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: Getting started with DynareOBC 

DynareOBC is a MATLAB toolbox designed to simulate and analyse models with 

occasionally binding constraints. It relies on Dynare (Adjemian et al. 2011) internally. To get 

started with DynareOBC, first download the latest release (dynareOBCRelease.zip) from: 

https://github.com/tholden/dynareOBC/releases 

Extract the zip archive into a sub-folder. You should also install the latest stable version of 

Dynare from: 

http://www.dynare.org/download/dynare-stable 

While DynareOBC contains a MILP solver, for best results, at this point, you should install 

a commercial MILP solver. Many of these are free for academics. We have had good results 

with Gurobi, which is available for academics by following the steps here: 

http://www.gurobi.com/academia/for-universities 

Other MILP solvers which are available for free to academics are documented in DynareOBC’s 

ReadMe.pdf. 

If you do not have administrative rights on your machine, you will also need to get your 

administrator to install a few minor dependencies for you, which otherwise DynareOBC would 

install itself. Full instructions for this are given in DynareOBC’s ReadMe.pdf. 

Next, open MATLAB, reset the MATLAB path (to be on the safe side) and then add only 

the following folders to your path. In each case, you should not click “add with subfolders”. 

Only the folders specified need adding: 

1) The “matlab” folder within Dynare. 

2) The root folder of DynareOBC, i.e. the folder containing “dynareOBC.m”. 

3) The “matlab” folder within whichever MILP solver you installed (if any). 

You can now test your set-up of DynareOBC by typing: 

dynareOBC TestSolvers 

at the MATLAB command prompt. The first time you run DynareOBC it will install various 

dependencies, and it may restart MATLAB several times. Note that if you have not installed a 

commercial MILP solver, you should say “yes” when offered the choice to install “SCIP”, 
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otherwise DynareOBC’s performance will be severely compromised. When DynareOBC has 

installed everything necessary, it will run the solver tests. Double check in particular that the 

LP and MILP tests are passing. (Results for the other tests, e.g. semi-definite programming are 

not relevant.) 

If everything has worked up to this point, then you now have a fully functioning install of 

DynareOBC. To see it in action, you could start by running DynareOBC’s included examples. 

Most of these examples can be run by changing to DynareOBC’s “Examples” directory in 

MATLAB, and then executing the script “RunAllExamples”. This iterates over the various sub-

directories of the “Examples” directory, running the script “RunExample” within each. 

Developing your own models for use with DynareOBC is easy. You can include one or 

more occasionally binding constraints directly within your MOD file. For example, to include 

a zero lower bound on nominal interest rates, your MOD file might contain the line: 

i = max( 0, 1.5 * pi + 0.25 * y ); 

DynareOBC supports both max and min (with two arbitrary arguments) and abs (with one 

arbitrary argument). There are no restrictions on what is contained within the brackets. You do 

not have to have a 0 term, and it does not matter which of the arguments of max or min is bigger 

or smaller in steady state. The only limitation is that the two arguments of max or min cannot 

be identical in steady state (likewise, the argument of abs cannot be zero in steady state). For a 

work-around of this limitation in a financial frictions context, see the approach of Swarbrick, 

Holden & Levine (2016). 

Once you have included an OBC in you MOD file, you can run it with DynareOBC by 

typing: 

dynareOBC ModFileName.mod 

where “ModFileName.mod” is the name of your MOD file. Just as with standard Dynare, if 

you have specified e.g. “irf=40” within your stoch_simul command, then DynareOBC will 

produce impulse responses. Likewise, if you have specified e.g. “periods=1000” within your 

stoch_simul command, then DynareOBC will produce a stochastic simulation. 

As an example, the file “bbw2016.mod” in the “Examples/BonevaBraunWaki2016” 

directory of DynareOBC contains the line: 
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r = max( 0, re + phi_pi * (pi - pi_STEADY) + phi_y * (gdp - gdp_STEADY) ); 

in its model block, and has the following stoch_simul command: 

stoch_simul( order = 1, periods = 0, irf = 40 ); 

We can run the MOD file (implementing the model of Boneva, Braun & Waki (2016)) by 

typing: 

dynareOBC bbw2016.mod 

from within the “Examples/BonevaBraunWaki2016” directory. Doing this produces two sets 

of impulse responses, however none of them hit the zero lower bound, as the shock is too small. 

(This uses the solution algorithm of Holden (2016).) 

To produce impulse responses to a larger shock, we can run DynareOBC with the 

ShockScale command line option. This increases the size of the initial impulse in IRF 

generation, without altering the standard deviations of the model’s shocks, or otherwise 

changing the behaviour of stochastic simulation. For example, if we run: 

dynareOBC bbw2016.mod ShockScale=5 

then DynareOBC produces IRFs to a 5 standard deviation shock to each of the model’s 

exogenous variables. This produces the two plots shown in Figure 1. In all DynareOBC plots, 

the solid line shows the economy’s path imposing the bound(s), and the dotted line shows the 

path the economy would have taken were it not for the bound(s). 
 
 

 

 

Figure 1: Sample output from running “dynareOBC bbw2016.mod ShockScale=5”. 

The left 4 panels show the response to a 5 standard deviation demand shock. The right 4 panels show the response to a 5 

standard deviation productivity shock. All variables are in logarithms. 

In all cases, the dotted lines show the path the economy would have followed were it not for the ZLB.  
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DynareOBC always also outputs diagnostic information about the model. For example, for 

this model, DynareOBC outputs the following, after it has made its final internal call to Dynare. 

Here we have made the most important lines bold to highlight them, and we have removed some 

additional white space: 

 

Beginning to solve the model. 

Solving the model for specific parameters. 

Saving NLMA parameters. 

Retrieving IRFs to shadow shocks. 

Preparing normalized sub-matrices. 

Largest P-matrix found with a simple criterion included elements up to horizon 32 

periods. 

The search for solutions will start from this point. 

Pre-calculating the augmented state transition matrices and possibly conditional covariances. 

Performing initial checks on the model. 

M is an S matrix, so the LCP is always feasible. This is a necessary condition for there to 

always be a solution. 

varsigma bounds (positive means M is an S matrix): 

           6.7600451299659          6.76004512996604 

sum of y from the alternative problem (zero means M is an S matrix): 

     0 

Skipping tests of feasibility with infinite T (TimeToEscapeBounds). 

To run them, set FeasibilityTestGridSize=INTEGER where INTEGER>0. 

Skipping further P tests, since we have already established that M is a P-matrix. 

The M matrix with T (TimeToEscapeBounds) equal to 32 is a P-matrix. There is a unique 

solution to the model, conditional on the bound binding for at most 32 periods. 

This is a necessary condition for M to be a P-matrix with arbitrarily large T 

(TimeToEscapeBounds). 
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A weak necessary condition for M to be a P-matrix with arbitrarily large T 

(TimeToEscapeBounds) is satisfied. 

Discovering and testing the installed MILP solver. 

Found working solver: GUROBI 

Forming optimizer. 

Preparing to simulate the model. 

Simulating IRFs. 

Cleaning up. 

 

We see that DynareOBC’s fast default diagnostics already identified that the 𝑀𝑀 matrix for this 

model was a P-matrix and an S-matrix, as well as providing some weak evidence that 𝑀𝑀 is a P-

matrix for arbitrarily high 𝑇𝑇. 

Note that DynareOBC refers to 𝑇𝑇  as “TimeToEscapeBounds”. This is the name 

DynareOBC gives to the command line option to control the size of the linear complementarity 

problems DynareOBC solves internally. To see why this may be necessary, try running the 

command: 

dynareOBC bbw2016.mod ShockScale=10 

Now DynareOBC does not complete successfully. Instead it reports: 

 

Error using SolveBoundsProblem (line 241) 

Impossible problem encountered. Try increasing TimeToEscapeBounds, or reducing the 

magnitude of shocks. 

 

To avoid this problem, we just need to follow the advice of the error message and run with a 

higher value for “TimeToEscapeBounds”. For example, if we run: 

dynareOBC bbw2016.mod ShockScale=10 TimeToEscapeBounds=64 

then DynareOBC completes successfully. In this case the response to the productivity shock 

stays at the ZLB for more than 32 periods, which is significant as 32 is the default number of 

periods for “TimeToEscapeBounds”. 
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“TimeToEscapeBounds” and “ShockScale” are two of DynareOBC’s command line 

options. There is a full list of these options in the “ReadMe.pdf” contained in DynareOBC’s 

root directory, along with details on what each option does. Since the full list of options may 

be somewhat bewildering though, we conclude this getting started guide with details of those 

options most relevant to the analysis of a model’s properties and those which impact perfect 

foresight simulation. Note that all options accepting a number must be entered without a space 

between the name of the option, the equals sign and the number. 

• TimeToEscapeBounds=INTEGER (default: 32) 

The number of periods after which the model is expected to be away from any occasionally 

binding constraints. If there is no solution which finally escapes within this time, 

DynareOBC will produce an error. 

• TimeToReturnToSteadyState=INTEGER (default: 64) 

The number of periods in which to verify that the constraints are not being violated. 

• ReverseSearch 

By default, DynareOBC finds a solution in which the last period at the bound is as soon as 

possible. This option makes DynareOBC find a solution in which the last period at the 

bound is as remote as possible, subject to being less than the longest horizon (i.e. 

TimeToEscapeBounds). 

• FullHorizon 

By default, DynareOBC finds a solution in which the last period at the bound is as soon as 

possible. This option makes DynareOBC just solve the bounds problem at the longest 

horizon. 

• Omega=FLOAT (default: 1000) 

The tightness of the constraint on the news shocks. If this is large, solutions with news 

shocks close to zero will be returned when there are multiple solutions. It is often helpful 

to combine this option with FullHorizon so that DynareOBC does not just choose the 

solution which escapes the bound first. 

• SkipFirstSolutions=INTEGER (default: 0) 



Online Appendix: Page 7 of 97 

If this is greater than 0, then DynareOBC ignores the first INTEGER solutions it finds, 

unless no other solutions are found, in which case it takes the last found one. Thus, without 

ReverseSearch, this tends to find solutions at the bound for longer. With ReverseSearch, this 

tends to find solutions at the bound for less time. 

• FeasibilityTestGridSize=INTEGER (default: 0) 

Specifies the number of points in each of the two axes of the grid on which a test of a 

sufficient condition for feasibility with 𝑇𝑇 = ∞  is performed. Setting a larger number 

increases the chance of finding feasibility, but may be slow. 

If FeasibilityTestGridSize=0 then the test is disabled. 

• SkipQuickPCheck 

Disables the “quick” check to see if the M matrix has any contiguous principal sub-matrices 

with non-positive determinants. 

• PTest=INTEGER (default: 0) 

Runs a fast as possible test to see if the top INTEGERxINTEGER submatrix of 𝑀𝑀 is a P-

matrix. Set this to 0 to disable these tests. 

• AltPTest=INTEGER (default: 0) 

Uses a slower, more verbose procedure to test if the top INTEGERxINTEGER submatrix 

of 𝑀𝑀 is a P-matrix. Set this to 0 to disable these tests. 

• FullTest=INTEGER (default: 0) 

Runs very slow tests to see if the top INTEGERxINTEGER submatrix of 𝑀𝑀 is a P(0) and/or 

(strictly) semi-monotone matrix. 

• UseVPA 

Enables more accurate evaluation of determinants using the symbolic toolbox. 

• ShockScale=FLOAT (default: 1) 

Scale of shocks for IRFs. This allows the calculation of IRFs to shocks larger or smaller 

than one standard deviation. 

• IRFsAroundZero 

By default at first order, IRFs are centred around the steady state. This option instead centres 

IRFs around 0. 
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: Additional matrix properties and their relationships 

The following definitions help us state our additional results:1 

Definition 7 (Principal sub-matrix, Principal minor) For a matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇, the principal 
sub-matrices of 𝑀𝑀  are the matrices �𝑀𝑀𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 , where 𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 <

𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆, i.e. the principal sub-matrices of 𝑀𝑀 are formed by deleting the same rows and 

columns. The principal minors of 𝑀𝑀 are the determinants of 𝑀𝑀’s principal sub-matrices. 

Definition 8 (P(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called a P-matrix (P0-matrix) if the 

principal minors of 𝑀𝑀 are all strictly (weakly) positive. 

Definition 9 (General positive (semi-)definite) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called general positive 

(semi-)definite if 𝑀𝑀 + 𝑀𝑀′ is positive (semi-)definite (p.(s.)d.). 

Definition 10 ((Non-)Degenerate matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called a non-degenerate 

matrix if the principal minors of 𝑀𝑀 are all non-zero. 𝑀𝑀 is called a degenerate matrix if it is 

not a non-degenerate matrix. 

Definition 11 (Sufficient matrices) 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called column sufficient if 𝑀𝑀 is a P0-matrix, 
and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 of 𝑀𝑀 with zero determinant, and for 

each proper principal sub-matrix �𝑊𝑊𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅
  of 𝑊𝑊  (𝑅𝑅 < 𝑆𝑆 ) with zero determinant, the 

columns of �𝑊𝑊𝜕𝜕,𝑗𝑗� 𝜕𝜕=1,…,𝑆𝑆
𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅

  are not a basis for the column space of 𝑊𝑊 . 2  𝑀𝑀  is called row 

sufficient if 𝑀𝑀′ is column sufficient. 𝑀𝑀 is called sufficient if it is column and row sufficient.  

Definition 12 ((Strictly) Copositive) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called (strictly) copositive if 

𝑀𝑀 + 𝑀𝑀′ is (strictly) semi-monotone.3 

Definition 13 (Adequate matrices) 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called column adequate if 𝑀𝑀 is a P0-matrix, 
and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

  of 𝑀𝑀  with zero determinant, the 

 

1 In each case, we give the definitions in a constructive form which makes clear both how the property might be verified 

computationally, and the links between definitions. For the original definitions, and the proofs of equivalence between the ones 

below and the originals, see Cottle, Pang & Stone (2009a) and Xu (1993). 

2 This may be checked via the singular value decomposition. 

3 Väliaho (1986) contains an alternative characterisation which avoids solving any linear programming problems. 
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columns of �𝑀𝑀𝜕𝜕,𝑗𝑗� 𝜕𝜕=1,…,𝑇𝑇
𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 are linearly dependent. 𝑀𝑀 is called row adequate if 𝑀𝑀′ is column 

adequate. 𝑀𝑀 is called adequate if it is column adequate and row adequate. 

Definition 14 (S(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called an S-matrix (S0-matrix) if there 

exists 𝑦𝑦 ∈ ℝ𝑇𝑇 such that 𝑦𝑦 > 0 and 𝑀𝑀𝑦𝑦 ≫ 0 (𝑀𝑀𝑦𝑦 ≥ 0).4 

Definition 15 ((Strictly) Semi-monotone) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called (strictly) semi-

monotone if each of its principal sub-matrices is an S0-matrix (S-matrix). 

For example, consider the 𝑇𝑇 = 3 case with 𝑀𝑀 =
⎣
⎢
⎡

𝑀𝑀11 𝑀𝑀12 𝑀𝑀13
𝑀𝑀21 𝑀𝑀22 𝑀𝑀23
𝑀𝑀31 𝑀𝑀32 𝑀𝑀33⎦

⎥
⎤. Then 𝑀𝑀 is a P-matrix 

if and only if 𝑀𝑀11 > 0 , 𝑀𝑀22 > 0 , 𝑀𝑀33 > 0 , det �𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

� > 0 , det �𝑀𝑀11 𝑀𝑀13
𝑀𝑀31 𝑀𝑀33

� > 0 , 

det �𝑀𝑀22 𝑀𝑀23
𝑀𝑀32 𝑀𝑀33

� > 0 and det 𝑀𝑀 > 0. 

Cottle, Pang & Stone (2009a) note the following relationships between these classes 

(amongst others): 

Lemma 1 The following hold: 

1) All general positive semi-definite matrices are copositive, sufficient and P0. 

2) All general positive definite matrices are P matrices. 

