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Outline of today’s talk

• SVARs.

• Identification methods.

• Continuous time stochastic processes.

• The frequency domain.

• Filters.



Reading on SVARs and identification

• Canova: “Methods for applied macroeconomic research”.
• Section 4.5 covers Identification and SVARs.
• Section 10.3 covers this in a Bayesian context.

• Wikipedia, as needed for basic results in linear algebra.
• Reading all of the pages in this category would be a good start: 

https://en.wikipedia.org/wiki/Category:Matrix_decompositions

• Christiano, Eichenbaum and Evans (2003):
• A classic paper which you ought to be familiar with.
• http://benoitmojon.com/pdf/Christiano%20%20Eichenbaum%20Evans%202

005%20JPE.pdf

https://en.wikipedia.org/wiki/Category:Matrix_decompositions
http://benoitmojon.com/pdf/Christiano%20%20Eichenbaum%20Evans%202005%20JPE.pdf


Readings on continuous time processes etc.

• Canova: “Methods for applied macroeconomic research”.
• Chapter 1.6 and 3 covers the frequency domain and filters.

• Cochrane (2012):
• Nice review of continuous time stochastic processes, with a macro slant.
• http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous_tim

e_linear_models.pdf

• Christiano-Fitzgerald (2003)
• Introduces a common filter.
• Working paper version here: 

http://www.clevelandfed.org/Research/workpaper/1999/Wp9906.pdf

• Wikipedia as needed…

http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous_time_linear_models.pdf
http://www.clevelandfed.org/Research/workpaper/1999/Wp9906.pdf


Structural VARs: Motivation (1/2)

• We would like to know what the effects of (say) an unexpected 
increase in monetary policy is.

• But a change in monetary policy will produce changes in other 
variables within the same time period.

• Conversely, exogenous shocks to other variables will produce 
automatic reactions from monetary policy.

• E.g. a Taylor Rule.

• Thus, if we see that interest rates were (say) tighter than was 
expected yesterday, we do not know if this was due to a change in 
policy or if it was an endogenous reaction to other changes in the 
economy.

• A standard VAR tells us nothing about the effects of changes in policy!



Structural VARs: Motivation (2/2)

• Furthermore, even after contemporaneous responses of one variable to 
another have been taken into account, there may still be correlations in the 
shocks.

• For example, an exogenous increase in rainfall may both decrease labour supply 
holding fixed the wage, and increase labour demand holding fixed the wage. Thus 
in a VAR in which rainfall is omitted, it would show up as both a labour supply and 
a labour demand shock.

• No way of knowing how much of this variance component due to rainfall should 
be assigned to supply, and how much should be assigned to demand.

• However, this really reflects a failure of the model (omitting an observable 
variable).

• Alternatively, some variables may respond directly to structural shocks to other 
variables.

• In macroeconomic terms this is rather implausible, as shocks are generally not 
observed directly, and if they are observed, they’re generally only observed by 
the agent that experiences the shock.

• Nonetheless, in a few rare cases this may be justified.



Structural VARs: Definition

• This suggests the following structural representation:
𝑥𝑥𝑡𝑡 = 𝑐𝑐 + 𝑎𝑎0𝑥𝑥𝑡𝑡 + 𝑎𝑎1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝑎𝑎𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑢𝑢𝑡𝑡 + 𝑏𝑏0𝑢𝑢𝑡𝑡

• where both 𝑎𝑎0 and 𝑏𝑏0have a zero diagonal and where 𝑢𝑢𝑡𝑡~WNIID 0,Σ𝑢𝑢 , with Σ𝑢𝑢
diagonal.

• Then:
𝐼𝐼 − 𝑎𝑎0 𝑥𝑥𝑡𝑡 = 𝑐𝑐 + 𝑎𝑎1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝑎𝑎𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝐼𝐼 + 𝑏𝑏0 𝑢𝑢𝑡𝑡

• Then if we define 𝐴𝐴 ≔ 𝐼𝐼 − 𝑎𝑎0 and 𝐵𝐵 ≔ 𝐼𝐼 + 𝑏𝑏0:
𝑥𝑥𝑡𝑡 = 𝐴𝐴−1𝑐𝑐 + 𝐴𝐴−1𝑎𝑎1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝐴𝐴−1𝑎𝑎𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝐴𝐴−1𝐵𝐵𝑢𝑢𝑡𝑡 .

• Compare this to our previous reduced form:
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑡𝑡~WNIID 0,Σ𝜀𝜀

• Matching terms gives:
𝐴𝐴𝜇𝜇 = 𝑐𝑐, 𝐴𝐴𝜙𝜙1 = 𝑎𝑎1, … , 𝐴𝐴𝜙𝜙𝑝𝑝 = 𝑎𝑎𝑝𝑝, 𝐴𝐴𝜀𝜀𝑡𝑡 = 𝐵𝐵𝑢𝑢𝑡𝑡 ,

𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐵𝐵Σ𝑢𝑢𝐵𝐵′



Structural VARs: Basic identification (1/2)

• Our hope is to be able to use some prior restrictions on 𝐴𝐴 and 𝐵𝐵 (or equivalently 
𝑎𝑎0 and 𝑏𝑏0), in order to solve for Σ𝑢𝑢 in the equation 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐵𝐵Σ𝑢𝑢𝐵𝐵′.

• We know 𝐴𝐴 and 𝐵𝐵 have a unit diagonal, and that Σ𝑢𝑢 is zero everywhere except 
the diagonal.

• If we knew 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ could we at least work out 𝐵𝐵 and Σ𝑢𝑢?
• No, not uniquely, without additional information.
• By the Cholesky decomposition, there exists a lower triangular matrix 𝐿𝐿 such that
𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐿𝐿𝐿𝐿′. So one candidate solution is 𝐵𝐵 ≔ 𝐿𝐿 diag diag 𝐿𝐿 −1, and Σ𝑢𝑢 ≔ diag diag 𝐿𝐿 2.

• But let 𝑈𝑈 be any real orthogonal matrix. Then 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐿𝐿𝑈𝑈 𝐿𝐿𝑈𝑈 ′ too. Thus 𝐵𝐵 ≔
𝐿𝐿𝑈𝑈 diag diag 𝐿𝐿𝑈𝑈 −1, and Σ𝑢𝑢 ≔ diag diag 𝐿𝐿𝑈𝑈 2 is another solution.

