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1. INTRODUCTION

Credit default swap (CDS) data reveals that most European countries experienced a steady

increase in the cost of insuring their debt against default from January 2010 until the re-

structuring of Greek debt in February 2012. While many countries faced few internal risks,

all were exposed to the risk of contagion following a default elsewhere. Thus, news about one

country’s credit-worthiness could impact credit risk across Europe. In this paper, we trace

the sources of this risk. We find that the chief drivers over this period were actually Spain

and Portugal. Without shocks to these two countries, we estimate that Greece would have

been around 34% less likely to default during our estimation period. Thus, Greek sensitivity

to external credit risk is a key part of the narrative of the European sovereign debt crisis;

one that has been overlooked until now.

EU countries are intertwined in a complex web of economic, financial and political relation-

ships, which are likely to facilitate multi-directional credit risk spillovers between member

states.1 Hence, there is a need for a joint analysis of credit risk in multiple countries. Given

this, our model of credit risk is based on a high-dimensional Hawkes (1971) point process,

which we estimate from sovereign CDS prices at multiple maturities via conditional max-

imum likelihood.2 We do not impose stationarity in order to match the explosive path of

Greece’s CDS prices.

To overcome the curse of dimensionality, we model an international portfolio of country

risk as a weighted average of individual country risks. This specification allows for a rich

structure of instantaneous and dynamic spillovers, even with seven countries. The weights

are estimated and convey information on the sources of contagion at the European level.

1The channels of contagion are discussed by Acharya et al. (2014), Benzoni et al. (2015) and De Grauwe
and Ji (2013).

2Conditioning on the initial observation.
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We find that the build-up in risk in most European countries was driven by Portuguese

and Spanish risk rather than Greek. Our estimates suggest that Greek default risk was on

an explosive path, meaning that default was inevitable, sooner or later. Given this, other

European countries had no choice but to insulate themselves from the risk of a Greek default,3

and so changes in the riskiness of Greek debt only had a small impact on risk in other

countries. For Portugal and Spain however, default was not inevitable according to our

estimates, reducing these incentives for insulation. Portugal had high debt to GDP, and

was perceived as a substantial risk by the ratings agencies,4, while Spain was experiencing

extreme levels of unemployment. These countries naturally then became key drivers of the

upward trend in sovereign risk amongst European countries.

Furthermore, our estimates suggest that Spain was the most important source of spill-over

credit risk, with the probabilities of default in all other countries considerably decreasing

when we run a counter-factual exercise suppressing shocks originating in Spain. Indeed, our

estimates suggest that without Spanish shocks, the probability of a Greek default during our

estimation period would have been around 23% lower. This fall becomes around 34% if we

additionally switch off Portuguese shocks, and around 35% if all other countries shocks are

switched off, except Greece’s. This illustrates the pivotal role played by Spain and Portugal

over the period.

As an additional explanation for their role in driving systemic risk, we provide evidence

that Portugal was the most systemically important debtor in the network of European debt

holdings over the period, while Spain was the most systemically important creditor. Due to

Spain’s large size and substantial debt holdings, a Spanish default would have had severe

3This insulation chiefly occurred through the pooling of risk that accompanied the movement of Greek
debt away from particular banks and nations, towards large multi-national institutions, such as the IMF,
the EU and the ECB.

4See Table I.
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repercussions for the rest of the EU. Thus, while default in Spain might have always been

quite a remote risk, it is unsurprising that other EU nations were still very sensitive to

changes in Spanish sovereign risk over our estimation period.

As a further contribution of this paper, we provide a method for likelihood based inference

for Hawkes models when events are not observed. Indeed, our data only contains observa-

tions of a regularly-sampled, non-linear function of the unknown parameters and the event

intensity. Our paper is the first in the literature to successfully surmount the substantial

computational and econometric challenges involved in estimating high-dimensional Hawkes

processes from price data, without observing events. Thanks to our maximum likelihood

approach, we are also able to incorporate information on the non-occurrence of defaults.

1.1. Our credit risk model

Our model is a reduced-form credit risk model. Background on such models is contained

in Duffie and Singleton (2003). These models assume that CDS spreads are a function of

the risk neutral default intensity (event arrival rate), usually taken as a doubly stochastic

Poisson process (Pan and Singleton, 2008; Longstaff et al., 2005; Ang and Longstaff, 2013). A

more recent paper by Aı̈t-Sahalia et al. (2014) points out that credit events5 and other jumps

in risk should have a feedback effect on the probabilities of default of all other countries. To

incorporate this feedback, the authors model the intensity of jumps as self-exciting Hawkes

(1971) processes. They further price the CDS spreads based on this new class of models and

estimate bivariate self-exciting models for some pairs of Eurozone countries, by non-linear

least squares.

5In accordance to the 2003 International Swaps and Derivatives Association, Inc. (ISDA hereafter) Credit
Derivatives Definitions, the term “credit event” for sovereign debt covers the following categories: failure to
make payments, restructuring, repudiation and moratorium.
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To capture the full breadth of information that might affect default risk, we will build

a model of the arrival of credit-related events. These will group together all events that

could have an effect on credit risk, including not only official credit events, but any other

shocks impacting default risk, such as changes in sovereign credit ratings, or the arrival

of news on macroeconomic conditions. We do not assume that credit-related events are

observed, though we will assume that defaults are observable. We model the intensity of

credit-related events as a multivariate marked Hawkes (1971) point process. For a marked

point process, the intensity is not only a function of the events themselves, but also of the

variably sized jumps that occur at event times. Augustin et al. (2018) also use a broader

notion of credit events in exploring default and currency devaluation in the Eurozone. They

treat such events as observed, equating them with sufficiently extreme movements in the

quanto spreads. By contrast, in our paper, we model such events as unobserved, inferring

them within the estimation process.

In our set-up, CDS spreads are determined entirely by a pure jump process. This is in line

with recent literature stating the importance of modelling jumps in the prices of financial

securities, either along with a diffusion or as the unique component (Geman et al., 2002;

Carr and Wu, 2004). Our model generates both regular small changes and occasional large

jumps, thanks to our assumption of exponentially distributed jump sizes. It thus provides

a parsimonious way of modelling data in continuous time in the presence of jumps. Using

a pure jump process also removes the need for costly high dimensional integration, which

would be unavoidable in the presence of additional diffusion terms.

In our model, the intensity of credit-related events for each country has two components.

The first is country-specific, and would be the sole determinant of dynamics were the cross-

country spillovers switched off. The second component captures the effects of the market
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portfolio of country risk. It is modelled as a weighted sum of the event intensities of individual

countries. As a result, the aggregate risk in our model is endogenous, and reflects the systemic

forces that may cause a default in one country to trigger further shocks elsewhere. The

weights in the market component are estimated and confer information about the relative

systemic importance of each country. Much as in classical finance theory, we also allow

for each country to have a different sensitivity to the market component. By reducing the

dimensionality of the parameter space relative to an unrestricted model, this set-up greatly

eases the econometric and computational burden of estimation.

We estimate the model via maximum likelihood on a three dimensional panel of weekly

CDS spreads for seven EU countries and seven maturities. The likelihood is based upon the

implied shocks to the event intensities where intensities are derived by inverting the pricing

formula. This is a novel approach to estimating this complex type of point process, made

necessary by the fact that we only observe CDS spreads and not intensities, event times or

jumps. Following Pan and Singleton (2008), we assume that the 5-year maturity spread is

observed with no measurement error, while the spreads for the rest of the maturities contain

normally distributed measurement error. To faithfully mimic the observed CDS spreads, we

do not impose a stationarity restriction on the intensity of credit-related events.

Our modelling and estimation choices, accompanied by the use of a global optimisation

algorithm, enable the estimation of a very complex model, with a huge parameter space (132

parameters, of which 84 are profiled out), while using a large three-dimensional data set.

To the best of our knowledge, this is the richest estimation problem that has been tackled

in the credit risk literature. Relative to e.g. Azizpour et al. (2018), our task is made more

difficult by the rarity of sovereign defaults, and the fact that we do not observe the news
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about default risk that is driving our model.6

1.2. Additional literature

The literature on sovereign credit risk is extensive, although a lot of the earlier work focused

on emerging economies. Edwards (1984) estimates the perceived probabilities of default for

different countries relying on the spread between the interest rate charged to a particular

country and the LIBOR7 and finds that some aspects are overlooked by banks when pricing

sovereign debt for developing countries. Kamin and von Kleist (1999) develop credit spreads

measurements for emergent economies for the 1990ś and find significant regional differences

in spreads across these economies after controlling for risk and maturity. Eichengreen and

Mody (2000) use data on 1000 developing-country bonds and find that higher credit quality

is related to a higher probability of bond issue and lower spreads.

As CDS spread data started to become available, several empirical developments followed.

Remolona et al. (2008) use CDS data on emerging markets to show that country-specific

fundamentals are the prime drivers of sovereign risk, while changes in the risk premia are

driven by changes in risk aversion. Longstaff et al. (2011b) identify the principal components

in sovereign CDS data and find that a single principal component accounts for 64% of the

variation in spreads.

Duffie and Singleton (2003) describe the use of the doubly stochastic Poisson processes to

model default intensities, as a base for pricing debt and debt related instruments. Several

further contributions to the literature modelled default intensities using these processes.

Duffie et al. (2003) build a new model to price sovereign debt, which they further estimate

6Azizpour et al. (2018) look at default contagion from observed corporate defaults in the United States
using a model incorporating a Hawkes process.

7London Interbank Borrowing Rate.
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using Russian dollar-denominated bonds. Later contributions involving the pricing of CDS

spreads include Pan and Singleton (2008), Longstaff et al. (2005) and Ang and Longstaff

(2013). Notably, Ang and Longstaff (2013) consider an international set-up and incorporate

in their model two default intensities, a non-systemic one and a systemic one. In their set-

up, the above intensities are modelled as square root processes driven by separate Brownian

motions, without spillovers between the systemic and non-systemic component.

Other recent literature has stressed the importance of using credit risk models that allow

credit events to instantaneously impact the probability of default. Gouriéroux et al. (2014),

Bai et al. (2015) and Monfort et al. (2017a)8 observe that credit risk models in which the

price is a function of both default events and intensities perform better than those in which

the price is not a function of the events. Benzoni et al. (2015) provide a structural expla-

nation for this, via a model in which investors do not know the underlying economic state

or its probability distribution. Thus, when investors observe defaults, they assign higher

probabilities to bad states, which increases their valuation of default insurance. Our model

allows for events to impact prices, as we rely on a Hawkes (1971) point process, in which the

intensities respond to events.

As previously mentioned, Aı̈t-Sahalia et al. (2014) were the first to use self-exciting point

processes to model sovereign credit risk. While building upon their contribution for pricing

CDS spreads when intensities are Hawkes (1971) processes, our work substantially differs

from theirs in all other aspects: modelling, estimation, data and results. Firstly, we consider

a marked point process, as opposed to an unmarked one. Errais et al. (2010) also con-

sider a marked Hawkes (1971) process, but only estimate a univariate model to price index

and tranche swaps. Secondly, we impose a particular parameter structure on the multivari-

8See also Monfort et al. (2017b) which introduces the Gamma zero processes used in Monfort et al.
(2017a).
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ate point process used, integrating a market component and a country specific component.