3) P0 includes skew-symmetric, general positive semi-definite, sufficient and P matrices. 

4) All P0-matrices, and all copositive matrices are semi-monotone, and all P-matrices, and all 

strictly copositive matrices are strictly semi-monotone. 

5) All column (row) adequate matrices are column (row) sufficient. 

A common intuition is that in models without state variables, 𝑀𝑀 must be both a P matrix, 

and an S matrix. This is not true. There are even purely static models for which 𝑀𝑀 is in neither 

of these classes, as we prove the following result in Appendix H.5. See also Corollary 2 from 

the main paper. 

 

4  These conditions may be rewritten as sup�𝜍𝜍 ∈ ℝ�∃𝑦𝑦 ≥ 0 s.t. ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, �𝑀𝑀𝑦𝑦�𝑡𝑡 ≥ 𝜍𝜍 ∧ 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , and 

sup�∑ 𝑦𝑦𝑡𝑡
𝑇𝑇
𝑡𝑡=1 �𝑦𝑦 ≥ 0, 𝑀𝑀𝑦𝑦 ≥ 0 ∧ ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑦𝑦𝑡𝑡 ≤ 1� > 0, respectively. As linear programming problems, these may be 

solved in time polynomial in 𝑇𝑇 using the methods of e.g. Roos, Terlaky, and Vial (2006). (More precisely, they can be solved 

in time proportional to 𝑇𝑇2.37 in the worst case, by the result of Jiang et al. (2020), using the current best bounds on the “𝜔𝜔" 

and “𝛼𝛼” constants on which their results depend.) Alternatively, by Ville’s Theorem of the Alternative (Cottle, Pang & Stone 

2009b), 𝑀𝑀 is not an S0-matrix if and only if −𝑀𝑀′ is an S-matrix. 
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Proposition 3 There is a purely static model for which 𝑀𝑀1:∞,1:∞ = −𝐼𝐼∞×∞, which is neither a 

P-matrix, nor an S-matrix, for any 𝑇𝑇. 

: Supplemental results 

This section starts by presenting additional uniqueness results. The next subsection gives 

further existence results. Then, we examine the properties of small LCPs (with 𝑇𝑇 = 1 or 𝑇𝑇 =

2 ) in more detail. The section finishes with a discussion on how to approach checking for 

existence and uniqueness in practice. 

Appendix C.1: Uniqueness 

The following corollary of Theorem 2 gives more easily verified necessary conditions for 

uniqueness. 

Corollary 6 If for all 𝑞𝑞 ∈ ℝ𝑇𝑇, the LCP �𝑞𝑞, 𝑀𝑀� has a unique solution, then: 

1. All of the principal sub-matrices of 𝑀𝑀  are P-matrices, S-matrices and strictly semi-

monotone. (Cottle, Pang & Stone 2009a) 

2. 𝑀𝑀 has a strictly positive diagonal. (Immediate from definition.)  

3. All of the eigenvalues of 𝑀𝑀  have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋
𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋

𝑇𝑇� . 

(Fang 1989) 

The following corollary of Theorem 2 gives more easily verified sufficient conditions for 

uniqueness. 

Corollary 7 For an arbitrary matrix 𝐴𝐴, denote the spectral radius of 𝐴𝐴 by 𝜌𝜌(𝐴𝐴), and its largest 

and smallest singular values by 𝜎𝜎max(𝐴𝐴) and 𝜎𝜎min(𝐴𝐴), respectively. Let |𝐴𝐴| be the matrix with 

|𝐴𝐴|𝜕𝜕𝑗𝑗 = �𝐴𝐴𝜕𝜕𝑗𝑗�  for all 𝑖𝑖, 𝑗𝑗 . Then, for any matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 , if there exist diagonal matrices 

𝐷𝐷1, 𝐷𝐷2 ∈ ℝ𝑇𝑇×𝑇𝑇 with positive diagonals, such that 𝑊𝑊 ≔ 𝐷𝐷1𝑀𝑀𝐷𝐷2 satisfies one of the following 

conditions, then for all 𝑞𝑞 ∈ ℝ𝑇𝑇, the LCP �𝑞𝑞, 𝑀𝑀� has a unique solution: 

1. 𝑊𝑊 is general positive definite. (Cottle, Pang & Stone 2009a) 

2. 𝑊𝑊 has a positive diagonal, and 〈𝑊𝑊〉−1 is a nonnegative matrix, where 〈𝑊𝑊〉 is the matrix 

with 〈𝑊𝑊〉𝜕𝜕𝑗𝑗 = −�𝑊𝑊𝜕𝜕𝑗𝑗� for 𝑖𝑖 ≠ 𝑗𝑗 and 〈𝑊𝑊〉𝜕𝜕𝜕𝜕 = |𝑊𝑊𝜕𝜕𝜕𝜕|. (Bai & Evans 1997) 

3. 𝜌𝜌(|𝐼𝐼 − 𝑊𝑊|) < 1. (Li & Wu 2016) 

4. (𝐼𝐼 + 𝑊𝑊)′(𝐼𝐼 + 𝑊𝑊) − 𝜎𝜎max(|𝐼𝐼 − 𝑊𝑊|)2𝐼𝐼 is positive definite. (Li & Wu 2016) 
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5. 𝜎𝜎max(|𝐼𝐼 − 𝑊𝑊|) < 𝜎𝜎min(𝐼𝐼 + 𝑊𝑊). (Li & Wu 2016) 

6. 𝜎𝜎min�(𝐼𝐼 − 𝑊𝑊)−1(𝐼𝐼 + 𝑊𝑊)� > 1. (Li & Wu 2016) 

7. 𝜎𝜎max�(𝐼𝐼 + 𝑊𝑊)−1(𝐼𝐼 − 𝑊𝑊)� < 1. (Li & Wu 2016) 

8. 𝜌𝜌��(𝐼𝐼 + 𝑊𝑊)−1(𝐼𝐼 − 𝑊𝑊)�� < 1. (Li & Wu 2016) 

In our experience, whenever 𝑀𝑀 is a P-matrix, it will usually satisfy one of these conditions 

when 𝐷𝐷1 and 𝐷𝐷2 are chosen so that all rows and columns of |𝑊𝑊| have maximum equal to 1, 

using the algorithm of Ruiz (2001). 

We also have necessary conditions for uniqueness with arbitrary 𝑇𝑇. In particular: 

Proposition 4 Given an otherwise linear model with an OBC, the limit, 𝑑𝑑𝑘𝑘 of the 𝑘𝑘th diagonal5 

of 𝑀𝑀 with 𝑇𝑇 = ∞ exists, is finite, and is computable in time polynomial in 𝑘𝑘 and the number 

of state variables of the model. If for all finite 𝑇𝑇, 𝑀𝑀 is a P-matrix, then for all 𝑆𝑆 > 0, the 𝑆𝑆 × 𝑆𝑆 

Toeplitz matrix with 𝑘𝑘th diagonal 𝑑𝑑𝑘𝑘 is a P0-matrix. 

The properties of the limits of the diagonals of 𝑀𝑀 are established in Appendix H.4 as part of 

the proof of Proposition 2. The rest of the claim follows from the continuity of determinants. 

Since some classes of models almost never possess a unique solution when at the zero 

lower bound, we might reasonably require a lesser condition, namely that at least when the 

solution to the model without a bound is a solution to the model with the bound, then it ought 

to be the unique solution. This is equivalent to requiring that when 𝑞𝑞 is non-negative, the LCP 

�𝑞𝑞, 𝑀𝑀� has a unique solution. Conditions for this are given in the following proposition: 

Proposition 5 The LCP �𝑞𝑞, 𝑀𝑀� has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 with 𝑞𝑞 ≫ 0 (𝑞𝑞 ≥ 0) if and 

only if 𝑀𝑀 is (strictly) semi-monotone. (Cottle, Pang & Stone 2009a) 

Hence, by verifying that 𝑀𝑀 is semi-monotone, we can reassure ourselves that introducing the 

bound will not change the solution away from the bound. When this condition is violated, even 

when the economy is a long way from the bound, there may be solutions which jump to the 

bound. Since principal sub-matrices of (strictly) semi-monotone are (strictly) semi-monotone, 

a failure of (strict) semi-monotonicity for some 𝑇𝑇 implies a failure for all larger 𝑇𝑇. 

 

5 We take diagonal indices to be increasing as one moves up and right in 𝑀𝑀. 
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Where there are multiple solutions, we might like to select one via some objective function. 

This is tractable when either the number of solutions is finite, or the solution set is convex:  

Proposition 6 The LCP �𝑞𝑞, 𝑀𝑀� has a finite (possibly zero) number of solutions for all 𝑞𝑞 ∈ ℝ𝑇𝑇 

if and only if 𝑀𝑀 is non-degenerate. (Cottle, Pang & Stone 2009a) 

Proposition 7 The LCP �𝑞𝑞, 𝑀𝑀� has a convex (possibly empty) set of solutions for all 𝑞𝑞 ∈ ℝ𝑇𝑇 

if and only if 𝑀𝑀 is column sufficient. (Cottle, Pang & Stone 2009a) 

Finally, conditions for uniqueness of the path of the bounded variable is given in the following 

proposition: 

Proposition 8 There exists 𝑤𝑤 such that for any solution 𝑦𝑦 of the LCP �𝑞𝑞, 𝑀𝑀�, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 = 𝑤𝑤 if 

and only if 𝑀𝑀 is column adequate. (Cottle, Pang & Stone 2009a) 

Appendix C.2: Existence 

We now turn to sufficient conditions for existence of a solution for finite 𝑇𝑇. 

Proposition 9 The LCP �𝑞𝑞, 𝑀𝑀� is solvable if it is feasible and, either: 

1. 𝑀𝑀 is row-sufficient, or, 

2. 𝑀𝑀 is copositive and for all non-singular principal sub-matrices 𝑊𝑊 of 𝑀𝑀, all non-negative 

columns of 𝑊𝑊−1 possess a non-zero diagonal element. 

(Cottle, Pang & Stone 2009a; Väliaho 1986) 

If either condition 1 or condition 2 of Proposition 9 is satisfied, then to check existence for any 

particular 𝑞𝑞, we only need to solve a linear programming problem. As this will be faster than 

solving the particular LCP, this may be helpful in practice. Moreover: 

Proposition 10 The LCP �𝑞𝑞, 𝑀𝑀�  is solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if at least one of the following 

conditions holds: (Cottle, Pang & Stone 2009a) 

1. 𝑀𝑀 is an S-matrix, and either condition 1 or 2 of Proposition 9 is satisfied. 

2. 𝑀𝑀 is copositive and non-degenerate. 

3. 𝑀𝑀 is a P-, a strictly copositive or strictly semi-monotone matrix. 

If condition 1, 2 or 3 of Proposition 10 is satisfied, then the LCP will always have a solution. 

Therefore, for any path of the bounded variable in the absence of the bound, we will also be 
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able to solve the model when the bound is imposed. Finally, in the special case of nonnegative 

𝑀𝑀 matrices we can derive conditions for existence that are both necessary and sufficient: 

Proposition 11 If 𝑀𝑀 is a nonnegative matrix, then the LCP �𝑞𝑞, 𝑀𝑀� is solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇 

if and only if 𝑀𝑀 has a positive diagonal. (Cottle, Pang & Stone 2009a) 

Appendix C.3: Small LCPs 

LCPs of size 1 

When 𝑇𝑇 = 1, it is particularly easy to characterise the properties of LCPs. This amounts to 

considering the behaviour of an economy in which everyone believes there will be at most one 

period at the bound. In this case, 𝑦𝑦 gives the “shock” to the bounded equation necessary to 

impose the bound, and 𝑀𝑀 gives the contemporaneous response of the bounded variable to an 

unanticipated shock: i.e., in a ZLB context, 𝑀𝑀 gives the initial jump in nominal interest rates 

following a standard monetary policy shock. 

First, suppose that 𝑀𝑀 (a scalar as 𝑇𝑇 = 1 for now) is positive. Then, if 𝑞𝑞 > 0, for any 𝑦𝑦 ≥ 0, 

𝑞𝑞 + 𝑀𝑀𝑦𝑦 > 0, so by the complementary slackness condition, in fact 𝑦𝑦 = 0. Conversely, if 𝑞𝑞 ≤ 0, 

then there is a unique 𝑦𝑦 satisfying the complementary slackness condition given by 𝑦𝑦 = − 𝑞𝑞
𝑀𝑀 ≥

0. Thus, with 𝑀𝑀 > 0, there is always a unique solution to the 𝑇𝑇 = 1 LCP. With 𝑀𝑀 = 0, 𝑞𝑞 +

𝑀𝑀𝑦𝑦 = 𝑞𝑞, so a solution to the LCP exists if and only if 𝑞𝑞 ≥ 0. It will be unique providing 𝑞𝑞 > 0 

(by the complementary slackness condition), but when 𝑞𝑞 = 0 , any 𝑦𝑦 ≥ 0  gives a solution. 

Finally, suppose that 𝑀𝑀 < 0. Then, if 𝑞𝑞 > 0, there are precisely two solutions. The “standard” 

solution has 𝑦𝑦 = 0, but there is an additional solution featuring a jump to the bound in which 

𝑦𝑦 = − 𝑞𝑞
𝑀𝑀 > 0. If 𝑞𝑞 = 0, then there is a unique solution (𝑦𝑦 = 0) and if 𝑞𝑞 < 0, then with 𝑦𝑦 ≥ 0, 

𝑞𝑞 + 𝑀𝑀𝑦𝑦 < 0, so there is no solution at all. Hence, the 𝑇𝑇 = 1 LCP already provides examples of 

cases of uniqueness, non-existence and multiplicity. 

LCPs of size 2 

We now consider the 𝑇𝑇 = 2 special case, where we can again easily derive results from 

first principles. Recall that a solution �
𝑦𝑦1
𝑦𝑦2

� to the LCP ��
𝑞𝑞1
𝑞𝑞2

� , �𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

�� satisfies 𝑦𝑦1 ≥ 0, 

𝑦𝑦2 ≥ 0 , 𝑞𝑞1 + 𝑀𝑀11𝑦𝑦1 + 𝑀𝑀12𝑦𝑦2 ≥ 0 , 𝑞𝑞2 + 𝑀𝑀21𝑦𝑦1 + 𝑀𝑀22𝑦𝑦2 ≥ 0 , 𝑦𝑦1�𝑞𝑞1 + 𝑀𝑀11𝑦𝑦1 + 𝑀𝑀12𝑦𝑦2� =
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0 , and 𝑦𝑦2�𝑞𝑞2 + 𝑀𝑀21𝑦𝑦1 + 𝑀𝑀22𝑦𝑦2� = 0 . With two quadratics, there are up to four generic 

solutions, given by: 

1) 𝑦𝑦1 = 𝑦𝑦2 = 0. Exists if 𝑞𝑞1 ≥ 0 and 𝑞𝑞2 ≥ 0. 

2) 𝑦𝑦1 = − 𝑞𝑞1
𝑀𝑀11

, 𝑦𝑦2 = 0. Exists if 𝑞𝑞1
𝑀𝑀11

≤ 0 and 𝑀𝑀11𝑞𝑞2 ≥ 𝑀𝑀21𝑞𝑞1. 

3) 𝑦𝑦1 = 0, 𝑦𝑦2 = − 𝑞𝑞2
𝑀𝑀22

. Exists if 𝑞𝑞2
𝑀𝑀22

≤ 0 and 𝑀𝑀22𝑞𝑞1 ≥ 𝑀𝑀12𝑞𝑞2. 

4) 𝑦𝑦1 = 𝑀𝑀12𝑞𝑞2−𝑀𝑀22𝑞𝑞1
𝑀𝑀11𝑀𝑀22−𝑀𝑀12𝑀𝑀21

, 𝑦𝑦2 = 𝑀𝑀21𝑞𝑞1−𝑀𝑀11𝑞𝑞2
𝑀𝑀11𝑀𝑀22−𝑀𝑀12𝑀𝑀21

. Exists if 𝑦𝑦1 ≥ 0 and 𝑦𝑦2 ≥ 0. 