• The space of all 𝑛𝑛 × 𝑛𝑛 orthogonal matrices is 𝑛𝑛 𝑛𝑛−1
2

dimensional, so this is the number of 
restriction we need on 𝐵𝐵 if we already know 𝐴𝐴Σ𝜀𝜀𝐴𝐴′.

• This may be seen directly from noting that in the equation 𝑅𝑅𝑅𝑅′ = 𝑆𝑆, with 𝑆𝑆 symmetric, the 
equations above the diagonal are identical to those below.



Structural VARs: Basic identification (2/2)

• In practice 𝐵𝐵 is almost always assumed to be equal to the identity matrix, for the 
reasons I gave previously.

• If it’s not, it reflects either strange informational assumptions, or omitted variables.
• So with 𝐵𝐵 known, can we pin down 𝐴𝐴 without additional assumptions?

• No. Much as before, the equation 𝐴𝐴Σ𝜀𝜀𝐴𝐴′ = 𝐵𝐵Σ𝑢𝑢𝐵𝐵′ has 𝑛𝑛 𝑛𝑛−1
2

free parameters with 𝐵𝐵
known.

• So this is the number of assumptions we need to make on 𝐴𝐴.

• A common assumption is that 𝐴𝐴 is lower triangular, which gives the required 
𝑛𝑛 𝑛𝑛−1

2
restrictions.

• This means 𝑎𝑎0 is strictly lower triangular, implying a “causal ordering” on the variables.
• The variable ordered first is assumed to have no contemporaneous response to later 

variables.
• The one ordered second just responds to the first contemporaneously, but no others. Etc. 

etc. till…
• The one ordered last  responds contemporaneously to all variables.

• Exercise: how many restrictions on 𝐴𝐴 and 𝐵𝐵 do we need when neither are 
known?



Reporting SVAR results: Impulse responses 
(1/2)

• What do we do once we’ve decided upon an identification?
• Normally, we are primarily interested in the response of the economy 

to some shock.
• So, suppose there’s a shock of one standard deviation to variable 𝑖𝑖 in period 

0, and then from then on, no further shocks hit the economy.

• I.e., suppose that 𝑢𝑢0,𝑖𝑖 = 1 for some 𝑖𝑖 ∈ 1, … , 𝑛𝑛 , but that 𝑢𝑢𝑡𝑡,𝑗𝑗 = 0 for all 𝑡𝑡 ∈
ℕ and all 𝑗𝑗 ∈ 1, … ,𝑛𝑛 , unless 𝑡𝑡 = 0 and 𝑗𝑗 = 𝑖𝑖.

• Given these assumptions on the shocks, we can simulate the SVAR model 
and plot the responses of the variables of interest.

• The result of this is a so-called “impulse response”.
• Often these are plotted relative to the variable’s mean.



Reporting SVAR results: Impulse responses 
(2/2)

• In non-linear models, there are various possible definitions of an 
impulse response.

• One is 𝔼𝔼 𝑥𝑥𝑡𝑡 𝑢𝑢0,𝑖𝑖 = 1 .

• Another is 𝔼𝔼 𝑥𝑥𝑡𝑡 𝑢𝑢0,𝑖𝑖 = �𝑢𝑢0,𝑖𝑖 + 1 , where �𝑢𝑢0,𝑖𝑖 has the same distribution as that 
of 𝑢𝑢𝑡𝑡,𝑖𝑖.

• Some authors also condition on the initial state in these expectations. (Dynare does 
not.)

• Exercise: prove that these definitions for non-linear models both 
agree with the standard definition in a standard linear SVAR.



Other identification methods: AB restrictions

• Causal orderings are deeply implausible. Most variables have some 
contemporaneous effect on most other variables.

• Indeed, many variables have strong anticipatory effects on other variables.
• If a shock to another variable is expected in future (and the econometricians data-

set is insufficient to pick this up) then shocks (observed) tomorrow might have an 
effect on variables today.

• Other restrictions on the 𝐴𝐴 and 𝐵𝐵 matrices based on theory are often as bad, 
for basically the same reason.

• The Blanchard and Perotti (2002) approach uses micro data to estimate 
some parameters of the 𝐴𝐴 matrix in a fiscal policy context. 

• Their argument is based upon government taking more than quarter to respond, 
so is little better than the causal ordering approach.



Other identification methods: Sign 
restrictions

• The sign restriction approach (Uhlig 2005) effectively places a flat prior over the space of all 
orthogonal rotation matrices, then truncates this prior to zero in areas where the model 
generates “the wrong results” in some sense.

• “Wrong” is usually defined in terms of the sign of the impulse response to a certain shock at a 
certain point in time.

• May end up assuming what it wants to prove. For example, causal ordering identification of monetary 
policy shocks often produces “price puzzles”, with increasing interest rates increasing inflation.

• Assuming away price puzzles begs the question of whether these are real features or not.
• It’s certainly easy to generate price puzzles in theoretical models, so the theoretical grounds for excluding 

them are very weak.

• If interpreted classically, sign restrictions only produce set identification, not point identification. 
(see Moon, Schorfheide and Granziera 2013).

• Following identification via sign restrictions, there is no such thing as “the” estimated impulse response.
• Rather, the estimator provides a band of impulse responses, even with infinite data.
• Finite sample parameter uncertainty produces even larger bands.



Other identification methods: Narrative 
evidence

• Pioneered by Romer and Romer (1989), who use the text of FOMC 
meetings to identify times when policy makers intended to use 
contractionary policy to bring down inflation.

• Later work has tightened the definition of a monetary shock.

• In fiscal contexts, Ramey and Shapiro (1998) performed a similar 
analysis using military build-ups.

• One difficulty with this approach is that hand selected shocks will 
always “smell funny”.

• Some recent researchers have ameliorated this via using automated textual 
analysis.

• Another problem is that it’s not always clear that the narrative 
analysis procedure really succeeds in purging all endogeneity.



