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Outline of today’s talk

• A reminder of a baseline RBC model.

• Calibration.

• Wedge accounting and ML estimation of simple models with at least 
as many observables as shocks.

• GMM/SMM.



Reading for today

• Canova: “Methods for applied macroeconomic research”.
• Chapter 5 covers GMM/SMM.
• Chapter 7 covers calibration.

• Chari, Kehoe, McGrattan (2007):
• Covers wedge accounting.
• Another classic paper which you ought to be familiar with.
• http://www.econ.umn.edu/~pkehoe/papers/CKMeconometrica2007.pdf

• Gali and Gertler (1999)
• Early paper applying GMM to the NK Phillips curve.
• https://www.sciencedirect.com/science/article/pii/S0304393299000239

• Holden (2014): “Estimating non-linear models”
• I’ll email this to you.

http://www.econ.umn.edu/~pkehoe/papers/CKMeconometrica2007.pdf
https://www.sciencedirect.com/science/article/pii/S0304393299000239


Taking the model seriously

• We saw in the last lecture that it is incredibly hard to obtain reliable 
identification of shocks via “theory-free” techniques.

• Identification of shocks in a VAR requires imposing restrictions from 
theory, restrictions which may only be justified by a model.

• This begs the question of why the model is not directly taken to the 
data instead. I.e., why we don’t “take the model seriously”.

• This week we shall look at techniques for doing this that do not 
involve econometric techniques for recovering the state variables of 
a model.

• Either we will not need to work out these states, or they will be 
directly observable.



Baseline RBC model: Household’s Problem

• The representative household maximises:
𝑈𝑡 𝐾𝑡−1, 𝐵𝑡−1 = 𝑢 𝐶𝑡 , 𝐿𝑡 + 𝛽𝔼𝑡𝑈𝑡+1 𝐾𝑡 , 𝐵𝑡 ,

• subject to the budget constraint:
𝐶𝑡 + 1 + 𝜏𝐼,𝑡 𝐼𝑡 + 𝐵𝑡 = 1 − 𝜏𝐿,𝑡 𝑊𝑡𝐿𝑡 + 𝑟𝑡𝜔𝑡𝐾𝑡−1 + 𝑅𝑡−1𝐵𝑡−1 + 𝑇𝑡 ,

• where:
• 𝐾𝑡 is capital, which evolves according to 𝐾𝑡 = 1 − 𝛿 𝜔𝑡 𝐾𝑡−1 + 𝐼𝑡,
• 𝜔𝑡 is capacity utilisation,
• 𝐵𝑡 is holdings of a zero net supply real bond, which pays an interest rate 𝑅𝑡,
• 𝐶𝑡 is consumption, 𝐿𝑡 is labour supply, 𝐼𝑡 is investment,
• 𝑊𝑡 is the market wage, 𝑟𝑡 is the rental rate of capital,
• 𝑇𝑡 is net lump-sum transfers,
• 𝜏𝐼,𝑡 is an exogenous investment tax, and 𝜏𝐿,𝑡 is an exogenous labour tax.



Baseline RBC model: Household’s FOCs

• Lazy approach to solving this problem. Just sub-in constraints:
𝑈𝑡 𝐾𝑡−1, 𝐵𝑡−1

= 𝑢 ቀ 1 − 𝜏𝐿,𝑡 𝑊𝑡𝐿𝑡 + 𝑟𝑡𝜔𝑡𝐾𝑡−1 + 𝑅𝑡−1𝐵𝑡−1 + 𝑇𝑡



Baseline RBC model: Firms

• The representative price taking firm chooses how much capital and 
labour to hire in order to maximise profits, where profits from a firm 
hiring  are given by:

𝑌𝑡 − 𝑟𝑡 ෩𝐾𝑡 −𝑊𝑡
෨𝐿𝑡,

• where:
• 𝑌𝑡 = 𝐴𝑡𝐹 ෩𝐾𝑡, ෨𝐿𝑡 is firm output,

• ෩𝐾𝑡 is capital demand, ෨𝐿𝑡 is labour demand, and

• 𝐴𝑡 is an exogenous productivity process.