Additionally, there are extra solutions in knife-edge cases: 

5) If 𝑞𝑞1 = 0, 𝑀𝑀11 = 0 and 𝑞𝑞2 ≥ 0 then any 𝑦𝑦1 ≥ 0 is a solution with 𝑦𝑦2 = 0. 

6) If 𝑞𝑞2 = 0, 𝑀𝑀22 = 0 and 𝑞𝑞1 ≥ 0 then any 𝑦𝑦2 ≥ 0 is a solution with 𝑦𝑦1 = 0. 

7) If 𝑞𝑞1 = 0 , 𝑞𝑞2 = 0 , 𝑀𝑀11𝑀𝑀22 = 𝑀𝑀12𝑀𝑀21 , then any 𝑦𝑦1 ≥ 0  and 𝑦𝑦2 ≥ 0  with 𝑀𝑀21𝑦𝑦1 =

−𝑀𝑀22𝑦𝑦2 is a solution. 

8) If 𝑞𝑞1 = 0, 𝑞𝑞2 = 0, 𝑀𝑀11 = 𝑀𝑀12 = 𝑀𝑀21 = 𝑀𝑀22, then any 𝑦𝑦1 ≥ 0 and 𝑦𝑦2 ≥ 0 are a solution. 

Appendix C.4: Checking the existence and uniqueness conditions in practice 

The paper has presented many results, but the practical details of what one should test and 

in what order may still be unclear. Luckily, a lot of the decisions are automated by the author’s 

DynareOBC toolkit, but we present a suggested testing procedure here in any case. This also 

serves to give an overview of our results and their limitations. 

For checking feasibility and existence, the most powerful result is Proposition 2 and 

Corollary 4. If the lower bound from Proposition 2 is positive, for all sufficiently high 𝑇𝑇, the 

LCP is always feasible. If further conditions are satisfied for a given 𝑇𝑇, (see Proposition 9 and 

Proposition 10) then this guarantees existence for that particular 𝑇𝑇 . However, since the 

additional conditions are sufficient and not necessary, in practice it may not be worth checking 

them, as we have never encountered a problem without a solution that was nonetheless feasible. 

The construction of the bounds in Proposition 2 (and its proof in Appendix H.4) requires 

a choice of a 𝑇𝑇 > 0. Finding a 𝑇𝑇 for which Proposition 2 produces a positive lower bound on 𝜍𝜍 

requires a bit of trial and error. 𝑇𝑇 will need to be big enough that the asymptotic approximation 

is accurate, which usually requires 𝑇𝑇  to be bigger than the time it takes for the model’s 

dynamics to die out. However, if 𝑇𝑇 is too large, then DynareOBC’s conservative approach to 

handling numerical error means that it can be difficult to reject 𝜍𝜍 = 0 . Usually though, an 
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intermediary value for 𝑇𝑇  can be found at which we can establish 𝜍𝜍 > 0 , even with a 

conservative approach to numerical error.  

For checking non-existence, Proposition 2 and Corollary 4 can still be useful, though in 

this case, it does not provide definitive proof of non-feasibility, due to inescapable numerical 

inaccuracies. For a particular 𝑇𝑇, we may test if 𝑀𝑀 is not an S-matrix in time polynomial in 𝑇𝑇 

by solving a simple linear programming problem. If 𝑀𝑀 is not an S-matrix, then by Proposition 

1 and Corollary 3, there are some 𝑞𝑞 for which there is no path which does not violate the bound 

in the first 𝑇𝑇 periods. With 𝑇𝑇 larger than the time it takes for the model’s dynamics to die out, 

this provides further evidence of non-existence for arbitrarily large 𝑇𝑇. In any case, given that 

only having a solution that stays at the bound for 250 years is arguably as bad as having no 

solution at all, for medium scale models, we suggest to just check if 𝑀𝑀 is an S-matrix with 𝑇𝑇 =

1000. 

For checking uniqueness vs multiplicity, it is important to remember that while we can 

prove uniqueness for a given finite 𝑇𝑇 by proving that the 𝑀𝑀 matrix is a P-matrix, once we have 

found one 𝑇𝑇 for which 𝑀𝑀 is not a P-matrix (so there are multiple solutions, by Theorem 2 and 

Corollary 1), we know the same is true for all higher 𝑇𝑇. If we wish to prove that there is a unique 

solution up to some horizon 𝑇𝑇 , then the best approach is to begin by testing the sufficient 

conditions from Corollary 7, with our suggested 𝐷𝐷1 and 𝐷𝐷2. If none of these conditions pass, 

then it is probable that 𝑀𝑀 is not a P-matrix. In any case, checking that an 𝑀𝑀 which fails the 

conditions of Corollary 7 is a P-matrix for very large 𝑇𝑇 may not be computationally feasible, 

though finding a counter-example usually is. However, for purely forward-looking or purely 

backward-looking models,  Corollary 2 tells us all we need to know for any 𝑇𝑇. 

If we wish to establish multiplicity (for models that are not purely forward-looking or 

purely backward-looking), then Corollary 6 provides a guide. It is trivial to check if 𝑀𝑀 has any 

nonpositive elements on its diagonal, in which case it cannot be a P-matrix. We can also check 

whether the expression derived in Appendix H.4 for the limit of the diagonal of 𝑀𝑀 is non-

negative, which is a necessary condition for 𝑀𝑀 to be a P-matrix for all large 𝑇𝑇 (this is a special 

case of Proposition 4). It is also trivial to check the eigenvalue condition given in Corollary 6, 

and that 𝑀𝑀 is an S-matrix. If none of these checks established that 𝑀𝑀 is not a P-matrix, then a 
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search for a principal sub-matrix with negative determinant is the obvious next step. It is 

sensible to begin by checking the contiguous principal sub-matrices.6 These correspond to a 

single spell at the ZLB which is natural given that impulse responses in DSGE models tend to 

be single peaked. This is so reliable a diagnostic (and so fast) that DynareOBC reports it 

automatically for all models. Continuing, one could then check all the 2 × 2  principal sub-

matrices, then the 3 × 3 ones, and so on. With 𝑇𝑇 around the half-life of the model’s dynamics, 

usually one of these tests will quickly produce the required counter-example. A similar search 

strategy can be used to rule out semi-monotonicity, implying multiplicity when away from the 

bound, by Proposition 5. 

Given the computational challenge of verifying whether 𝑀𝑀  is a P-matrix, without 

Corollary 7, it may be tempting to wonder if our results really enable one to accomplish 

anything that could not have been accomplished by a naïve brute force approach. For example, 

it has been suggested that given 𝑇𝑇 and an initial state, one could check for multiple equilibria 

by considering all of the 2𝑇𝑇 possible combinations of periods at which the model could be at 

the bound and testing if each guess is consistent with the model, following, for example, the 

solution algorithms of Fair and Taylor (1983) or Guerrieri & Iacoviello (2015). Since there are 

2𝑇𝑇 principal sub-matrices of 𝑀𝑀, it might seem likely that this will be computationally very 

similar to checking if 𝑀𝑀 is a P-matrix. However, our uniqueness results are not conditional on 

𝑞𝑞 or the initial state, rather they give conditions under which there is a unique solution for any 

possible path that the economy would take in the absence of the bound. Thus, while the brute 

force approach may eventually tell you about uniqueness given an initial state, using our results, 

in a comparable amount of time you will learn whether there are multiple solutions for any 

possible 𝑞𝑞. A brute force approach to checking for all possible initial conditions would require 

one to solve a linear programming problem for each pair of possible sets of periods at the bound, 

of which there are 22𝑇𝑇−1 − 2𝑇𝑇−1 . 7  This is far more computationally demanding than our 

 

6 Some care must be taken though as checking the signs of determinants of large matrices is numerically unreliable. 

7 Given the periods in the constrained regime, the economy’s path is linear in the initial state. Excepting knife edge cases of 

rank deficiency, any multiplicity must involve two paths each at the bound in a different set of periods.  Consequently, a brute 
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approach, and becomes intractable for even very small 𝑇𝑇 . Additionally, our approach is 

numerically more robust, allows the easy management of the effects of numerical error to avoid 

false positives and false negatives, and requires less work in each step. Finally, we stress that in 

most cases, thanks to Corollary 6 and Corollary 7, no such search of the sub-matrices of 𝑀𝑀 is 

required under our approach, and a proof or counter-example may be produced in time 

polynomial in 𝑇𝑇, just as it may be when checking for existence with our results. 

: Formal treatment of our equivalence result 

Appendix D.1: Problem set-ups 

In the absence of occasionally binding constraints, calculating an impulse response or 

performing a perfect foresight simulation exercise in a linear DSGE model is equivalent to 

solving the following problem: 

Problem 1 (Linear) Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such that: 

1) 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, 

2) for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�, (5) 

The absence of shocks here is without loss of generality. For suppose 0 = 𝐴𝐴�̂𝑥𝑥�̂�𝑡−1 − 𝜇𝜇� +

�̂�𝐵�𝑥𝑥�̂�𝑡 − 𝜇𝜇� + 𝐶𝐶�̂𝑥𝑥�̂�𝑡+1 − 𝜇𝜇� + 𝐷𝐷� 𝜀𝜀𝑡𝑡 , with 𝑥𝑥�̂�𝑡 → �̂�𝜇  as 𝑡𝑡 → ∞ , and that 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 𝑆𝑆 . Then, if 

we define: 

𝑥𝑥𝑡𝑡 ≔

⎣
⎢⎢
⎢
⎡

𝑥𝑥�̂�𝑡
𝜀𝜀𝑡𝑡+1

⋮
𝜀𝜀𝑡𝑡+𝑆𝑆⎦

⎥⎥
⎥
⎤

, 𝜇𝜇 ≔

⎣
⎢⎢
⎢
⎡

�̂�𝜇
0
⋮
0⎦

⎥⎥
⎥
⎤

, 

𝐴𝐴 ≔

⎣
⎢
⎢
⎢
⎢
⎡𝐴𝐴̂ 𝐷𝐷� 0 ⋯ 0

0 0 𝐼𝐼 ⋱ ⋮
0 0 0 ⋱ 0
⋮ ⋮ ⋮ ⋱ 𝐼𝐼
0 0 0 ⋯ 0⎦

⎥
⎥
⎥
⎥
⎤

, 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡�̂�𝐵 0 ⋯ 0

0 𝐼𝐼 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐼𝐼⎦

⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡𝐶𝐶̂ 0 ⋯ 0

0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0⎦

⎥⎥
⎥
⎤

, 

then we are left with a problem in the form of Problem 1 (Linear), with the extended initial 

condition: 

 

force approach to finding multiplicity unconditional on the initial state is to guess two different sets of periods at which the 

economy is at the bound, then solve a linear programming problem to find out if there is a value of the initial state for which 

the regimes on each path agree with their respective guesses. 



Online Appendix: Page 18 of 97 

𝑥𝑥0 =

⎣
⎢⎢
⎢
⎡

𝑥𝑥0̂
𝜀𝜀1
⋮

𝜀𝜀𝑆𝑆⎦
⎥⎥
⎥
⎤

, 

and the extended terminal condition 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 

We make the following assumption throughout the paper and these appendices: 

Assumption 1 For any given 𝑥𝑥0 ∈ ℝ𝑛𝑛 , Problem 1 (Linear) has a unique solution, which 

(without loss of generality) takes the form 𝑥𝑥𝑡𝑡 = (𝐼𝐼 − 𝐹𝐹)𝜇𝜇 + 𝐹𝐹𝑥𝑥𝑡𝑡−1, for 𝑡𝑡 ∈ ℕ+, where 0 = 𝐴𝐴 +

𝐵𝐵𝐹𝐹 + 𝐶𝐶𝐹𝐹𝐹𝐹 (so 𝐹𝐹 = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐴𝐴), and where the eigenvalues of 𝐹𝐹 are strictly inside the unit 

circle. 

Conditions (A’) and (B) from Sims’s (2002) generalisation of the standard Blanchard-Kahn 

(1980) conditions are necessary and sufficient for Assumption 1 to hold. Further, to avoid 

dealing specially with the knife-edge case of exact unit eigenvalues in the part of the model that 

is solved forward, here we rule it out with the subsequent assumption, which is, in any case, a 

necessary condition for perturbation to produce a consistent approximation to a non-linear 

model, and which is also necessary for the linear model to have a unique steady state: 

Assumption 2 det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) ≠ 0. 

We are interested in models featuring occasionally binding constraints. We will concentrate 

on models featuring a single ZLB type constraint in their first equation, which does not bind in 

steady state, and which we treat as defining the first element of 𝑥𝑥𝑡𝑡 . Generalising from this 

special case to models with one or more fully general bounds is straightforward and is discussed 

in Appendix D.3. First, let us write 𝑥𝑥1,𝑡𝑡 , 𝐼𝐼1,⋅ , 𝐴𝐴1,⋅ , 𝐵𝐵1,⋅ , 𝐶𝐶1,⋅  for the first row of 𝑥𝑥𝑡𝑡 , 𝐼𝐼 , 𝐴𝐴 , 𝐵𝐵 , 𝐶𝐶 

(respectively) and 𝑥𝑥−1,𝑡𝑡, 𝐼𝐼−1,⋅, 𝐴𝐴−1,⋅, 𝐵𝐵−1,⋅, 𝐶𝐶−1,⋅ for the remainders. Likewise, we write 𝐼𝐼⋅,1 for 

the first column of the identity, 𝐼𝐼, and so on. Then, from adding 𝑥𝑥1,𝑡𝑡 to both sides of the first 

equation within the system (5), then incorporating a max, we produce the system of interest: 
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Problem 2 (OBC) Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑇𝑇 ∈ ℕ and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such 

that: 

1) 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, 

2) for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇��, 

0 = 𝐴𝐴−1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵−1,⋅�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶−1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�, 

3) 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇. 

given: 

Assumption 3 𝜇𝜇1 > 0, where 𝜇𝜇1 is the first element of 𝜇𝜇. 

Were it not for the max, this problem would be identical to Problem 1 (Linear), providing that 

Assumption 3 holds, as the existence of a 𝑇𝑇 ∈ ℕ such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 is guaranteed by 

the fact that 𝑥𝑥1,𝑡𝑡 → 𝜇𝜇1 as 𝑡𝑡 → ∞. 

We will analyse Problem 2 (OBC) with the help of solutions to the auxiliary problem: 

Problem 3 (News) Suppose that 𝑇𝑇 ∈ ℕ, 𝑥𝑥0 ∈ ℝ𝑛𝑛 and 𝑦𝑦0 ∈ ℝ𝑇𝑇  is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛, 𝑦𝑦𝑡𝑡 ∈

ℝ𝑇𝑇 for 𝑡𝑡 ∈ ℕ+ such that: 

1) 𝑥𝑥𝑡𝑡 → 𝜇𝜇, 𝑦𝑦𝑡𝑡 → 0, as 𝑡𝑡 → ∞, 

2) for all 𝑡𝑡 ∈ ℕ+: 

(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦1,𝑡𝑡−1, 

𝑦𝑦𝑇𝑇,𝑡𝑡 = 0, 

∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1},  𝑦𝑦𝜕𝜕,𝑡𝑡 = 𝑦𝑦𝜕𝜕+1,𝑡𝑡−1. 

This is a version of Problem 1 (Linear) with a forcing process (“news”) up to horizon 𝑇𝑇 added 

to the first equation. We use this representation in which the forcing process enters via an 

augmented state to make clear that this is also a special case of Problem 1 (Linear). By 

construction, the value of 𝑦𝑦𝜕𝜕,𝑡𝑡 gives the shock that in period 𝑡𝑡 is expected to arrive in 𝑖𝑖 periods. 