Thirdly, we do not impose stationarity on the Hawkes (1971) process we use. This assumption

is important due to the explosive path of Greek CDS. Fourthly, we develop a novel procedure

for tractably estimating high-dimensional Hawkes models using CDS prices. This enables us

to simultaneously work with 7 EU countries, while Aı̈t-Sahalia et al. (2014) are constrained

to estimate only bivariate models. As previously emphasized, the complex links between the

EU countries demand exploring credit risk contagion in a multivariate framework. More-

over, instead of nonlinear least squares (NLLS), we rely on maximum likelihood estimation

(MLE), both for its greater efficiency, and since the dimensionality of the parameter space

under NLLS would be impossibly large. In addition, our data set covers many countries and

maturities. Finally, the estimates obtained by Aı̈t-Sahalia et al. (2014) sometimes generate

unrealistic probabilities of default,9, whereas our estimated model generates more sensible

values for these probabilities.10

1.3. Outline

The rest of the paper is structured as follows. Section 2 describes our data. Section 3

presents the model and derives the pricing of CDS spreads within it. Section 4 explains our

estimation method. Section 5 gives our results, and presents an analysis of the network of

European debt holdings to aid their interpretation. Finally, section 6 concludes.

2. DATA

We use weekly data for the 1-, 2-, 3-, 4-, 5-, 7-, and 10- year CDS contracts from seven

EU countries from the 11th of November 2008 to the 28th of February 2012, giving 173

observations. We stop in February 2012, as on the 9th of March, the ISDA announced that a

9See Section 3.3 below.
10See Section 5 below.
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“Restructuring Credit Event” had occurred in Greece. This triggered payments in the CDS

market and temporarily suspended the trading of Greek CDS contracts. The cross-section

of countries includes France, Germany, Greece, Italy, Portugal, Spain and the United King-

dom. We include the UK in addition to the other six Eurozone members both since previous

research suggests the UK is the major non-Eurozone EU country affected by the Euro debt

crisis (Stracca, 2015), and since during the observed period, the UK is accumulating increas-

ing levels of public debt, leading to higher levels of sovereign default risk.11 Note that other

large non-Eurozone EU members, like Sweden and Denmark, have much lower debt to GDP

ratios (around 40% for Sweden and 45% for Denmark12). In addition, data on consolidated

banking positions for the UK, Denmark and Sweden shows that Eurozone banks have much

stronger links to UK banks than to banks in Denmark or Sweden.13 We do not include Ireland

for two reasons: first, it is a small country, with half the population of Portugal or Greece;

second, while it had very high levels of debt, its GDP per capita was one of the highest

in Europe (EUR 38,200 in 201214). As shown in Table I, Greece and Portugal, displaying

both very high levels of debt and low GDP per capita, fit more into the usual category of

“peripheral” Eurozone nations.

Table I presents key facts for the countries in our sample. France, Germany and the UK

all had the highest possible credit ratings within the period. Spain and Italy have the next

worse credit ratings, with the higher Italian GDP per capita partially counter-balancing

its higher debt. Finally, we have the two countries judged by the ratings agencies to have

significant credit risk, Portugal and Greece. Greece has the highest debt to GDP in our

sample of countries, reaching a level of approximately 160% of GDP in February 2012, with

11The UK loses its top AAA rating in February 2013, around one year after the end of our sample.
12Source:Eurostat.
13Source: Bank of International Settlements. For quarter 4, 2010, see: https://is.gd/bisB4_20104.
14Source:Eurostat.

https://is.gd/bisB4_20104
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credit ratings suggesting that default was imminent.

Country GDP/ Debt Debt Gross debt Credit Ratings,

capita (%GDP, (%GDP, outstanding February

(EUR, average 2012) (bil EUR, 2012

average 2008- average (Moody’s,

2008-2012) 2012) 2008-2012) Fitch, S&P)

France 31020 80.6 89.5 1628 Aaa, AAA, AA+

Germany 32480 75.5 79.9 1975 Aaa, AAA, AAA

Greece 19880 142.8 159.6 312 Ca, CCC, CC

Italy 26960 114 123.4 1838 A3, A+, BBB+

Portugal 16640 97.8 126.2 171 Ba3, BBB-, BB

Spain 23180 61.5 85.7 659 A3, AA-, A

UK 30080 71.5 85.1 1330 Aaa, AAA, AAA

TABLE I

Macroeconomic summary figures for the seven EU countries. (Source: Eurostat)

Figure 1 shows Euro-denominated 5-year CDS spreads in the run up to the Greek re-

structuring. The first panel, 1a, gives their dynamics both in levels, at the top of the plot,

and in natural logarithm, at the bottom, over our estimation period. This plot reveals three

facts. Firstly, Greek CDS spreads are much wider than those of other European countries.

Secondly, given the very different magnitudes of CDS spreads across countries, the driving

force for each country is likely to be its own credit risk. Finally, there are clear common

patterns in CDS spreads across European countries. For instance, during and following the

2008 financial crisis, we see spreads widening across the board, before lowering again in 2009.

Then, as the Greek debt crisis unfolded during 2010, similar patterns again emerge for all

countries’ spreads. Longstaff et al. (2011a) document this strong factor structure in sovereign

CDS spreads.
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Figure 1: CDS spreads.
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To get a better look at the joint dynamics in credit risk across countries, panel 1b in

Figure 1 shows daily log 5-year CDS spreads for a shorter time window, from the 15th of

June 2011 to the 1st of December 2011. In this zoomed figure, the commonalities across

European countries are clearer. To illustrate this, we mark on the figure various events

associated with a change in Greek or Portuguese risk. On each of these occasions, we observe

corresponding movements in spreads in most countries. Two of the events marked on the

panel represent good news. While in our model, risk can only jump upwards, there is still

a natural interpretation for good news as the absence of bad news. With our estimates

suggesting that over two hundred jumps are happening per week by the end of the sample,

there is substantial scope for this channel to generate downward movements in risk.

Both panels in Figure 1 also show that the ranking of countries based on credit scores

is preserved for CDS spreads. Additionally, from the plots, all series appear non-stationary.

To confirm this, for every country’s log CDS price, we run (augmented) Dickey-Fuller and

Philips-Perron tests with all numbers of lags from zero to ten, both with and without a trend

included.15 Of these 308 tests, not a single one had a p-value above 5%. Thus, there is no

evidence that CDS spreads are stationary in any country over the period.

Our analysis also requires default free discount factors based on zero coupon bonds up to

a 10-year maturity. Following Longstaff et al. (2005) and Aı̈t-Sahalia et al. (2014), we use a

cubic spline interpolation algorithm and rely on LIBOR rates (maturities 1-, 2-, 3-, 6- and

12- months) and Euro swap rates (maturities 2-, 3-, 5-, 7- and 10- years).

15In the case of the Philips-Perron test, the number of lags gives the number used in the Newey-West
estimator of the long-run variance.
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3. BUILDING A CREDIT RISK MODEL, STEP BY STEP

In this section, we describe our model of credit risk in EU countries. We begin with a more

general specification then proceed to narrow it down in light of empirical, econometric and

computational considerations.

3.1. Self-excitation to capture systemic risk

Systemic risk is the risk of collapse of an entire financial system. It is determined by the

linkages between institutions, and, in a globalized economy, the linkages between countries. In

our context, we are concerned with the systemic risk of defaults in all EU countries, triggered

by one initial shock. With EU countries holding large amounts of each other’s debt, and

many sharing a currency, there is a legitimate concern of defaults being transmitted between

countries. Thus, we seek to build a model of the impact of country specific shocks on the

probability of default in nations across the EU. We do this by modelling the rate of arrival

of credit-related events as a self-exciting (Hawkes, 1971) point process.

Let K be the number of countries. Let (Ω,F ,P) be a probability space on which the

credit-related events are defined. Then, for country i = 1, . . . , K, let Ni,t ∈ N be a stochastic

process counting the number of credit-related events up to time t. In our model, each credit-

related event will be associated with a jump in the event arrival rate. Define Ji,t ∈ R≥0 to

be the sum, for country i, of all jump sizes up to time t. If a jump occurs at time t, both Ni,t

and Ji,t change: Ni,t by 1, Ji,t by some real positive number. The vectors Nt = (Ni,t)i=1,...,K

and Jt = (Ji,t)i=1,...,K group the counting and jump processes for all countries.

Now, let Ft ⊆ F be the natural filtration for (Nt, Jt). Then, the intensity of credit-related

events at time t is defined as λt := limh↓0 E
[
Nt+h−Nt

h

∣∣∣Ft

]
.
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We suppose that λt follows the marked multivariate self exciting point process:

(1) dλt = α̌ (λ∞ − λt) dt+ β̌ dJt,

with solution λt = e−α̌t (λ0 − λ∞)+λ∞+
∫ t

0
e−α̌(t−s)β̌ dJs, where α̌ and β̌ are K×K matrices.

To ensure positiveness of the intensity, it is sufficient to assume that λ0 > λ∞, β̌ > 0 and

that all off-diagonal elements of α̌ are non-positive.16 Under these assumptions, λt > λ∞ for

all t. If all eigenvalues of β̌ − α̌ are negative, then the process is stationary (Da Fonseca and

Zaatour, 2015), and λ∞ is the point to which the process would tend were there no more

jumps.

The model in equation (1) shows that changes in the intensity of credit-related events

in one country depend on both the intensity levels and the events in all other countries.

The elements on the main diagonal of β̌ reflect the self-excitability of the model: shocks to a

country lead to an increase in the arrival rate of further shocks to that country. This produces

a clustering of shocks in time. The off-diagonal elements of β̌ reflect the cross-excitability

between countries. Events in one country influence credit risk in all other countries, giving

the system potentiality for a domino effect. As matrices α̌ and β̌ do not need to be symmetric,

the cross-country responses to other countries’ intensities or shocks are not equal.

When matrices α̌ and β̌ are diagonal, the event intensities in all countries are mutually

independent. In this case, for every i = 1, . . . , K, there exist country-specific parameters αi,

βi and λi,∞ such that:

(2) dλi,t = αi (λi,∞ − λi,t) dt+ βi dJi,t.

16See Lemma A.1 in Appendix A.



16 A.H. DUMITRU AND T.D. HOLDEN

3.2. Restricted model

Figure 1 revealed co-movement across countries. This could be generated by a common

“factor” driving all countries. There are two ways such a factor could be modelled. One would

be to posit a purely exogenous driving process common to all countries. However, this would

leave unclear the origins of this factor, and would, in any case, necessitate computationally

expensive filtering based estimation. The second approach, that we adopt here, is to model

the common factor as an endogenous object, driven purely by the shocks to individual

countries.

Inspired by the use of stock exchange indices as a proxy for the market factor in the empir-

ical classical finance literature, we build a “market” intensity of credit-related events defined

as a weighted average of the intensities of all countries considered. Let: w = [w1, · · · , wK ]> be

the vector of weights each country has within a “market” portfolio comprised of all countries,

with
∑K

i=1wi = 1. The “market” factor at time t will be w>λt. Unlike in exchange indices,

the weights here are not observed, but are parameters to estimate. They are designed to

capture which countries’ dynamics matter most for explaining the commonalities between

countries.