Other identification methods: Long-run 
restrictions

• While there’s a lot of debate about how the economy evolves in the short-
run, there’s a lot more consensus about the long-run effects of various 
shocks.

• E.g. only a technology shock increases GDP per capita in the long-run. Monetary 
shocks are neutral for all variables in the long-run. Etc.

• Blanchard and Quah (1989) exploit this for identification.
• It is a bit like a sign restriction at 𝑡𝑡 = ∞, but since they are imposing exact 

coefficients for the long-run response they get point, not set, identification.
• Furthermore, no simulation is necessary, since in a reduced form VAR with 𝜇𝜇 = 0, 

the long-run response to a one off shock is as follows:

𝑥𝑥𝑡𝑡 = lim
𝑡𝑡→∞

𝐼𝐼𝑛𝑛×𝑛𝑛 0𝑛𝑛× 𝑝𝑝−1 𝑛𝑛
𝜙𝜙1 ⋯ 𝜙𝜙𝑝𝑝−1 𝜙𝜙𝑝𝑝
𝐼𝐼 𝑝𝑝−1 𝑛𝑛× 𝑝𝑝−1 𝑛𝑛 0 𝑝𝑝−1 𝑛𝑛×𝑛𝑛

𝑡𝑡
𝜀𝜀0
0
⋮
0

• By diagonalising the large matrix we may find the directions in which the model’s 
response is permanent. (Exercise.)



SVARs and identification in practice

• There is a huge literature looking at the responses of monetary and fiscal 
shocks.

• Results vary wildly depending on which identification method is used, 
though there is more consensus about monetary shocks than fiscal ones.

• For example, in a cross country study Iletzki, Mendoza and Vegh (2013) find 
basically zero fiscal multipliers in developed, open economies, and Ramey’s 
narrative based work finds at most moderate multipliers, around one.

• On the other hand Perotti continues to find large multipliers.

• The correct response is broad distrust of most VAR identification methods.
• In any case, it is unclear why we should care about fiscal multipliers.

• The fact that government expenditure increases GDP more than one for one tells 
us nothing about whether this is good for welfare.

• In fact, in most modern macro models that generate large multipliers, 
expansionary fiscal policy is unambiguously bad for welfare.



Continuous time stochastic processes

• The stochastic processes we looked at in the first lecture were 
random variables taking their value from the vector space of 
sequences (i.e. functions ℤ → ℝ).

• In some circumstances, it is easier to work in continuous time, i.e. 
with random variables taking their value from the vector space of 
functions ℝ → ℝ.

• This is the standard in finance.
• It’s also increasingly more common in macro, and we’ll look at some 

continuous time DSGE models later in the course.



The Wiener process

• The Wiener process (aka “standard Brownian motion”) is the building 
blocks of most continuous time stochastic processes.

• You might find it helpful to think of the Wiener process as the 
continuous time analogue of a random walk.

• The process, 𝑊𝑊𝑡𝑡 is characterised by the following properties:
1. 𝑊𝑊0 = 0.
2. 𝑊𝑊𝑡𝑡 is almost surely everywhere continuous.
3. If 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛+1, 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 ∈ ℝ+ satisfy 0 < 𝑠𝑠𝑖𝑖 < 𝑡𝑡𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1 for all 𝑖𝑖 ∈

1, … ,𝑛𝑛 , then 𝑊𝑊𝑡𝑡𝑖𝑖 −𝑊𝑊𝑠𝑠𝑖𝑖 is independent of 𝑊𝑊𝑡𝑡𝑗𝑗 −𝑊𝑊𝑠𝑠𝑗𝑗 for all 𝑖𝑖 ≠ 𝑗𝑗.
4. If 0 ≤ 𝑠𝑠 < 𝑡𝑡, then 𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠~N 0, 𝑡𝑡 − 𝑠𝑠 .

• The process 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑊𝑊𝑡𝑡 is called a Wiener process with drift 𝜇𝜇 and 
infinitesimal variance 𝜎𝜎2.

• Exercise: what is the unconditional distribution of this process at 𝑡𝑡?



The Itō integral

• We would often like to work with processes with time varying drift and time varying 
infinitesimal variance.

• Scaling the Wiener process by a time varying amount will not work, as this will change both 
the level of the process and its future infinitesimal variance.

• In some loose sense then, we need to “differentiate” the process, scale it, and then 
integrate back.

• However, the Wiener process is not differentiable.

• Itō defined a new integral (with different integration laws) in order to tackle this.
• It allows us to integrate a function times a kind of “derivative” of the Wiener process.

• In particular, if:
• for all 𝑛𝑛 ∈ ℕ, 𝜋𝜋𝑛𝑛 is an increasing sequence of length 𝑛𝑛 + 1, with 𝜋𝜋𝑛𝑛,0 = 0 and 𝜋𝜋𝑛𝑛,𝑛𝑛 = 𝑡𝑡, 
• lim

𝑛𝑛→∞
max

𝑖𝑖∈ 1,…,𝑛𝑛
𝜋𝜋𝑛𝑛,𝑖𝑖 − 𝜋𝜋𝑛𝑛,𝑖𝑖−1 = 0,

• 𝑊𝑊𝑡𝑡 is a Wiener process, and 𝑋𝑋𝑡𝑡 is another continuous time stochastic process that is left-continuous 
and locally bounded,

• then we define:

�
0

𝑡𝑡
𝑋𝑋𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 ≔ plim

𝑛𝑛→∞
�

𝑖𝑖∈ 1,…,𝑛𝑛

𝑋𝑋𝜋𝜋𝑛𝑛,𝑖𝑖−1 𝑊𝑊𝜋𝜋𝑛𝑛,𝑖𝑖 − 𝑊𝑊𝜋𝜋𝑛𝑛,𝑖𝑖−1 .



Drift diffusion processes

• Processes used in finance (and continuous time macro) often take 
the form:

𝑋𝑋𝑡𝑡 = 𝑋𝑋0 + �
0

𝑡𝑡
𝜇𝜇 𝑋𝑋𝑢𝑢,𝑢𝑢 𝑑𝑑𝑢𝑢 + �

0

𝑡𝑡
𝜎𝜎 𝑋𝑋𝑢𝑢,𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 .