(To be clear: the first index of 𝑦𝑦𝜕𝜕,𝑡𝑡 indexes over the elements of the vector 𝑦𝑦𝑡𝑡 ∈ ℝ𝑇𝑇; the second 

index of 𝑦𝑦𝜕𝜕,𝑡𝑡 indexes over periods.) Hence, as there is no uncertainty, 𝑦𝑦𝑡𝑡,0 gives the shock that 

will hit in period 𝑡𝑡, i.e. 𝑦𝑦1,𝑡𝑡−1 = 𝑦𝑦2,𝑡𝑡−2 = ⋯ = 𝑦𝑦𝑡𝑡,0 for 𝑡𝑡 ≤ 𝑇𝑇, and 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇. Thus, 

the first equation of the first block could be rewritten: 
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𝑥𝑥1,𝑡𝑡 = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0, 

which is in the form of equation (4) from the main paper. 

Appendix D.2: Relationships between the problems 

Since 𝑦𝑦1,𝑡𝑡−1 = 0  for 𝑡𝑡 > 𝑇𝑇 , by Assumption 1, �𝑥𝑥𝑇𝑇+1 − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇 − 𝜇𝜇� . Now define 

𝑠𝑠𝑇𝑇+1 ≔ 0. Then with 𝑡𝑡 = 𝑇𝑇, we have that �𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� = 𝑠𝑠𝑡𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡 − 𝜇𝜇�. Proceeding now by 

backwards induction on 𝑡𝑡, note that: 

0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0, 

so: 

�𝑥𝑥𝑡𝑡 − 𝜇𝜇� = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� 

= 𝐹𝐹�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0�, 

i.e., if we define: 𝑠𝑠𝑡𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0�, then �𝑥𝑥𝑡𝑡 − 𝜇𝜇� = 𝑠𝑠𝑡𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇�. By 

induction then, this holds for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, establishing:8 

Lemma 2 There is a unique solution to Problem 3 (News) that is linear in 𝑥𝑥0 and 𝑦𝑦0. 

For future reference, let 𝑥𝑥𝑡𝑡
(3,𝑘𝑘) be the solution to Problem 3 (News) when 𝑥𝑥0 = 𝜇𝜇, 𝑦𝑦0 = 𝐼𝐼⋅,𝑘𝑘 (i.e. 

a vector which is all zeros apart from a 1 in position 𝑘𝑘). Then, by linearity, for arbitrary 𝑦𝑦0 the 

solution to Problem 3 (News) when 𝑥𝑥0 = 𝜇𝜇 is given by: 

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = � 𝑦𝑦𝑘𝑘,0�𝑥𝑥𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇�

𝑇𝑇

𝑘𝑘=1
. 

Now, let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 satisfy: 

𝑀𝑀𝑡𝑡,𝑘𝑘 = 𝑥𝑥1,𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇1, ∀𝑡𝑡, 𝑘𝑘 ∈ {1, . . , 𝑇𝑇}, (6) 

i.e. 𝑀𝑀 horizontally stacks the (column-vector) relative impulse responses of the first variable 

to the news shocks, with the first column giving the response to a contemporaneous shock, the 

second column giving the response to a shock anticipated by one period, and so on. Then, this 

result implies that for arbitrary 𝑥𝑥0 and 𝑦𝑦0, the path of the first variable in the solution to Problem 

3 (News) is given by: 

�𝑥𝑥1,1:𝑇𝑇�′ = 𝑞𝑞 + 𝑀𝑀𝑦𝑦0, (7) 

 

8 This representation of the solution to Problem 3 (News) was inspired by that of Anderson (2015). 
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where 𝑞𝑞 ≔ �𝑥𝑥1,1:𝑇𝑇
(1) �

′
 and where 𝑥𝑥𝑡𝑡

(1) is the unique solution to Problem 1 (Linear), for the given 

𝑥𝑥0, i.e. 𝑞𝑞 is the path of the first variable in the absence of news shocks or bounds.9 Since 𝑀𝑀 is 

not a function of either 𝑥𝑥0 or 𝑦𝑦0, equation (7) gives a highly convenient representation of the 

solution to Problem 3 (News).  

Now let 𝑥𝑥𝑡𝑡
(2) be a solution to Problem 2 (OBC) given some 𝑥𝑥0. Since 𝑥𝑥𝑡𝑡

(2) → 𝜇𝜇 as 𝑡𝑡 → ∞, 

there exists 𝑇𝑇′ ∈ ℕ such that for all 𝑡𝑡 > 𝑇𝑇′, 𝑥𝑥1,𝑡𝑡
(2) > 0. We assume without loss of generality 

that 𝑇𝑇′ ≤ 𝑇𝑇. We seek to relate the solution to Problem 2 (OBC) with the one to Problem 3 

(News) for an appropriate choice of 𝑦𝑦0. First, for all 𝑡𝑡 ∈ ℕ+, let: 

𝑒𝑒�̂�𝑡 ≔ −�𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1
(2) − 𝜇𝜇��, 

𝑒𝑒𝑡𝑡 ≔
⎩�
⎨
�⎧𝑒𝑒�̂�𝑡 if 𝑥𝑥1,𝑡𝑡

(2) = 0
0 if 𝑥𝑥1,𝑡𝑡

(2) > 0
, (8) 

i.e. 𝑒𝑒𝑡𝑡 is the shock that would need to hit the first equation for the positivity constraint on 𝑥𝑥1,𝑡𝑡
(2) 

to be enforced. Note that by the definition of Problem 2 (OBC), 𝑒𝑒𝑡𝑡 ≥ 0 and 𝑥𝑥1,𝑡𝑡
(2)𝑒𝑒𝑡𝑡 = 0, for all 

𝑡𝑡 ∈ ℕ+.  

Now, from the definition of Problem 2 (OBC), we also have that for all 𝑡𝑡 ∈ ℕ+, 

0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1
(2) − 𝜇𝜇� + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡. 

Furthermore, if 𝑡𝑡 > 𝑇𝑇, then 𝑡𝑡 > 𝑇𝑇′, and hence 𝑒𝑒𝑡𝑡 = 0. Hence, by Assumption 1, �𝑥𝑥𝑇𝑇+1
(2) − 𝜇𝜇� =

𝐹𝐹�𝑥𝑥𝑇𝑇
(2) − 𝜇𝜇� . Thus, much as before, if we define 𝑠𝑠�̃�𝑇+1 ≔ 0 , then with 𝑡𝑡 = 𝑇𝑇 , �𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇� =

𝑠𝑠�̃�𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇�. Consequently, 

0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡, 

so: 

�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, 

i.e., if we define: 𝑠𝑠�̃�𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, then �𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇�. As 

before, by induction this must hold for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}. By comparing the definitions of 𝑠𝑠𝑡𝑡 

and 𝑠𝑠�̃�𝑡, and the laws of motion of 𝑥𝑥𝑡𝑡 under both problems, we then immediately have that if 

Problem 3 (News) is started with 𝑥𝑥0 = 𝑥𝑥0
(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇

′ , then 𝑥𝑥𝑡𝑡
(2) solves Problem 3 (News). 

Conversely, if 𝑥𝑥𝑡𝑡
(2) solves Problem 3 (News) for some 𝑦𝑦0, then from the laws of motion of 𝑥𝑥𝑡𝑡 

 

9 This representation was also exploited by Holden (2010) and Holden and Paetz (2012). 
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under both problems it must be the case that 𝑠𝑠�̃�𝑡 = 𝑠𝑠𝑡𝑡  for all 𝑡𝑡 ∈ ℕ , and hence from the 

definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠�̃�𝑡, we have that 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

This establishes the following result: 

Lemma 3 For any solution, �𝑇𝑇, 𝑥𝑥𝑡𝑡
(2)� to Problem 2 (OBC): 

1) With 𝑒𝑒1:𝑇𝑇  as defined in equation (8) , 𝑒𝑒1:𝑇𝑇 ≥ 0 , 𝑥𝑥1,1:𝑇𝑇
(2) ≥ 0  and 𝑥𝑥1,1:𝑇𝑇

(2) ∘ 𝑒𝑒1:𝑇𝑇 = 0 , where ∘ 

denotes the Hadamard (entry-wise) product. 

2) 𝑥𝑥𝑡𝑡
(2) is also the unique solution to Problem 3 (News) with 𝑥𝑥0 = 𝑥𝑥0

(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

3) If 𝑥𝑥𝑡𝑡
(2) solves Problem 3 (News) with 𝑥𝑥0 = 𝑥𝑥0

(2) and with some 𝑦𝑦0, then 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

To use the easy solution to Problem 3 (News) to assist us in solving Problem 2 (OBC) just 

requires one more result. In particular, we need to show that if 𝑦𝑦0 ∈ ℝ𝑇𝑇 is such that 𝑦𝑦0 ≥ 0, 

𝑥𝑥1,1:𝑇𝑇
(3) ∘ 𝑦𝑦0

′ = 0  and 𝑥𝑥1,𝑡𝑡
(3) ≥ 0  for all 𝑡𝑡 ∈ ℕ , where 𝑥𝑥𝑡𝑡

(3)  is the unique solution to Problem 3 

(News) when started at 𝑥𝑥0, 𝑦𝑦0, then 𝑥𝑥𝑡𝑡
(3) must also be a solution to Problem 2 (OBC). 

So, suppose that 𝑦𝑦0 ∈ ℝ𝑇𝑇  is such that 𝑦𝑦0 ≥ 0, 𝑥𝑥1,1:𝑇𝑇
(3) ∘ 𝑦𝑦0

′ = 0 and 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, 

where 𝑥𝑥𝑡𝑡
(3) is the unique solution to Problem 3 (News) when started at 𝑥𝑥0, 𝑦𝑦0. We would like to 

prove that in this case 𝑥𝑥𝑡𝑡
(3) must also be a solution to Problem 2 (OBC). I.e., we must prove that 

for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡
(3) = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇�� , (9) 

0 = 𝐴𝐴−1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + 𝐵𝐵−1,⋅�𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶−1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇�. 

By the definition of Problem 3 (News), the latter equation must hold with equality. Hence, we 

just need to prove that equation (9) holds for all 𝑡𝑡 ∈ ℕ+. So, let 𝑡𝑡 ∈ ℕ+. Now, if 𝑥𝑥1,𝑡𝑡
(3) > 0, then 

𝑦𝑦𝑡𝑡,0 = 0 , by the complementary slackness type condition (𝑥𝑥1,1:𝑇𝑇
(3) ∘ 𝑦𝑦0

′ = 0 ). Thus, from the 

definition of Problem 3 (News): 

𝑥𝑥1,𝑡𝑡
(3) = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇� 

= max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇��, 

as required. The only remaining case is that 𝑥𝑥1,𝑡𝑡
(3) = 0  (since 𝑥𝑥1,𝑡𝑡

(3) ≥ 0  for all 𝑡𝑡 ∈ ℕ , by 

assumption), which implies that: 

𝑥𝑥1,𝑡𝑡
(3) = 0 = 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵1,⋅�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0 

= 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0, 

by the definition of Problem 3 (News). Thus: 
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𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� = −𝑦𝑦𝑡𝑡,0 ≤ 0. 

Consequently, equation (9) holds in this case too, completing the proof. 

Together with Lemma 2, Lemma 3, and our representation of the solution of Problem 3 

(News) from equation (7), this completes the proof of the following key theorem: 

Theorem 1 (Restated)  The following hold: 

1) Let 𝑥𝑥𝑡𝑡
(3)  be the unique solution to Problem 3 (News) given 𝑇𝑇 ∈ ℕ+ , 𝑥𝑥0 ∈ ℝ𝑛𝑛  and 𝑦𝑦0 ∈

ℝ𝑇𝑇. Then �𝑇𝑇, 𝑥𝑥𝑡𝑡
(3)� is a solution to Problem 2 (OBC) given 𝑥𝑥0 if and only if 𝑦𝑦0 ≥ 0, 𝑦𝑦0 ∘

�𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 and 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 > 𝑇𝑇. 

2) Let �𝑇𝑇, 𝑥𝑥𝑡𝑡
(2)� be any solution to Problem 2 (OBC) given 𝑥𝑥0. Then there exists a unique 𝑦𝑦0 ∈

ℝ𝑇𝑇 such that 𝑦𝑦0 ≥ 0, 𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0, and such that 𝑥𝑥𝑡𝑡
(2) is the unique 

solution to Problem 3 (News) given 𝑇𝑇, 𝑥𝑥0 and 𝑦𝑦0. 

Appendix D.3: Generalizations 

It is straightforward to generalise the results of this paper to less restrictive otherwise linear 

models with occasionally binding constraints. 

Firstly, if the constraint is on a variable other than 𝑥𝑥1,𝑡𝑡, or in another equation than the first, 

then all of the results go through as before, just by relabelling and rearranging. Furthermore, if 

the constraint takes the form of 𝑧𝑧1,𝑡𝑡 = max�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡� , where 𝑧𝑧1,𝑡𝑡 , 𝑧𝑧2,𝑡𝑡  and 𝑧𝑧3,𝑡𝑡  are linear 

expressions in the contemporaneous values, lags and leads of 𝑥𝑥𝑡𝑡, then, assuming without loss 

of generality that 𝑧𝑧3,⋅ > 𝑧𝑧2,⋅  in steady state, we have that 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡� . 

Hence, adding a new auxiliary variable 𝑥𝑥𝑛𝑛+1,𝑡𝑡 , with the associated equation 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = 𝑧𝑧1,𝑡𝑡 −

𝑧𝑧2,𝑡𝑡, and replacing the constrained equation with 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡�, we have a new 

equation in the form covered by our results. Moreover, if rather than a max we have a min, we 

just use the fact that if 𝑧𝑧1,𝑡𝑡 = min�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡�, then −𝑧𝑧1,𝑡𝑡 = max�−𝑧𝑧2,𝑡𝑡, −𝑧𝑧3,𝑡𝑡�, which is covered 

by the generalisation just established. The easiest encoding of the complementary slackness 

conditions, 𝑧𝑧𝑡𝑡 ≥ 0, 𝜆𝜆𝑡𝑡 ≥ 0 and 𝑧𝑧𝑡𝑡𝜆𝜆𝑡𝑡 = 0, is 0 = min{𝑧𝑧𝑡𝑡, 𝜆𝜆𝑡𝑡}, which is of this form. 

To deal with multiple occasionally binding constraints, we use the representation from 

Holden and Paetz (2012). Suppose there are 𝑐𝑐  constrained variables in the model. For 𝑎𝑎 ∈

{1, … , 𝑐𝑐}, let 𝑞𝑞(𝑎𝑎) be the path of the 𝑎𝑎th constrained variable in the absence of all constraints. For 
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𝑎𝑎, 𝑏𝑏 ∈ {1, … , 𝑐𝑐}, let 𝑀𝑀(𝑎𝑎,𝑏𝑏) be the matrix whose 𝑘𝑘th column is the impulse response of the 𝑎𝑎th 

constrained variable to magnitude 1 news shocks at horizon 𝑘𝑘 − 1 to the equation defining the 

𝑏𝑏th constrained variable. For example, if 𝑐𝑐 = 1 so there is a single constraint, then we would 

have that 𝑀𝑀(1,1) = 𝑀𝑀 as defined in equation (6). Finally, let: 

𝑞𝑞 ≔
⎣
⎢⎢
⎡𝑞𝑞(1)

⋮
𝑞𝑞(𝑐𝑐)⎦

⎥⎥
⎤ , 𝑀𝑀 ≔

⎣
⎢⎡

𝑀𝑀(1,1) ⋯ 𝑀𝑀(1,𝑐𝑐)

⋮ ⋱ ⋮
𝑀𝑀(𝑐𝑐,1) ⋯ 𝑀𝑀(𝑐𝑐,𝑐𝑐)⎦

⎥⎤, 

and let 𝑦𝑦 be a solution to the LCP �𝑞𝑞, 𝑀𝑀�. Then the vertically stacked paths of the constrained 

variables in a solution which satisfies these constraints is given by 𝑞𝑞 + 𝑀𝑀𝑦𝑦, and Theorem 1 

(Restated)  goes through as before. 

