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Outline of today’s talk

• Motivation.

• The Kalman Filter.

• Kalman Smoothing.

• The Extended Kalman Filter.

• Introduction to non-linear filtering.

• The Kollman (2013) approach.

• Next week:
• Numerical integration.

• Numerical integration based filters (unscented, quadrature, particle).

• Numerical integration based Bayesian estimation.



Reading for today

• Canova: “Methods for applied macroeconomic research”.
• Chapter 6 covers the Kalman Filter, the prediction error decomposition, and 

various aspects of Maximum Likelihood Estimation.



Motivation (1/3)

• Suppose we observe 𝑥1, … , 𝑥𝑇, where:
𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜀𝑡 , 𝜀𝑡~NIID 0, 𝜎2 , 𝑥0 = 𝑚0.

• where 𝑚0 is a known parameter representing the point at which the process was started.

• This may be estimated by taking the joint maximum likelihood over 𝜌 and 𝜎.

• The log-likelihood takes the form:

−
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• Note that if 𝑚0 was in fact unknown, we could treat it as a parameter, and its 

FOC would imply 
 𝜌

 𝜎2 𝑥1 −  𝜌  𝑚0 = 0, i.e.  𝜀1 = 0, and we are left with estimates 

that are asymptotically equivalent to the results of an OLS regression of 𝑥2, … , 𝑥𝑇

on 𝑥1, … , 𝑥𝑇−1. (Exercise: prove this.)

• However, in many situations it is neither case that we know the initial value of 
the process, nor that we are completely uncertain about it.
• Instead, we might have non-degenerate prior beliefs about 𝑥0.



Motivation (2/3)

• Suppose 𝑥0~NID 𝑚0, 𝑠0
2 .

• E.g. suppose the process was actually started a long time before time 0, and so 𝑥0 is a draw from the stationary distribution of 

𝑥𝑡. In this case 𝑚0 = 0 and 𝑠0
2 =

𝜎2

1−𝜌2.

• Suppose for some 𝑡, 𝑥𝑡~N 𝑚𝑡, 𝑠𝑡
2 .

• Then, 𝑥𝑡+1 = 𝜌𝑥𝑡 + 𝜀𝑡+1~N 𝜌𝑚𝑡, 𝜌
2𝑠𝑡

2 + 𝜎2 and so 𝑥𝑡+1~N 𝑚𝑡+1, 𝑠𝑡+1
2 , with 𝑚𝑡+1 = 𝜌𝑚𝑡 and 𝑠𝑡+1

2 =
𝜌2𝑠𝑡

2 + 𝜎2.

• Iterating this back gives: 𝑥𝑡~N 𝜌𝑡𝑚0, 𝜌
2𝑡𝑠0

2 +
𝜎2 1−𝜌2𝑡

1−𝜌2 , so 𝑥𝑡 is both conditionally and unconditionally 

normally distributed.

• The log-likelihood in this case is:
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• With 𝑠0 = 0 we get back the perfect information case from the previous slide, and in the limit as 𝑠0 → ∞ we are 
left with estimates that are identical to the results of an OLS regression of 𝑥2, … , 𝑥𝑇 on 𝑥1, … , 𝑥𝑇−1. (Exercise: 
prove this too.) For intermediate values though,  𝑥1 ≠  𝜌𝑚0.



Motivation (3/3)

• Now suppose that rather than observing 𝑥𝑡, we instead observed 𝑦𝑡 = 𝑥𝑡 + 𝜂𝑡
where 𝜂𝑡~NIID 0, 𝜔2 .

• Clearly 𝑦𝑡 is still conditionally and unconditionally normally distributed. In fact, 
note:

𝑦𝑡 − 𝜌𝑦𝑡−1 = 𝑥𝑡 − 𝜌𝑥𝑡−1 + 𝜂𝑡 − 𝜌𝜂𝑡−1 = 𝜀𝑡 + 𝜂𝑡 − 𝜌𝜂𝑡−1.
• So if we define 𝑍 = 𝑦𝑇 − 𝜌𝑦𝑇−1 ⋯ 𝑦2 − 𝜌𝑦1

′, and Σ ≔ 𝔼𝑍𝑍′, then Σ is a tri-diagonal 
matrix with diagonal 𝜎2 + 1 − 𝜌2 𝜔2 and off-diagonals −𝜌𝜔2.