• The first integral here is a standard integral, the second is an Itō one!
• The function 𝜇𝜇 𝑋𝑋𝑡𝑡 , 𝑡𝑡 controls the drift of the process at 𝑡𝑡.
• The function 𝜎𝜎 𝑋𝑋𝑡𝑡 , 𝑡𝑡 controls the infinitesimal variance at 𝑡𝑡.

• In practice, this expression is usually written in the more compact 
“stochastic differential equation” form:

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇 𝑋𝑋𝑡𝑡, 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑋𝑋𝑡𝑡, 𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡.
• However, it is important to remember that the latter expression is 

just a shorthand for the former.



Itō’s lemma

• Itō’s lemma is an equivalent of the chain rule for continuous time stochastic 
processes.

• Suppose:
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 .

• Then for any twice differentiable function 𝑓𝑓:ℝ2 → ℝ, Itō’s lemma states:

𝑑𝑑𝑓𝑓 𝑡𝑡,𝑋𝑋𝑡𝑡 = 𝑓𝑓1 + 𝜇𝜇𝑡𝑡𝑓𝑓2 +
1
2
𝜎𝜎𝑡𝑡2𝑓𝑓22 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑓𝑓2 𝑑𝑑𝑊𝑊𝑡𝑡

• For example, let 𝑌𝑌𝑡𝑡 = exp𝑋𝑋𝑡𝑡, then:

𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑑𝑑 exp𝑋𝑋𝑡𝑡 = 𝜇𝜇2𝑌𝑌𝑡𝑡 +
1
2
𝜎𝜎𝑡𝑡2𝑌𝑌𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑌𝑌𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 .

Exercise: Apply Itō’s lemma to 𝑍𝑍𝑡𝑡 ≔ 𝑎𝑎 𝑡𝑡 + 𝑏𝑏 𝑡𝑡 𝑋𝑋𝑡𝑡.



Ornstein-Uhlenbeck processes

• Ornstein-Uhlenbeck processes are the continuous time equivalent of AR 1 processes.
• Recall for later that the AR 1 process 𝑥𝑥𝑡𝑡 = 1 − 𝜌𝜌 𝜇𝜇 + 𝜌𝜌𝑥𝑥𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡 has an MA ∞ representation
𝑥𝑥𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎∑𝑠𝑠=0∞ 𝜌𝜌𝑠𝑠𝜀𝜀𝑡𝑡−𝑠𝑠.

• Ornstein-Uhlenbeck processes are solutions to the s.d.e.:
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜃𝜃 𝜇𝜇 − 𝑋𝑋𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡 .

• To find their properties, first define 𝑌𝑌𝑡𝑡 = 𝑒𝑒𝜃𝜃𝑡𝑡𝑋𝑋𝑡𝑡, then, by Itō’s lemma:
𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑑𝑑 𝑒𝑒𝜃𝜃𝑡𝑡𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑌𝑌𝑡𝑡 + 𝜃𝜃 𝜇𝜇 − 𝑋𝑋𝑡𝑡 𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡

= 𝜃𝜃𝜇𝜇𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒𝜃𝜃𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡 .
• I.e.:

𝑌𝑌𝑡𝑡 = 𝑌𝑌0 + �
0

𝑡𝑡
𝜃𝜃𝜇𝜇𝑒𝑒𝜃𝜃𝑢𝑢 𝑑𝑑𝑢𝑢 + �

0

𝑡𝑡
𝜎𝜎𝑒𝑒𝜃𝜃𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 = 𝑋𝑋0 − 𝜇𝜇 + 𝜇𝜇𝑒𝑒𝜃𝜃𝑡𝑡 + 𝜎𝜎�

0

𝑡𝑡
𝑒𝑒𝜃𝜃𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢 .

• Thus:

𝑋𝑋𝑡𝑡 = 𝑋𝑋0 − 𝜇𝜇 𝑒𝑒−𝜃𝜃𝑡𝑡 + 𝜇𝜇 + 𝜎𝜎�
0

𝑡𝑡
𝑒𝑒𝜃𝜃 𝑢𝑢−𝑡𝑡 𝑑𝑑𝑊𝑊𝑢𝑢 = 𝑋𝑋0 − 𝜇𝜇 𝑒𝑒−𝜃𝜃𝑡𝑡 + 𝜇𝜇 + 𝜎𝜎�

𝑠𝑠=0

𝑡𝑡
𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 .

• Define 𝑍𝑍𝑡𝑡 = 𝑋𝑋𝑡𝑡+𝜏𝜏 (i.e. 𝑍𝑍𝑡𝑡 is an Ornstein-Uhlenbeck process started at time −𝜏𝜏). Then, in the limit 
as 𝜏𝜏 → ∞:

𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎�
𝑠𝑠=0

∞
𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 .



The frequency domain

• We are interested in business “cycles”.
• This suggests that we ought to be concerned with the characteristics 

of the data in the frequency domain.
• I.e. we want to know at what frequencies (equivalently: period 

lengths) is the variance of the data?
• Low frequency variation (normally defined as cycles of over 50 years) 

captures very persistent components of the data, such as structural 
change.

• Medium frequency variation (normally defined as cycles of 8-50 
years) captures growth dynamics.

• High frequency variation (normally defined as cycles of below 2 
years) is driven by seasonal patterns, and noise.

• Business cycles are what’s left (so normally cycles of 2-8 years).



Frequency and phase

Phase
shift

Amplitude

Period length (inversely related to frequency)
Source: https://en.wikipedia.org/wiki/File:Phase_shift.svg

https://en.wikipedia.org/wiki/File:Phase_shift.svg


The Fourier transform on an interval: 
Introduction
• Suppose you have a vector 𝑢𝑢 ∈ ℝ𝑛𝑛, and you wish to know the length of that vector in a particular 

direction 𝑣𝑣 ∈ ℝ𝑛𝑛 (with 𝑣𝑣 = 1), what do you do?
• You take the inner (“dot”) product of 𝑢𝑢 and 𝑣𝑣, i.e. 𝑢𝑢, 𝑣𝑣 = 𝑣𝑣′𝑢𝑢 = ∑𝑖𝑖=1𝑛𝑛 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖.

