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Outline of today’s talk

• A reminder of a baseline RBC model.

• Calibration.

• Wedge accounting and ML estimation of simple models with at least 
as many observables as shocks.

• GMM/SMM.



Reading for today

• Canova: “Methods for applied macroeconomic research”.
• Chapter 5 covers GMM/SMM.
• Chapter 7 covers calibration.

• Chari, Kehoe, McGrattan (2007):
• Covers wedge accounting.
• Another classic paper which you ought to be familiar with.
• http://www.econ.umn.edu/~pkehoe/papers/CKMeconometrica2007.pdf

• Gali and Gertler (1999)
• Early paper applying GMM to the NK Phillips curve.
• https://www.sciencedirect.com/science/article/pii/S0304393299000239

• Holden (2014): “Estimating non-linear models”
• I’ll email this to you.

http://www.econ.umn.edu/%7Epkehoe/papers/CKMeconometrica2007.pdf
https://www.sciencedirect.com/science/article/pii/S0304393299000239


Taking the model seriously

• We saw in the penultimate lecture that it is incredibly hard to obtain 
reliable identification of shocks via “theory-free” techniques.

• Identification of shocks in a VAR requires imposing restrictions from theory, 
restrictions which may only be justified by a model.

• This begs the question of why the model is not directly taken to the 
data instead. I.e., why we don’t “take the model seriously”.

• This week we shall look at techniques for doing this that do not 
involve econometric techniques for recovering the state variables of 
a model.

• Either we will not need to work out these states, or they will be directly 
observable.



Baseline RBC model: Household’s Problem

• The representative household maximises:
𝑈𝑈𝑡𝑡 𝐾𝐾𝑡𝑡−1,𝐵𝐵𝑡𝑡−1 = 𝑢𝑢 𝐶𝐶𝑡𝑡 , 𝐿𝐿𝑡𝑡 + 𝛽𝛽𝔼𝔼𝑡𝑡𝑈𝑈𝑡𝑡+1 𝐾𝐾𝑡𝑡,𝐵𝐵𝑡𝑡 ,

• subject to the budget constraint:
𝐶𝐶𝑡𝑡 + 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 𝐼𝐼𝑡𝑡 + 𝐵𝐵𝑡𝑡 = 1 − 𝜏𝜏𝐿𝐿,𝑡𝑡 𝑊𝑊𝑡𝑡𝐿𝐿𝑡𝑡 + 𝑟𝑟𝑡𝑡𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1 + 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑡𝑡−1 + 𝑇𝑇𝑡𝑡,

• where:
• 𝐾𝐾𝑡𝑡 is capital, which evolves according to 𝐾𝐾𝑡𝑡 = 1 − 𝛿𝛿 𝜔𝜔𝑡𝑡 𝐾𝐾𝑡𝑡−1 + 𝐼𝐼𝑡𝑡,
• 𝜔𝜔𝑡𝑡 is capacity utilisation,
• 𝐵𝐵𝑡𝑡 is holdings of a zero net supply real bond, which pays an interest rate 𝑅𝑅𝑡𝑡,
• 𝐶𝐶𝑡𝑡 is consumption, 𝐿𝐿𝑡𝑡 is labour supply, 𝐼𝐼𝑡𝑡 is investment,
• 𝑊𝑊𝑡𝑡 is the market wage, 𝑟𝑟𝑡𝑡 is the rental rate of capital,
• 𝑇𝑇𝑡𝑡 is net lump-sum transfers,
• 𝜏𝜏𝐼𝐼,𝑡𝑡 is an exogenous investment tax, and 𝜏𝜏𝐿𝐿,𝑡𝑡 is an exogenous labour tax.