• So:
𝐴𝑡𝐹1 ෩𝐾𝑡, ෨𝐿𝑡 = 𝑟𝑡 ,
𝐴𝑡𝐹2 ෩𝐾𝑡, ෨𝐿𝑡 = 𝑊𝑡 ,



Baseline RBC model: Market Clearing

• Output goods market:
𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡 ,

• where 𝐺𝑡 is an exogenous government consumption process.

• Labour market:
෨𝐿𝑡 = 𝐿𝑡.

• Capital market:
෩𝐾𝑡 = 𝜔𝑡𝐾𝑡−1.



Baseline RBC model: Special case

• Suppose 𝑢 𝐶, 𝐿 =
𝐶1−𝜌−1

1−𝜌
−

1

1+𝜈
𝐿1+𝜈, 𝐹 ෩𝐾, ෨𝐿 = ෩𝐾𝛼 ෨𝐿1−𝛼, and 

𝛿 𝜔 = 𝛿0 + 𝛿2𝜔
2, then the equilibrium conditions simplify to:

• 𝛼
𝑌𝑡

𝜔𝑡𝐾𝑡−1
= 𝑟𝑡,

• 1 − 𝛼
𝑌𝑡

𝐿𝑡
= 𝑊𝑡,

• 1 − 𝜏𝐿,𝑡 𝑊𝑡𝐶𝑡
−𝜌

= 𝐿𝑡
𝜈.

• 𝛽𝔼𝑡 𝑟𝑡+1𝜔𝑡+1 + 1 + 𝜏𝐼,𝑡+1 1 − 𝛿0 − 𝛿2𝜔𝑡+1
2 𝐶𝑡+1

−𝜌
= 1 + 𝜏𝐼,𝑡 𝐶𝑡

−𝜌
.

• 𝑟𝑡 = 2𝛿2𝜔𝑡 1 + 𝜏𝐼,𝑡 .

• 𝛽𝔼𝑡𝑅𝑡𝐶𝑡+1
−𝜌

= 𝐶𝑡
−𝜌
.

• 𝑌𝑡 = 𝐴𝑡 𝜔𝑡𝐾𝑡−1
𝛼𝐿𝑡

1−𝛼 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡.

• 𝐾𝑡 = 1 − 𝛿0 − 𝛿2𝜔𝑡
2 𝐾𝑡−1 + 𝐼𝑡 .



Calibration

• The early (modern) macro literature relied heavily on calibration.

• Calibration is what you do when you wish to take the model seriously, but 
not too seriously…
• Macro-calibrators tend to view it as inappropriate to apply econometric 

techniques to macro models when they are no more than fables.

• Rather than expecting the model to generate historical time paths, you 
instead require it to approximately match certain stylized facts of the data.

• For example, in macro we often seek to match correlations between 
standard macro time-series and the leads and lags of output.

• Or to match the broad shape of certain impulse responses.



Calibrating the RBC model (1/3)

• One common approach to calibration is to choose parameters in order to match 
the long-run means of certain great ratios.

• The ratios to look at are directly suggested by the equilibrium conditions of the 
model.
• E.g. from the labour FOC: 𝛼 = 1 −

𝑊𝑡𝐿𝑡

𝑌𝑡
, so 𝛼 may be calibrated using one minus the 

observed long-run mean of 
𝑊𝑡𝐿𝑡

𝑌𝑡
.

• Note that in the model these relationships hold exactly, though they never will in the data. In 
this sense we are relaxing the restrictions of the model.

• How far can we go with this?
• Exercise: show that if we observe capital, capacity utilisation and taxes then we may calibrate 
𝛿0 and 𝛿2 with a similar method. Go on to do this with real data!