: Example applications to New Keynesian models 

In the first subsection here, we examine the simple Brendon, Paustian & Yates (BPY) 

(2013) model, before going on to consider a variant of it with price targeting, which we show 

to produce determinacy. In the BPY (2013) model, multiplicity and non-existence stem from a 

response to growth rates in the Taylor rule. However, we do not want to give the impression 

that multiplicity and non-existence are only caused by such a response, or that they are only a 

problem in carefully constructed theoretical examples. Thus, in Appendix E.2, we show that a 

standard NK model with positive steady state inflation and a ZLB possesses multiple equilibria 

in some states, and no solutions in others, even with an entirely standard Taylor rule. We also 

show that here too price level targeting is sufficient to restore determinacy. The next subsection 

shows that these conclusions also carry through to the posterior-modes of the Smets & Wouters 

(2003; 2007) models, and discusses the plausibility of self-fulfilling jumps to the ZLB. Finally, 

in Appendix E.4 we look at whether a simple model is determinate around the deflationary 

steady state. 

Appendix E.1: Variants of the Brendon, Paustian & Yates (BPY) (2013) model 

Brendon, Paustian & Yates (2013; 2019), is one of the most relevant pieces of prior work 

for the current paper. Like us, these authors examined perfect foresight equilibria of NK models 

with terminal conditions. In BPY (2013), the authors show analytically that in a very simple 

NK model, featuring a response to the growth rate in the Taylor rule, there are multiple perfect-
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foresight equilibria when all agents believe that with probability one, in one period’s time, they 

will escape the bound and return to the neighbourhood of the “good” steady state. Furthermore, 

the authors show numerically that in some select other models, there are multiple perfect-

foresight equilibria when the economy begins at the steady state, and all agents believe that the 

economy will jump to the bound, remain there for some number of periods, before leaving it 

endogenously, after which they believe they will never hit the bound again. BPY (2019) extends 

these results to fully non-linear rational expectations equilibria in certain simple NK models. 

Relative to these authors, we focus more on providing general theoretical results, which 

permit numerical analysis (for the otherwise linear, perfect foresight case) that is both more 

robust and less restrictive. This robustness and generality is crucial in showing multiplicity even 

in simple NK models, with entirely standard Taylor rules. For example, whereas in an 

intermediary working paper BPY (2016) write that price-dispersion “does not have a strong 

enough impact on equilibrium allocations for the sort of propagation that we need”, we show 

that the presence of price dispersion is sufficient for multiplicity. Our general results are also 

crucial for allowing us to show uniqueness under a price level target. 

The simple Brendon, Paustian & Yates (BPY) (2013) model 

Brendon, Paustian & Yates (2013), provide a simple New Keynesian model that we can use 

to illustrate the possibility for multiplicity in NK models. Its equations follow:10 

𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝜕𝜕,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1�, 

 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

where 𝑥𝑥𝜕𝜕,𝑡𝑡 is the nominal interest rate, 𝑥𝑥𝑦𝑦,𝑡𝑡 is the output gap, 𝑥𝑥𝜋𝜋,𝑡𝑡 is inflation, and 𝛽𝛽 ∈ (0,1), 

𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 𝛼𝛼𝜋𝜋 ∈ (1, ∞)  are parameters. The model’s only departure from the 

textbook three equation NK model is the presence of an output growth rate term in the Taylor 

rule. This introduces an endogenous state variable in a tractable manner. In Appendix H.8, 

below, we prove the following: 

 

10  An implementation of this model is contained within DynareOBC in the file 

“Examples/BrendonPaustianYates2013/BPYModel.mod”. 
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Proposition 12 The BPY model is in the form of Problem 2 (OBC), and satisfies Assumptions 

1, 2 and 3. With 𝑇𝑇 = 1, 𝑀𝑀 < 0 (𝑀𝑀 = 0) if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 (𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋). 

Hence, by Theorem 1 (Restated) , when all agents believe the bound will be escaped after at 

most one period, if 𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a unique solution for all 𝑞𝑞, i.e. no matter what 

the nominal interest rate would be that period were no ZLB. If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋 , then the model has 

a unique solution whenever 𝑞𝑞 > 0 , infinitely many solutions when 𝑞𝑞 = 0 , and no solutions 

leaving the ZLB after one period when 𝑞𝑞 < 0. Finally, if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 then the model has two 

solutions when 𝑞𝑞 > 0, one solution when 𝑞𝑞 = 0 and no solution escaping the ZLB next period 

when 𝑞𝑞 < 0. 

The mechanism here is as follows. The stronger the response to the growth rate, the more 

persistent is output, as the monetary rule implies additional stimulus if output was high last 

period. Suppose then that there was an unexpected positive shock to nominal interest rates. 

Then, due to the persistence, this would lower not just output and inflation today, but also output 

and inflation next period. With low expected inflation, real interest rates are high, giving 

consumers an additional reason to save, and thus further lowering output and inflation this 

period and next. With sufficiently high 𝛼𝛼∆𝑦𝑦 , this additional amplification is so strong that 

nominal interest rates fall this period, despite the positive shock, explaining why 𝑀𝑀 may be 

negative.11 Now, consider varying the magnitude of the original shock. For a sufficiently large 

shock, interest rates would hit zero. At this point, there is no observable evidence that a shock 

has arrived at all, since the ZLB implies that given the values of output and inflation, nominal 

interest rates should be zero even without a shock. Such a jump to the ZLB must then be a self-

fulfilling prophecy. Agents expect low inflation, so they save, which, thanks to the monetary 

rule, implies low output tomorrow, rationalising the expectations of low inflation. 

 

11 Note that this cannot happen in the canonical 3 equation NK model in which the central bank responds to the output gap, not 

output growth. For, without state variables, in the period after the shock’s arrival, inflation will be at steady state. Thus, in the 

period of the shock, real interest rates move one for one with nominal interest rates. Were the positive shock to the nominal 

interest rate to produce a fall in its level, then the Euler equation would imply high consumption today, also implying high 

inflation today via the Phillips curve. But, with consumption, inflation, and the shock all positive, the nominal interest rate 

must be above steady state, contradicting our assumption that it had fallen. 
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Minimum �𝒚𝒚�∞ solution 

 
Minimum �𝒒𝒒 + 𝑴𝑴𝒚𝒚�∞ solution 

  

Figure 2: Alternative solutions following a magnitude 𝟏𝟏 impulse to 𝜺𝜺𝒕𝒕  in the BPY model. 

The dashed line in the right plot repeats the left plot, for comparison. 

We finish this subsection with an example of multiplicity in the BPY (2013) model. This 

serves to illustrate the potential economic consequences of multiplicity in NK models. We 

present impulse responses to a shock to the Euler equation under two different solutions. With 

the shock added to the Euler equation, it now takes the form: 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝜕𝜕,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 − (0.01)𝜀𝜀𝑡𝑡�. 

The other two equations of the BPY model equations remain as they were given above. We take 

the parameterisation 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), following BPY, and we 

additionally set 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.6, to ensure we are in the region with multiple solutions. 

In Figure 2, we show two alternative solutions to the impulse response to a magnitude 1 shock 

to 𝜀𝜀𝑡𝑡. The solid line in the left plot gives the solution which minimises �𝑦𝑦�∞. This solution never 

hits the bound, and is moderately expansionary. The solid line in the right plot gives the solution 

which minimises �𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞. (The dashed line there repeats the left plot, for comparison.) This 

solution stays at the bound for two periods, and is strongly contractionary, with a magnitude 

around 100 times larger than the other solution.12 

 

12  The plots in Figure 2 may be generated by navigating to the “Examples/BrendonPaustianYates2013” folder within 

DynareOBC, and then running “GeneratePlots”. 
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The BPY model with shadow interest rate persistence 

We showed that if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋  in the BPY (2013) model, then with 𝑇𝑇 = 1, 𝑀𝑀 < 0.  When 

𝑇𝑇 > 1, this implies that 𝑀𝑀 is neither P0, general positive semi-definite, semi-monotone, co-

positive, nor sufficient, since the top-left 1 × 1 principal sub-matrix of 𝑀𝑀 is the same as when 

𝑇𝑇 = 1 . Thus, if anything, when 𝑇𝑇 > 1 , the parameter region in which there are multiple 

solutions (when away from the bound or at it) is larger. However, numerical experiments 

suggest that this parameter region in fact remains the same as 𝑇𝑇  increases, which is 

unsurprising given the weak persistence of this model. Thus, if we want more interesting results 

with higher 𝑇𝑇, we need to consider a model with a stronger persistence mechanism. 

One obvious possibility is to consider models with either persistence in the interest rate, or 

persistence in the “shadow” rate that would hold were it not for the ZLB. Following BPY 

(2013), we introduce persistence in the shadow interest rate by replacing the previous Taylor 

rule with 𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡�, where 𝑥𝑥𝑑𝑑,𝑡𝑡, the shadow nominal interest rate is given by:13 

𝑥𝑥𝑑𝑑,𝑡𝑡 = �1 − 𝜌𝜌��1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1. 

It is easy to verify that this may be put in the form of Problem 2 (OBC), and that with 𝛽𝛽 ∈

(0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 𝛼𝛼𝜋𝜋 ∈ (1, ∞) , 𝜌𝜌 ∈ (−1,1) , Assumption 2 is satisfied. For our 

numerical exercise, we again set 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , 𝜌𝜌 = 0.5 , 

following BPY. In Figure 3, we plot the regions in �𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋� space in which 𝑀𝑀 is a P-matrix 

(P0-matrix) when 𝑇𝑇 = 2 or 𝑇𝑇 = 4. In the smaller 𝑇𝑇 case, the P-matrix region is much larger. 

This relationship appears to continue to hold for both larger and smaller 𝑇𝑇, with the equivalent 

𝑇𝑇 = 1 plot being almost entirely shaded, and the large 𝑇𝑇 plot tending to the equivalent plot 

from the model without monetary policy persistence. Intuitively, the persistence in the shadow 

nominal interest rate dampens the immediate response of nominal interest rates to inflation and 

output growth, making it harder to induce a ZLB episode over short-horizons. 

Further evidence that the long-horizon behaviour is the same as in the model without 

persistence is provided by the fact that with 𝑇𝑇 = 20 , 𝛼𝛼𝜋𝜋 = 1.5  and 𝛼𝛼∆𝑦𝑦 = 1.05 ,14  𝑀𝑀  is a P-

 

13 An implementation of this model is contained within DynareOBC in the file: 

“Examples/BrendonPaustianYates2013/BPYModelPersistent.mod”. 

14 Results for larger 𝛼𝛼∆𝑦𝑦 were impossible due to numerical errors. 
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matrix. Moreover, from Proposition 2 with 𝑇𝑇 = 50 , we have that 𝜍𝜍 > 6.385 × 10−8 , so the 

model always has a feasible path, in the sense of Definition 6 (Feasibility), by Corollary 4.15 

On the other hand, with 𝑇𝑇 = 200, 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.51, then 𝑀𝑀 is not an S-matrix,16 

meaning that for all sufficiently large 𝑇𝑇, 𝑀𝑀 is not a P-matrix, so there are sometimes multiple 

solutions. Additionally, from Proposition 2 with 𝑇𝑇 = 200, 𝜍𝜍 ≤ 0 + numerical error, meaning 

that it is likely that the model does not have a solution for all possible paths of 𝑥𝑥𝜕𝜕,𝑡𝑡.17 

 

 
𝑻𝑻 = 𝟐𝟐 

 
𝑻𝑻 = 𝟒𝟒 

  

Figure 3: Regions in which 𝑴𝑴 is a P-matrix (shaded grey) or a P0-matrix (shaded grey, plus the black line), when 𝑻𝑻 =

𝟐𝟐 (left) or 𝑻𝑻 = 𝟒𝟒 (right).18 

The BPY model with price level targeting 

We may also introduce persistence in shadow interest rates by setting:  

𝑥𝑥𝑑𝑑,𝑡𝑡 = �1 − 𝜌𝜌��1 − 𝛽𝛽� + �𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1, 

 

15  This result is one of those produced by the “GenerateDeterminacyResults” script within the 

“Examples/BrendonPaustianYates2013” folder of DynareOBC. 

16 This was verified a second way by checking that −𝑀𝑀′ was an S0-matrix, as discussed in Footnote 4. 

17  These results are also among those produced by the “GenerateDeterminacyResults” script within the 

“Examples/BrendonPaustianYates2013” folder of DynareOBC. 

18 Code to generate this plot is contained within the Maple worksheet: 

“Examples/BrendonPaustianYates2013/AnalyticResults.mw”. 
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where 𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡�. If the second bracketed term was multiplied by �1 − 𝜌𝜌�, then this 

would be entirely standard, however as written here, in the limit as 𝜌𝜌 → 1, this tends to: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = 1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡 

where 𝑥𝑥𝑝𝑝,𝑡𝑡 is the price level, so 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1. This is a level targeting rule, with nominal 

GDP targeting as a special case with 𝛼𝛼∆𝑦𝑦 = 𝛼𝛼𝜋𝜋  . Note that the omission of the �1 − 𝜌𝜌� 

coefficient on 𝛼𝛼∆𝑦𝑦 and 𝛼𝛼𝜋𝜋  is akin to having a “true” response to output growth of 
𝛼𝛼∆𝑦𝑦
1−𝜌𝜌 and a 

“true” response to inflation of 𝛼𝛼𝜋𝜋
1−𝜌𝜌, so in the limit as 𝜌𝜌 → 1, we effectively have an infinitely 

strong response to these quantities. It turns out that this is sufficient to produce determinacy for 

all 𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋 ∈ (0, ∞). 

In particular, given the model:19 

𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝜕𝜕,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 + 𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 − 𝛽𝛽𝑥𝑥𝑝𝑝,𝑡𝑡 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

we prove in Appendix H.9, below, that the following proposition holds: 

Proposition 13 The BPY model with price targeting is in the form of Problem 2 (OBC), and 

satisfies Assumptions 1, 2 and 3. With 𝑇𝑇 = 1, 𝑀𝑀 > 0 for all 𝛼𝛼𝜋𝜋 ∈ (0, ∞), 𝛼𝛼∆𝑦𝑦 ∈ [0, ∞). 

Furthermore, with 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), as before, and 𝛼𝛼∆𝑦𝑦 =

1, 𝛼𝛼𝜋𝜋 = 1, if we check our lower bound on 𝜍𝜍 with 𝑇𝑇 = 20, we find that 𝜍𝜍 > 0.042. Hence, this 

model always has a feasible path, in the sense of Definition 6 (Feasibility). Given that 𝑑𝑑0 > 0 

for this model, and that for 𝑇𝑇 = 1000 , 𝑀𝑀  is a P-matrix by our sufficient conditions from 

Corollary 7, this is strongly suggestive of the existence of a unique solution for any 𝑞𝑞 and for 

arbitrarily large 𝑇𝑇.20 

 

19  An implementation of this model is contained within DynareOBC in the file 

“Examples/BrendonPaustianYates2013/BPYModelPriceLevelTargeting.mod”. 

20  These results are also among those produced by the “GenerateDeterminacyResults” script within the 

“Examples/BrendonPaustianYates2013” folder of DynareOBC. 
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Appendix E.2: The linearized Fernández-Villaverde et al. (2015) model 

The discussion of the BPY (2013) model might lead one to believe that multiplicity and 

non-existence is solely a consequence of overly aggressive monetary responses to output 

growth, and overly weak monetary responses to inflation. However, it turns out that basic NK 

models without indexation to a positive steady-state inflation rate by non-optimising firms (and 

hence price dispersion in the steady state), still imply multiple equilibria in some states of the 

world (i.e. for some 𝑞𝑞) and no solutions in others, even with extremely aggressive monetary 

responses to inflation and without any monetary response to output growth. Price level targeting 

again fixes these problems though. 