Baseline RBC model: Household’s FOCs

• Lazy approach to solving this problem. Just sub-in constraints:
𝑈𝑈𝑡𝑡 𝐾𝐾𝑡𝑡−1,𝐵𝐵𝑡𝑡−1
= 𝑢𝑢 �

�

1 − 𝜏𝜏𝐿𝐿,𝑡𝑡 𝑊𝑊𝑡𝑡𝐿𝐿𝑡𝑡 + 𝑟𝑟𝑡𝑡𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1 + 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑡𝑡−1 + 𝑇𝑇𝑡𝑡
− 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 𝐾𝐾𝑡𝑡 − 1 − 𝛿𝛿 𝜔𝜔𝑡𝑡 𝐾𝐾𝑡𝑡−1 − 𝐵𝐵𝑡𝑡, 𝐿𝐿𝑡𝑡 + 𝛽𝛽𝔼𝔼𝑡𝑡𝑈𝑈𝑡𝑡+1 𝐾𝐾𝑡𝑡,𝐵𝐵𝑡𝑡 ,

• FOCs:
• 1 − 𝜏𝜏𝐿𝐿,𝑡𝑡 𝑊𝑊𝑡𝑡𝑢𝑢1 𝐶𝐶𝑡𝑡, 𝐿𝐿𝑡𝑡 + 𝑢𝑢2 𝐶𝐶𝑡𝑡, 𝐿𝐿𝑡𝑡 = 0.

• 𝛽𝛽𝔼𝔼𝑡𝑡 𝑟𝑟𝑡𝑡+1𝜔𝜔𝑡𝑡+1 + 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡+1 1 − 𝛿𝛿 𝜔𝜔𝑡𝑡+1 𝑢𝑢1 𝐶𝐶𝑡𝑡+1, 𝐿𝐿𝑡𝑡+1 =
1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 𝑢𝑢1 𝐶𝐶𝑡𝑡, 𝐿𝐿𝑡𝑡 .

• 𝑟𝑟𝑡𝑡 = 𝛿𝛿1 𝜔𝜔𝑡𝑡 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 .
• 𝛽𝛽𝔼𝔼𝑡𝑡𝑅𝑅𝑡𝑡𝑢𝑢1 𝐶𝐶𝑡𝑡+1, 𝐿𝐿𝑡𝑡+1 = 𝑢𝑢1 𝐶𝐶𝑡𝑡, 𝐿𝐿𝑡𝑡 .



Baseline RBC model: Firms

• The representative price taking firm chooses how much capital and 
labour to hire in order to maximise profits, where profits from a firm 
hiring  are given by:

𝑌𝑌𝑡𝑡 − 𝑟𝑟𝑡𝑡 �𝐾𝐾𝑡𝑡 −𝑊𝑊𝑡𝑡 �𝐿𝐿𝑡𝑡,
• where:

• 𝑌𝑌𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐹𝐹 �𝐾𝐾𝑡𝑡, �𝐿𝐿𝑡𝑡 is firm output,
• �𝐾𝐾𝑡𝑡 is capital demand, �𝐿𝐿𝑡𝑡 is labour demand, and
• 𝐴𝐴𝑡𝑡 is an exogenous productivity process.

• So:
𝐴𝐴𝑡𝑡𝐹𝐹1 �𝐾𝐾𝑡𝑡, �𝐿𝐿𝑡𝑡 = 𝑟𝑟𝑡𝑡 ,
𝐴𝐴𝑡𝑡𝐹𝐹2 �𝐾𝐾𝑡𝑡, �𝐿𝐿𝑡𝑡 = 𝑊𝑊𝑡𝑡 ,



Baseline RBC model: Market Clearing

• Output goods market:
𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝐺𝐺𝑡𝑡 ,

• where 𝐺𝐺𝑡𝑡 is an exogenous government consumption process.

• Labour market:
�𝐿𝐿𝑡𝑡 = 𝐿𝐿𝑡𝑡 .

• Capital market:
�𝐾𝐾𝑡𝑡 = 𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1.



Baseline RBC model: Special case

• Suppose 𝑢𝑢 𝐶𝐶, 𝐿𝐿 = 𝐶𝐶1−𝜌𝜌−1
1−𝜌𝜌

− 1
1+𝜈𝜈

𝐿𝐿1+𝜈𝜈, 𝐹𝐹 �𝐾𝐾, �𝐿𝐿 = �𝐾𝐾𝛼𝛼 �𝐿𝐿1−𝛼𝛼, and 
𝛿𝛿 𝜔𝜔 = 𝛿𝛿0 + 𝛿𝛿2𝜔𝜔2, then the equilibrium conditions simplify to:

• 𝛼𝛼 𝑌𝑌𝑡𝑡
𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1

= 𝑟𝑟𝑡𝑡,

• 1 − 𝛼𝛼 𝑌𝑌𝑡𝑡
𝐿𝐿𝑡𝑡

= 𝑊𝑊𝑡𝑡,

• 1 − 𝜏𝜏𝐿𝐿,𝑡𝑡 𝑊𝑊𝑡𝑡𝐶𝐶𝑡𝑡
−𝜌𝜌 = 𝐿𝐿𝑡𝑡𝜈𝜈.