When a weight in one country is close to one, the relative importance of other countries

would be poorly identified. Without loss of generality we may fix this by rescaling the weights

as follows. For each country i, we define country-specific weights Wi,j, with Wi,i = 0 and

Wi,j =
wj∑
k 6=i wk

. W := [Wi,j]i,j=1,...,K gives a matrix representation of these weights. This leads

to a country i specific “market” intensity given by Wiλt, where Wi is the i-th row of matrix

W .

In our model, we assume that changes in each country’s event intensity are driven by both

country-specific and “market” components. Let δi and φi measure country i’s sensitivity to,
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respectively, changes and levels of the market intensity. The instantaneous change in the

intensity for country i is given by the following stochastic differential equation:

(3) dλi,t = αi (λi,∞ − λi,t) dt+ βi dJi,t
country-specific component

+ δiWi dλt
market change component

+ φiWi (λt − λ∞) dt
market level component

.

The first component is identical to the right hand side of equation (2), which gave the law

of motion for λi,t assuming independence across countries. Were this the only component,

then countries would be independent. The second component captures country i’s response

to changes in the “market”, and thus ensures a response of country i to shocks in other

countries. The final component determines how country i responds to deviations in other

countries’ intensities from their long-run levels, λ∞. This component allows for spill-overs in

risk across countries.

Regrouping the terms in the above equation and stacking together all countries leads to

the following system of equations:

dλt = (α− φW ) (λ∞ − λt) dt+ β dJt + δW dλt,

where α, β, δ and φ are diagonal matrices with diagonals α1, . . . , αK , β1, . . . , βK , δ1, . . . , δK

and φ1, . . . , φK respectively. Further rearrangement of terms gives us:

dλt = α̌ (λ∞ − λt) dt+ β̌ dJt,(4)

where α̌ := (I − δW )−1 (α− φW )

and β̌ := (I − δW )−1 β.

While the restrictions imposed by (4) are intuitive, they also play an important role in

dimensionality reduction for estimation purposes. If we consider the general multivariate self-

exciting process in equation (1), matrices α̌ and β̌ will have a total of 2K2 different elements.
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With K = 7, this adds up to 98 parameters to estimate, whereas under our restrictions, these

matrices contribute only 34 parameters. In any case, it is likely to be difficult to identify all

parameters in the unrestricted system, as the identification must come from the non-linearity

and non-Gaussianity of the system.17 Aı̈t-Sahalia et al. (2014) estimate only bivariate models

and impose a diagonal structure on the α̌ matrix.

3.3. Jump specification

In order to attain a better fit of the original CDS data, we allow for variable sized jumps.

With fixed size jumps, the distribution of next week’s intensity conditional on this week’s

is multi-modal, with narrow support. By making jump sizes exponentially distributed, we

ensure that the conditional intensity has full support, and a tractable distribution.

For country i, let dJi,t = zi,t dNi,t be the jump occurring at time t, with a size equal

to either 0, if no jump occurs, or a random variable zi,t, if a jump occurs. We assume that

zi,t ∼ Exp (1), independent across time and countries. In vector form, we have dJt = zt◦ dNt,

where zt = [z1,t, . . . , zK,t]
>.

We define Xt := (Nt, Jt, λt), with dynamics given by equation (4) and the jump specifica-

tion just given. By construction, Xt follows a Markov process affine in the state variables.

Thanks to these properties, we may readily calculate the moments of Xt (see appendix B).

17In an equivalent linear-Gaussian framework, β̌ is not identified as there are K2 elements in β̌, but only
K(K+1)

2 elements in the covariance matrix from which β̌ must be inferred.
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3.4. Pricing CDS contracts

We rely on the pricing formula derived by Aı̈t-Sahalia et al. (2014):18

(5) si,τ,t =
r
∫ τ
t
D(t, s)E[γiλi,s(1− γi)Ni,s−Ni,t | Ft] ds∫ τ
t
D(t, s)E[(1− γi)Ni,s−Ni,t | Ft] ds

,

where si,τ,t denotes the CDS spread at time t, for country i and for maturity τ , measured

in years, 1 − r is the recovery rate (i.e. the fraction returned upon default), here assumed

constant across countries, D(t, s) is the discount factor at time t for a zero coupon bond

with maturity s, and 0 < γi ≤ 1 is the probability of going into default upon the occurrence

of a credit-related event. The pricing is under the risk-neutral measure, and thus λt is also

under this measure. In practical terms, this means that changes in λt could be coming from

either changes in the risk of a country’s debt, or from changes in the market’s appetite for

this risk.

Looking at Figure 1, we observe a lot of variability in all CDS spreads. If we wish to describe

this type of data using a pure jump process, which only moves when an event occurs, we will

need a lot of jumps to faithfully mimic the variability in the data. This implies a very high

intensity. For this not to generate counter-factually many defaults, this requires letting the

parameter γi take a value lower than 1. Previous work (e.g. Longstaff et al. (2005); Pan and

Singleton (2008)) fixed γi = 1, which is equivalent to assuming that all events generated by

the model are proper credit events, as defined by ISDA. Most European countries considered

had a good credit history in the recent past; the occurrence of credit events as in the ISDA

definitions is very rare, and none occur in our sample.

Indeed, to reflect the observed data, γi should be close to 0. Consider the results of Aı̈t-

18For estimation, the CDS data is converted from the original semi-annual to continuously compounded.
We apply the formula: scontinuous = 2 log(1 + ssemi−annual/2).
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Sahalia et al. (2014) for example, who estimate a bivariate model of the type specified in

equations (1) with dJt = dNt. Their estimated value of γi for Germany is 0.28, while a jump

in Greece causes the intensity in Germany to increase by 1.3, under their estimates. This

means that if a jump happens in Greece, then, per their estimates, the annual probability

of default in Germany will increase by roughly 1.3 × 0.28 = 0.36, which seems somewhat

improbable. To ensure reasonable estimates of γi, we include the series of observed non-

default events within our estimation information set.

Computing the theoretical spreads si,τ,t involves the evaluation of the two expectations

present in equation (5). Duffie et al. (2000) derive closed form expressions for expectations

of this type for the class of affine jump diffusions. Appendix C offers details on the application

of Duffie et al.’s (2000) results to our paper.

4. ESTIMATION

We estimate the model by maximum likelihood. Given that the state is not directly ob-

served, the likelihood will be a product of the likelihood of the state, and a Jacobian term

coming from the transformation mapping the state into the observed prices. Bowsher (2007)

provides a comprehensive guide to the estimation of generalized Hawkes (1971) models when

realisations of Nt are observed, which is not the case here.

The recent literature estimating credit risk models using CDS data has taken a least

squares (or equivalently GMM) approach (Longstaff et al., 2005; Ang and Longstaff, 2013;

Aı̈t-Sahalia et al., 2014); it seeks to find values for the parameters and state-variables which

minimise the gap between predicted and observed prices. This approach, while liberal in

terms of error specification, requires considering the state variables (i.e. the intensities) as

free parameters to estimate. This significantly increases the dimension of the parameter
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space, rendering estimation of a model as large as ours essentially impossible.19 Additionally,

the least squares approach throws away substantial quantities of information as it amounts

to estimating the dynamics of market beliefs about the state variable, without using any

information about the actual evolution of that state variable, e.g. auto-covariances.

We follow Pastorello et al. (2003), Pan (2002) and Pan and Singleton (2008) in assuming

that, for all countries, all but one time series from our panel of financial instruments is

observed with measurement error. Specifically, we assume that the 5-year CDS spread—the

most liquid—is observed without true measurement error. Thanks to this, conditional on the

values of the model parameters, the pricing formula for the 5-year CDS can be inverted to

find λt at every observation, t. We perform the inversion sequentially, starting by finding λt

in the first period, then in the next, and so on. In solving for λt+∆, where ∆ := 7
365

is the

sampling frequency, for each t, we impose the constraint that:

λt+∆ ≥ E [λt+∆|Ft, Nt+∆ = Nt] = λ∞ + e−α̌∆ (λt − λ∞) ,

as any λt+∆ violating this condition has probability 0. Imposing this constraint also helps

avoid multiple minima in the pricing error objective function. Moreover, when solving for

λt+∆, we impose the constraint that there exist jump times τ ∗1 , . . . , τ
∗
Lt,t+∆

∈ (t, t + ∆] and

jump amounts z∗1 , . . . , z
∗
Lt,t+∆

∈ RK
>0 such that:

λt+∆ = E
[
λt+∆|Ft, Nt+∆ = Nt + Lt,t+∆, ∀l ∈ {1, . . . , Lt,t+∆} dJτ∗l = z∗l

]
.20

Again, any violation of this constraint has probability 0 according to the model. Due to

19In our case, for 7 countries, we would have had an additional of 1211 new parameters to estimate.
20For numerical reasons, in practice, this constraint is only imposed approximately. Further details of how

it is imposed are given in Section 4.1.2.
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misspecification, it may not always be possible to zero the error in pricing while imposing

these constraints. In these cases, we minimise the pricing error conditional on imposing the

constraints. This produces a residual pricing error for the 5-year CDS spread, a pseudo-

measurement error. Since under correct specification, this pseudo-measurement error has

standard deviation 0, and thus a singular likelihood, we do not attempt to estimate its stan-

dard deviation. Instead, we estimate the parameters governing the “pseudo-measurement”

error for the 5-year CDS spread via shape-preserving piecewise cubic Hermite interpolation

from the parameters governing other maturities.

To be concrete, we assume that the observed CDS spread at time t for country i and

maturity τ , s̃i,τ,t, is given by

(6) s̃i,τ,t = si,τ,t + ςi,τe
%i,τ si,τ,tεi,τ,t,

where εi,τ,t ∼ NIID(0, 1) and where si,τ,t is the CDS price at maturity τ implied by our

λt. This form of heteroskedasticity gives substantial flexibility over how measurement error

changes as prices change. Since ςi,5 and %i,5 are interpolated from (ςi,1, ςi,2, ςi,3, ςi,4, ςi,7, ςi,10)

and (%i,1, %i,2, %i,3, %i,4, %i,7, %i,10) respectively, this gives 6 × 7 × 2 = 84 measurement error

parameters, all of which we are able to profile out of the likelihood.

One could potentially estimate our model via Gaussian quasi-maximum likelihood

(QMLE). However, since we model non-stationary data, the standard consistency results

(e.g. Bollerslev and Wooldridge (1992)) for QMLE do not apply as these require a finite

unconditional variance. Consequently, we seek to estimate using the true likelihood, which

should also be more efficient. In practice, some small approximations to the likelihood will

still be necessary, but the error introduced by these approximations will disappear asymp-
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totically as the sampling frequency goes to 0, giving consistency under the same conditions

as true MLE.

4.1. Our likelihood

At t+ ∆, we observe two types of information. First, the CDS spread, which will provide

information on the jumps between t and t+ ∆. Second, whether there was a default between

t and t+∆, although in our sample, there are no defaults. Consequently, we want to calculate

the joint likelihood of observing no default and a certain λt+∆, conditional on λt. This is

computed as the product between the likelihood of observing λt+∆, conditional on λt, and

the probability of no default conditional on both λt and λt+∆.