We show these results in the Fernández-Villaverde et al. (2015) model, which is a basic 

non-linear New Keynesian model without capital or price indexation of non-resetting firms, but 

featuring (non-valued) government spending and steady-state inflation (and hence price-

dispersion).21 The model’s equilibrium conditions follow: 
1
𝐶𝐶𝑡𝑡

= 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡 �
𝛽𝛽𝑡𝑡+1

Π𝑡𝑡+1𝐶𝐶𝑡𝑡+1
� (∗) 

𝜓𝜓𝐿𝐿𝑡𝑡
𝜗𝜗𝐶𝐶𝑡𝑡 = 𝑊𝑊𝑡𝑡 

𝜀𝜀𝑋𝑋1,𝑡𝑡 = (𝜀𝜀 − 1)𝑋𝑋2,𝑡𝑡 

𝑋𝑋1,𝑡𝑡 =
𝑌𝑌𝑡𝑡
𝐶𝐶𝑡𝑡

𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡

+ 𝜃𝜃𝔼𝔼𝑡𝑡𝛽𝛽𝑡𝑡+1Π𝑡𝑡+1
𝜀𝜀 𝑋𝑋1,𝑡𝑡+1 (∗) 

𝑋𝑋2,𝑡𝑡 = Π𝑡𝑡
∗ �

𝑌𝑌𝑡𝑡
𝐶𝐶𝑡𝑡

+ 𝜃𝜃𝔼𝔼𝑡𝑡𝛽𝛽𝑡𝑡+1
Π𝑡𝑡+1

𝜀𝜀−1

Π𝑡𝑡+1
∗ 𝑋𝑋2,𝑡𝑡+1� (∗) 

log 𝑅𝑅𝑡𝑡 = max �0, log 𝑅𝑅 + 𝜙𝜙𝜋𝜋 log �
Π𝑡𝑡
Π � + 𝜙𝜙𝑦𝑦 log �

𝑌𝑌𝑡𝑡
𝑌𝑌 � + 𝜎𝜎𝑚𝑚𝜀𝜀𝑚𝑚,𝑡𝑡� 

𝐺𝐺𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑌𝑌𝑡𝑡 

1 = 𝜃𝜃Π𝑡𝑡
𝜀𝜀−1 + (1 − 𝜃𝜃)Π𝑡𝑡

∗1−𝜀𝜀 

𝜈𝜈𝑡𝑡 = 𝜃𝜃Π𝑡𝑡
𝜀𝜀𝜈𝜈𝑡𝑡−1 + (1 − 𝜃𝜃)Π𝑡𝑡

∗−𝜀𝜀 (∗) 

𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡 = 𝑌𝑌𝑡𝑡 =
𝐴𝐴𝑡𝑡
𝜈𝜈𝑡𝑡

𝐿𝐿𝑡𝑡 

log 𝛽𝛽𝑡𝑡 = �1 − 𝜌𝜌𝛽𝛽� log 𝛽𝛽 + 𝜌𝜌𝛽𝛽 log 𝛽𝛽𝑡𝑡−1 + 𝜎𝜎𝛽𝛽𝜀𝜀𝛽𝛽,𝑡𝑡 

log 𝐴𝐴𝑡𝑡 = �1 − 𝜌𝜌𝐴𝐴� log 𝐴𝐴 + 𝜌𝜌𝐴𝐴 log 𝐴𝐴𝑡𝑡−1 + 𝜎𝜎𝐴𝐴𝜀𝜀𝐴𝐴,𝑡𝑡 

 

21  An implementation of this model is contained within DynareOBC in the file 

“Examples/FernandezVillaverdeEtAl2015/NK.mod”. 
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log 𝑆𝑆𝑡𝑡 = �1 − 𝜌𝜌𝑆𝑆� log 𝑆𝑆 + 𝜌𝜌𝑆𝑆 log 𝑆𝑆𝑡𝑡−1 + 𝜎𝜎𝑆𝑆𝜀𝜀𝑆𝑆,𝑡𝑡 

Welfare in the model in period 𝑡𝑡 is given by: 

𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑠𝑠

𝑠𝑠

𝑘𝑘=0
� �log 𝐶𝐶𝑡𝑡+𝑠𝑠 −

𝜓𝜓
1 + 𝜗𝜗 𝐿𝐿𝑡𝑡

1+𝜗𝜗�
∞

𝑠𝑠=0
. 

After substitutions, the model can be reduced to just the four non-linear equations marked 

with (∗) above (plus the three shock laws of motion) which are functions of gross inflation, Π𝑡𝑡, 

labour supply, 𝐿𝐿𝑡𝑡 , price dispersion, 𝜈𝜈𝑡𝑡 , and an auxiliary variable introduced from the firms’ 

price-setting first order condition, 𝑋𝑋1,𝑡𝑡 , (plus the shocks). Of these variables, only price 

dispersion enters with a lag. We linearize the model around its steady state, and then reintroduce 

the “max” operator which linearization removed from the Taylor rule.22 All parameters are set 

to the values given in Fernández-Villaverde et al. (2015). There is no response to output growth 

in the Taylor rule, so any multiplicity cannot be a consequence of the mechanism highlighted 

by BPY (2013). 

For this model, numerical calculations reveal that with 𝑇𝑇 ≤ 14, 𝑀𝑀 is a P-matrix. However, 

with 𝑇𝑇 ≥ 15, 𝑀𝑀 is not a P matrix, and thus there are certainly some states of the world (some 

𝑞𝑞) in which the model has multiple solutions. Furthermore, with 𝑇𝑇 = 1000, our upper bound 

on 𝜍𝜍 from Proposition 2 implies that 𝜍𝜍 ≤ 0 + numerical error, suggesting that the model does 

not have a solution for all possible paths of interest rates.23 

To make the mechanism behind these results clear, we will compare the Fernández-

Villaverde et al. (2015) model to an altered version of it with full indexation to steady-state 

inflation of prices that are not set optimally. To a first order approximation, the model with full 

indexation never has any price dispersion, and thus has no endogenous state variables. It is thus 

a purely forwards looking model, and so it is perhaps unsurprising that it should have a unique 

equilibrium given a terminal condition, even in the presence of the ZLB. 

 

 

22 Before linearization, we transform the model’s variables so that the transformed variables take values on the entire real line. 

I.e., we work with the logarithms of labour supply, price dispersion and the auxiliary variable. For inflation, we note that 

inflation is always less than 𝜃𝜃
1

1−𝜀𝜀. Thus, we work with a logit transformation of inflation over 𝜃𝜃
1

1−𝜀𝜀. 

23  These results are among those that may be generated by running “GenerateDeterminacyResults” within the 

“Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
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Figure 4: Impulse responses to a shock announced in period 𝟏𝟏, but hitting in period 𝟑𝟑𝟑𝟑, in basic New Keynesian 

models with (left 4 panels) and without (right 4 panels) indexation to steady-state inflation. 

All variables are in logarithms. In both cases, the model and parameters are taken from Fernández-Villaverde et al. (2015), 

the only change being the addition of complete price indexation to steady-state inflation for non-updating firms in the left 

hand plots. 
  
 

 
 

Figure 5: Difference between the IRFs of nominal interest rates from the two models shown in Figure 4. 

Negative values imply that nominal interest rates are lower in the model without indexation. 

In Figure 4 we plot the impulse responses of first order approximations to both models to 

a shock to nominal interest rates that is announced in period one but that does not hit until 

period thirty.24 For both models, the shape is similar, however, in the model without indexation, 

 

24  This figure and the following ones in this subsection may be generated by running “GeneratePlots” within the 

“Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
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the presence of price dispersion reduces inflation both before and after the shock hits. This is 

because the predicted fall in inflation compresses the price distribution, reducing dispersion, 

and thus reducing the number of firms making large adjustments. The fall in price dispersion 

also increases output, due to lower efficiency losses from miss-pricing. However, the effect on 

interest rates is dominated by the negative inflation effect, as the Taylor-rule coefficient on 

output cannot be too high if there is to be determinacy.25 For reference, the difference between 

the IRFs of nominal interest rates in each model is plotted in Figure 5, making clear that interest 

rates are on average lower following the shock in the model without indexation. 

Remarkably, this small difference in the impulse responses between models is enough that 

the linearized model without indexation has multiple equilibria given a ZLB, but the linearized 

model with full indexation is determinate. This illustrates just how fragile is the uniqueness in 

the linearized purely forward-looking model. Informally, what is needed for multiplicity is that 

the impulse responses to positive news shocks to interest rates are sufficiently negative for a 

sufficiently high amount of time that a linear combination of them could be negative in every 

period in which a shock arrives. Here, price dispersion is providing the required additional 

reduction to nominal interest rates following a news shock. 

We illustrate how multiplicity emerges in the model without indexation by showing, in 

Figure 6, the construction of an additional equilibrium which jumps to the ZLB for seventeen 

quarters.26 If the economy is to be at the bound for seventeen quarters, then for those seventeen 

quarters, the nominal interest rate must be higher than it would be according to the Taylor rule, 

meaning that we need to consider seventeen endogenous news shocks, at horizons from zero to 

sixteen quarters into the future. The impulse responses to unit shocks of this kind are shown in 

the leftmost plot. Each impulse response has broadly the same shape as the one shown for 

nominal interest rates in the right of Figure 4. The central figure plots the same impulse 

 

25 One might think the situation would be different if the response to output was high enough that the rise in output after the 

shock produced a rise in interest rates. However, as observed by Ascari and Ropele (2009), the determinacy region is smaller 

in the presence of price dispersion than would be suggested by the Taylor criterion. Numerical experiments suggest that in all 

the determinate region, interest rates are below steady state following the shock. 

26 Seventeen quarters was the minimum span for which an equilibrium of this form could be found. 
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responses again, but now each line is scaled by a constant so that their sum gives the line shown 

in black in the rightmost plot. In this rightmost plot, the red line gives the ZLB’s location, 

relative to steady state, thus the combined impulse response spends seventeen quarters at the 

ZLB before returning to steady state. Since there are only “news shocks” in the periods in which 

the economy is at the ZLB, this gives a perfect foresight rational expectations equilibrium which 

makes a self-fulfilling jump to the ZLB. 
 

 

 
  

Figure 6: Construction of multiple equilibria in the Fernández-Villaverde et al. (2015) model. 

The left plot shows the IRFs to news shocks arriving zero to sixteen quarters after becoming known. 

The middle plot shows the same IRFs scaled appropriately. 

The right plot shows the sum of the scaled IRFs shown in the central figure, where the red line gives the ZLB’s location, 

relative to steady state. 

Figure 7 illustrates the potential consequences of this multiplicity.27 It shows two solutions 

following a 10 standard deviation demand shock (i.e. a positive shock to 𝛽𝛽𝑡𝑡 ). For purely 

illustrative purposes, we also include a consumption equivalent measure of welfare. This is the 

quantity 𝑍𝑍𝑡𝑡 which solves: 

𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑠𝑠

𝑠𝑠

𝑘𝑘=0
� �log 𝐶𝐶𝑡𝑡+𝑠𝑠 −

𝜓𝜓
1 + 𝜗𝜗 𝐿𝐿𝑡𝑡

1+𝜗𝜗�
∞

𝑠𝑠=0

= 𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑠𝑠

𝑠𝑠

𝑘𝑘=0
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where 𝐶𝐶�̃�𝑡 and �̃�𝐿𝑡𝑡 are the values consumption and labour supply would take were prices flexible. 

𝑍𝑍𝑡𝑡 will be less than one in steady-state due to the distortion of price-dispersion. However, these 

welfare calculations come with two caveats. Firstly, all our calculations here are under perfect 

foresight, so our welfare measure is not capturing any of the effects of uncertainty. Secondly, 

 

27  This figure, like the previous ones in this subsection, may be generated by running “GeneratePlots” within the 

“Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
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our welfare measure is based on an underlying first order approximation, which is likely to be 

unreliable given such big shocks. To mitigate this, we calculate welfare and other variables in 

a way which introduces no further error beyond the approximation error coming from the four 

endogenous variables, inflation, labour supply, price dispersion and the firms’ auxiliary 

variable. Thus, all equations except the four marked with (∗)  will hold exactly, e.g. it will 

always be true that 𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡 = 𝑌𝑌𝑡𝑡 = 𝐴𝐴𝑡𝑡
𝜈𝜈𝑡𝑡

𝐿𝐿𝑡𝑡 ensuring that consumption levels are feasible given 

labour supply and price dispersion. Despite this, approximation error is likely to be substantial. 

With these caveats in mind, we see that while welfare actually improves in the “fundamental” 

solution (due to the reduction in price dispersion), in the second solution consumption 

equivalent welfare falls by about 12%. 
  

  
  

Figure 7: A “good” solution (left 6 panels) and a “bad” solution (right 6 panels), following a 10 standard deviation 

demand shock in the Fernández-Villaverde et al. (2015) model. 

All variables are in levels. The calculation of the welfare consumption equivalent is detailed in the text. 

The situation is quite different under price level targeting. In particular, if we replace 

inflation in the monetary rule with the price level relative to its linear trend, which evolves 

according to: 

log 𝑃𝑃𝑡𝑡 = log 𝑃𝑃𝑡𝑡−1 + log �
Π𝑡𝑡
Π � , (10) 
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then with 𝑇𝑇 = 200, the lower bound from Proposition 2 implies that 𝜍𝜍 > 0.003, and hence that 

the model is always feasible, in the sense of Definition 6 (Feasibility). Furthermore, even with 

𝑇𝑇 = 1000, 𝑀𝑀 is a P-matrix by our sufficient conditions from Corollary 7. 28 This is strongly 

suggestive of uniqueness even for arbitrarily large 𝑇𝑇, given the reasonably short-lived dynamics 

of the model. 

Appendix E.3: The Smets & Wouters (2003; 2007) models, and the Adjemian, 

Darracq Pariès & Moyen (2007) model 

Smets & Wouters (2003) and Smets & Wouters (2007) are prototypical medium-scale 

linear DSGE models, featuring assorted shocks, habits, price and wage indexation, capital (with 

adjustment costs and variable utilisation) and general monetary policy reaction functions. The 

former model is estimated on Euro area data, while the latter is estimated on US data. The latter 

model also contains trend growth (permitting its estimation on non-detrended data), and a 

slightly more general aggregator across industries. However, they are broadly similar models, 

and any differences in their behaviour chiefly stems from differences in the estimated 

parameters. Since both models are well known in the literature, we omit their equations here, 

referring the reader to the original papers for further details. 

To assess the likelihood of multiple equilibria in the presence of the ZLB, we augment each 

model with a ZLB on nominal interest rates, and evaluate the properties of each model’s 𝑀𝑀 

matrix at the estimated posterior-modes from the original papers. To minimise the deviation 

from the original papers, we do not introduce an auxiliary variable for shadow nominal interest 

rates, so the monetary rules take the form of 𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝜕𝜕𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝜕𝜕�(⋯ ) + ⋯ �, in both 

cases. Our results would be similar with a shadow nominal interest rate. 

Recall that for ZLB models, the diagonal of the 𝑀𝑀 matrix captures whether positive news 

shocks to monetary policy raise nominal interest rates in the period in which the shock hits. If 

this diagonal ever goes negative, then the 𝑀𝑀 matrix cannot be a P-matrix, and hence the model 

will have multiple solutions in at least some states. In Figure 1,29 we plot the diagonal of the 𝑀𝑀 

 

28  These results are among those that may be generated by running “GenerateDeterminacyResults” within the 

“Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 

29 Details on replicating all of the results in this subsection are given below. 
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matrix for the two models. We see that while in the US model, these impacts remain positive 

at all horizons, in the Euro area model, these impacts turn negative after just a few periods, and 

remain so at least up to period 40. Therefore, in the ZLB augmented Smets & Wouters (2003) 

model, there is not always a unique equilibrium. 
  

Figure 8: The diagonals of the 𝑴𝑴 matrices for the Smets & Wouters (2003; 2007) models 

The horizontal axis gives the index into the 𝑀𝑀 matrix, 𝑡𝑡. The vertical axis gives the value of 𝑀𝑀𝑡𝑡,𝑡𝑡. 

For the Smets & Wouters (2007) model, numerical calculations reveal that for 𝑇𝑇 < 9, 𝑀𝑀 

is a P-matrix. However, with 𝑇𝑇 ≥ 9 , the top-left 9 × 9  sub-matrix of 𝑀𝑀  has negative 

determinant, so for 𝑇𝑇 ≥ 9, 𝑀𝑀 is not a P-matrix.30 Thus, this model also has multiple equilibria. 

