾𝐾𝛼𝛼)1+𝜈𝜈�1−𝛼𝛼
𝐶𝐶 �

1−𝛼𝛼
�

1
𝜈𝜈+𝛼𝛼

−𝐶𝐶≥𝜃𝜃𝐾𝐾
⎣
⎢⎢
⎡

log 𝐶𝐶 −
1

1 + 𝜈𝜈 �
1 − 𝛼𝛼

𝐶𝐶 𝐴𝐴𝐾𝐾𝛼𝛼�
1+𝜈𝜈
𝜈𝜈+𝛼𝛼

+ 𝛽𝛽𝔼𝔼𝑉𝑉
⎝
⎜⎜⎜
⎛

⎝
⎜⎛(𝐴𝐴𝐾𝐾𝛼𝛼)1+𝜈𝜈 �

1 − 𝛼𝛼
𝐶𝐶 �

1−𝛼𝛼

⎠
⎟⎞

1
𝜈𝜈+𝛼𝛼

− 𝐶𝐶, 𝐴𝐴𝜌𝜌 exp 𝜀𝜀
⎠
⎟⎟⎟
⎞

⎦
⎥⎥
⎤

 

where the second line comes from substituting in the labour first order condition, and 
where 𝜀𝜀~N�0, 𝜎𝜎2�. 

We construct a uniform rectangular grid on log 𝐴𝐴  and log 𝐾𝐾  as follows. For both 
variables, the grid is centred on the model’s non-stochastic steady-state. For 
productivity, the grid extends to ±4  times the standard deviation of log 𝐴𝐴𝑡𝑡 , which 
covers more than 99.99% of its stationary distribution. For capital, the grid extends to 
±16 times the standard deviation of log 𝐾𝐾𝑡𝑡 in the model without bounds, which also 
covers (a lot) more than 99.99% of its stationary distribution in the model with bounds. 
Furthermore, it is wide enough to cover the area in which the value function is highly 
curved, as it goes from increasing to decreasing. The grid has 256 points along the 
productivity axis, and 1024 points along the capital axis, making for a total of 262,144 
points. 

We use linear interpolation/extrapolation for points off the grid. Then, due to 
piecewise linearity of the integrand in the value function, and the Gaussianity of 𝜀𝜀, 
integration can be performed exactly. For speed, we precompute the associated 
weights at each productivity level, so exact integration just requires a dot product 
between the weights, and the value function interpolated to the future capital level. 

We initialize the value function iteration algorithm with the exact solution in the 
absence of bounds, e.g.: 

𝑉𝑉 = 𝐹𝐹 + 𝐺𝐺 log 𝐾𝐾 + 𝐻𝐻 log 𝐴𝐴, 
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where: 

𝐹𝐹 =
log�1 − 𝛼𝛼𝛼𝛼�

1 − 𝛼𝛼 +
1 − 𝛼𝛼

�1 − 𝛼𝛼𝛼𝛼��1 − 𝛼𝛼�(1 + 𝜈𝜈) �log �
1 − 𝛼𝛼

1 − 𝛼𝛼𝛼𝛼� − 1� +
𝛼𝛼𝛼𝛼 log 𝛼𝛼𝛼𝛼

�1 − 𝛼𝛼𝛼𝛼��1 − 𝛼𝛼�, 

𝐺𝐺 =
𝛼𝛼

1 − 𝛼𝛼𝛼𝛼, 

𝐻𝐻 =
1

�1 − 𝛼𝛼𝛼𝛼��1 − 𝛼𝛼𝛽𝛽�. 

To facilitate solving with the bound, in the first iteration, we set 𝜃𝜃 = 0, and then we 
increase 𝜃𝜃  by 0.005  with each iteration until it gets to 0.99 , in order to “homotope” 
from the solution without the bound to the solution with the bound at the correct 
level. We then continue with conventional fixed point iterations until the maximum 
absolute change in the value function over the grid ceases to decrease. We report the 
penultimate value function, i.e. we discard the final one which was a bigger step away. 
Within these iterations, at each grid node, we first solve for the 𝐶𝐶  at which the 
constraint binds exactly, then maximise 𝐶𝐶 over the interval from 0 to the found bound. 
Both procedures will deliver a result accurate to somewhere (roughly) between 10−8 
and 10−16. 

As one indication of accuracy, the final value function iteration step changed the 
value function by at most 1.73 × 10−11  at all grid points, and the implied policy 
function changed by at most 1.38 × 10−7  at all grid points. By way of comparison, 
when the same algorithm was run on the model without a bound, the algorithm made 
two steps (the minimum possible), the last of which changed the value function by at 
most 4.41 × 10−13 and which changed the policy function by at most 1. 83 × 10−7. 