• Other parameters may be estimated via regression.
• E.g. assuming that we observe taxes, log 1 − 𝜏𝐿,𝑡 𝑊𝑡 = 𝜈 log 𝐿𝑡 + 𝜌 log 𝐶𝑡 gives a 

regression we can run to calibrate 𝜈 and 𝜌.
• Note of caution though: if we reinterpret 𝜏𝐿,𝑡 as reflecting any of the many distortions which 

may enter the labour FOC, then it is not observable, and will appear as the error on the RHS, 
however it will be correlated with the RHS variables, rendering the estimates inconsistent.

• Similar endogeneity problems may affect even parameters estimated via long-run ratios.



Calibrating the RBC model (2/3)

• If we are working with a first order approximation to a model in levels, then 
there’s no difference between the simulated means of our model variables, and 
their steady-state.

• This gives other avenues for calibration.
• For example, in steady-state 𝛽𝑅 = 1, so we may calibrate 𝛽 as the observed long-run mean 

of 
1

𝑅𝑡
.

• Alternatively, we may simulate the model many times, with different values of 
the parameters, and keep the ones that come closest to matching the relevant 
moments of the data.
• E.g. we choose 𝛽, so that 𝑅𝑡 matches the return on inflation indexed bonds.

• Since practitioners are often reluctant to use NIPA measures of stocks, and so 
most RBC models have one or more unobservable states, in practice many or all 
parameters might be calibrated through simulation, or through the steady-state.
• One difficulty here is that there are often many moments that could be used to calibrate 

each parameter, and the choice of calibration target can heavily influence results.



Calibrating the RBC model (3/3)

• A final approach to calibration is to use micro estimates of the 
relevant parameters.

• This is perhaps the ideal approach, as if parameters are estimated 
from micro-data, then the model’s performance on macro data gives 
a clean measure of the model’s performance.

• The issue here is that what the micro-economists measure may not 
map neatly to the relevant macro quantity.
• For example, micro estimates of the Frisch elasticity of labour supply are 

often well below 0.5. However, these are often estimates of the intensive 
margin for the main wage earner in a household, whereas in macro we are 
interested in the combination of intensive and extensive margins for the 
entire population.



How seriously should we take calibration?

• Canova’s textbook takes it remarkably seriously, giving quite 
sophisticated ways of quantifying uncertainty of the “estimates”, and 
various ways of comparing the performance of differing calibrated 
models.
• Some macro-calibrators might be sceptical of such techniques on 

philosophical grounds though.
• You might also legitimately wonder whether there is any point applying 

sophisticated techniques to fix unsophisticated ones, when there are other 
alternatives out there.

• One note of caution: be wary of the difference between calibration 
and parameterisation.
• I have seen big name economists stand-up and shout at the speaker for using 

the former when they meant the latter, so some people take calibration very 
seriously!



Wedge accounting: Introduction

• The four shocks in our business cycle model were not chosen accidentally. 
Rather, they are the shocks used by Chari, Kehoe and McGrattan in their 
2007 wedge accounting paper.

• However, in that paper those four shocks are stripped of their interpretation 
as e.g. tax shocks.

• Instead, the four shocks are just interpreted as reduced form “wedges”, 
which, much like the shocks in a reduced form VAR, may be a combination of 
many structural shocks.
• Indeed, the four wedges are allowed to follow an arbitrary VAR 1 in that paper.

• They estimate the model on output, consumption, investment and hours, 
and so they have four shocks and four observables.
• With as many shocks as observables, there are time series for the wedges which 

will exactly generate the data.
• They then perform experiments shutting off all but one wedge in order to see 

their relative importance, to guide future modelling.



Wedge accounting: Equivalencies

• One of the main results of the Chari, Kehoe, McGrattan paper is that almost all macro 
models are reducible to this RBC+4 wedge set-up, as long as the wedges are appropriately 
defined.
• For example, financial frictions might show up as an investment wedge, and sticky wages might 

show up as a labour one.

• The RBC model we presented initially had variable capacity utilisation (which their model 
doesn’t). As an illustration of the idea, we show that this is observationally equivalent to a 
model without it, but with redefined wedges (denoted by ∗).