While placing a larger coefficient on inflation in the Taylor rule can make the Euro area picture 

more like the US one, with a positive diagonal to the 𝑀𝑀 matrix, even with incredibly large 

coefficients, 𝑀𝑀 remains a non-P-matrix for both models. This is driven by the real and nominal 

rigidities in the model reducing the average value of the impulse response to a positive news 

shock to the monetary rule. Following such a shock’s arrival, the rigidities help ensure that the 

fall in output is persistent. Prior to its arrival, consumption habits and capital/investment 

adjustment costs help produce a larger anticipatory recession. Hence, in both the Euro area and 

the US, we ought to take seriously the possibility that the existence of the ZLB produces non-

uniqueness. Below we given an example of multiplicity in the Smets & Wouters (2003) model, 

and discusses the economic relevance of such multiplicity. 

In addition, it turns out that for neither model is 𝑀𝑀 an S-matrix even with 𝑇𝑇 = 1000, and 

thus for both models there are some initial states (possibly augmented with monetary policy 

news shocks) for which no solution exists which escapes the bound after at most 250 years. 

 

30 The value of 𝑇𝑇 at which the model switches from 𝑀𝑀 being a P-matrix to 𝑀𝑀 not being a P-matrix is parameter dependent. It 

reflects the strength of the model’s endogenous persistence. 
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This is strongly suggestive of non-existence for some initial states even for arbitrarily large 𝑇𝑇. 

This is reinforced by the fact that for the Smets & Wouters (2007) model, with 𝑇𝑇 = 1000 , 

Proposition 2 gives that 𝜍𝜍 ≤ 0 + numerical error (with 𝜍𝜍 as defined in Subsection 4.4), which 

is suggestive of non-existence even for infinite 𝑇𝑇. 

With a response to the price level, the situation is very different. Suppose that in both 

models we replace the monetary rule by a simple rule responding to the price level and output 

growth, so it becomes: 

𝑖𝑖𝑡𝑡 = max �0, 𝜌𝜌𝜕𝜕𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝜕𝜕� log �𝑃𝑃𝑡𝑡
𝑌𝑌𝑡𝑡

𝑌𝑌𝑡𝑡−1
�� ,  

where 𝜌𝜌𝜕𝜕  is as in the original model, 𝑌𝑌𝑡𝑡  is real GDP and where the price level 𝑃𝑃𝑡𝑡  evolves 

according to log 𝑃𝑃𝑡𝑡 = log 𝑃𝑃𝑡𝑡−1 + log�Π𝑡𝑡
Π � . Then, with 𝑇𝑇 = 1000 , for either model the 

sufficient conditions we introduce in Appendix C.1 imply that 𝑀𝑀  is a P-matrix. Hence, the 

models have a unique solution conditional on escaping after at most 250 years. Additionally, 

we have that 𝜍𝜍 > 0.036 for the Euro area model with this monetary rule, and that 𝜍𝜍 > 0.009 for 

the US one (with 𝜍𝜍 as defined in Subsection 4.4). Hence, Corollary 4 implies that the model 

always has a feasible path. This is a necessary condition for existence of a solution for any 

initial state. As one would expect, these results are also robust to departures from equal, unit, 

coefficients on prices and output growth. Thus, price level targeting again appears to be 

sufficient for determinacy in the presence of the ZLB. 

The intuition again comes down to the sign of the response to monetary policy (news) 

shocks. With the price level in the Taylor rule, the reduction in prices brought about by a 

positive monetary policy (news) shock must be followed eventually by a counter-balancing 

increase. But if inflation is higher in future, then real rates are lower today, meaning that 

consumption, output, inflation and nominal rates will all be relatively higher today. This ensures 

that positive monetary policy (news) shocks have sufficiently positive effects on nominal rates 

to prevent self-fulfilling jumps to the bound. Thus, in the presence of the ZLB, a positive 

response to the price level is the equivalent of the Taylor principle. 

The plots above and the related results from the main paper may be generated by running 

“GeneratePlots” within both the “Examples/SmetsWouters2003” and 
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“Examples/SmetsWouters2007” directories of DynareOBC. The determinacy results may be 

generated by running: 

“GenerateDeterminacyResults” 

within both the: 

“Examples/SmetsWouters2003” and “Examples/SmetsWouters2007” 

directories of DynareOBC. 

Plausibility of multiplicity at the ZLB 

We need to answer two key questions to establish the economic relevance of self-fulfilling 

spells at the ZLB. Firstly, is the coordination of beliefs needed to sustain the equilibrium 

plausible? Secondly, do such equilibria feature reasonable movements in macroeconomic 

variables? It is true that self-fulfilling jumps to the ZLB may feature implausibly large falls in 

output and inflation. This is closely related to the so-called “forward guidance puzzle” 

(Carlstrom, Fuerst & Paustian 2015; Del Negro, Giannoni & Patterson 2015).31 However, if 

interest rates are already low (due to a recession), then a much smaller self-fulfilling “news” 

shock is needed to produce a jump to the ZLB. Thus, there will be a much more moderate drop 

in output and inflation. Furthermore, with interest rates low, it takes a smaller movement in 

confidence for people to expect to hit the ZLB. Even more plausibly, if the economy is already 

at the ZLB, then small changes in confidence could easily select an equilibrium featuring a 

longer spell there than in the equilibrium that leaves fastest. Indeed, there is no good reason 

people should coordinate on the equilibrium with the shortest time at the ZLB. 

 

31 McKay, Nakamura & Steinsson (2017) point out that these implausibly large responses to news are muted in models with 

heterogeneous agents, and give a simple “discounted Euler” approximation that produces similar results to a full heterogeneous 

agent model. While including a discounted Euler equation makes it harder to generate multiplicity (e.g. reducing the parameter 

space with multiplicity in the Brendon, Paustian & Yates (2013) model), when there is multiplicity, the resulting responses are 

much larger, as the weaker response to news means the required endogenous “news” needs to be much greater in order to drive 

the model to the bound.  
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Figure 9: Two solutions following a preference shock in the Smets & Wouters (2003) model. 

All variables are in logarithms. Inflation and nominal interest rates are annualized. 

The dashed line is a solution which does not hit the bound. 

The solid line is an alternative solution which does hit the bound. 

As an illustration, in Figure 9 we plot the impulse response to a large magnitude preference 

shock (scaling felicity), in the Smets & Wouters (2003) model.32 The shock is not quite large 

enough to send the economy to the ZLB33 in the standard solution, shown with a dashed line. 

However, there is an alternative solution in which the economy jumps to the bound one period 

after the initial shock, remaining there for three periods. (This is the solution featuring the 

shortest possible positive time at the ZLB.) While the alternative solution features larger drops 

in output and inflation, the falls are not much larger than the magnitude of the crisis, with 

Eurozone GDP and consumption falling about 20% below a pre-crisis log-linear trend, and the 

largest drop in annualized Eurozone consumption inflation from 2008q3 to 2008q4 being 

 

32 The shock is 22.5 standard deviations. While this is implausibly large, the economy could be driven to the bound with a run 

of smaller shocks. It is also worth recalling that the model was estimated on the great moderation period, so the estimated 

standard deviations may be too low, and the real interest rate too high. Finally, recent evidence (Cúrdia, Del Negro & Greenwald 

2014) suggests that the shocks in DSGE models should be fat tailed, making large shocks more likely. 

33 Since the Smets & Wouters (2003) model does not include trend growth, it is impossible to produce a steady state value for 

nominal interest rates that is consistent with both the model and the data. We choose to follow the data, setting the steady state 

of nominal interest rates to its mean level over the same sample period used by Smets & Wouters (2003), using data from the 

same source (Fagan, Henry & Mestre 2005). 
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around 4.4%.34 Of course, we would not want to push this as the sole explanation for the depth 

of the great recession in the Eurozone, but it is possible that multiplicity of equilibria may have 

played a role. 

The Adjemian, Darracq Pariès & Moyen (2007) model 

We can get a sense of the potential welfare benefits of a switch to price level targeting by 

comparing equilibria with and without a response to the price level in a closely related model, 

that of Adjemian, Darracq Pariès & Moyen (2007).35 This is essentially a re-estimated version 

of the Smets & Wouters (2003) model.36  It is convenient for our purposes though because 

whereas the original Smets & Wouters (2003) model was hand-linearized, with some ad hoc 

changes made only to the linearized equations, the Adjemian, Darracq Pariès & Moyen (2007) 

model is presented in its fully non-linear form, and welfare measures are derived. The measure 

of consumption equivalent welfare we use here is much as before. It is the amount of extra 

consumption services flow you would have to give to an inhabitant of the flexible price version 

of the model to make them indifferent between their economy and that of the model.37 Unlike 

in the Fernández-Villaverde et al. (2015) model though, here it is assumed that non-updating 

prices are indexed to a combination of lagged inflation, and the steady-state level of inflation. 

Thus, there is no price-dispersion in steady-state, so steady-state welfare equals that of the 

flexible price economy. 

 

34 Data was again from the area-wide model database (Fagan, Henry & Mestre 2005). 

35  An implementation of this model is contained within DynareOBC in the file 

“Examples/AdjemianDarracqPariesMoyen2007/SWNLWCD.mod”. 

36 The only significant difference is that habits are internal, not external. 

37 Habits slightly complicate this. Following Adjemian, Darracq Pariès & Moyen (2007), we assume that it is the habit adjusted 

consumption flow that is adjusted in the flexible price economy to derive the consumption equivalent welfare. I.e. 

�𝐶𝐶𝑡𝑡+𝑠𝑠 − ℎ𝐶𝐶𝑡𝑡+𝑠𝑠−1� in the utility function is replaced with �𝐶𝐶𝑡𝑡+𝑠𝑠 − ℎ𝐶𝐶𝑡𝑡+𝑠𝑠−1�𝑍𝑍𝑡𝑡, where 𝑍𝑍𝑡𝑡 captures the consumption equivalent 

welfare. 
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Figure 10: Two solutions following a preference shock in the Adjemian, Darracq Pariès & Moyen (2007) model, 

without (left 6 panels) and with (right 6 panels) a response to the price level. 

All variables are in logarithms. The calculation of the welfare consumption equivalent is detailed in the text. 

The dashed line is a solution which does not hit the bound. 

The solid line is an alternative solution which does hit the bound in the absence of price level targeting. 

The two solutions are identical with a response to the price level. 

Our impulse response exercise in Figure 10 follows that of Figure 9 above,38 and without a 

response to the price level, the responses of other variables are qualitatively very similar to 

those in that figure.39 However, suppose we add a response to the price level to the monetary 

rule, so it becomes: 

𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝜕𝜕𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝜕𝜕� log(𝑃𝑃𝑡𝑡) + other terms from the original model� ,  

where 𝜌𝜌𝜕𝜕 is as in the original model, and where the price level 𝑃𝑃𝑡𝑡 again evolves per equation 

(10). Then the second solution no longer exists, so the welfare outcome is much improved (a 

 

38  This figure may be generated by running “RunExample” within the “Examples/AdjemianDarracqPariesMoyen2007” 

directory of DynareOBC. 

39 In this case, we need a slightly larger shock for a comparable exercise. It is now 24.5 standard deviations rather than 22.5 

standard deviations used in Figure 9. 
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0.6%  drop rather than a 5%  drop). As in the Fernández-Villaverde et al. (2015) example  

though, this is again subject to the same caveats on accuracy.40 

Appendix E.4: The deflationary steady state 

We now analyse a version of the model of Subsection 2.1 and 2.5 from the paper in which 

agents expect the economy to return to the deflationary steady state. We allow for the possibility 

of a response to a geometrically weighted average of inflation, 𝑝𝑝�̃�𝑡. The model’s equations are: 

𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜒𝜒𝑝𝑝�̃�𝑡� 

𝑝𝑝�̃�𝑡 = 𝜌𝜌𝑝𝑝�̃�𝑡−1 + 𝜋𝜋𝑡𝑡 

As 𝜌𝜌 → 1 this approaches a model with a price level target. Working with this average inflation 

targeting version ensures that all variables have a finite steady state, even when 𝑖𝑖 = 0 in steady 

state. 

We define 𝑠𝑠𝑡𝑡 ≔ 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜒𝜒𝑝𝑝�̃�𝑡 , and 𝚤𝚤�̃�𝑡 ≔ max{−𝑠𝑠𝑡𝑡, 0} , so 𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑡𝑡 + 𝚤𝚤�̃�𝑡 . Note that 𝚤𝚤�̃�𝑡  is 

positive in the deflationary steady state, so this transformed OBC does not bind in the 

deflationary steady state. In the vicinity of the deflationary steady state, the model is 

indeterminate. The approach of Farmer, Khramov & Nicolò (2015) suggests introducing the 

new equation 𝜋𝜋𝑡𝑡 = 𝑒𝑒𝑡𝑡−1 + 𝜂𝜂𝑡𝑡, where the new variable 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 gives inflation expectations 

and where 𝜂𝜂𝑡𝑡  is a “sunspot” shock (since anticipated sunspot shocks make little sense, we 

assume 𝜂𝜂𝑡𝑡 = 0 for 𝑡𝑡 ≠ 0). Then the complete model is: 

𝜋𝜋𝑡𝑡 = 𝑒𝑒𝑡𝑡−1 + 𝜂𝜂𝑡𝑡, 

𝑟𝑟𝑡𝑡 + 𝑒𝑒𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑡𝑡 + 𝚤𝚤�̃�𝑡, 

𝑝𝑝�̃�𝑡 = 𝜌𝜌𝑝𝑝�̃�𝑡−1 + 𝑒𝑒𝑡𝑡−1 + 𝜂𝜂𝑡𝑡, 

𝑠𝑠𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝑒𝑒𝑡𝑡−1 + 𝜙𝜙𝜂𝜂𝑡𝑡 + 𝜒𝜒𝑝𝑝�̃�𝑡, 

𝚤𝚤�̃�𝑡 = max{−𝑠𝑠𝑡𝑡, 0}. 

This is a completely backward-looking model, so the results of Corollary 2 apply. Thus, in 

order to test whether or not there is uniqueness, we just have to look at the impact of a shock to 

 

40 While the economy is moving less far from its steady state following this shock than in the Fernández-Villaverde et al. (2015) 

example, here all variables, including welfare, are in first order approximations. 
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the bounded equation, ignoring the bound. This requires us to solve the model with extra shock 

𝜈𝜈𝑡𝑡 (but without the 𝑟𝑟𝑡𝑡 or 𝜂𝜂𝑡𝑡 shocks) given by: 

𝜋𝜋𝑡𝑡 = 𝑒𝑒𝑡𝑡−1, 

𝑟𝑟 + 𝑒𝑒𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑡𝑡 + 𝚤𝚤�̃�𝑡, 

𝑝𝑝�̃�𝑡 = 𝜌𝜌𝑝𝑝�̃�𝑡−1 + 𝑒𝑒𝑡𝑡−1, 

𝑠𝑠𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙𝑒𝑒𝑡𝑡−1 + 𝜒𝜒𝑝𝑝�̃�𝑡, 

𝚤𝚤�̃�𝑡 = −𝑠𝑠𝑡𝑡 + 𝜈𝜈𝑡𝑡. 

The solution has: 

𝑒𝑒𝑡𝑡 = −𝑟𝑟 + 𝜈𝜈𝑡𝑡, 

𝑠𝑠𝑡𝑡 = 𝑟𝑟 + �𝜙𝜙 + 𝜒𝜒�𝑒𝑒𝑡𝑡−1 + 𝜒𝜒𝜌𝜌𝑝𝑝�̃�𝑡−1, 

𝚤𝚤�̃�𝑡 = −𝑟𝑟 − �𝜙𝜙 + 𝜒𝜒�𝑒𝑒𝑡𝑡−1 − 𝜒𝜒𝜌𝜌𝑝𝑝�̃�𝑡−1 + 𝜈𝜈𝑡𝑡. 