In Figure 3 and Figure 4 we plot the value and policy functions in terms of log 𝐾𝐾 for 
a variety of productivity levels, including both the highest and lowest productivities 
on the grid. These illustrate the extent of the departure from the model without 
bounds. 

 
Figure 3: Value function 
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Figure 4: Policy function 

G. Global solution procedure for the borrowing constrained model 

In terms of 𝑋𝑋 = 𝐶𝐶 + 𝐷𝐷, the value function is: 

𝑉𝑉(𝐵𝐵, 𝐴𝐴) = max
𝑋𝑋∈Γ(𝐵𝐵,𝐴𝐴)

�−
1
2 [max{0,1 − 𝑋𝑋}]2 −

𝜙𝜙
2 [𝑅𝑅𝐵𝐵 + max{𝑌𝑌, 𝐴𝐴} − 𝑋𝑋]2

+ 𝛼𝛼𝛽𝛽𝑉𝑉�𝑅𝑅𝐵𝐵 + max{𝑌𝑌, 𝐴𝐴} − 𝑋𝑋, �1 − 𝛽𝛽�𝜇𝜇 + 𝛽𝛽𝐴𝐴 + 𝜀𝜀�� 

where 𝜀𝜀~N�0, 𝜎𝜎2� and where: 

Γ(𝐵𝐵, 𝐴𝐴) = �0, 𝑅𝑅𝐵𝐵 + max{𝑌𝑌, 𝐴𝐴} +
𝑌𝑌

𝑅𝑅 − 1�. 

We construct a uniform rectangular grid on 𝐴𝐴 and 𝐵𝐵 as follows. For productivity, the 
grid is centred on 𝜇𝜇 and extends to ±4 times the standard deviation of 𝐴𝐴, which covers 
more than 99.99% of its stationary distribution. For bond holdings, the minimum of 
the grid is at the minimum possible value of bond holdings, namely − 𝑌𝑌

𝑅𝑅−1 . The 
maximum of the grid is chosen as a point close to, but higher than the point at which 
the value function becomes flat in 𝐵𝐵 at all points on the productivity grid.22 With our 
parameters, this corresponds to an upper bound of 𝐵𝐵 = 7.5. The grid has 256 points 
along the productivity axis, and 1024 points along the bond holdings axis, making for 
a total of 262,144 points. 

We again use linear interpolation/extrapolation along the productivity axis, but 
here we use shape preserving cubic spline interpolation along the bond holding axis. 
Using cubic splines is not problematic here since no extrapolation in bond holdings is 
required. By producing a smoother value function, it also made numerical 
maximisation easier, reducing numerical errors. As before, due to piecewise linearity 
of the integrand in the value function, and the Gaussianity of 𝜀𝜀, integration can be 
performed exactly, with precomputation of weights as before.  

                                                 
22 For any productivity level, for sufficiently high bond holdings, 𝑋𝑋 = 1 and the value function is flat in 𝐵𝐵. 
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We initialize the value function iteration algorithm with the cumulative maximum 
(in 𝐴𝐴 and 𝐵𝐵) of the exact solution in the absence of bounds. The problem in the absence 
of bounds is a standard quadratic dynamic programming problem, and features linear 
policy functions and a quadratic optimal value function. We then proceed with 
conventional fixed point iterations until the maximum absolute change in the value 
function over the grid ceases to decrease. We report the penultimate value function, 
i.e. we discard the final one which was a bigger step away. Within these iterations, for 
each productivity level we first solve for the level of 𝐵𝐵 at which it is optimal to choose 
𝑋𝑋 = 1. Then, for any higher 𝐵𝐵 we know that the value function will be flat and that 
𝐶𝐶 = 1. This both reduces the number of times the value function must be maximised, 
and reduces numerical errors. 

As before, as an indication of accuracy we note that the final value function iteration 
step changed the value function by at most 1.32 × 10−11 at all grid points, the implied 
policy function changed by at most 4.60 × 10−7  at all grid points, and the function 
giving the value of 𝐵𝐵 at which it is optimal to choose 𝑋𝑋 = 1 changed by a maximum of 
4.56 × 10−7. 

In Figure 5 and Figure 6 we plot the value and policy functions in terms of 𝐵𝐵 for a 
variety of productivity levels, including both the highest and lowest productivities on 
the grid. Note the high curvature in the policy function below the 𝑋𝑋 = 1 kink; it is 
certainly not the case that the optimal policy function is piecewise linear here. Figure 
7 plots the function giving the level of 𝐵𝐵 at which it is optimal to set 𝑋𝑋 = 1. 

 
Figure 5: Value function 
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Figure 6: Policy function 

 

 
Figure 7: Value of 𝑩𝑩 at which 𝑿𝑿 = 𝟏𝟏 
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