• Now let 𝐿 be the Cholesky decomposition of Σ, so 𝐿𝐿′ = Σ.
• Then 𝔼 𝐿−1𝑍 𝐿−1𝑍 ′ = 𝐿−1Σ 𝐿′ −1 = 𝐿−1𝐿𝐿′ 𝐿′ −1 = 𝐼.

• So 𝐿−1𝑍~𝑁 0, 𝐼 . From this we can then write down the log-likelihood, and numerically 
maximise.

• However, this procedure is  (a) messy, (b) hard to generalise, (c) numerically 
unstable and (d) slow.
• Note that it requires the inversion of a 𝑇 × 𝑇 matrix for each evaluation of the likelihood.

• The Kalman filter avoids both this mess, and the inversion of the 𝑇 × 𝑇 matrices.



The Kalman Filter: Assumptions

• Suppose 𝑥𝑡 (“the state”) is an 𝑛-dimensional stochastic process with 
𝑥𝑡 = 𝜇𝑡−1 + Ρ𝑡−1𝑥𝑡−1 + 𝜀𝑡, where 𝜀𝑡~NIID 0𝑛, Σ𝑡−1 .
• Note that by augmenting the state space, any VARMA model may be placed 

in this form.

• Suppose that 𝑥0~NID 𝑚0, 𝑆0 , where 𝑚0 and 𝑆0 are known.

• Finally, suppose rather than observing 𝑥𝑡, we instead observe 𝑦𝑡 =
Γ𝑡−1𝑥𝑡 + 𝜂𝑡, where 𝜂𝑡~NIID 0, Ω𝑡−1 .

• We assume throughout that 𝜇𝑡−1, Ρ𝑡−1, Σ𝑡−1, Γ𝑡−1 and Ω𝑡−1 are 
known in period 𝑡 − 1, and so independent of 𝜀𝑡, 𝜂𝑡 and 𝑥𝑡, but not 
necessarily independent of 𝜀𝑡−1, 𝜂𝑡−1 or 𝑥𝑡−1.
• This allows for various classes of time-varying coefficient models, not least 

GARCH models.



A useful property of the Normal Distribution

• Suppose:
𝑈
𝑉

~N
𝜇𝑈

𝜇𝑉
,
Σ𝑈𝑈 Σ𝑈𝑉

Σ𝑉𝑈 Σ𝑉𝑉
.

• Then:
𝑈|𝑉~ N 𝜇𝑈 + Σ𝑈𝑉Σ𝑉𝑉

−1 𝑉 − 𝜇𝑉 , Σ𝑈𝑈 − Σ𝑈𝑉Σ𝑉𝑉
−1Σ𝑉𝑈 .



The Kalman Filter: One slide derivation!

• Let ℱ𝑡 denote all information available in period 𝑡.
• ℱ𝑡 will contain 𝑦1, … , 𝑦𝑡, but not 𝑥1, … , 𝑥𝑡.

• Suppose 𝑥𝑡|ℱ𝑡~N 𝑚𝑡, 𝑆𝑡 .

• Then: 𝑥𝑡+1|ℱ𝑡 = 𝜇𝑡 + Ρ𝑡𝑥𝑡 + 𝜀𝑡+1|ℱ𝑡~N 𝑙𝑡, 𝑅𝑡 , where
𝑙𝑡 ≔ 𝜇𝑡 + Ρ𝑡𝑚𝑡 and 𝑅𝑡 ≔ Ρ𝑡𝑆𝑡Ρ𝑡

′ + Σ𝑡.