• Recall also that any element of ℝ𝑛𝑛 may be expressed as a linear combination of 𝑛𝑛 basis vectors.
• How do we find the coefficients? We just take the inner product with each basis vector in turn.

• These ideas extend to other vector spaces.
• Consider the space of all (possibly complex) square integrable functions on the interval 0,1 .

• The natural inner product here is 𝑓𝑓,𝑔𝑔 = ∫0
1 𝑓𝑓 𝑥𝑥 𝑔𝑔 𝑥𝑥 𝑑𝑑𝑥𝑥, where denotes the complex 

conjugate.
• The remarkable thing is that this space also has a countably infinite basis, despite the interval 

0,1 being uncountable.
• This basis is made up of the functions 𝑥𝑥 ↦ 𝑒𝑒2𝜋𝜋𝑖𝑖𝑛𝑛𝜋𝜋 for all 𝑛𝑛 ∈ ℤ, where 𝑖𝑖 = −1.

• Recall that 𝑒𝑒−𝑖𝑖𝑖𝑖 = cos𝜙𝜙 + 𝑖𝑖 sin𝜙𝜙 where 𝑖𝑖 = −1, so this basis is expressing the function as sums of sines
and cosines at different integer frequencies.

• The Fourier transform recovers the coefficients on these basis functions.
• As you would expect, it takes the form of an inner product of the function of interest with the basis 

functions.



The Fourier transform on an interval: Details

• Define 𝑒𝑒𝑛𝑛: 0, 1 → ℂ by 𝑒𝑒𝑛𝑛 𝑥𝑥 = 𝑒𝑒2𝜋𝜋𝑖𝑖𝑛𝑛𝜋𝜋 for all 𝑥𝑥 ∈ 0,1 .
• Carleson's theorem states that for any square integrable function 𝑓𝑓: 0,1 → ℂ, and almost all 𝑥𝑥 ∈

0,1 :

𝑓𝑓 𝑥𝑥 = �
𝑛𝑛=−∞

∞

𝑓𝑓, 𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛 𝑥𝑥 .

• I.e. if we define:

𝑎𝑎𝑛𝑛 ≔ 𝑓𝑓, 𝑒𝑒𝑛𝑛 = �
0

1
𝑓𝑓 𝑥𝑥 𝑒𝑒𝑛𝑛 𝑥𝑥 𝑑𝑑𝑥𝑥 = �

0

1
𝑓𝑓 𝑥𝑥 𝑒𝑒−2𝜋𝜋𝑖𝑖𝑛𝑛𝜋𝜋 𝑑𝑑𝑥𝑥 ,

• Then for almost all 𝑥𝑥 ∈ 0,1 :

𝑓𝑓 𝑥𝑥 = �
𝑛𝑛=−∞

∞

𝑎𝑎𝑛𝑛𝑒𝑒2𝜋𝜋𝑖𝑖𝑛𝑛𝜋𝜋

• The Fourier transform ℱ: 0,1 → ℂ → ℤ → ℂ is then given by ℱ𝑓𝑓 = 𝑎𝑎 = 𝑎𝑎𝑛𝑛 𝑛𝑛∈ℤ, where 𝑎𝑎𝑛𝑛is given as above.

• The Fourier transform is invertible, with ℱ−1𝑎𝑎 = ∑𝑛𝑛=−∞∞ 𝑎𝑎𝑒𝑒𝑛𝑛.



The Fourier transform on an interval: 
Example

Source: https://en.wikipedia.org/wiki/File:Sawtooth_Fourier_Analysys.svg



The Fourier transform in discrete time

• To complete our suite of definitions, we need to define the Fourier transform for 
discrete time processes.

• Recall that the Fourier transform of a function on the unit interval was a 
sequence. It shouldn’t be surprising then that the Fourier transform of a 
sequence is a function on the unit interval.

• In this case, we define ℱ: ℤ → ℂ → 0,1 → ℂ by:

ℱ 𝑎𝑎 𝜉𝜉 = �
𝑛𝑛=−∞

∞

𝑎𝑎𝑛𝑛𝑒𝑒−2𝜋𝜋𝑖𝑖𝑛𝑛𝜉𝜉 .

• The only difference to the inverse transform given previously is the negative sign, really just a 
matter of convention!

• Exercise, prove that if ℱ 𝑎𝑎 is viewed as a function on the whole real line, then ℱ 𝑎𝑎 𝜉𝜉 =
ℱ 𝑎𝑎 𝜉𝜉 + 1 .

• As before, ℱ is invertible, in the sense that ℱ−1 ℱ 𝑓𝑓
𝑛𝑛

= 𝑎𝑎𝑛𝑛 for all 𝑛𝑛, where:

ℱ−1 𝑔𝑔 𝑥𝑥 = �
0

1
𝑔𝑔 𝜉𝜉 𝑒𝑒2𝜋𝜋𝑖𝑖𝜋𝜋𝜉𝜉 𝑑𝑑𝜉𝜉 .



The Fourier transform on the real line

• The Fourier transform may also be defined for functions on the real 
line.

• In this case, we define ℱ: ℝ → ℂ → ℝ → ℂ by:

ℱ 𝑓𝑓 𝜉𝜉 = �
−∞

∞
𝑓𝑓 𝑥𝑥 𝑒𝑒−2𝜋𝜋𝑖𝑖𝜉𝜉𝜋𝜋 𝑑𝑑𝑥𝑥 .

• If 𝑓𝑓 and ℱ 𝑓𝑓 are absolutely integrable, then ℱ is invertible, in the 
sense that ℱ−1 ℱ 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 for almost all 𝑥𝑥, where:

ℱ−1 𝑔𝑔 𝑥𝑥 = �
−∞

∞
𝑔𝑔 𝜉𝜉 𝑒𝑒2𝜋𝜋𝑖𝑖𝜋𝜋𝜉𝜉 𝑑𝑑𝜉𝜉 .

• When we are working with continuous time stochastic processes, this 
is the Fourier transform we use.

• Often the Fourier transforms of processes are much simpler than the original 
one, so it can be much easier to prove results if the Fourier transform of both 
sides is taken first.