4.1.1. Likelihood of a certain jump size

For the computation of f (λt+∆|λt), we approximate the true arrival rate λt over the time

interval (t, t+∆] by λu
t,t+∆, where λu

t,t+∆ is constant on (t, t+∆]. To minimise the approxima-

tion error, we define λu
t,t+∆ so that the expected number of jumps under the approximation

(conditional on λt) is identical to the expected number of jumps under the true process

(conditional on λt). This requires λu
t,t+∆ to be defined as the expected mean value of λt over

the interval, conditional on λt, i.e.:21

λu
t,t+∆ :=

∫ t+∆

t

E (λs|λt) ds = λ∞ + ∆−1
(
β̌ − α̌

)−1
[
e(β̌−α̌)∆ − I

] (
λt − λ∞

)
,

where λ∞ := −
(
β̌ − α̌

)−1
α̌λ∞. As ∆ → 0, supτ∈(t,t+∆]

∣∣λu
t,t+∆ − λτ

∣∣ a.s.−−→ 0 and the error

disappears.

Let χt,t+∆ :=
∫ t+∆

t
dJs = Jt+∆ − Jt. We will discuss the computation of this quantity in

21The solution follows from the calculation of E (λs|Ft) in Lemma B.1 in Appendix B.
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the next section. In Lemma D.1 in Appendix D, we show that under our constant arrival

rate approximation, the probability distribution function (p.d.f.) for χi,t,t+∆ is given by:

(7) f (χi,t,t+∆|λt) = ∆λu
i,t,t+∆

I1

(
2
√

∆λu
i,t,t+∆χi,t,t+∆

)
e∆λu

i,t,t+∆+χi,t,t+∆
√

∆λu
i,t,t+∆χi,t,t+∆

,

where I·(·) is the modified Bessel function of the first kind. We can then compute:

(8) f (λt+∆|λt) = f (χt,t+∆|Ft)

∣∣∣∣det
dχt,t+∆

dλt+∆

∣∣∣∣ .
4.1.2. Inferred jump times and sizes

Although we observe λt and λt+∆, we do not observe Jt and Jt+∆, so we do not in fact know

χt,t+∆. A standard approach would be to take an Euler approximation. That is: χt,t+∆ ≈

β−1 [λt+∆ − E [λt+∆|Ft, Nt+∆ = Nt]] . In the limit as ∆→ 0, there would be at most a single

jump in the interval (t, t+ ∆], and the error in assuming it occurs at the end of the interval,

as in the Euler approximation, would be Op(∆).22

However, our sampling frequency (weekly) is relatively low compared to the estimated

arrival rate (over two hundred per week by the end of the sample); thus, the approximation

error from an Euler approximation can be substantial. This would manifest itself as upward

bias in both α and β. To ameliorate this, within each interval, (t, t + ∆], we endeavour to

find the jump times and jump sizes which maximise the likelihood over the interval. In the

limit in which there is a single jump in the interval, we will be closer to its true arrival time,

somewhat reducing error compared to the Euler approximation, and when there are many

jumps in the interval, we will substantially reduce the error in the Euler approximation.

22If the jump actually occurs at t+ s∆, for s ∈ [0, 1], then the error in using the Euler approximation is
proportional to ∆(λt+∆ − λt)(1− s) plus higher order terms.
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Solving for the maximum likelihood jump times and sizes can also be viewed as a “hard”

expectation-maximization (EM) approach to dealing with the latent variables.23

Let ζs := dE[Js | zs, λs]/ ds = zs ◦ λs, where we treat zs as a “noise” type process giving

the jump size that would be observed at s were there indeed a jump. If we are free to optimise

the likelihood over the number of jumps within an interval, then the maximum likelihood

number of jumps is infinite if λt > 1 at some point in the interval (since in this case we may

increase the likelihood without modifying the path by introducing a zero sized jump). In fact,

solving this ill-posed optimisation problem is not necessary, since we are only concerned with

χt,t+∆, which is unaffected by zero sized jumps. Instead, we “integrate out” the unknown

path of Nt, by maximising the expected likelihood over the interval, conditional on the entire

path of λs and ζs for s ∈ (t, t+ ∆] (which we are optimising over).

The expected maximum likelihood times and sizes of jumps occurring during (t, t+ ∆] are

the solution to the following maximization problem:

Problem 4.1

max
λs,ζs, s∈(t,t+∆]

{E log [f(jump times in (t, t+ ∆])|λs, ζs, s ∈ (t, t+ ∆]]}

subject to:

(9) α̌ (λ∞ − λs) + β̌ζs − λ̇s = 0,

λt, λt+∆,

ζs ≥ 0 ∀s ∈ (t, t+ ∆],

23The canonical example of the hard-EM algorithm is the k-means clustering approach to estimating
Gaussian mixture models.
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where f(·) is the pdf of the jump times and equation (9) is obtained by taking expectations

over equation (4) conditional on the paths of λs and ζs in (t, t + ∆]. In practice, to keep

the computational cost of solving this problem manageable, we take a first order Taylor

approximation to the objective in λs, and we introduce a smoothing parameter “kappa”

such that the solution to the problem with the linearised objective is recovered as κ → 0.

Further details on defining, approximating and solving this maximisation problem are given

in appendix E. The optimal ζs for the approximated problem is:

(10) ζs = max

{
0,

1

κ

[
β̌T
(
eα̌

T (s−t)υ + α̌−T log λt

)
− 1K×1

]}
,

where υ is an integration constant, chosen to ensure λt+∆ takes the correct value. When

κ → 0, our solution is more accurate, and ζs → ∞ if the insides of the square brackets in

equation (10) are positive, giving a jump at time s. In practice, for numerical reasons, we

set κ > 0, but as small as is numerically feasible.24

Further, we compute our estimate of the jump size over the interval (t, t+ ∆] as:

(11) χt,t+∆ =

∫ t+∆

t

ζs ds.

4.1.3. Probability of no default conditional on a certain jump size.

Let Ξi,t,t+∆ denote the event that for country i, during the interval (t, t + ∆], no default

occurred. For the computation of Pr (Ξi,t,t+∆|λt, λt+∆), we approximate the true arrival rate

λt over the time interval (t, t+ ∆] by λc
t,t+∆, where λc

t,t+∆ is constant on (t, t+ ∆]. Much as

24Estimations are obtained with κ = 10−4.
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before, to minimise the approximation error, we define λc
t,t+∆ so that the expected number

of jumps under the approximation (conditional on λt and λt+∆) is identical to the expected

number of jumps under the true process (conditional on λt and λt+∆). This requires λc
t,t+∆

to be defined as the expected mean value of λt over the interval, conditional on λt and λt+∆.

The computation of this quantity is immediate from the solution of Problem 4.1.

Under the constant λt approximation, we prove in Lemma D.2 in Appendix D that

Pr (Ξi,t,t+∆|λt, λt+∆) = E
[
(1− γi)k

∣∣∣χi,t,t+∆

]
=

√
1− γiI1

(
2
√

∆(1− γi)λc
i,t,t+∆χi,t,t+∆

)
I1

(
2
√

∆λc
i,t,t+∆χi,t,t+∆

) .(12)

4.1.4. The likelihood function

Combining the previous results, if we define the matrix of observations at t, s̃t :=

[s̃1,t, s̃2,t, s̃3,t, s̃4,t, s̃5,t, s̃7,t, s̃10,t], we have that the conditional likelihood of the observation

at t+ ∆ is given by:

(13) f (s̃t+∆|s̃t) = f (λt+∆|λt) Pr (Ξi,t,t+∆|λt, λt+∆)

∣∣∣∣det
dλt+∆

ds̃5,t+∆

∣∣∣∣ f (s̃t+∆ − st+∆) ,

where f (λt+∆|λt) is as defined in equation (8), Pr (Ξi,t,t+∆|λt, λt+∆) is as defined in equation

(12), and f (s̃t+∆ − st+∆) is given by the error specification from equation (6).

The likelihood function in equation (13) may be readily adapted to the estimation of other

self-exciting point processes, when we observe a regularly sampled function of the intensity.

The only requirement for estimation based on (13) is for the function relating the observables

to the state variables to be invertible.
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4.2. More on estimation

The model estimated here is, to the best of our knowledge, the richest in the credit risk

literature. We estimate a total of 132 parameters (profiling out the 84 parameters associated

with measurement error), where each evaluation of the likelihood function requires us to

solve multi-variate non-linear equations for each observation, both to find the cumulated

jump size given the intensities, and to invert the CDS prices into intensities. We consider 7

countries and allow for asymmetric interactions between their credit risk. Moreover, a long

time span and a relatively large panel of maturities are used. An estimation exercise of large

dimensions is also conducted by Ang and Longstaff (2013). In their paper, they estimate

jointly 33 parameters, 30 describing the dynamics for 10 countries (or US states) and 3

corresponding to an independent market factor.

In order to maximize the log likelihood, we employ a global optimization algorithm. Specif-

ically, we use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) proposed by

Hansen and Ostermeier (2001). As the algorithm employs a global search through the pa-

rameter space, the estimation takes a considerable amount of time and computing resources.

There are two advantages to such a global, stochastic, search strategy. Firstly, it removes

the need for computing derivatives of the likelihood, which, due to the nested optimisation

problems can be unreliable. Secondly, it increases the chance that our final optimum truly

represents a global optimum. Estimation took around two weeks on a 20 core, 40 thread,

machine, starting from a point with equal parameters across countries which had performed

well in prior estimation runs. We used Matlab Coder to generate C code for some of the

more time consuming inner code.

During estimation we impose the sufficient conditions for positivity of λ derived in Ap-

pendix A. Furthermore, following Ang and Longstaff (2013) and Aı̈t-Sahalia et al. (2014), r
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in equation (5) is set equal to 0.5, which is approximately the loss suffered by the investors

in Greek bonds due to the country’s default on its debt. Given that this parameter multiplies

the CDS pricing equation, fixing it at this level is a simple solution for any identification

issues that might otherwise emerge.

5. RESULTS

Table II reports, for each country, the estimated parameters followed by standard errors

in brackets. The bold estimates are significant at a 1% significance level.