• So, since 𝑦𝑡+1 = Γ𝑡𝑥𝑡+1 + 𝜂𝑡+1:
𝑥𝑡+1

𝑦𝑡+1
|ℱ𝑡~N

𝑙𝑡
Γ𝑡𝑙𝑡

,
𝑅𝑡 𝑅𝑡Γ𝑡

′

Γ𝑡𝑅𝑡 Γ𝑡𝑅𝑡Γ𝑡
′ + Ω𝑡

.

• Hence, by the previous result, if we define:
𝑚𝑡+1 ≔ 𝑙𝑡 + 𝑅𝑡Γ𝑡

′ Γ𝑡𝑅𝑡Γ𝑡
′ + Ω𝑡

−1 𝑦𝑡+1 − Γ𝑡𝑙𝑡 , and
𝑆𝑡+1 ≔ 𝑅𝑡 − 𝑅𝑡Γ𝑡

′ Γ𝑡𝑅𝑡Γ𝑡
′ + Ω𝑡

−1Γ𝑡𝑅𝑡,

• Then: 𝑥𝑡+1|ℱ𝑡+1 = 𝑥𝑡+1|𝑦𝑡+1, ℱ𝑡~N 𝑚𝑡+1, 𝑆𝑡+1 .



The Kalman Filter: Initialization

• We often have no information about the initial values of our model’s 
states, and so it is appropriate to initialize 𝑚0 and 𝑆0 to values 
reflecting this ignorance.

• This may be done by taking the limit as 𝑘 → ∞ of: 𝑥0|ℱ−𝑘.

• In the absence of time varying coefficients, this will be distributed 
N 𝑚0, 𝑆0 , where 𝑚0 = 𝜇 + Ρ𝑚0 and 𝑆0 = Ρ𝑆0Ρ

′ + Σ.

• When the model contains unit roots, such initialization is impossible 
(at least in the directions of the unit roots), and then it is more 
appropriate to use a highly diffuse initial distribution.



The Kalman Filter: “Kalman Smoothing”

• The Kalman Filter gives you an estimate of the state at time 𝑡 conditional on observations 
in the current and previous periods.

• These are often termed the “(Kalman) filtered states”.

• However, future observations are also informative about the state at 𝑡. 

• For a simple example, imagine a model in which the state was observed with some number of 
periods of lag.

• If we are only interested in the states in the last few periods observed, then we may derive 
a full-information estimate of these states by working with an augmented set of state 
variables  𝑥𝑡 = 𝑥𝑡

′ ⋯ 𝑥𝑡−𝑙
′ ′, much as we did when representing VAR 𝑝 as VAR 1 .

• More generally, to produce full-information estimates of the states in all periods, we have 
to combine the forward pass of the Kalman filter with a backwards pass which propagates 
the extra information from later observations back in time.

• The most common is the Rauch–Tung–Striebel smoother.

• Derivation is on the next slide.

• The full information estimates of the states produced by such a smoother are termed the “(Kalman) 
smoothed states”.



The Rauch–Tung–Striebel Smoother

• Recall 𝑥𝑡|ℱ𝑡~N 𝑚𝑡 , 𝑆𝑡 , 𝑥𝑡+1 = 𝜇𝑡 + Ρ𝑡𝑥𝑡 + 𝜀𝑡+1, 𝑙𝑡 ≔ 𝜇𝑡 + Ρ𝑡𝑚𝑡 and 𝑅𝑡 ≔
Ρ𝑡𝑆𝑡Ρ𝑡

′ + Σ𝑡.

• Thus:
𝑥𝑡

𝑥𝑡+1
|ℱ𝑡~N

𝑚𝑡

𝑙𝑡
,

𝑆𝑡 𝑆𝑡Ρ𝑡
′

Ρ𝑡𝑆𝑡 𝑅𝑡
.