The spectral density

• Provides an answer to the question: “at what frequencies is the 
variance of the data?”

• Two equivalent definitions, for a weakly stationary process 𝑋𝑋𝑡𝑡 (either 
in continuous or discrete time!):

1. 𝑆𝑆𝑋𝑋𝑋𝑋 𝜔𝜔 = 𝔼𝔼 ℱ 𝑋𝑋 − 𝔼𝔼𝑋𝑋 𝜔𝜔
2𝜋𝜋

2
. (The expectation of the squared modulus 

of the Fourier transform of the demeaned process.)
2. 𝑆𝑆𝑋𝑋𝑋𝑋 𝜔𝜔 = ℱ 𝛾𝛾𝑋𝑋

𝜔𝜔
2𝜋𝜋

, where 𝛾𝛾𝑋𝑋 is the ACF of 𝑋𝑋𝑡𝑡. (The Fourier transform 
of the ACF.)

• Since it is based on the squared Fourier transform of the process, all 
information about the phase of the signal is lost in the spectral 
density.



The spectral density of an Ornstein-
Uhlenbeck process: Direct approach

• Take the Ornstein-Uhlenbeck process: 𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎 ∫0
∞ 𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 .

• Let 𝛾𝛾 be its ACF. I.e., assuming 𝜏𝜏 > 0:
𝛾𝛾𝑍𝑍 𝜏𝜏 = 𝔼𝔼 𝑍𝑍𝑡𝑡 − 𝔼𝔼𝑍𝑍𝑡𝑡 𝑍𝑍𝑡𝑡−𝜏𝜏 − 𝔼𝔼𝑍𝑍𝑡𝑡−𝜏𝜏

= 𝜎𝜎2𝔼𝔼 �
𝑠𝑠=0

∞
𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠 �

𝑠𝑠=0

∞
𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝜏𝜏−𝑠𝑠

= 𝜎𝜎2𝔼𝔼 �
𝑠𝑠=0

∞
�
𝑢𝑢=0

∞
𝑒𝑒−𝜃𝜃 𝑠𝑠+𝑢𝑢 𝑑𝑑𝑊𝑊𝑡𝑡−𝜏𝜏−𝑢𝑢 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠

= 𝜎𝜎2 �
𝑢𝑢=0

∞
𝑒𝑒−𝜃𝜃 2𝑢𝑢+𝜏𝜏 𝑑𝑑𝑢𝑢 =

𝜎𝜎2𝑒𝑒−𝜃𝜃𝜏𝜏

2𝜃𝜃
.

• Then:

𝑆𝑆𝑍𝑍𝑍𝑍 𝜔𝜔 = ℱ 𝛾𝛾𝑍𝑍
𝜔𝜔
2𝜋𝜋

= �
−∞

0 𝜎𝜎2𝑒𝑒𝜃𝜃𝜏𝜏

2𝜃𝜃
𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏 𝑑𝑑𝜏𝜏 + �

0

∞𝜎𝜎2𝑒𝑒−𝜃𝜃𝜏𝜏

2𝜃𝜃
𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏 𝑑𝑑𝜏𝜏

=
𝜎𝜎2

2𝜃𝜃
1

𝜃𝜃 − 𝑖𝑖𝜔𝜔
+

1
𝜃𝜃 + 𝑖𝑖𝜔𝜔

=
𝜎𝜎2

2𝜃𝜃
𝜃𝜃 + 𝑖𝑖𝜔𝜔 + 𝜃𝜃 − 𝑖𝑖𝜔𝜔
𝜃𝜃 − 𝑖𝑖𝜔𝜔 𝜃𝜃 + 𝑖𝑖𝜔𝜔

=
𝜎𝜎2

𝜃𝜃2 + 𝜔𝜔2



The convolution theorem

• This theorem captures one of the nicest properties of the Fourier transform.
• The convolution of two functions 𝑓𝑓 and 𝑔𝑔 is denoted 𝑓𝑓 ∗ 𝑔𝑔 and is defined by:

𝑓𝑓 ∗ 𝑔𝑔 𝑥𝑥 = �
−∞

∞
𝑓𝑓 𝑦𝑦 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑑𝑑𝑦𝑦

• The convolution theorem states that for almost all 𝜉𝜉:
ℱ 𝑓𝑓 ∗ 𝑔𝑔 𝜉𝜉 = ℱ 𝑓𝑓 𝜉𝜉 ℱ 𝑔𝑔 𝜉𝜉 .

• Simple proof: http://mathworld.wolfram.com/ConvolutionTheorem.html
• The convolution theorem also holds in discrete time (with convolution 

defined by a sum rather than an integral).

Source: https://en.wikipedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

http://mathworld.wolfram.com/ConvolutionTheorem.html
https://en.wikipedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif


The spectral density of an Ornstein-
Uhlenbeck process: Lazy approach

• We may define an operator 𝐷𝐷 which takes the time derivative of a differentiable process, so 
𝐷𝐷𝑓𝑓 𝑡𝑡 = 𝑑𝑑𝑓𝑓 𝑡𝑡

𝑑𝑑𝑡𝑡
.

• If we are careful, we may extend this operator to continuous time stochastic processes, even 
though they may not be differentiable.

• 𝑔𝑔 𝑡𝑡,𝑋𝑋𝑡𝑡 𝐷𝐷𝑋𝑋𝑡𝑡 on its own will not make sense, but we can define ∫𝑎𝑎
𝑏𝑏 𝑔𝑔 𝑡𝑡,𝑋𝑋𝑡𝑡 𝐷𝐷𝑋𝑋𝑡𝑡 𝑑𝑑𝑡𝑡 = ∫𝑎𝑎

𝑏𝑏 𝑔𝑔 𝑡𝑡,𝑋𝑋𝑡𝑡 𝑑𝑑𝑋𝑋𝑡𝑡.