• We need 𝐴𝑡
∗𝐾𝑡−1

∗ 𝛼 = 𝐴𝑡 𝜔𝑡𝐾𝑡−1
𝛼.

• Hence: 𝑟𝑡
∗ = 𝛼

𝑌𝑡

𝐾𝑡−1
∗ = 𝛼

𝑌𝑡

𝜔𝑡𝐾𝑡−1

𝜔𝑡𝐾𝑡−1

𝐾𝑡−1
∗ = 𝑟𝑡

𝜔𝑡𝐾𝑡−1

𝐾𝑡−1
∗ .

• Then we just define 𝜏𝐼,𝑡
∗ as the solution to the equation:

𝜏𝐼,𝑡
∗ − 𝜏𝐼,𝑡

= 𝛽𝔼𝑡 𝑟𝑡+1
𝜔𝑡+1𝐾𝑡
𝐾𝑡
∗ − 𝜔𝑡+1 + 1 + 𝜏𝐼,𝑡+1

∗ 1 − 𝛿 − 1 + 𝜏𝐼,𝑡+1 1 − 𝛿0 − 𝛿2𝜔𝑡+1
2

𝐶𝑡+1
𝐶𝑡

−𝜌



Maximum likelihood estimation of non-linear 
models when states are inferable without solving 
the model (1/2)

• The Chari, Kehoe, McGrattan paper estimates the wedges in a linearised version of the model, 
using the Kalman filtering techniques we’ll cover in the next topic.

• But is linearization really necessary here? Suppose we knew 𝐾0, and all of the model’s 
parameters. Could we then work out the time-paths of the wedges?

• If we could, then we can work out the likelihood, and so we could estimate 𝐾0 and the model’s parameters 
via ML (or penalized ML). Details on next slide…

• It is trivial to infer the government wedge, from 𝐺𝑡 = 𝑌𝑡 − 𝐶𝑡 − 𝐼𝑡.

• From the equations 1 − 𝛼
𝑌𝑡

𝐿𝑡
= 𝑊𝑡 and 1 − 𝜏𝐿,𝑡 𝑊𝑡𝐶𝑡

−𝜌
= 𝐿𝑡

𝜈, we can also infer the labour wedge very 

easily.

• Suppose either that we’ve removed variable capacity utilisation from the model, or that capacity 
utilisation is observable. Then, from the law of motion for capital we can infer capital in all periods without 
solving the model. Once we know capital, from the production function we can infer the productivity 
wedge.

• This just leaves the investment wedge. With observable capacity utilisation, this may be inferred from 

𝛼
𝑌𝑡

𝜔𝑡𝐾𝑡−1
= 𝑟𝑡 = 2𝛿2𝜔𝑡 1 + 𝜏𝐼,𝑡 .

• Will mean that investment may not be matched exactly, however, if the model is misspecified.

• Perhaps we ought to have included a capacity utilisation wedge manifesting as varying 𝛿2?



Maximum likelihood estimation of non-linear 
models when states are inferable without solving 
the model (2/2)

• Note the following minimal requirements for the above procedure:
1. There are at most as many shocks/wedges as there are observables.

2. When equations are combined so that the only variables are observables, states, or shocks/wedges, 
then there are at least as many purely backwards looking equations left as there are shocks/wedges.

• Once we have processes for the shocks/wedges, we can then estimate time-series for them using 
standard methods.
• E.g. we can use AICc for lag selection. No reason not to allow for MA components, and GARCH shocks, if 

that improves the AICc.

• If we are viewing the stochastic processes as wedges, then we will allow for interdependence between 
processes, so we will estimate a VAR type model.

• If we are viewing the stochastic processes as structural, then we will estimate independent AR type 
models.

• Maximising the log-likelihood of the VAR model, or the sum of the log-likelihoods of the AR models, would 
give a “non-linear least squares” estimate of the original model.