• 𝛽𝛽𝔼𝔼𝑡𝑡 𝑟𝑟𝑡𝑡+1𝜔𝜔𝑡𝑡+1 + 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡+1 1 − 𝛿𝛿0 − 𝛿𝛿2𝜔𝜔𝑡𝑡+12 𝐶𝐶𝑡𝑡+1
−𝜌𝜌 = 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 𝐶𝐶𝑡𝑡

−𝜌𝜌.

• 𝑟𝑟𝑡𝑡 = 2𝛿𝛿2𝜔𝜔𝑡𝑡 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 .
• 𝛽𝛽𝔼𝔼𝑡𝑡𝑅𝑅𝑡𝑡𝐶𝐶𝑡𝑡+1

−𝜌𝜌 = 𝐶𝐶𝑡𝑡
−𝜌𝜌.

• 𝑌𝑌𝑡𝑡 = 𝐴𝐴𝑡𝑡 𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1 𝛼𝛼𝐿𝐿𝑡𝑡1−𝛼𝛼 = 𝐶𝐶𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝐺𝐺𝑡𝑡.
• 𝐾𝐾𝑡𝑡 = 1 − 𝛿𝛿0 − 𝛿𝛿2𝜔𝜔𝑡𝑡

2 𝐾𝐾𝑡𝑡−1 + 𝐼𝐼𝑡𝑡 .



Calibration

• The early (modern) macro literature relied heavily on calibration.

• Calibration is what you do when you wish to take the model seriously, but 
not too seriously…

• Macro-calibrators tend to view it as inappropriate to apply econometric 
techniques to macro models when they are no more than fables.

• Rather than expecting the model to generate historical time paths, you 
instead require it to approximately match certain stylized facts of the data.

• For example, in macro we often seek to match correlations between 
standard macro time-series and the leads and lags of output.

• Or to match the broad shape of certain impulse responses.



Calibrating the RBC model (1/3)

• One common approach to calibration is to choose parameters in order to match the long-
run means of certain great ratios.

• The ratios to look at are directly suggested by the equilibrium conditions of the model.
• E.g. from the labour FOC: 𝛼𝛼 = 1 − 𝑊𝑊𝑡𝑡𝐿𝐿𝑡𝑡

𝑌𝑌𝑡𝑡
, so 𝛼𝛼 may be calibrated using one minus the observed long-

run mean of 𝑊𝑊𝑡𝑡𝐿𝐿𝑡𝑡
𝑌𝑌𝑡𝑡

.

• Note that in the model these relationships hold exactly, though they never will in the data. In this 
sense we are relaxing the restrictions of the model.

• Other parameters may be estimated via regression.
• E.g. assuming that we observe taxes, log 1 − 𝜏𝜏𝐿𝐿,𝑡𝑡 𝑊𝑊𝑡𝑡 = 𝜈𝜈 log𝐿𝐿𝑡𝑡 + 𝜌𝜌 log𝐶𝐶𝑡𝑡 gives a regression we 

can run to calibrate 𝜈𝜈 and 𝜌𝜌.
• Note of caution though: if we reinterpret 𝜏𝜏𝐿𝐿,𝑡𝑡 as reflecting any of the many distortions which may 

enter the labour FOC, then it is not observable, and will appear as the error on the RHS, however it 
will be correlated with the RHS variables, rendering the estimates inconsistent.

• Similar endogeneity problems may affect even parameters estimated via long-run ratios.



Calibrating the RBC model (2/3)

• If we are working with a first order approximation to a model in levels, then there’s no difference 
between the simulated means of our model variables, and their steady-state.

• This gives other avenues for calibration.
• For example, in steady-state 𝛽𝛽𝑅𝑅 = 1, so we may calibrate 𝛽𝛽 as the observed long-run mean of 1

𝑅𝑅𝑡𝑡
.

• Alternatively, we may simulate the model many times, with different values of the parameters, 
and keep the ones that come closest to matching the relevant moments of the data.