Country(i) αi βi δi φi λi,∞ γi wi

France 39.46 39.80 2.23E-04 0.0316 0.64 2.33E-05 0.0007

(0.136) (0.101) (0.007) (0.000) (0.003) (0.002) (0.004)

Germany 47.23 47.82 4.05E-04 0.0177 0.27 1.62E-05 0.0002

(0.158) (0.156) (0.008) (0.001) (0.001) (0.008) (0.003)

Greece 18.56 18.58 9.82E-05 0.1172 0.37 3.66E-04 0.0102

(0.095) (0.084) (0.001) (0.001) (0.001) (0.003) (0.001)

Italy 28.35 28.54 6.06E-05 0.0165 1.45 3.59E-05 0.0021

(0.231) (0.152) (0.001) (0.002) (0.006) (0.004) (0.002)

Portugal 17.54 17.58 1.85E-04 0.0269 0.86 0.0001 0.5012

(0.093) (0.110) (0.014) (0.001) (0.034) (0.001) (0.015)

Spain 19.42 19.51 1.30E-04 0.0135 1.42 4.55E-05 0.4844

(0.141) (0.128) (0.007) (0.002) (0.007) (0.001) (0.002)

UK 33.59 33.70 5.19E-05 0.0374 3.37 2.31E-05 0.0011

(0.283) (0.266) (0.002) (0.001) (0.012) (0.018) (0.012)

TABLE II

Estimated parameters and standard errors25,26



30 A.H. DUMITRU AND T.D. HOLDEN

The estimates for αi and βi are very high and statistically significant at 0.01% for all

countries. αi needs to be high to ensure that the model puts positive probability on the

fastest drop in CDS prices observed in the data, and βi needs to be broadly similar to explain

the observed slow reversion to λi,∞. The values of these parameters for Greece, Portugal and

Spain are lower than for all other countries; this is natural as problems were more persistent

in these countries. Interestingly, for all countries we have that βi > αi, which supports the

conclusion of non-stationarity we reached from our initial unit root tests.27

While the values for δi are all very low and statistically non-significant even at 5%, the

estimates of the other sensitivity parameter, φi, are much higher and even statistically sig-

nificant at 0.01%. Thus, events intensities change more as a reaction to the levels of the

“market” intensity rather than due to the changes in this factor. This constitutes evidence

for a lagged response to changes in the “market” risk of default. Put another way, countries

respond to the underlying risk of others, rather than directly responding to news about other

countries.

The highest level of φi (≈ 0.12) is encountered for Greece, meaning that Greece’s credit

risk is particularly sensitive to the credit risk levels of all other countries. This helps explain

the country’s tumultuous dynamics in this period, and implies that Greece’s fate might have

been better had other European countries not also been in difficulty at the same time. We

further explore the effects of other countries’ shocks on Greece in Section 5.2.

26We calculate the standard errors using the sample Fisher information matrix. To deal with the fat tails
of this measure, we trim the 5 largest and 5 smallest values. In the absence of trimming, all coefficients
are significant. Moreover, all coefficients are significant when using the Hessian or the sandwich matrix to
calculate the standards errors, thus our trimming approach is conservative with respect to the significance
test.

26Given that our estimates suggest the process is explosive, there is a possibility that some of our esti-
mators are super-consistent. As we rely on a combination of in-fill and long-time asymptotics, we expect to
attain a mix of standard

√
T and faster convergence.Thus, our choice to perform standard

√
T inference will

produce conservative standard errors.
27It is also the case that all of the eigenvalues of β̌−α̌ are positive, so the estimated model is non-stationary.
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Apart from Greece, the levels of φi are moderate. This means that the credit risk of each

European country is chiefly determined by the individual circumstances of that particular

country, rather than by the circumstances in other countries. This is a natural finding, given

the fact that the analysed European countries differ considerably in terms of debt, economic

development and credit ratings, as previously shown in Table I.

The estimates for λi,∞ are statistically significant even at 0.01% for all countries, implying

that for no country in our sample will default risk ever hit zero. We observe the highest

levels for the UK, followed by Italy and Spain. This indicates higher levels of intensities for

these countries even in the absence of shocks, which might be related to their high levels

of debt and thus, underlying risk. However, it is difficult to interpret this parameter in a

nonstationary model.

The probability of default conditional on the occurrence of a credit-related event (γi) is

estimated to be near zero for all countries. Since frequent events are needed to explain all

of the movements in the observed CDS data, this is unsurprising. The events in the model

correspond to the arrival of any news relevant to the countries’ ability to repay their debt,

and in times of crisis, almost any political, financial or economic development can fulfil this

criterion.

5.1. The estimated weights

In our model, the “market” intensity represents, essentially, a portfolio of common default

risk. The estimated weights give information on the sources of this common risk. Looking

at the weights in table II, we notice that the main sources of risk are Portugal and Spain,

with weights of 50% and 48% respectively. Greece comes next with a weight of only 1%, but

still statistically significant at 0.01%. The weights for all other countries are very small and
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non-significant even at 5%. The prevalence of Portugal, Spain and Greece in driving the risk

during this period is natural, given that, from our cross-section, these three nations required

international financial aid. Below, we give further intuition for the estimated values.

During the analysed period, we observe an extreme deterioration of the economic situa-

tion in Greece, with poor economic performance and rocketing debt to GDP, leading to a

consistent downgrading of credit ratings (see Table I). In the face of an imminent default,

investors sought insulation from the risk coming from Greece, as evidenced by the gradual

change in the ownership of Greek debt to large multinational institutions, such as the IMF,

the EU and the ECB. In addition, the two bailouts received by Greece in this period via the

First and Second Economic Adjustment Programmes further helped alleviate risk coming

from Greece for other countries. All of the above are reflected in the low weight estimated

for Greece, as the country was perceived as a problem that was already being dealt with.

Additionally, Greece is a relatively small economy by European standards, so it would have

been surprising had its weight been much larger.

The situation is different for Portugal, as investors were still learning about its default

risk over our period. For example, as shown in panel 1b in Figure 1, Moody’s downgrading

of Portuguese sovereign debt on the 5th of July, 2011 was accompanied by reactions in all

observed sovereign CDS spreads. We believe the high weight estimated for Portugal reflects

investors’ worries that Portugal could be the next Greece, and that its collapse could take

other countries with it.

Still, Portugal’s high weight might be surprising given the country’s small size. To further

understand the systemic importance of Portugal, we examined the network structure of debt

amongst our seven countries. It is plausible that if a country holds some of the debt of a risky

country, then this increases the risk of the creditor nation. In this way, risk is transmitted
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through the network of asset holdings. More concretely, we consider a network structure on

our seven countries where the strength of the link from country A to country B is proportional

to the amount that country B has lent to country A, divided by the GDP of country B, times

the debt to GDP ratio in country A. We divide by the GDP of country B to capture the fact

that a default in a small country is unlikely to lead to the default of a large one. The debt

to GDP ratio in country A proxies the country-specific risk of country A. This gives a rough

approximation to the strength of the transmission of risk from country A to country B. We

use consolidated banking exposures from the Bank of International Settlements for quarter

4 of 2010.28 In addition, we collect GDP and public debt data from Eurostat.

Using this network, we would like to assign a “debtor-importance” score and a “creditor-

importance” score to each country. Plausibly, important creditors are those who lend to

important debtors, and vice versa. This recursive definition maps onto the “hubs” and “au-

thorities” of Kleinberg (1999b).29 In particular, Kleinberg (1999a) shows that the weights

(importance scores) of “authorities” (creditors in our set-up) and “hubs” (debtors) converge

to the left and right singular vectors of the adjacency matrix associated with the network

structure. The resulting debtor- and creditor- importance scores are reported in Table III

below. We learn that the most systemically important debtor is Portugal, followed by the

UK, and that the most systemically important creditor is Spain, followed by Germany.

With Spain being the most systemically important creditor according to our network anal-

ysis, this gives one explanation for its prominence in our estimates. Furthermore, while Spain

did not have large amounts of public debt, our dataset covers a period of Spanish recession,

28This was the only period between 2009 and 2011 for which data for Italy was available.
29Kleinberg (1999b) develosp an algorithm which classifies web pages as “authorities” (pages linked by

many other pages) and “hubs” (pages that link to many other pages). Each page is assigned an authority
weight, proportional to the sum of the hub weights of pages that link to it, as well as a hub weight, propor-
tional to the sum of the authority weights of pages that it links to. Using the same method, we can define
weights (importance scores) for debtors and creditors.
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Country France Germany Greece Italy Portugal Spain UK

Debtors 0.048 0.008 0.026 0.063 0.606 0.005 0.244

Creditors 0.130 0.136 0.017 0.023 0.016 0.580 0.098

TABLE III

Importance scores for debtors and creditors

characterized by unemployment rates of over 20%30. This recession, following the collapse of

the property boom, left the Spanish banks very fragile and led the Spanish Government to

seek a bailout during the summer of 2012 to inject capital into banks.31 At the same time,

Spain was the 5th largest economy in Europe32 and was perceived by markets as too big to

fail. Given all of this, the high weight we estimate for Spain is unsurprising.

We note that France and Germany have very low and statistically insignificant weights,

despite arguably being the most prominent powers in the EU. We offer two explanations for

this. Firstly, w>λt is a portfolio of risk and, as such, is mostly driven by countries with high

variability in their spreads. Secondly, with default in France and Germany such a remote

risk, investors are likely to allocate their attention towards higher-risk countries. This rational

inattention33 will decrease the sensitivity of CDS outside of the EU’s core to events within

it.

Ang and Longstaff (2013) and Augustin et al. (2018) proxy the systemic risk component

by the German probability of default. This is imposed mainly to ease identification and

is motivated by the common supposition that the Eurozone is as strong as its strongest

economy, Germany. Implicitly, this assumes Germany is prepared to act as a lender-of-last-

resort to the entire Eurozone, something that is called into question by the limited political

30Source: Eurostat.
31See, for instance, https://is.gd/bbc100612.
32During 2008-2012, Spain’s total GDP (current prices) was ranked 5th after Germany, France, the UK

and Italy. Source: Eurostat.
33For more on rational inattention, see, for instance, Sims (2003).

https://is.gd/bbc100612
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support within Germany for the provision of aid to other Eurozone countries34. By contrast,

our estimated weights suggest that systemic risk originates in weaker countries, implying

that markets do not believe Germany would provide indefinite backing for other Eurozone

members.

Panel 2a in figure 2 shows the estimated default intensities for all countries, obtained by

multiplying country i’s event intensity by γi. We notice the similarity between this figure and

the figure showing the original CDS spreads (figure 1). The intensity of default is extremely

high for Greece, reaching a maximum of 2.31 expected defaults per year. Greece is followed

by Portugal with a maximum intensity of default of 0.30 (expected defaults per year). Italy

and Spain come next reaching maximums of 0.08 and 0.07 respectively. The lowest maximum

default intensity was attained by Germany (0.007).

Panel 2b in figure 2 shows the evolution of the yearly “market” factor for the observed

period together with the annual intensities of credit-related events for all countries. As we

approach the Greek default, we notice the “market” intensity increasing to levels similar to

the intensity levels in Spain and Portugal. This is expected, given that the highest weights

in the market portfolio are taken by these countries. For Greece, we observe a maximum

intensity of 6316, meaning 121 expected events per week.

5.2. Implications of our estimates

This section quantifies the contagion channels implied by our estimated model. We present

counter-factual results on probabilities of default for our analysed countries under assorted

34For example, in August 2011, a poll of the members of Germany’s main ruling parties found less than
half of them supported the bailouts of Greece, Ireland and Portugal (see e.g. https://is.gd/bbc100811);
in September 2011, Merkel stressed that she would never support a debt union (see e.g. https://is.gd/
bbc280911); and, in February 2013 the “Alternative für Deutschland” party was founded on a strongly
anti-bailout platform (see e.g. https://is.gd/gu140413).

https://is.gd/bbc100811
https://is.gd/bbc280911
https://is.gd/bbc280911
https://is.gd/gu140413
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(a) Estimated intensities of default for all the countries in the sample.
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Figure 2: Intensities of default and credit-related events.
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scenarios. We begin by focussing on the impact of the model’s parameters on the probability

of a Greek default, as the value of φi there suggests Greece is particularly sensitive to risk

elsewhere. The second part of this section explores the transmission of shocks between all

countries. To perform these analyses, we recover the inferred shocks ζt from our estimation,

and then re-generate the intensity paths of the model with certain parameters or shocks set

to zero.