• Given this definition, if 𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎 ∫𝑠𝑠=0
∞ 𝑒𝑒−𝜃𝜃𝑠𝑠 𝑑𝑑𝑊𝑊𝑡𝑡−𝑠𝑠, and ℎ 𝑠𝑠 = 𝟙𝟙 𝑠𝑠 > 0 𝑒𝑒−𝜃𝜃𝑠𝑠 then

𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎 ℎ ∗ 𝐷𝐷𝑊𝑊 𝑡𝑡 .
• Hence, by the convolution theorem:

𝔼𝔼 ℱ 𝑍𝑍⋅ − 𝔼𝔼𝑍𝑍�
𝜔𝜔
2𝜋𝜋

2
= 𝜎𝜎2 ℱ ℎ

𝜔𝜔
2𝜋𝜋

2
𝔼𝔼 ℱ 𝐷𝐷𝑊𝑊

𝜔𝜔
2𝜋𝜋

2
.

• One characterisation of “white noise” is that it has constant spectral density. I.e. it may be shown 

that 𝔼𝔼 ℱ 𝐷𝐷𝑊𝑊 𝜔𝜔
2𝜋𝜋

2
= 1.

• So:

𝑆𝑆𝑍𝑍𝑍𝑍 𝜔𝜔 = 𝔼𝔼 ℱ 𝑍𝑍⋅ − 𝔼𝔼𝑍𝑍�
𝜔𝜔
2𝜋𝜋

2
= 𝜎𝜎2 �

−∞

∞
𝟙𝟙 𝑠𝑠 > 0 𝑒𝑒−𝜃𝜃𝑠𝑠𝑒𝑒−𝑖𝑖𝜔𝜔𝑠𝑠 𝑑𝑑𝑠𝑠

2

= 𝜎𝜎2
1

𝜃𝜃 + 𝑖𝑖𝜔𝜔

2
=

𝜎𝜎2

𝜃𝜃2 + 𝜔𝜔2 .



The spectral density of an Ornstein-
Uhlenbeck process: Interpretation

• The convolution theorem allowed us to write the spectral density as 
the product of the spectral density of white noise, and the squared 
Fourier transform of some deterministic function.

• In effect then, we are filtering out the frequencies we don’t like from 
the original white noise.

• When we look at frequency domain filters later, this is exactly how 
they will be defined. To filter the data, we will transform it into the 
frequency domain, and then multiply it pointwise by some function.

• As a result of their filtering behaviour, processes with an MA ∞
representation are often termed linear filters.



The spectral density of an arbitrary linear 
filter in discrete time

• Suppose 𝑥𝑥𝑡𝑡 is a weakly stationary process, 𝑐𝑐 is the polynomial
𝑐𝑐 𝜆𝜆 = ∑𝑠𝑠=0∞ 𝑐𝑐𝑠𝑠𝜆𝜆𝑠𝑠 , where ∑𝑠𝑠=0∞ 𝑐𝑐𝑠𝑠2 < ∞ and 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝑐𝑐 𝐿𝐿 𝑥𝑥𝑡𝑡.

• Then, if we define ℎ 𝑠𝑠 = 𝟙𝟙 𝑠𝑠 ≥ 0 𝑐𝑐𝑠𝑠:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝔼𝔼 ℱ 𝑡𝑡 ↦�
𝑠𝑠=0

∞

𝑐𝑐𝑠𝑠𝑥𝑥𝑡𝑡−𝑠𝑠
𝜔𝜔
2𝜋𝜋

2

= 𝔼𝔼 ℱ ℎ ∗ 𝑥𝑥�
𝜔𝜔
2𝜋𝜋

2

= ℱ ℎ
𝜔𝜔
2𝜋𝜋

2
𝔼𝔼 ℱ 𝑥𝑥�

𝜔𝜔
2𝜋𝜋

2

= �
𝑠𝑠=0

∞

𝑐𝑐𝑠𝑠𝑒𝑒−𝑖𝑖𝑠𝑠𝜔𝜔
2

𝑆𝑆𝜋𝜋𝜋𝜋 𝜔𝜔

= 𝑐𝑐 𝑒𝑒−𝑖𝑖𝜔𝜔
2
𝑆𝑆𝜋𝜋𝜋𝜋 𝜔𝜔 = 𝑐𝑐 𝑒𝑒−𝑖𝑖𝜔𝜔 𝑐𝑐 𝑒𝑒𝑖𝑖𝜔𝜔 𝑆𝑆𝜋𝜋𝜋𝜋 𝜔𝜔



The spectral density of an ARMA 𝑝𝑝, 𝑞𝑞
process.

• Suppose Φ𝑝𝑝 𝐿𝐿 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + Θ𝑞𝑞 𝐿𝐿 𝜎𝜎𝜀𝜀𝑡𝑡, where Φ𝑝𝑝 and Θ𝑞𝑞 are polynomials of degree 
𝑝𝑝 and 𝑞𝑞 respectively, and 𝜀𝜀𝑡𝑡~NIID 0,1 .

• Then: 𝑦𝑦𝑡𝑡 = 𝜇𝜇
Φ𝑝𝑝 𝐿𝐿

+ Θ𝑞𝑞 𝐿𝐿
Φ𝑝𝑝 𝐿𝐿

𝜎𝜎𝜀𝜀𝑡𝑡.

• Applying the previous result we have:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝜎𝜎2
Θ𝑞𝑞 𝑒𝑒−𝑖𝑖𝜔𝜔 Θ𝑞𝑞 𝑒𝑒𝑖𝑖𝜔𝜔

Φ𝑝𝑝 𝑒𝑒−𝑖𝑖𝜔𝜔 Φ𝑝𝑝 𝑒𝑒𝑖𝑖𝜔𝜔
𝑆𝑆𝜀𝜀𝜀𝜀 𝜔𝜔 .

• Just as in the continuous time case, 𝑆𝑆𝜀𝜀𝜀𝜀 𝜔𝜔 = 1.
• Exercise: prove this.

• Hence:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝜎𝜎2
Θ𝑞𝑞 𝑒𝑒−𝑖𝑖𝜔𝜔 Θ𝑞𝑞 𝑒𝑒𝑖𝑖𝜔𝜔

Φ𝑝𝑝 𝑒𝑒−𝑖𝑖𝜔𝜔 Φ𝑝𝑝 𝑒𝑒𝑖𝑖𝜔𝜔
.