• Hence by the Markovian property of 𝑥𝑡 and the given property of Normal 
distributions:
𝑥𝑡|𝑥𝑡+1, ℱ𝑇 = 𝑥𝑡|𝑥𝑡+1, ℱ𝑡~N 𝑚𝑡 + 𝑆𝑡Ρ𝑡

′𝑅𝑡
−1 𝑥𝑡+1 − 𝑙𝑡 , 𝑆𝑡 − 𝑆𝑡Ρ𝑡

′𝑅𝑡
−1Ρ𝑡𝑆𝑡

• Now suppose: 𝑥𝑡+1|ℱ𝑇~N 𝑎𝑡+1, 𝐵𝑡+1 .

• Then: 𝑥𝑡|ℱ𝑇~N 𝑎𝑡 , 𝐵𝑡 , where:
𝑎𝑡 = 𝑚𝑡 + 𝑆𝑡Ρ𝑡

′𝑅𝑡
−1 𝑎𝑡+1 − 𝑙𝑡 , and

𝐵𝑡 = 𝑆𝑡Ρ𝑡
′𝑅𝑡

−1𝐵𝑡+1𝑅𝑡
−1Ρ𝑡𝑆𝑡 + 𝑆𝑡 − 𝑆𝑡Ρ𝑡

′𝑅𝑡
−1Ρ𝑡𝑆𝑡.



Estimating state space models using the 
Kalman Filter

• The Kalman Filter gives us a “guess” of the unobserved state in the form of 
its distribution.

• The “prediction error decomposition” gives us a way of mapping this into a 
likelihood.

• Let 𝜃 collect all of the model’s parameters (so 𝜇𝑡, Ρ𝑡, Σ𝑡, Γ𝑡 and Ω𝑡 are only 
functions of 𝜃, 𝑚𝑡 and 𝑆𝑡, for all 𝑡).

• Then, the prediction error decomposition just states that:
𝑝 𝑦𝑇 , … , 𝑦1 𝜃 = 𝑝 𝑦𝑇 𝑦𝑇−1, … , 𝑦1 𝑝 𝑦𝑇−1, … , 𝑦1 = ⋯

=  

𝑡=1

𝑇

𝑝 𝑦𝑡 ℱ𝑡−1 .

• But from the derivation of the Kalman filter, we know 
𝑦𝑡|ℱ𝑡−1~N Γ𝑡−1𝑙𝑡−1, Γ𝑡−1𝑅𝑡−1Γ𝑡−1

′ + Ω𝑡−1 , so this expression is easy to 
calculate.
• We don’t even need to calculate the smoothed states.

• We then just numerically maximise the likelihood.



Some practical considerations

• Although the Kalman Filter is orders of magnitude faster and more 
numerically robust than the crude method we suggested in our motivation, 
it still suffers from some numerical problems.

• In particular, due to the numerical quirks of matrix inversion and round-off 
error, the variant above is not guaranteed to always produce a positive 
definite 𝑆𝑡.

• As a result, the simple version here is not recommended.

• Instead, it is recommended to use one of the so called Square Root forms, 
which instead update some matrix decomposition of 𝑆𝑡 (or its inverse).
• There are many different varieties depending on which matrix decomposition 

they update.

• The traditional Square Root Kalman Filter updates the Cholesky decomposition of 
𝑆𝑡.

• These forms all give the same results as the Kalman Filter when evaluated to 
infinite precision, but will perform much better at machine precision.



Macro applications of the Kalman Filter 1: 
Limited information models

• Some macro models incorporate limited information on the part of agents.

• For example, some models assume that the logarithm of labour productivity 
follows a process of the form: 𝑎𝑡 = 𝑧𝑡 + 𝑑𝑡, where 𝑧𝑡 = 𝑧𝑡−1 + 𝜀𝑡 and 𝑑𝑡 =
𝜌𝑑𝑡−1 + 𝜈𝑡. They further assume that only 𝑎𝑡 is observable.
• As a result, agents must run the Kalman Filter in order to predict their future 

productivity, and hence decide on investment levels.
• This changes dynamics, since when they see an increase in 𝑎𝑡, they do not know if 

it is going to be permanent (in which case they should raise their capital stock by 
the same amount), or transitory (in which case they may hardly wish to adjust 
capital at all).