• However, this will be discontinuous in the parameters and states if we are using AICc for lag selection. In this case, we’d 
be better off using AICc directly as the objective.

• More properly, we should adjust the likelihood for the non-linear transformation of the model. See 
https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability and the course 
notes chapter.

https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability


Maximum likelihood estimation of non-linear 
models when states are mostly inferable without 
solving the model

• Suppose we did not have variable capacity utilisation in the model.

• Then we would be forced to infer the investment wedge from:

𝛽𝔼𝑡 𝑟𝑡+1 + 1 + 𝜏𝐼,𝑡+1 1 − 𝛿 𝐶𝑡+1
−𝜌

= 1 + 𝜏𝐼,𝑡 𝐶𝑡
−𝜌
.

• Since the LHS is a function of the entire distribution of 𝜏𝐼,𝑡+1, differing 
stochastic processes for 𝜏𝐼,𝑡 will lead to differing decision rules when we 
solve the model.

• This is further complicated as 𝔼𝑡 𝑟𝑡+1 + 1 + 𝜏𝐼,𝑡+1 1 − 𝛿 𝐶𝑡+1
−𝜌

may be 

increasing, decreasing, or non-monotonic in 𝜏𝐼,𝑡.

• In this case, we must solve the model for the current parameters, and then 
use simulation or quadrature techniques in order to evaluate the integral.
• This may be a bit slow as we will be solving a non-linear equation involving an 

integral.



The Generalized Method of Moments (GMM) 
Approach: Motivation

• The first order conditions to a DSGE model can always be written in 
the form:

𝔼𝑡𝐹 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝜃 = 0,
• where 𝑥𝑡 collects the shocks, state and control variables of the model 

(possibly augmented by lags), and 𝜃 collects the parameters of the model.

• Since this expectation is conditional on the time 𝑡 information set, for 
any variable 𝑧𝑡 known at 𝑡:

𝔼 𝐹 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝜃 𝑧𝑡
′ = 𝔼 𝔼𝑡 𝐹 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝜃 𝑧𝑡

′

= 𝔼 𝔼𝑡 𝐹 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝜃 𝑧𝑡
′

= 𝔼 0𝑧𝑡
′ = 0.

• Thus given 𝑧𝑡 (the “instruments”), the model implies a set of moment 
restrictions.

• The usual choice for 𝑧𝑡 = 1 𝑥𝑡 𝑥𝑡−1 ⋯ 𝑥𝑡−𝑙
′, for some 𝑙 > 0.



The GMM Approach: Idea behind the 
estimate

• Let us define 𝑔 𝑌𝑡 , 𝜃 = vec 𝐹 𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1, 𝜃 𝑧𝑡
′.

• Possible by stacking the leads and lags of 𝑥𝑡 along with 𝑧𝑡 in 𝑌𝑡.

• The basic idea of GMM is to replace the theoretical moment constraint:
𝔼 𝑔 𝑌𝑡 , 𝜃 = 0,

• with its sample equivalent:

ෝ𝑚 𝜃 ≔
1

𝑇


𝑡=1

𝑇

𝑔 𝑌𝑡 , 𝜃 = 0.

• We then use nonlinear minimization to choose 𝜃 to minimize the 
discrepancy between the LHS and RHS of this equation.
• Note that for the moment we are assuming all of the components of 𝑥𝑡 are 

observable.

• In practice, some moment restrictions will be more or less informative than 
others, so we use a weighting matrix 𝑊 and solve:

𝜃 = arg min
𝜃

ෝ𝑚 𝜃 ′𝑊ෝ𝑚 𝜃 .



The GMM Approach : Choice of 𝑊

• In the absence of serial correlation in 𝑔 𝑌𝑡 , 𝜃 , the optimal 𝑊 is (given certain assumptions) 
proportional to:

𝔼
1

𝑇


𝑡=1

𝑇

𝑔 𝑌𝑡 , 𝜃 𝑔 𝑌𝑡 , 𝜃
′

−1

.

• In practice, 𝑊 is usually estimated from the data.