Table IV illustrates the effects of zeroing βi, φi, λi,∞ and wi for one country at a time.35

Country(i) France Germany Greece Italy Portugal Spain UK

βi -0.013 -0.005 -99.049 -0.103 -8.662 -23.418 -0.048

φi -0.001 0.000 -35.002 -0.001 -0.856 -0.092 -0.001

λi,∞ -0.003 -0.001 -7.089 -0.008 -1.526 -1.400 -0.008

wi 0.008 0.001 0.012 -0.042 10.491 -13.282 -0.015

TABLE IV

Percentage change36in the probability of there being at least one Greek default during
our observation period when the parameter given in the first column is zeroed for the

country given in the first row.

Switching off βi for a certain country is equivalent to switching off the shocks from that

country. Doing this for Greece renders a Greek default almost impossible. More importantly,

we notice a substantial impact from turning off βi for Portugal and Spain. While the esti-

mated weight for Portugal is slightly higher than the estimated weight for Spain, this exercise

shows us that shocks from Spain actually matter considerably more; we observe a drop of

approximately 23% in the Greek default probability when switching off shocks from Spain,

as opposed to a drop of approximately 9% when switching off shocks from Portugal.37 This

35Results for switching off αi, δi and γi are available upon request. αi controls mean reversion; hence,
when it is fixed to zero in some country, that country experiences an explosive path and, via contagion,
Greek default becomes a virtual certainty. As δi and γi are very small to start with, zeroing them does not
have any great impact.

36To be clear: an increase in default probability from 25% to 50% would appear here as 100%.
37Mathematically, this is down to Spain’s higher long-run level in the absence of shocks, λi,∞, its greater
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is consistent with Spain’s greater size, meaning its default would be more devastating than

a default in a smaller country such as Portugal.

Repeating the above analysis while switching off shocks originating in both Spain and

Portugal leads to a decrease of approximately 34.3% in the Greek probability of default. In

addition, if shocks from all other countries are set to 0, the probability of default in Greece

decreases by 34.6%, indicating again that from the pool of considered countries, Spain and

Portugal are the chief driving forces of contagion risk. These results imply that a sizeable

part of Greece’s default risk was down to the difficulties experienced by other countries at

the same time. It is thus reasonable to believe that Greece’s fate could have been better had

other European countries not also been in difficulty at the same time.

When switching off φi for each country in turn, the largest impact is unsurprisingly for

Greece itself (around 35%), as in all other cases the effect is indirect.38 This parameter

controls the change in the intensity of credit-related events in response to changes in the level

of the “market” intensity, so the high change in default probability we find here reinforces

our prior finding of the importance of contagion for the Greek default. Indeed, the effect of

setting both φi and δi to zero for Greece is the same as the effect of switching off shocks in

all other countries, combined with the effect of setting all of their initial intensities (λi,0) to

their long-run levels in the absence of shocks (λi,∞). However, since δi is so low, φi is the

main channel for contagion in practice. This finding also implies that around 65% of the

Greek probability of default was generated at a purely domestic level.

Zeroing λi,∞ in Greece generates a 7% decrease in its own default probability. In addition,

degree of intrinsic explosiveness, as evidenced by the higher βi−αi, and also the higher implied value of λi,0
for Spain as opposed to Portugal.

38Of the other countries, the effect of setting φi to zero is largest for Portugal. This reflects the combination
of Portugal’s high weight (wi), and high sensitivity to market risk (φi). Note in particular that Portugal has
a much higher sensitivity to market risk than Spain.



QUANTIFYING THE TRANSMISSION OF SOVEREIGN RISK 39

zeroing this for Portugal and Spain has a moderate effect on the Greek default probability.

These effects stem from the fact that lowering λi,∞ tends to lower the level of the event

intensity in a country, combined with the large weights of Portugal and Spain.

Finally, zeroing the weights for Portugal and Spain has a considerable impact on the default

probability in Greece. We note that other weights are always rescaled so that the weights

add up to one. This explains why reducing Portugal’s weight actually increases the chance of

a Greek default. With Portugal’s weight set to zero, almost all weight is on Spain, which has

particularly explosive dynamics (i.e. βi − αi is higher for Spain). Since Greece responds to

the market component, and Spain responds to Greece (now even more strongly than before

due to the zeroing of Portugal’s weight), Greece inherits Spain’s more explosive dynamics,

leading to a higher default risk. Conversely, when we set Spain’s weight to zero, the relatively

unexplosive Portugal has most of the weight, leading to a lower chance of Greek default.

Figure 3 shows the impact of turning off shocks for one country at a time on the probabili-

ties of default of each other country. Just as before, the main sources of credit risk spillovers

for the countries considered are Portugal and Spain. Moreover, responses to shocks from

Spain are bigger in absolute value. We again attribute this result to the fact that Spain

is a much bigger country than Portugal. This makes Spain the most important source of

sovereign credit risk during our period.

5.3. More on contagion

Our model enables us to explore the effects of an event in a particular country on CDS

prices in all other countries. We do this with an impulse response analysis of the estimated

model. In particular, we analyse the median effects of an event occurring at the start of

the sample (the 11th of November 2008), for each country in turn. We focus on the median
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Figure 3: Percentage change in the probability of there being at least one default for a given country
during our observation period when switching off shocks for one country at a time.



QUANTIFYING THE TRANSMISSION OF SOVEREIGN RISK 41

response, both since the non-stationarity of the point process implies that the mean response

is likely to diverge, and since the fat-tails of the process render accurate Monte Carlo means

very computationally expensive. To capture the potentially different responses to large and

small shocks, we also report the quartiles of the responses.

Figures 4 and 5 show the percentage quartile responses of CDS prices in all countries to

events in Portugal and Spain (first figure) and Greece (second figure). Responses to events

in all other countries are included in Appendix F. All figures are generated by taking the

Monte Carlo quartiles of the difference between simulations starting from the estimated λt

at the start of the sample with an additional event in that week, and simulations without

such an additional event.39

In all figures, the bigger plots on the left are dominated by the response of each country

to its own event, but other countries’ responses are also visible. The 25% quartile and the

median show a fast, exponential decay in all cases. However, for the 75% quartile, we observe

greater persistence, with only linear decay. Thus the non-linearities of the model’s solution

ensure greater persistence to larger shocks.

The smaller figures show the separate responses in the other countries. As with the own

country response, in all cases, the 25% and 50% quartiles show that shocks usually dissipate

within the simulated window. However, the upper quartiles are more persistent, and hump

shaped in some cases, again illustrating the effects of the solution’s non-linearity.

Given their high weights, it is unsurprising that events in Portugal and Spain have a larger

impact on the other countries than events elsewhere. Greece and Portugal appear the most

39For precision, data is created at an intraday level, with 10 observations per day. To draw the next
intraday observation, we assume that the event intensity is constant over the interval, and that all events
happen simultaneously at the end of the interval. Under this approximation, stepping the simulation forward
requires one draw from a Poisson (to determine how many events occurred), and one draw from a Gamma
(to determine the cumulated jump).
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Figure 4: Percentage effect of one event at the start of the sample in Portugal (upper panel)
and Spain (lower panel) on the CDS spreads of all countries (bigger figure) and the rest of
countries (smaller figures)
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Figure 5: Percentage effect of one event at the start of the sample in Greece on the CDS
spreads of all countries (bigger figure) and the rest of countries (smaller figures)

sensitive to these events, followed by France and Germany. The sensitivity of Greece and

Portugal is natural given their precarious status. The impact on France and Germany is also

quite natural, given that these nations lend most to the other countries in our sample.40

6. CONCLUSION

In this paper, we model the intensities of sovereign credit-related events for a group of

seven EU countries as a multi-variate self–exciting marked point process with both country-

specific and market components. We allow each country to respond differently to both the

level and the change in this market component. This structure permits feedback between

risks in different countries, allowing us to discover evidence of substantial contagion between

countries. While evidence of contagion has been found by other authors,41 our results on the

40This statement is supported by the data used in Section 5.1 for the network analysis.
41See Augustin (2014) for a review of the sovereign CDS literature.
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sources and propagation of credit risk are novel.

We find that Portugal and Spain are the chief sources of credit risk for Europe in this

period, with Spain being particularly important. This is in line with the great damage that

would be inflicted upon the European economy were a larger nation such as Spain to default.

We also find a statistically significant, but small role for Greece as a source of credit risk.

As the situation in Greece was already well understood during the period, it appears that

investors’ focus was shifted toward future dangers, of which the ones from Portugal and

Spain were more imminent.

Our impulse response analysis shows that Greece and Portugal are particularly responsive

to shocks from elsewhere. Indeed, unlike some other work in the literature,42 our findings

portray Greece mostly as a receiver of spillover risk, rather than as a source of such risk for

other countries. This reflects Greece’s precarious state in the period. In quantifying these

effects, we find that Greece would have been around 35% less likely to default during the

period we consider had Portugal and Spain not been in trouble at the same time.

To capture the rich dynamics of sovereign CDS over the period, our econometric model has

substantial flexibility. We allow for random sized jumps, and we do not impose stationarity

of the intensities of credit-related events. Moreover, these intensities receive asymmetric

feedback both from contemporaneous shocks, as well as from the intensity levels in other

countries. In estimation, we use a novel technique to back out implied cumulated shocks to

the intensities of credit-related events, which permits a maximum-likelihood approach.

Our modelling and estimation choices, accompanied by the use of a global optimisation

algorithm, enable us to estimate the many parameters of this model on a large data set. To

the best of our knowledge, this is one of the hardest estimation problems dealt with in the

42See e.g. Ang and Longstaff (2013) and Aı̈t-Sahalia et al. (2014).
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credit risk literature.
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APPENDIX A: CONDITIONS FOR POSITIVITY

We begin with a helpful Lemma, before introducing the conditions we impose throughout in order to

ensure positivity.

Lemma A.1 If α̌ is a real square matrix for which all off-diagonal elements are non-positive, then all

elements of e−α̌ are real and non-negative.

Proof: Let A := −α̌, so matrix A has non-negative off-diagonal entries. Let B := A + cI, where c is a

positive real scalar such that the diagonal elements of B are non-negative.

From the definition of the matrix exponential, we have that eB = I + B + 1
2!B

2 + . . .. As B has only

non-negative entries, all powers of B also have only non-negative entries, and consequently eB has only

non-negative entries.

Since the identity matrix commutes with anything, by the standard properties of matrix exponentials, we

have that eA = eBe−cI = e−ceB . As e−c is a positive scalar and eB has only non-negative elements, so does

eA. Q.E.D.

We impose the following conditions:

Condition A.1 All off-diagonal elements of α̌ are non-positive. All elements of β̌ are positive.

This condition is sufficient for positivity of λ, by Lemma A.1, and the solution to the Hawkes process,

equation (1).