• As a result, transitory shocks are given additional persistence, and investment will 
follow a hump-shaped path as agents realise the shock was not in fact 
permanent.

• Other models have assumed that the central bank’s inflation target is 
determined by an unobservable stochastic process.
• Again, agents will have to run the Kalman filter to determine how to react to 

monetary policy shocks.



Macro applications of the Kalman Filter 2: ML 
estimation of linearised models

• Once a DSGE model has been linearised, it and its observation equations are automatically in the form required 
for the Kalman Filter.

• As a result, we may use the Kalman Filter for ML estimation of linearised DSGE models.

• This is what e.g. Dynare does.

• The methods we presented in the last topic for non-linear ML estimation would only handle the case in which 
there were as many shocks as observables.

• However, the Kalman filter has no problem with models in which there are many more shocks than observables, 
allowing for the ML estimation of models in which it is assumed all variables are observed with measurement 
error.

• In practice, however, the misspecification endemic in most DSGE models renders ML estimation a little 
unreliable.

• The likelihood is often multi-modal, and quite flat around the true maximum.

• This renders numerical maximisation difficult, and so too the computation of the likelihood’s Hessian once a 
maxima is found.

• My recommendation is to use the CMA-ES algorithm (Hansen 2006), which has reasonable global search 
properties, but even then results should be taken cautiously.

• Code etc. is here: https://www.lri.fr/~hansen/cmaesintro.html

https://www.lri.fr/~hansen/cmaesintro.html


Macro applications of the Kalman Filter 3: 
Bayesian estimation of linearised models

• Recall that Bayesian estimation is based on the identity:

𝔼 𝑓 𝜃 𝑋 =  𝑓 𝜃
𝑝 𝑋 𝜃 𝑝 𝜃

𝑝 𝑋
𝑑𝜃 .

• 𝑝 𝑋 𝜃 is the likelihood.

• So just as the Kalman filter is the core of the standard ML estimation 
algorithm, its also the core of the standard Bayesian algorithm.

• Appropriate choice of priors may lessen some of the biases due to 
the misspecification of the underlying model.

• However, care should be taken to avoid using the same information 
twice.
• The data set from which priors were produced should always be independent 

of that on which the data is estimated.
• Too often in the literature this is not true.



Estimating non-linear models: Setup

• Suppose 𝑥𝑡 is an 𝑛-dimensional stochastic process with 𝑥𝑡 =

𝑓𝑡−1 𝑥𝑡−1, 𝜀𝑡 , where 𝜀𝑡~NIID 0, Σ𝑡−1 .

• The use of Gaussian shocks is WLOG, since we may convert the Gaussian 

distribution into any other via a suitable non-linear transform in 𝑓.

• Suppose that 𝑥0 is a draw from some known distribution 𝑝 𝑥0 .

• Finally, suppose rather than observing 𝑥𝑡, we instead observe 𝑦𝑡 =

𝑔𝑡−1 𝑥𝑡, 𝜂𝑡 , where 𝜂𝑡~NIID 0, Ω𝑡−1 .

• Much as before, the functions 𝑓𝑡−1 and 𝑔𝑡−1 are assumed to be 

known in period 𝑡 − 1, and hence independent of the period 𝑡

shocks.



Separable non-linear form

• It is often much easier to work with models in which 𝑓 and 𝑔 are additively 
separable, so 𝑓𝑡−1 𝑥𝑡−1, 𝜀𝑡 = 𝑓𝑡−1 𝑥𝑡−1 + 𝜀𝑡 and 𝑔𝑡−1 𝑥𝑡−1, 𝜂𝑡 =
𝑔𝑡−1 𝑥𝑡−1 + 𝜂𝑡.

• Luckily, any non-separable model may be converted into a separable one by 
augmenting the state.