• E.g. we choose 𝛽𝛽, so that 𝑅𝑅𝑡𝑡 matches the return on inflation indexed bonds.

• Since practitioners are often reluctant to use NIPA measures of stocks, and so most RBC models 
have one or more unobservable states, in practice many or all parameters might be calibrated 
through simulation, or through the steady-state.

• One difficulty here is that there are often many moments that could be used to calibrate each parameter, 
and the choice of calibration target can heavily influence results.



Calibrating the RBC model (3/3)

• A final approach to calibration is to use micro estimates of the relevant 
parameters.

• This is perhaps the ideal approach, as if parameters are estimated from 
micro-data, then the model’s performance on macro data gives a clean 
measure of the model’s performance.

• The issue here is that what the micro-economists measure may not map 
neatly to the relevant macro quantity.

• For example, micro estimates of the Frisch elasticity of labour supply are often 
well below 0.5. However, these are often estimates of the intensive margin for 
the main wage earner in a household, whereas in macro we are interested in the 
combination of intensive and extensive margins for the entire population.



How seriously should we take calibration?

• Canova’s textbook takes it remarkably seriously, giving quite sophisticated 
ways of quantifying uncertainty of the “estimates”, and various ways of 
comparing the performance of differing calibrated models.

• Some macro-calibrators might be sceptical of such techniques on philosophical 
grounds though.

• You might also legitimately wonder whether there is any point applying 
sophisticated techniques to fix unsophisticated ones, when there are other 
alternatives out there.

• One note of caution: be wary of the difference between calibration and 
parameterisation.

• I have seen big name economists stand-up and shout at the speaker for using the 
former when they meant the latter, so some people take calibration very 
seriously!



Wedge accounting: Introduction

• The four shocks in our business cycle model were not chosen accidentally. Rather, they are 
the shocks used by Chari, Kehoe and McGrattan in their 2007 wedge accounting paper.

• However, in that paper those four shocks are stripped of their interpretation as e.g. tax 
shocks.

• Instead, the four shocks are just interpreted as reduced form “wedges”, which, much like 
the shocks in a reduced form VAR, may be a combination of many structural shocks.

• Indeed, the four wedges are allowed to follow an arbitrary VAR 1 in that paper.

• They estimate the model on output, consumption, investment and hours, and so they have 
four shocks and four observables.

• With as many shocks as observables, there are time series for the wedges which will exactly 
generate the data.

• They then perform experiments shutting off all but one wedge in order to see their relative 
importance, to guide future modelling.



Wedge accounting: Equivalencies

• One of the main results of the Chari, Kehoe, McGrattan paper is that almost all macro 
models are reducible to this RBC+4 wedge set-up, as long as the wedges are appropriately 
defined.

• For example, financial frictions might show up as an investment wedge, and sticky wages might 
show up as a labour one.

• The RBC model we presented initially had variable capacity utilisation (which their model 
doesn’t). As an illustration of the idea, we show that this is observationally equivalent to a 
model without it, but with redefined wedges (denoted by ∗).

• We need 𝐴𝐴𝑡𝑡∗𝐾𝐾𝑡𝑡−1∗ 𝛼𝛼 = 𝐴𝐴𝑡𝑡 𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1 𝛼𝛼.

• Note: 𝑟𝑟𝑡𝑡∗ = 𝛼𝛼 𝑌𝑌𝑡𝑡
𝐾𝐾𝑡𝑡−1∗ = 𝛼𝛼 𝑌𝑌𝑡𝑡

𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1

𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1
𝐾𝐾𝑡𝑡−1∗ = 𝑟𝑟𝑡𝑡

𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1
𝐾𝐾𝑡𝑡−1∗ .