• For example, if 𝑝𝑝 = 𝑞𝑞 = 1, and Φ1 𝜆𝜆 = 1 − 𝜙𝜙𝜆𝜆 and Θ1 𝜆𝜆 = 1 + 𝜃𝜃𝜆𝜆:

𝑆𝑆𝑦𝑦𝑦𝑦 𝜔𝜔 = 𝜎𝜎2
1 + 𝜃𝜃𝑒𝑒−𝑖𝑖𝜔𝜔 1 + 𝜃𝜃𝑒𝑒𝑖𝑖𝜔𝜔

1 − 𝜙𝜙𝑒𝑒−𝑖𝑖𝜔𝜔 1 − 𝜙𝜙𝑒𝑒𝑖𝑖𝜔𝜔
= 𝜎𝜎2

1 + 2𝜃𝜃 cos𝜔𝜔 + 𝜃𝜃2

1 − 2𝜙𝜙 cos𝜔𝜔 + 𝜙𝜙2 .



Estimating spectral densities

• One (parametric) method is to fit an ARMA 𝑝𝑝, 𝑞𝑞 then use the 
previous formula to get an estimate of the spectrum.

• Most non-parametric estimates are based around the sample auto-
covariance function.

• The “periodogram” is the Fourier transform of the sample auto-covariance 
function. This is asymptotically unbiased, but unfortunately it is inconsistent, 
intuitively because you would need an infinite amount of data to get the 
variance at frequency 0.

• As is standard in non-parametric econometrics, to derive a consistent 
estimator you must smooth the data via some kernel. In spectral density 
estimation, this smoothing may be applied either to the ACF, or to its Fourier 
transform.

• Quite difficult in practice, and getting reasonable standard errors is even 
harder. (I spent a long time last year trying to get a reasonable spectral 
density estimate for US real GDP per capita.)



Spectral density of US GDP

The horizontal axis gives the period length in years here, not the frequency.
(This is non-standard, but makes things clearer.)



Business cycle filters

• As may be seen by the previous plot, macro time series have a lot of 
variance at frequencies well below business cycle frequencies.

• Thus, if we are going to assess the performance of a model designed 
to match just the business cycle, we might like to filter out other 
frequencies prior to comparing the model to the data.

• In the early literature, this was done using the Hodrick-Prescott 
(1997) filter, which is in the time domain.

• The modern literature uses the Christiano-Fitzgerald (2003) filter, or 
some other frequency domain one instead.



The Hodrick-Prescott (HP) filter

• Suppose 𝑥𝑥𝑡𝑡 is some time series of length 𝑇𝑇.
• The HP filtered version of 𝑥𝑥𝑡𝑡 is the sequence 𝑥𝑥𝑡𝑡 − 𝜏𝜏𝑡𝑡, where 𝜏𝜏𝑡𝑡 is the 

“HP-trend”, which is the solution to the following problem:

min
𝜏𝜏1,…,𝜏𝜏𝑇𝑇

�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡 − 𝜏𝜏𝑡𝑡 2 + 𝜆𝜆�
𝑡𝑡=2

𝑇𝑇−1

Δ𝜏𝜏𝑡𝑡+1 − Δ𝜏𝜏𝑡𝑡 2 .

• where 𝜆𝜆 is some constant, usually, 𝜆𝜆 = 1600 for quarterly data.

• Problems:
• Since this is a time domain filter, there’s no guarantee it’s going to recover 

the frequencies we’re interested in.
• The filter is non-causal, i.e. the filtered observation at 𝑡𝑡 depends on the 

source data at 𝑡𝑡 + 1, 𝑡𝑡 + 2, etc.
• The filter suffers from “end-point bias”, with the first and last observations 

having large impacts on the estimated trend.



Frequency domain filters

• An ideal filter would attenuate frequencies by some desired amount.
• For example, if we’re interested in the business cycle, we might like a “band-pass filter” which 

completely cut out all frequencies with periods below two years or above eight years, while 
leaving frequencies in between unaffected.

• More generally, a filter is defined by its frequency response function.
• This gives the attenuation at a specified frequency, where a value of 0 means full attenuation, and a value 

of 1 means none.
• King and Rebelo (1993) showed that the frequency response of the HP-filter at frequency 𝜔𝜔 is 

given by:
4𝜆𝜆 1 − cos𝜔𝜔 2

1 + 4𝜆𝜆 1 − cos𝜔𝜔 2

• This is plotted below, with period length in years on the horizontal axis:



The Christiano-Fitzgerald (CF) band-pass filter

• One algorithm for band-pass filtering the data is to take its Fourier 
transform, then take the pointwise product of this with the desired 
frequency response function.

• If you have infinite data, this works perfectly.
• Unfortunately, in finite samples it performs poorly, as the temporal truncation is 

like multiplying the series by a box function. Since the box function has a Fourier 
transform of the form sin 𝜔𝜔

𝜔𝜔
, applying the Fourier transform to a finite sample is 

like convolving the data in the frequency domain with sin 𝜔𝜔
𝜔𝜔

.

• Thus, in order to produce a well performing filter, we need a way of 
extending a finite sample forwards and backwards in time.

• The idea of the CF filter is to approximate the series by a random walk 
outside of the observed window.

• For many macro time series, this will be a good approximation.
• See the paper for details.



Behaviour of the Christiano-Fitzgerald filter

• The standard version of the CF filter is asymmetric (i.e. its frequency 
response is not an even function), so it may introduce phase shifts.

• Phase shifts are highly undesirable in macro contexts, as they will disrupt 
inference about which variables lead which other variables.

• However, CF also provide a symmetric version.
• Matlab code for all versions is here: 

http://www.clevelandfed.org/research/models/bandpass/bpassm.txt
• Lee and Steehouwer (2012) show that the CF filter also tends to perform 

poorly towards the ends of the interval, as shown by the figure below from 
their paper:

http://www.clevelandfed.org/research/models/bandpass/bpassm.txt


Conclusion and recap

• Reduced form VARs do not identify shocks.

• Identification is impossible without making strong prior assumptions.

• Continuous time stochastic processes are not so different to discrete 
time ones.

• Care must be taken when filtering the data.
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