• One obvious algorithm is to first fix 𝑊0 (e.g. take 𝑊0 = 𝐼), then produce GMM estimates of 𝜃, say 
𝜃1, using 𝑊 = 𝑊0. Then we may derive an asymptotically efficient 𝑊 using:

𝑊1 ≔
1

𝑇


𝑡=1

𝑇

𝑔 𝑌𝑡 , 𝜃1 𝑔 𝑌𝑡 , 𝜃1
′

−1

.

• We can then produce a new GMM estimate of 𝜃, say 𝜃2, using 𝑊 = 𝑊1. 

• Obviously this procedure may be repeated, and doing so tends to increase small-sample 

efficiency, however asymptotically even 𝜃2 is efficient.



The GMM Approach : Dealing with serial 
correlation

• In macro contexts, 𝑔 𝑌𝑡 , 𝜃 will often be serially correlated however.

• In this case, the optimal 𝑊 is given by the variance at frequency zero of 
𝑔 𝑌𝑡 , 𝜃 .

• As we mentioned last week, the variance at frequency zero is an ill-posed 
problem, since it requires an infinite amount of data. (See Potscher (2002).)

• However, it turns out that this ill-posedness miraculously does not impact 
our ability to get efficient GMM estimates. (See Perron and Ren (2010).)

• Most standard software for GMM will use a Newey-West type estimator.
• Details are in Canova’s textbook if you’re interested.



The GMM Approach : J-tests

• Since we may include arbitrarily many lags in 𝑧𝑡, it is easy to produce 
set-ups in which there are more moment constraints than 
parameters.

• Such a situation is said to be “over-identified”.

• The J-test uses this over-identification to test the model’s restrictions.

• It uses the fact that 𝑇 ෝ𝑚 𝜃
′ 𝑊 ෝ𝑚 𝜃 has a known distribution with 

finite variance under the null that the model is correct, but is 
otherwise unbounded.



The GMM Approach : Applications in macro

• Canova’s textbook gives an application to the estimation of an RBC model, 
which is worth reading.
• There are also extensive examples in my course notes.

• Another nice application is the estimation of the NKPC.
• This will also illustrate how shocks in equations may be dealt with.

• Suppose:
𝜋𝑡 = 𝛽𝔼𝑡𝜋𝑡+1 + 𝜅𝑦𝑡 + 𝜀𝑡 ,

• where 𝜋𝑡 is inflation, 𝑦𝑡 is some observable measure of real marginal costs, such 
as an output gap, and 𝜀𝑡 is an i.i.d. cost push shock.

• Then, taking expectations at 𝑡 − 1:
𝔼𝑡−1 𝛽𝜋𝑡+1 + 𝜅𝑦𝑡 − 𝜋𝑡 = 0,

• So if 𝑧𝑡−1 is known at 𝑡 − 1:
𝔼𝑧𝑡−1 𝛽𝜋𝑡+1 + 𝜅𝑦𝑡 − 𝜋𝑡 = 0.

• Careful construction of the instrument set can allow this to be generalized to 
the case when 𝜀𝑡 is serially correlated.



The Simulated Method of Moments (SMM)

• The Simulated Method of Moments is applicable even when GMM is not, due, for example, 
to unobserved variables.
• The idea is that rather than matching some theoretical moments, which we may evaluate 

analytically, we instead choose parameters so that the sample average of some moment over many 
simulations of our model is equal to the sample average of the same moment in the data.

• SMM can be thought of as calibration 2.0. Just as when calibrating we might aim to match 
cross correlations between a range of variables, we can match exactly the same cross 
correlations via SMM.
• Unlike calibration, SMM has rigorous econometric theory behind it, and it permits the derivation of 

standard errors, and the performance of J-tests.

• The estimators are very similar to the corresponding GMM ones.

• And SMM is even in Dynare nowadays!

• In the course notes I discuss more sophisticated alternatives to SMM which rely on analytic 
moment calculations, rather than simulation.