• In particular, define:  𝑥𝑡 = 𝑥𝑡
′ 𝑒1,𝑡

′ 𝑒2,𝑡
′ ′, and replace 𝑥𝑡 = 𝑓𝑡−1 𝑥𝑡−1, 𝜀𝑡 , 

𝑦𝑡 = 𝑔𝑡−1 𝑥𝑡 , 𝜂𝑡 , with:

𝑥𝑡 = 𝑓𝑡−1 𝑥𝑡−1, 𝑒1,𝑡−1 , 𝑦𝑡 = 𝑔𝑡−1 𝑥𝑡 , 𝑒2,𝑡−1 .

• Finally add new equations: 𝑒1,𝑡 = 𝜈1,𝑡, 𝑒2,𝑡 = 𝜈2,𝑡, where 𝜈1,𝑡 has the same 
distribution as 𝜀𝑡+1 and 𝜈2,𝑡 has the same distribution as 𝜂𝑡+1.

• Henceforth, we will assume separability.



The Extended Kalman Filter (EKF)

• The Extended Kalman Filter exploits two facts.
1. The normal Kalman Filter is correct for linear models with time varying coefficients, even if 

those coefficients are a function of the lagged state.

2. With small shocks, the behaviour of many models may be well approximated by a linear 
approximation around an estimate of the last value of the state.

• The EKF approximates the transition equation by its first order Taylor 
approximation around 𝑚𝑡−1.

𝑥𝑡 ≈ 𝑓𝑡−1 𝑚𝑡−1 + 𝑓𝑡−1
′ 𝑚𝑡−1 𝑥𝑡−1 − 𝑚𝑡−1 + 𝜀𝑡 .

• Similarly, the EKF approximates the observation equation by:

𝑦𝑡 ≈ 𝑔𝑡−1 𝑚𝑡−1 + 𝑔𝑡−1
′ 𝑚𝑡−1 𝑥𝑡−1 − 𝑚𝑡−1 + 𝜂𝑡 .

• These approximated equations are linear, so the standard Kalman filter may then 
be applied to them. (𝑚0 is set to 𝔼𝑥0 and 𝑆0 is set to Var 𝑥0.)

• The approximation will be exact if 𝑚𝑡−1 = 𝑥𝑡−1.

• A recent macro application of a similar local linearization technique to the 
estimation of a nonlinear model is Hall (2012).

http://mpra.ub.uni-muenchen.de/42534/1/MPRA_paper_42534.pdf


The Kollman trick for non-linear DSGE models 
(1/2)

• Recently, Robert Kollman (2013) showed that the Kalman filter could be used for approximate filtering of 
pruned perturbation approximations.

• Recall that the second order perturbation approximation to a DSGE model takes the form:

𝑥𝑡 = 𝐴0 + 𝐴1𝑥𝑡−1 + 𝐴11 𝑥𝑡−1 ⊗ 𝑥𝑡−1

+𝐴12 𝑥𝑡−1 ⊗ 𝜀𝑡 + 𝐴2𝜀𝑡 + 𝐴22 𝜀𝑡 ⊗ 𝜀𝑡 .

• However, the presence of the 𝑥𝑡−1 ⊗ 𝑥𝑡−1 term means this may be unstable, even if the BK conditions are 
satisfied for the linearised model.

• Thus Kim et al. (2008) suggested a “pruned” approximation was preferable. This takes the (augmented state 
space) form:

𝑥1,𝑡 = 𝐴1𝑥1,𝑡−1 + 𝜀𝑡,

𝑥2,𝑡 = 𝐴0 + 𝐴1𝑥2,𝑡−1 + 𝐴11 𝑥1,𝑡−1 ⊗ 𝑥𝑡−1

+𝐴12 𝑥1,𝑡−1 ⊗ 𝜀𝑡 + 𝐴2𝜀𝑡 + 𝐴22 𝜀𝑡 ⊗ 𝜀𝑡 .

• The initial justification was a little ad hoc, and met with some hostility, however this process has subsequently 
been put on much firmer theoretical ground by Lombardo (2010) and Lan and Meyer-Gohde (2013), who also 
extend the procedure to higher orders.