APPENDIX B: CONDITIONAL AND UNCONDITIONAL MOMENTS

Xt = (Nt, Jt, λt) is a Markov process defined on the space D := NK × RK≥0 × RK≥0. Let d := 3K be the

overall dimension of Xt. Let f : D → R be a function of Xt and let ∇f be its gradient (a row vector). The

infinitesimal generator for f(x), defined as Af (x) = limt↓0
E(f(Xt))−f(x)

t , is given by:

(14) Af (x) =


0K×1

0K×1

α̌ (λ∞ − λ·)


>

∇>f +

K∑
i=1

λi,·

∫
Rd

≥0

[f (x+ Z)− f (x)] dνi(Z),
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where x := [λ>· , J
>
· , N

>
· ]>, Z := [Z1, . . . , Zd]

>
is the generic jump in D for the state process X, and νi(Z)

is the cumulative distribution function corresponding to the i-th jump. When a credit-related event occurs

in country i, Ni,· increases by 1, Ji,· increases by zi,· ∼ Exp(1) and finally, because of the cross-excitation in

the model, the intensities of all countries will increase proportionally with zi,·. Thus, νi(Z) is given by:

dνi
([
Z1 · · ·Zi · · ·ZK ZK+1 · · ·Z2K Z2K+1 · · ·Zd

]>)
=[

δ (Z1 − 0) · · · δ (Zi − 1) · · · δ (ZK − 0) δ (ZK+1 − 0) · · · exp (−ZK+i) · · · δ (Z2K − 0)

δ
(
Z2K+1 − ZK+iβ̌1i

)
· · · δ

(
Z2k+i − ZK+iβ̌ii

)
· · · δ

(
Zd − ZK+iβ̌Ki

)]> ◦ dZ,

where ZK+i = zi,·, δ(·) is the Dirac delta function and β̌ij , denotes the i, jth element of the β̌ matrix.

To further help understand equation (14), we note that the first term of the sum in that equation is given

by:

λ1,·

∫
Rd≥0

[
f

([
N1,· + 1 · · · NK,· + 0 J1,. + z1,· · · · JK,· + 0 λ1,· + β̌11z1,· · · · λK,· + β̌K1z1

]>)
−

f

([
N1,· · · · NK,· J1,· · · · JK,· λ1,· · · · λK,·

]>)]
dν1 (Z) .

Lemma B.1 Conditional expectation. The conditional expected intensity satisfies the following

ordinary differential equation (ODE hereafter):43

dEλt = α̌ (λ∞ − Eλt) dt+ β̌ Eλt dt,

with initial value λ0 and solution:

Eλt = e(β̌−α̌)tλ0 −
(
β̌ − α̌

)−1
α̌λ∞ +

(
β̌ − α̌

)−1
e(β̌−α̌)tα̌λ∞.

43Errais et al. (2010) use the same technique based on the infinitesimal generator to derive moments for
a univariate marked self exciting point process.
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Proof: The proof is a simple extension to marked processes of Lemma 1 on page 818 in Da Fon-

seca and Zaatour (2015). Q.E.D.

Lemma B.2 Unconditional expectation. If it exists, the long-run expected intensity is given

by:

limn→∞ Eλt = λ∞ = −
(
β̌ − α̌

)−1
α̌λ∞.

Proof: Apply Lemma B.1 with t→∞. Q.E.D.

For use in the following, we define m1 = Ezi,t = 1 and m2 = Ez2
i,t = 2 (for any t and i).

Lemma B.3 Conditional second moment. The conditional second moment of the intensity,

E
(
λtλ
>
t

)
, satisfies the following ODE:

(15)
Eλtλ>t

dt
= α̌λ∞ Eλ>t + Eλtλ>∞α̌> +

(
m1β̌ − α̌

)
E
(
λtλ
>
t

)
+ E

(
λtλ
>
t

) (
m1β̌ − α̌

)>
+

m2

{
β̌diag [Eλt] β̌>

}
.
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Proof: Let f (x) = λ2
1,·. Then:

Af (x) =


0K×1

0K×1

α̌ (λ∞ − λ·)


>



0K×1

0K×1

2λ1,·
...

0


+ λ1,·

∫
Rd≥0

[(
λ1,· + β̌11z1,·

)2 − λ2
1,·

]
dν1 (Z) + . . .

+ λK,·

∫
Rd≥0

[(
λ1,· + β̌1KzK,·

)2 − λ2
1,·

]
dνK (Z)

= 2λ1,·α̌
>
1 (λ∞ − λ·) + 2m1λ1,·

∑
i

β̌1iλi,· +m2

∑
i

β̌2
1iλi,·.

Using the martingale property of f (Xt)−f (X0)−
∫ t

0 Af (Xs) ds, we follow Da Fonseca and Zaatour

(2015) in using the following formula to compute conditional expectations:

E [f (Xt)] = f (X0) + E
[∫ t

0
Af (Xs) ds

]
.

Let α̌i· and β̌i· denote the i-th lines of matrices α̌ and β̌. We have:

E
[
λ2

1,t

]
= λ2

1,0 + E
[∫ t

0
Af (Xs) ds

]
=⇒

dE
[
λ2

1,t

]
dt

= 2α̌>1·λ∞ E (λ1,t)− 2α̌>1· E (λ1,tλt) + 2m1β̌
>
1· E (λ1,tλt) +m2β̌

>
1· diag [Eλt] β̌1·

= 2α̌>1·λ∞ E (λ1,t) + 2
(
β̌1·m1 − α̌1·

)> E (λ1,tλt) +m2β̌
>
1· diag [Eλt] β̌1·.
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Let f (x) = λ1,·λ2,·. Then:

Af (x) =


0K×1

0K×1

α̌ (λ∞ − λ·)


>



0K×1

0K×1

λ2,·

λ1,·
...

0


+ λ1,·

∫
Rd≥0

[(
λ1,· + β̌11z1,·

) (
λ2,· + β̌21z1,·

)
− λ1,·λ2,·

]
dν1 (Z)

+ . . .+ λK,·

∫
Rd≥0

[(
λ1,· + β̌1KzK,·

) (
λ2,· + β̌2KzK,·

)
− λ1,·λ2,·

]
dνK (Z)

= λ2,·α̌
>
1· (λ∞ − λ·) + λ1,·α̌

>
2· (λ∞ − λ·) +m1λ1,·

∑
i

β̌2iλi,· +m1λ2,·
∑
i

β̌1iλi,· +m2

∑
i

β̌1iβ̌2iλi,·

In terms of expectations, we have:

dE [λ1,tλ2,t]

dt
= α̌>1·λ∞ E (λ2,t) + α̌>2·λ∞ E (λ1,t)− α̌>1· E (λ2,tλt)− α̌>2· E (λ1,tλt)

+m1β̌
>
1· E (λ2,tλt) +m1β̌

>
2· E (λ1,tλt) +m2β̌

>
1· diag [Eλt] β̌2·

= α̌>1·λ∞ E (λ2,t) + α̌>2·λ∞ E (λ1,t) +
(
β̌1·m1 − α̌1·

)> E (λ2,tλt)

+
(
β̌2·m1 − α̌2·

)> E (λ1,tλt) +m2β̌
>
1· diag [Eλt] β̌2·.

Given the above ODEs for E (λ1,t) and E [λ1,tλ2,t], the generalizations stated in Lemma B.3 can

be obtained. Q.E.D.

Lemma B.4 Long term covariance. If it exists, the long term covariance matrix of λt, defined

as Λ∞ = limn→∞ E
(
λtλ
>
t

)
− λ∞λ

>
∞, solves the following algebraic equation:

(
m1β̌ − α̌

)
Λ∞ + Λ∞

(
m1β̌ − α̌

)>
+m2β̌diag

(
λ∞
)
β̌> = 0.
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Proof: Apply Lemma B.3 with t→∞. Q.E.D.

APPENDIX C: TRANSFORMS

We maintain the set-up and definitions from Appendix B.

Proposition 1 For each i ∈ {1, · · · ,K}, and T ≥ t,

(16) E
[
(1− γi)Ni,T

∣∣∣Ft

]
= exp

(
ai(t) + bii(t)Ni,t + bi2K+1(t)λ1,t + . . .+ bi3K(t)λK,t

)
where for i ∈ {1, . . . ,K}, the coefficients ai(t) and bi(t) =

(
bi1(t), · · · , bi3K(t)

)>
are solutions to the

ODEs given below.

a.

ḃi2K+1:3K(t) = α̌>bi2K+1:3K(t) + 1K×1 − θ
(
bi(t)

)
,

and ḃi1:2K(t) = 0, where for j1 < j2, bij1:j2
(t) =

(
bij1(t), . . . , bij2(t)

)>
, and where θ : Rd → RK≥0

is defined by:

θi (c) =

∫
R≥0

d
e(c·Z) dνi(Z), i = 1, . . . ,K,

for all c ∈ Rd, i ∈ {1, . . . ,K}.

This ODE has the terminal condition bi(T ) = (0, . . . , log (1− γi) , . . . , 0, 0, . . . , 0, 0, . . . , 0)>,

for all i ∈ {1, . . . ,K}.

b.

ȧi (t) = − (α̌λ∞) · bi2K+1:3K(t),

with terminal condition αi(T ) = 0, for i ∈ {1, . . . ,K}.
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Proof: The result is obtained through a direct application of Proposition 1 and Appendix B

in Duffie et al. (2000) or the results in Section 4 of Errais et al. (2010). Using the notations in

the aforementioned paper, we have the drift of Xt is given by µ(Xt) = K0 + K1x where the two

matrices are defined as follows: K0 :=


0K×1

0K×1

α̌λ∞

; K1 :=


0K×K 0K×K 0K×K

0K×K 0K×K 0K×K

0K×K 0K×K −α̌

. As we have no

diffusion component in our process, H0 ≡ 0 and H1 ≡ 0. Moreover, as we assume independence

between the state vector and the discount factor: ρ0 = 0; ρ1 = 0d×1. (Discounting will drop out of

the expectation we wish to evaluate.) We have:

dXt =

[
dN1,t · · · dNK,t dJ1,t · · · dJK,t dλ1,t · · · dλK,t

]

=

 02K×1

α̌ (λ∞ − λt)

 dt+

[
1 · · · 0 ZK+1 · · · 0 ZK+1β̌11 · · · ZK+1β̌K1

]
dN1,t + . . .

+

[
0 · · · 1 0 · · · Z2K Z2K β̌1K · · · Z2K β̌KK

]
dNK,t

The default intensities satisfy the equations λi (x) = li0 + li1x, for i ∈ {1, . . . ,K}, where li0 = 0 for

all i ∈ {1, . . . ,K} and:

l11 = (0, · · · , 0, 0, ..., 0, 1, · · · , 0)>

...

lK1 = (0, · · · , 0, 0, · · · , 0, 0, · · · , 1)>.
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We proceed by integrating terms in the jump transform one by one:

θi (c) =

∫
Rd≥0

exp

(
d∑
i=1

ciZi

)
dνi (Z)

=

∫ ∞
0

exp
(
ci + cK+izi,· + c2K+1β̌1izi,· + . . .+ c3K β̌Kizi,·

)
exp (−zi,·) dzi,·

=
exp

(
ci + cK+izi,· + c2K+1β̌1izi,· + . . .+ c3K β̌Kizi,· − zi,·

)
cK+i + c2K+1β̌1i + . . .+ c3K β̌Ki − 1

∣∣∣∣∣
∞

zi,·=0

=
exp (ci)

max
{

0, 1− cK+i − c2K+1β̌1i − . . .− c3K β̌Ki
} .