• Then we just define 𝜏𝜏𝐼𝐼,𝑡𝑡∗ as the solution to the equation:
𝜏𝜏𝐼𝐼,𝑡𝑡∗ − 𝜏𝜏𝐼𝐼,𝑡𝑡

= 𝛽𝛽𝔼𝔼𝑡𝑡 𝑟𝑟𝑡𝑡+1
𝜔𝜔𝑡𝑡+1𝐾𝐾𝑡𝑡
𝐾𝐾𝑡𝑡∗

− 𝜔𝜔𝑡𝑡+1 + 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡+1∗ 1 − 𝛿𝛿 − 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡+1 1 − 𝛿𝛿0 − 𝛿𝛿2𝜔𝜔𝑡𝑡+1
2 𝐶𝐶𝑡𝑡+1

𝐶𝐶𝑡𝑡

−𝜌𝜌



Maximum likelihood estimation of non-linear 
models when states are inferable without solving 
the model (1/2)
• The Chari, Kehoe, McGrattan paper estimates the wedges in a linearised version of the 

model, using the Kalman filtering techniques we’ll cover in the next topic.

• But is linearization really necessary here? Suppose we knew 𝐾𝐾0, and all of the model’s 
parameters. Could we then work out the time-paths of the wedges?

• If we could, then we can work out the likelihood, and so we could estimate 𝐾𝐾0 and the model’s 
parameters via ML (or penalized ML). Details on next slide…

• It is trivial to infer the government wedge, from 𝐺𝐺𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝐶𝐶𝑡𝑡 − 𝐼𝐼𝑡𝑡.

• From the equations 1 − 𝛼𝛼 𝑌𝑌𝑡𝑡
𝐿𝐿𝑡𝑡

= 𝑊𝑊𝑡𝑡 and 1 − 𝜏𝜏𝐿𝐿,𝑡𝑡 𝑊𝑊𝑡𝑡𝐶𝐶𝑡𝑡
−𝜌𝜌 = 𝐿𝐿𝑡𝑡𝜈𝜈, we can also infer the labour 

wedge very easily.
• Suppose that capacity utilisation is observable. Then, from the law of motion for capital we can 

infer capital in all periods without solving the model. Once we know capital, from the production 
function we can infer the productivity wedge.

• This just leaves the investment wedge. With observable capacity utilisation, this may be inferred 
from 𝛼𝛼 𝑌𝑌𝑡𝑡

𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡−1
= 𝑟𝑟𝑡𝑡 = 2𝛿𝛿2𝜔𝜔𝑡𝑡 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 .

• Will mean that investment may not be matched exactly, however, if the model is misspecified.
• Perhaps we ought to have included a capacity utilisation wedge manifesting as varying 𝛿𝛿2?



Maximum likelihood estimation of non-linear 
models when states are inferable without solving 
the model (2/2)
• Note the following minimal requirements for the above procedure:

1. There are at most as many shocks/wedges as there are observables.
2. When equations are combined so that the only variables are observables, states, or 

shocks/wedges, then there are at least as many purely backwards looking equations left as there 
are shocks/wedges.

• Once we have processes for the shocks/wedges, we can then estimate time-series for them 
using standard methods.

• If we are viewing the stochastic processes as wedges, then we will allow for interdependence 
between processes, so we will estimate a VAR type model.

• If we are viewing the stochastic processes as structural, then we will estimate independent AR type 
models.

• Maximising the log-likelihood of the VAR model, or the sum of the log-likelihoods of the AR models, 
would give a “non-linear least squares” estimate of the original model.

• More properly, we should adjust the likelihood for the non-linear transformation of the model. See 
https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability and the 
course notes chapter.

https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability


Maximum likelihood estimation of non-linear 
models when states are mostly inferable without 
solving the model
• Suppose we did not have variable capacity utilisation in the model.
• Then we would be forced to infer the investment wedge from:

𝛽𝛽𝔼𝔼𝑡𝑡 𝑟𝑟𝑡𝑡+1 + 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡+1 1 − 𝛿𝛿 𝐶𝐶𝑡𝑡+1
−𝜌𝜌 = 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡 𝐶𝐶𝑡𝑡

−𝜌𝜌.

• Since the LHS is a function of the entire distribution of 𝜏𝜏𝐼𝐼,𝑡𝑡+1, differing 
stochastic processes for 𝜏𝜏𝐼𝐼,𝑡𝑡 will lead to differing decision rules when we 
solve the model.

• This is further complicated as 𝔼𝔼𝑡𝑡 𝑟𝑟𝑡𝑡+1 + 1 + 𝜏𝜏𝐼𝐼,𝑡𝑡+1 1 − 𝛿𝛿 𝐶𝐶𝑡𝑡+1
−𝜌𝜌 may be 

increasing, decreasing, or non-monotonic in 𝜏𝜏𝐼𝐼,𝑡𝑡.