• The Lan and Meyer-Gohde (2013) procedure seems to be the most accurate, but differences only become noticeable at high 
orders of approximation.

• Dynare does not at present use this one.



The Kollman trick for non-linear DSGE models 
(2/2)

• The Kollman (2013) trick for estimating these pruned perturbation 
approximations is to approximate the joint distribution of 𝜀𝑡 and 
𝜀𝑡 ⊗ 𝜀𝑡 by a Normal.

• The optimal approximation may be readily calculated analytically, 
given the current estimate of the covariance matrix of 𝜀𝑡.

• Once this approximation is made, the system is linear in the 
augmented state vector: 𝑥1,𝑡

′ 𝑥1,𝑡
′ ⊗ 𝑥1,𝑡

′ 𝑥2,𝑡
′, with only the 

covariance matrix varying over time (thanks to the 𝑥1,𝑡−1 ⊗ 𝜀𝑡 term).

• Thus, the standard Kalman filter may be applied.

• Obviously, by ignoring the relationship between 𝑥1,𝑡 and 𝑥1,𝑡 ⊗ 𝑥1,𝑡
in the state, we are losing some efficiency, however this cost is 
arguably worth paying to have a fast algorithm.



General framework for the estimation of 
nonlinear models: Prediction

• Suppose we know 𝑝 𝑥𝑡 ℱ𝑡 . Then:

𝑝 𝑥𝑡+1 ℱ𝑡 =  𝑝 𝑥𝑡+1, 𝑥𝑡 ℱ𝑡 𝑑𝑥𝑡

=  𝑝 𝑥𝑡+1 𝑥𝑡, ℱ𝑡 𝑝 𝑥𝑡 ℱ𝑡 𝑑𝑥𝑡

=  𝑝 𝑥𝑡+1 𝑥𝑡 𝑝 𝑥𝑡 ℱ𝑡 𝑑𝑥𝑡

=  𝑝N 𝑥𝑡+1 𝑓𝑡 𝑥𝑡 , Σ𝑡 𝑝 𝑥𝑡 ℱ𝑡 𝑑𝑥𝑡 ,

• where 𝑝N 𝑈 𝜇𝑈 , Σ𝑈 is the p.d.f. of a Normal distribution with mean 𝜇𝑈 and 
variance Σ𝑈.



General framework for the estimation of 
nonlinear models: Update

• By Bayes’ Rule:

𝑝 𝑥𝑡+1 ℱ𝑡+1 = 𝑝 𝑥𝑡+1 𝑦𝑡+1, ℱ𝑡 =
𝑝 𝑥𝑡+1, 𝑦𝑡+1 ℱ𝑡

𝑝 𝑦𝑡+1 ℱ𝑡

=
𝑝 𝑦𝑡+1 𝑥𝑡+1, ℱ𝑡 𝑝 𝑥𝑡+1 ℱ𝑡

𝑝 𝑦𝑡+1 ℱ𝑡

=
𝑝 𝑦𝑡+1 𝑥𝑡+1 𝑝 𝑥𝑡+1 ℱ𝑡

𝑝 𝑦𝑡+1 ℱ𝑡

=
𝑝N 𝑦𝑡+1 𝑔𝑡 𝑥𝑡 , Ω𝑡 𝑝 𝑥𝑡+1 ℱ𝑡

𝑝 𝑦𝑡+1 ℱ𝑡

∝ 𝑝N 𝑦𝑡+1 𝑔𝑡 𝑥𝑡 , Ω𝑡 𝑝 𝑥𝑡+1 ℱ𝑡 .

• 𝑝 𝑥𝑡+1 ℱ𝑡 was calculated on the previous slide, thus, given 𝑝 𝑥𝑡 ℱ𝑡 we can work out 
𝑝 𝑥𝑡+1 ℱ𝑡+1 .

• However, this requires the evaluation of a rather nasty integral! It also requires holding full 
distributions in memory, not just their mean and covariance. These are difficult problems, which 
we will discuss next week.