Applying Proposition 1 in Duffie et al. (2000) leads to:

ḃi(t) = −K>1 bi(t)−
K∑
j=1

lj1
[
θj
(
bi(t)

)
− 1
]
,

with bi(T ) = (0, . . . , log (1− γi) , . . . , 0, 0, . . . , 0, 0, . . . , 0)>. So:

ḃi2K+1:3K(t) = α̌>bi2K+1:3K(t) + 1K×1 − θ
(
bi(t)

)
and ḃi1:2K(t) = 0,∀t.

To show that this ODE is well-defined despite the pole in θ, first define ψ : RK → Rk by

ψ(c) = − log (1K×1 − β̌>c), for all c ∈ RK , where the logarithm is elementwise. Now, note that

θ
(
bi(t)

)
= (1K×1 − γiei) ◦ expψ

(
bi2K+1:3K(t)

)
, and that ψ−1(d) = β̌−> (1K×1 − exp (−d)) for all

d ∈ RK , where the exponentiation is element-wise in both cases, and where ei is the ith column of

the identity matrix. Hence:

d

dt
ψ
(
bi2K+1:3K(t)

)
= expψ

(
bi2K+1:3K(t)

)
◦ β̌>

[
α̌>β̌−>

(
1K×1 − exp

(
−ψ

(
bi2K+1:3K(t)

)))
+ 1K×1 − (1K×1 − γiei) ◦ expψ

(
bi2K+1:3K(t)

)]
.
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This gives an ODE in ψ
(
bi2K+1:3K(t)

)
without poles on the right hand side. From the solution of

this ODE, we can then back-out a solution for bi(t).

Moreover, we have:

ȧi(t) = −K0 · bi(t) = − (α̌λ∞) · bi2K+1:3K(t),

where ai(T ) = 0 for i ∈ {1, . . . ,K}. Q.E.D.

Proposition 2 For each i ∈ {1, · · · ,K} and T ≥ t,

E
[
γiλi,T (1− γi)Ni,T

∣∣∣Ft

]
= exp

(
ai(t) + bii(t)Ni,t + bi2K+1(t)λ1,t + . . .+ bi3K(t)λK,t

)
(
Ai(t) +Bi

2K+1(t)λ1,t + . . .+Bi
3K(t)λK,t

)
where for i ∈ {1, . . . ,K}, the coefficients Ai(t) and Bi(t) =

(
Bi

1(t), · · · , Bi
3K(t)

)>
are solutions to

the ODEs given below.

a.

−Ḃi
2K+1:3K(t) = −α̌>Bi

2K+1:3K(t) +∇θ
(
bi(t)

)
Bi(t),

and Ḃi
1:2K(t) = 0, where for j1 < j2, Bi

j1:j2
(t) =

(
Bi
j1

(t), . . . , Bi
j2

(t)
)>

, and where ∇θ(·) is

the Jacobian of θ(c).

This ODE has the terminal condition Bi(T ) = (0, . . . , 0, 0, . . . , 0, 0, . . . , γi, . . . , 0)>, for all

i ∈ {1, . . . ,K}.

b.

−Ȧi(t) = (α̌λ∞) ·Bi
2K+1:3K(t),
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with Ȧi(T ) = 0.

Proof: The result is obtained through a direct application of Proposition 3 and Appendix B in

Duffie et al. (2000) or the results in Section 4 of Errais et al. (2010). In addition to all the notation

introduced in the proof of Proposition 1, we define ϕ : Rd → RK≥0 by:

ϕi(c) =
1

1− cK+i − c2K+1β̌1i − · · · − c3K β̌Ki
,

for all c ∈ Rd and i ∈ {1, . . . ,K}. Using this, we have that the Jacobian of θ is given by:

∇θ(c) =

[
diag θ(c) diag (θ(c) ◦ ϕ(c)) diag (θ(c) ◦ ϕ(c))β̌>

]
.

Applying Proposition 3 in Duffie et al. (2000), we get:

−Ḃi(t) = K>1 Bi(t) +

K∑
j=1

lj1∇θj
(
bi(t)

)
Bi(t),

with Bi(t) = (0, . . . , 0, 0, . . . , 0, 0, . . . , γi, . . . , 0)>. So:

−Ḃi
2K+1:3K(t) = −α̌>Bi

2K+1:3K(t) +∇θ
(
bi(t)

)
Bi(t),

and Ḃi
1:2K(t) = 0. Moreover, we have: −Ȧi(t) = K0 ·Bi(t) = (α̌λ∞) ·Bi

2K+1:3K(t), with Ȧi(t) = 0.

Q.E.D.
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APPENDIX D: DERIVING THE LIKELIHOOD OF OBSERVING A CERTAIN JUMP SIZE AND NO
DEFAULT OVER A TIME INTERVAL

Lemma D.1 Suppose dJ̃t = z̃ dÑt where Ñt is a univariate Poisson process with constant intensity

λ̃, and where z̃ ∼ Exp (1). Assume J̃0 = 0. Then the p.d.f. of J̃∆ is given by:

f
(
J̃∆

)
= ∆λ̃

I1

(
2
√

∆λ̃J̃∆

)
e∆λ̃+J̃∆

√
∆λ̃J̃∆

.

Proof: Note that Ñ∆ is Poisson distributed with parameter ∆λ̃. Furthermore, conditional on

having k jumps, J̃∆ is Gamma distributed with shape parameter k and scale parameter 1. Therefore:

f
(
J̃∆

)
=

∞∑
k=0

Pr(Ñ∆ = k)f(J̃∆|Ñ∆ = k) =
∞∑
k=0

(∆λ̃)ke−∆λ̃

k!

J̃k−1
∆ e−J̃∆

Γ(k)

= ∆λ̃
I1

(
2
√

∆λ̃J̃∆

)
e∆λ̃+J̃∆

√
∆λ̃J̃∆

.

Q.E.D.

Lemma D.2 Suppose dJ̃t = z̃ dÑt where Ñt is a univariate Poisson process with constant intensity

λ̃, and where z̃ ∼ Exp (1). Assume J̃0 = 0. Then for all γ ∈ [0, 1]:

E
[
(1− γ)Ñ∆

∣∣∣J̃∆

]
=

√
1− γI1

(
2
√

∆(1− γ)λ̃J̃∆

)
I1

(
2
√

∆λ̃J̃∆

) .

Proof:

E
[
(1− γ)Ñ∆

∣∣∣J̃∆

]
=
∞∑
k=0

(1− γ)k Pr
(
Ñ∆ = k

∣∣∣J̃∆

)
=
∞∑
k=0

(1− γ)k f(J̃∆|Ñ∆ = k) Pr(Ñ∆ = k)

f
(
J̃∆

) ,
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where we applied Bayes’s theorem.

Moreover, f(J̃∆) is given in Lemma D.1 above, J̃∆|Ñ∆ = k ∼ Γ(k, 1) and Pr(Ñ∆ = k) is Poisson

with parameter ∆λ̃. Hence, we have:

E
[
(1− γ)k |J̃∆

]
=
∞∑
k=0

(1− γ)k
J̃k−1

∆ e−J̃∆

Γ(k)

(
∆λ̃
)k
e−∆λ̃

k!

∆λ̃I1

(
2
√

∆λ̃J̃∆

)
e∆λ̃+J̃∆

√
∆λ̃J̃∆

−1

=

√
1− γI1

(
2
√

∆(1− γ)λ̃J̃∆

)
I1

(
2
√

∆λ̃J̃∆

) .

Q.E.D.

APPENDIX E: MAXIMUM LIKELIHOOD JUMP TIMES AND SIZES

Over the time interval (t, t+ ∆], the log-likelihood of observing Lt,t+∆ jumps at times t < τ∗1 ≤

· · · ≤ τ∗Lt,t+∆
≤ t+∆ is given by:44 log f(jump times in (t, t+∆]) =

∫ t+∆
t

[
−1>K×1λs + Ṅs

>
(logλs − zs)

]
ds.

Conditioning on the paths of λs and ζs and taking expectations leads to:

E log [f(jump times in (t, t+ ∆])|λs, ζs, s ∈ (t, t+ ∆]] =

∫ t+∆

t

[
−1>K×1λs + λ>s log λs − 1>K×1ζs

]
ds.

We define the following maximization problem:

Problem

(17) max
λs,ζs,ωs, s∈(t,t+∆]

{∫ t+∆

t

[
−1>K×1λs + λ>s log λs − 1>K×1ζs + ω>s ζs

]
ds

}

subject to:

α̌ (λ∞ − λs) + β̌ζs − λ̇s = 0,

44For more information on how to build the likelihood for marked point processes, see section 7.3 in Daley
and Vere-Jones (2003).
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λt, λt+∆,

ωs ≥ 0, ζs ≥ 0, ω>s ζs = 0, ∀s ∈ (t, t+ ∆],

where ωs, s ∈ (t, t+ ∆] are Lagrange multipliers on the positivity constraint on ζs.

To further simplify our maximisation problem, in equation (17), we replace −1>K×1λs +λ>s log λs

with a first order Taylor approximation of this function in λs around λt, its value at the lower

bound of our interval.

Due to the linearity in the objective function in ζs, the solution to the problem above features

jumps in λs. To avoid the numerical difficulties deriving from this, we add a smoothing quadratic

term to the terms in (17), pre-multiplied by a smoothing constant set to −κ
2 .

This results in the following approximated maximisation problem:

Problem E.1

max
λs,ζs,ωs, s∈(t,t+∆]

{∫ t+∆

t

[
−1>K×1λt + λ>s log λt − 1>K×1ζs + ω>s ζs −

κ

2
ζ>s ζs

]
ds

}

subject to:

α̌ (λ∞ − λs) + β̌ζs − λ̇s = 0.

λt, λt+∆,

ωs ≥ 0, ζs ≥ 0, ω>s ζs = 0, ∀s ∈ (t, t+ ∆],

Solution. Let µs, s ∈ (t, t+ ∆] be the co-state variable of the optimisation problem E.1. The first
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order conditions are given in the following system of equations:


µ̇τ = α̌>µτ − log λt

λ̇τ = α̌ (λ∞ − λτ ) + β̌ζτ

ωs + β̌>µs − 1K×1 = κζs

⇒


µs = eα̌

>(s−t)υ +
(
α̌T
)−1

log λt

λs = λ∞ + e−α̌(s−t) (λt − λ∞) +
∫ s
t e
−α̌(s−τ)β̌ζτ dτ

ζs = max
{

0, 1
κ [β̌>µs − 1K×1]

}
,

with τ ∈ (t, s] and υ an integration constant that must be chosen to ensure that λt+∆ takes the

correct value. In practice, this requires solving a non-linear equation.
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APPENDIX F: QUARTILE RESPONSES IN THE CDS SPREADS TO EVENTS IN ONE COUNTRY
AT A TIME
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Figure 6: Percentage effect of one event at the start of the sample in France (upper panel)
and Germany (lower panel) on the CDS spreads of all countries (bigger figure) and the rest
of countries (smaller figures)
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Figure 7: Percentage effect of one event at the start of the sample in Italy (upper panel)
and the UK (lower panel) on the CDS spreads of all countries (bigger figure) and the rest of
countries (smaller figures)
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