• In this case, we must solve the model for the current parameters, and then 
use simulation or quadrature techniques in order to evaluate the integral.

• This may be a bit slow as we will be solving a non-linear equation involving an 
integral.



The Generalized Method of Moments (GMM) 
Approach: Motivation

• The first order conditions to a DSGE model can always be written in 
the form:

𝔼𝔼𝑡𝑡𝐹𝐹 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝜃𝜃 = 0,
• where 𝑥𝑥𝑡𝑡 collects the shocks, state and control variables of the model 

(possibly augmented by lags), and 𝜃𝜃 collects the parameters of the model.

• Since this expectation is conditional on the time 𝑡𝑡 information set, for 
any variable 𝑧𝑧𝑡𝑡 known at 𝑡𝑡:

𝔼𝔼 𝐹𝐹 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝜃𝜃 𝑧𝑧𝑡𝑡′ = 𝔼𝔼 𝔼𝔼𝑡𝑡 𝐹𝐹 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝜃𝜃 𝑧𝑧𝑡𝑡′
= 𝔼𝔼 𝔼𝔼𝑡𝑡 𝐹𝐹 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝜃𝜃 𝑧𝑧𝑡𝑡′
= 𝔼𝔼 0𝑧𝑧𝑡𝑡′ = 0.

• Thus given 𝑧𝑧𝑡𝑡 (the “instruments”), the model implies a set of moment 
restrictions.

• The usual choice for 𝑧𝑧𝑡𝑡 = 1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1 ⋯ 𝑥𝑥𝑡𝑡−𝑙𝑙 ′, for some 𝑙𝑙 > 0.



The GMM Approach: Idea behind the 
estimate

• Let us define 𝑔𝑔 𝑌𝑌𝑡𝑡,𝜃𝜃 = vec𝐹𝐹 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝜃𝜃 𝑧𝑧𝑡𝑡′.
• Possible by stacking the leads and lags of 𝑥𝑥𝑡𝑡 along with 𝑧𝑧𝑡𝑡 in 𝑌𝑌𝑡𝑡.

• The basic idea of GMM is to replace the theoretical moment constraint:
𝔼𝔼 𝑔𝑔 𝑌𝑌𝑡𝑡 ,𝜃𝜃0 = 0,

• with its sample equivalent:

�𝑚𝑚 𝜃𝜃 ≔
1
𝑇𝑇
�
𝑡𝑡=1

𝑇𝑇

𝑔𝑔 𝑌𝑌𝑡𝑡,𝜃𝜃 = 0.

• We then use nonlinear minimization to choose 𝜃𝜃 to minimize the 
discrepancy between the LHS and RHS of this equation.

• Note that for the moment we are assuming all of the components of 𝑥𝑥𝑡𝑡 are 
observable.

• In practice, some moment restrictions will be more or less informative than 
others, so we use a weighting matrix 𝑊𝑊 and solve:

�𝜃𝜃 = arg min
𝜃𝜃

�𝑚𝑚 𝜃𝜃 ′𝑊𝑊 �𝑚𝑚 𝜃𝜃 .



The GMM Approach : Choice of 𝑊𝑊

• In the absence of serial correlation in 𝑔𝑔 𝑌𝑌𝑡𝑡 ,𝜃𝜃 , the optimal 𝑊𝑊 is (given certain assumptions) 
proportional to:

𝔼𝔼
1
𝑇𝑇�
𝑡𝑡=1

𝑇𝑇

𝑔𝑔 𝑌𝑌𝑡𝑡 , 𝜃𝜃0 𝑔𝑔 𝑌𝑌𝑡𝑡 ,𝜃𝜃0 ′

−1

.

• In practice, 𝑊𝑊 is usually estimated from the data.

• One obvious algorithm is to first fix �𝑊𝑊0 (e.g. take �𝑊𝑊0 = 𝐼𝐼), then produce GMM estimates of 𝜃𝜃, say 
�𝜃𝜃1, using 𝑊𝑊 = �𝑊𝑊0. Then we may derive an asymptotically efficient 𝑊𝑊 using:

�𝑊𝑊1 ≔
1
𝑇𝑇�
𝑡𝑡=1

𝑇𝑇

𝑔𝑔 𝑌𝑌𝑡𝑡 , �𝜃𝜃1 𝑔𝑔 𝑌𝑌𝑡𝑡 , �𝜃𝜃1
′

−1

.

• We can then produce a new GMM estimate of 𝜃𝜃, say �𝜃𝜃2, using 𝑊𝑊 = �𝑊𝑊1. 

• Obviously this procedure may be repeated, and doing so tends to increase small-sample 
efficiency, however asymptotically even �𝜃𝜃2 is efficient.



The GMM Approach : Dealing with serial 
correlation

• In macro contexts, 𝑔𝑔 𝑌𝑌𝑡𝑡 ,𝜃𝜃 will often be serially correlated however.

• In this case, the optimal 𝑊𝑊 is given by the variance at frequency zero of 
𝑔𝑔 𝑌𝑌𝑡𝑡 ,𝜃𝜃 .

• As we mentioned last week, the variance at frequency zero is an ill-posed 
problem, since it requires an infinite amount of data. (See Potscher (2002).)

• However, it turns out that this ill-posedness miraculously does not impact 
our ability to get efficient GMM estimates. (See Perron and Ren (2010).)

• Most standard software for GMM will use a Newey-West type estimator.
• Details are in Canova’s textbook if you’re interested.



The GMM Approach : J-tests

• Since we may include arbitrarily many lags in 𝑧𝑧𝑡𝑡, it is easy to produce 
set-ups in which there are more moment constraints than 
parameters.

• Such a situation is said to be “over-identified”.

• The J-test uses this over-identification to test the model’s restrictions.

• It uses the fact that 𝑇𝑇 �𝑚𝑚 �𝜃𝜃 ′ �𝑊𝑊 �𝑚𝑚 �𝜃𝜃 has a known distribution with 
finite variance under the null that the model is correct, but is 
otherwise unbounded.



The GMM Approach : Applications in macro

• Canova’s textbook gives an application to the estimation of an RBC model, which is worth 
reading.

• There are also extensive examples in my course notes.

• Another nice application is the estimation of the NKPC.
• This will also illustrate how shocks in equations may be dealt with.

• Suppose:
𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑡𝑡 ,

• where 𝜋𝜋𝑡𝑡 is inflation, 𝑦𝑦𝑡𝑡 is some observable measure of real marginal costs, such as an output gap, and 𝜀𝜀𝑡𝑡
is an i.i.d. cost push shock.

• Then, taking expectations at 𝑡𝑡 − 1:
𝔼𝔼𝑡𝑡−1 𝛽𝛽𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑦𝑦𝑡𝑡 − 𝜋𝜋𝑡𝑡 = 0,

• So if 𝑧𝑧𝑡𝑡−1 is known at 𝑡𝑡 − 1:
𝔼𝔼𝑧𝑧𝑡𝑡−1 𝛽𝛽𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑦𝑦𝑡𝑡 − 𝜋𝜋𝑡𝑡 = 0.

• Careful construction of the instrument set can allow this to be generalized to the case when 𝜀𝜀𝑡𝑡 is 
serially correlated.



The Simulated Method of Moments (SMM)

• The Simulated Method of Moments is applicable even when GMM is not, due, for example, 
to unobserved variables.

• The idea is that rather than matching some theoretical moments, which we may evaluate 
analytically, we instead choose parameters so that the sample average of some moment over many 
simulations of our model is equal to the sample average of the same moment in the data.

• SMM can be thought of as calibration 2.0. Just as when calibrating we might aim to match 
cross correlations between a range of variables, we can match exactly the same cross 
correlations via SMM.

• Unlike calibration, SMM has rigorous econometric theory behind it, and it permits the derivation of 
standard errors, and the performance of J-tests.

• The estimators are very similar to the corresponding GMM ones.
• And SMM is even in Dynare nowadays!

• In the course notes I discuss more sophisticated alternatives to SMM which rely on analytic 
moment calculations, rather than simulation.



Conclusion and recap

• Inversion of observables to find shocks may be possible if there are at 
least as many observables as shocks.

• It can be helpful to add additional non-structural shocks to capture 
missing features of your model.

• Calibration can be helpful for getting vaguely plausible parameters.

• GMM/SMM is calibration “done right”.
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