Thus, positive shocks to the bounded equation increase the bounded variable one for one, i.e., 

𝑀𝑀1,1 = 1 > 0. This gives uniqueness, conditional on existence, via the following general result: 

Corollary 8 Consider a purely backward-looking otherwise linear model with an OBC. Then: 

1) If 𝑀𝑀1,1 > 0 , then for any 𝑥𝑥0  and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  , if there exists a path satisfying the model’s 

equations and eventually escaping the bound, then that path is unique.41 

Furthermore, suppose the model has at least one 𝑡𝑡-dated shock with a non-zero impact on 𝑖𝑖𝑡𝑡 (if 

the model has a shock to the bounded equation, then 𝑀𝑀1,1 ≠ 0 is sufficient for this), then: 

2) If 𝑀𝑀1,1 ≤ 0 then for any 𝑇𝑇 > 0, there exists 𝑥𝑥0 and (𝜀𝜀𝑡𝑡)𝑡𝑡=1
∞  with 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 𝑇𝑇 such that 

there are multiple paths (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   satisfying the model’s equations from period 1  to 𝑇𝑇  and 

satisfying the model’s equations without the OBC (i.e. with the max removed) from period 

𝑇𝑇 + 1 onwards. 

: Relationship between multiplicity under perfect-foresight, and 

multiplicity under rational expectations 

Our results here will apply to any non-linear dynamic model, not just otherwise linear 

models with occasionally binding constraints. Before starting, we introduce a little notation that 

 

41 Existence of a path escaping the bound is not guaranteed in general. Consider the model 𝑧𝑧𝑡𝑡 = 1
2 𝑧𝑧𝑡𝑡−1 − 4

5 �𝑖𝑖𝑡𝑡 − 4
5 𝑧𝑧𝑡𝑡�, 𝑖𝑖𝑡𝑡 =

max�−1, 4
5 𝑧𝑧𝑡𝑡�, with 𝑥𝑥𝑡𝑡

′ = [𝑖𝑖𝑡𝑡, 𝑧𝑧𝑡𝑡]. If 𝑧𝑧0 = − 40
7 , then 𝑧𝑧1 = − 40

7  is the unique solution, despite this having 𝑀𝑀11 = 9
25 > 0. 
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will be helpful in the below. For any subsets of Euclidean space, 𝐴𝐴 and 𝐵𝐵, and any function 

𝒽𝒽: 𝐴𝐴𝐽𝐽 → 𝐵𝐵 , we define �𝒽𝒽�∞ ≔ sup
𝑎𝑎1,…,𝑎𝑎𝐽𝐽∈𝐴𝐴

�𝒽𝒽�𝑎𝑎1, … , 𝑎𝑎𝐽𝐽��2 , and 𝐿𝐿�𝒽𝒽� ≔

sup
𝑎𝑎1,…,𝑎𝑎𝐽𝐽,𝑎𝑎1

∗,…,𝑎𝑎𝐽𝐽
∗∈𝐴𝐴𝐽𝐽

�𝒽𝒽�𝑎𝑎1,…,𝑎𝑎𝐽𝐽�−𝒽𝒽�𝑎𝑎1
∗,…,𝑎𝑎𝐽𝐽

∗��
2

max��𝑎𝑎1−𝑎𝑎1
∗�2,…,�𝑎𝑎𝐽𝐽−𝑎𝑎𝐽𝐽

∗�
2

�
, so 𝐿𝐿�𝒽𝒽� is the Lipschitz modulus of 𝒽𝒽 . We extend this 

notation to subscripted functions by also taking suprema over the subscripts. So, for example if 

𝒽𝒽 ∈ ∏ �𝐴𝐴𝑗𝑗 → 𝐵𝐵�𝐽𝐽
𝑗𝑗=1 , then �𝒽𝒽�∞ = sup

𝑗𝑗=1,…,𝐽𝐽
�𝒽𝒽𝑗𝑗�∞

 and 𝐿𝐿�𝒽𝒽� = sup
𝑗𝑗=1,…,𝐽𝐽

𝐿𝐿�𝒽𝒽𝑗𝑗�.  

Let 𝑥𝑥𝑡𝑡 be a vector of the model’s endogenous variables, with 𝑥𝑥𝑡𝑡 ∈ 𝒳𝒳 ⊆ ℝ𝑛𝑛. Similarly, let 

𝜀𝜀𝑡𝑡 be a vector of the model’s exogenous i.i.d. shocks, with 𝜀𝜀𝑡𝑡 ∈ ℰ ⊆ ℝ𝑚𝑚, where 0 ∈ ℰ . We 

assume that with probability 1 − 𝜎𝜎  , 𝜀𝜀𝑡𝑡 = 0 , while with probability 𝜎𝜎  , 𝜀𝜀𝑡𝑡  is drawn from a 

probability distribution over ℰ  with measure 𝓅𝓅 . This distribution may be either continuous or 

discrete. Thus, 𝜎𝜎 = 0  corresponds to the perfect foresight case, while when 𝜎𝜎 = 1 , the 

distribution of 𝜀𝜀𝑡𝑡  is unrestricted. We assume 𝑡𝑡  dated variables are known at 𝑡𝑡 . There is no 

requirement that either 𝑥𝑥𝑡𝑡 or 𝜀𝜀𝑡𝑡 be in any sense “minimal”. For example, 𝜀𝜀𝑡𝑡 may contain non-

fundamental shocks with no impact on the value of the model’s equations, except perhaps 

through beliefs. 

We assume that at any point in time, the economy can be in any one of a set 𝐾𝐾 of “regimes”. 

Both the policy functions, and the model’s equations may differ across these regimes. Thus, 

these regimes can capture both switching sunspot solutions (with differing policy functions but 

identical model equations) and switching model properties (with the model equations 

switching). If the model equations do not vary over 𝐾𝐾 , then in the limit as uncertainty 

disappears, these regimes will capture |𝐾𝐾| different perfect foresight solutions to the model. (𝐾𝐾 

may be finite or countably infinite.) We denote the regime in period 𝑡𝑡 by 𝑘𝑘𝑡𝑡. Within each regime, 

the policy functions and model equations may be a function of the length of time the economy 

has been in the current regime, denoted by 𝑠𝑠𝑡𝑡. 𝑠𝑠𝑡𝑡 = 1 in the first period in a new regime, 𝑠𝑠𝑡𝑡 = 2 

in the second, and so on. 

At the start of each period a binary “transition shock” is realised. With probability 1 − 𝛿𝛿, 

the transition shock does not hit, and the economy will remain in the regime it was in last 

period. However, with probability 𝛿𝛿 , the economy is hit with the transition shock, and 

transitions to another regime according to the period 𝑡𝑡  Markov transition matrix Ω𝑡𝑡 ≔

�𝜔𝜔𝑘𝑘,𝑙𝑙
(𝑡𝑡)�

𝑘𝑘,𝑙𝑙∈𝐾𝐾
. 𝜔𝜔𝑘𝑘,𝑙𝑙

(𝑡𝑡) ∈ [0,1] gives the probability of transitioning from regime 𝑘𝑘 to regime 𝑙𝑙 at the 
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start of period 𝑡𝑡, conditional on the transition shock hitting. Rows of Ω𝑡𝑡 sum to 1. If 𝜔𝜔𝑘𝑘,𝑘𝑘
(𝑡𝑡) ≠ 0 

for some 𝑘𝑘, then if 𝑘𝑘𝑡𝑡−1 = 𝑘𝑘, there is a 𝛿𝛿𝜔𝜔𝑘𝑘,𝑘𝑘
(𝑡𝑡)  chance of remaining in regime 𝑘𝑘 at 𝑡𝑡 but with the 

“clock” reset, as if the economy had just arrived at regime 𝑘𝑘. We assume that for all 𝑡𝑡 ∈ ℤ, 

𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾 , 𝜔𝜔𝑘𝑘,𝑙𝑙
(𝑡𝑡) = 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡

(𝑥𝑥𝑡𝑡−1)  where 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒: 𝒳𝒳 → [0,1]  is a Lipschitz continuous function 

with 𝐿𝐿�𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒� < ∞ for all 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+ and 𝑒𝑒 ∈ ℰ . This allows transition probabilities to 

be deterministic functions of the current state and shock. We further assume that: 

𝐿𝐿Σ(𝜔𝜔) ≔ sup
𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ

� 𝐿𝐿�𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒�
𝑙𝑙∈𝐾𝐾

< ∞. 

We assume that the model’s equations (first order conditions, laws of motion, etc.) are in 

the general form: 

0 = 𝔼𝔼𝑡𝑡𝒻𝒻𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡
�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1�, 

where 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒: 𝒳𝒳3 → ℝ𝑛𝑛  is a Lipschitz continuous function with 𝐿𝐿�𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒� ≤ 𝐿𝐿�𝒻𝒻� < ∞  for all 

𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  . We impose no stability requirement beyond 𝑥𝑥𝑡𝑡 ∈ 𝒳𝒳  . The rational 

expectations solutions we find will be near to a corresponding perfect foresight one, so by 

limiting the perfect foresight equilibria considered, we can rule out explosive equilibria. Such 

equilibria could also be ruled out by bounding 𝒳𝒳 . 

The restriction to Lipschitz continuous 𝒻𝒻  is almost without loss of generality. Note that all 

otherwise linear models with occasionally binding constraints are Lipschitz continuous. More 

generally, virtually all economic models will result in a Lipschitz 𝒻𝒻 , perhaps after some variable 

transformations such as using the logarithm not the level of the capital stock as an endogenous 

variable. Lipschitz continuity just rules out functions that are not differentiable almost 

everywhere, or for which the derivative is not almost everywhere bounded. 

Given some 𝜎𝜎  and 𝛿𝛿, we write ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿): 𝒟𝒟𝑘𝑘,𝑠𝑠 → 𝒳𝒳  for the (unknown) policy function in the 

𝑠𝑠th period in regime 𝑘𝑘 with shock 𝑒𝑒, meaning that for all 𝑡𝑡, 𝑥𝑥𝑡𝑡 = ℊ𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡,𝜀𝜀𝑡𝑡

(𝜎𝜎,𝛿𝛿) (𝑥𝑥𝑡𝑡−1). 𝒟𝒟𝑘𝑘,𝑠𝑠 ⊆ 𝒳𝒳  is the 

𝑥𝑥-domain of definition of the policy functions, taken to be independent of 𝜎𝜎  and 𝛿𝛿. This may 

be less than then entire space due to non-existence in some areas. We write ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗ ≔ ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

(0,0) for 

the known policy function in the perfect foresight case with 𝜎𝜎 = 0 and 𝛿𝛿 = 0. 

Let ℬ   denote the closed unit ball in ℝ𝑛𝑛 . We assume that there exists 𝜁𝜁 > 0  such that 

ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗ �𝒟𝒟𝑘𝑘,𝑠𝑠� + 𝜁𝜁ℬ ⊆ 𝒟𝒟𝑘𝑘,𝑠𝑠+1 ∩ 𝒟𝒟𝑙𝑙,1 ⊆ 𝒳𝒳   for all 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  . This ensures that 
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under perfect foresight, 𝑥𝑥𝑡𝑡 is guaranteed to stay within the domain of definition of the policy 

function in all periods, even if a probability zero transition shock hit. The addition of 𝜁𝜁ℬ  

ensures that small perturbations of the images will remain inside the relevant domains. 

Our goal is to establish existence of the policy function for some 𝜎𝜎 > 0 and 𝛿𝛿 > 0. We look 

for policy functions that have �ℊ(𝜎𝜎,𝛿𝛿) − ℊ∗�
∞

≤ 𝜁𝜁 , meaning they remain close enough to the 

perfect foresight policy function for the domains to remain valid. We also assume 𝐿𝐿�ℊ(𝜎𝜎,𝛿𝛿)� <

∞. This is reasonable given the Lipschitz continuity of 𝒻𝒻 . For example, otherwise linear models 

with occasionally binding constraints have Lipschitz policy functions at least over any convex 

sets on which their solution is unique, by a corresponding result for LCPs (Mangasarian & 

Shiau 1987). Finally, we require that there exist values 𝐴𝐴(𝜎𝜎,𝛿𝛿) > 0 and 𝐵𝐵(𝜎𝜎,𝛿𝛿) > 0 such that for 

all 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠+1: 

�ℊ𝑘𝑘,𝑠𝑠+1,𝑒𝑒
(𝜎𝜎,𝛿𝛿) (𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠+1,0

(𝜎𝜎,𝛿𝛿) (𝑥𝑥)�
2

≤ 𝐴𝐴(𝜎𝜎,𝛿𝛿), 

�ℊ𝑙𝑙,1,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠+1,𝑒𝑒

(𝜎𝜎,𝛿𝛿) (𝑥𝑥)�
2

≤ 𝐵𝐵(𝜎𝜎,𝛿𝛿). 

This is a substantially weaker condition than requiring ℊ(𝜎𝜎,𝛿𝛿) to be bounded. The first condition 

states that the policy function with a shock should not be too different to the one without a 

shock. The second states that the policy functions should not differ too much across regimes. 

𝐴𝐴(𝜎𝜎,𝛿𝛿) and 𝐵𝐵(𝜎𝜎,𝛿𝛿) may be arbitrarily large, so this still permits large responses to shocks and 

drastically different behaviour across regimes. While the first condition may require shocks to 

be bounded in some models, these bounds on shocks can be arbitrarily large. 

To be a solution, for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠, these policy functions must 

satisfy: 

0 = (1 − 𝛿𝛿)(1 − 𝜎𝜎)𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 

+(1 − 𝛿𝛿)𝜎𝜎 � 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ
 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑙𝑙,1,0

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)��

𝑙𝑙∈𝐾𝐾
 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥), ℊ𝑙𝑙,1,𝜀𝜀

(𝜎𝜎,𝛿𝛿) �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)(𝑥𝑥)�� 𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ𝑙𝑙∈𝐾𝐾
. (11) 

This equation just encodes the rules for transitioning between regimes already discussed. 

When 𝜎𝜎 = 0  and 𝛿𝛿 = 0 , all future uncertainty disappears, and we are left with perfect 

foresight solutions. Setting 𝜎𝜎 = 0 and 𝛿𝛿 = 0 in equation (11) gives: 
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0 = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗ (𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0

∗ �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗ (𝑥𝑥)�� . (12) 

These are the standard equations defining perfect foresight policy functions. In this case, the 

regime never changes from its initial value, and so “clock time”, 𝑠𝑠, gives actual time, 𝑡𝑡. The 

perfect foresight iteration 𝑥𝑥𝑡𝑡 = ℊ𝑘𝑘,𝑡𝑡,𝜀𝜀1𝟙𝟙[𝑡𝑡=1]
∗ (𝑥𝑥𝑡𝑡−1) may converge to a different steady state in 

different regimes, or for different initial states 𝑥𝑥0 and first period shocks 𝜀𝜀1. It may also cycle 

rather than converging. 

We assume that the perfect foresight policy function  ℊ∗ = �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗ �

𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ
 is known, 

and satisfies the properties given above. More than this though, we assume that there exists 𝜆𝜆 >

0 such that for all sequences 𝜂𝜂 ≔ �𝜂𝜂𝑠𝑠�𝑠𝑠∈ℕ+ ⊆ ℝ𝑛𝑛 with �𝜂𝜂�∞ ≤ 𝜆𝜆, we know a modified perfect 

foresight policy function ℊ∗�𝜂𝜂�, where: 

𝜂𝜂1 = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0

∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥)��, 

for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠, where 𝑅𝑅 is the shift operator defined by �𝑅𝑅𝜂𝜂�𝑠𝑠 =

𝜂𝜂𝑠𝑠+1 for all 𝑠𝑠 ∈ ℕ+. We assume ℊ∗(0) = ℊ∗. This captures the perfect foresight solution to an 

augmented model in which an additional exogenous “forcing process” is added to each 

equation. If we can solve the original perfect foresight system, we ought to be able to solve this 

augmented system for sufficiently small forcing processes. This is very similar to our approach 

for models with occasionally binding constraints. There we added forcing processes to the 

bounded equation and showed that the model could still be solved. 

For 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  , 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠  and �𝜂𝜂𝑠𝑠�𝑠𝑠∈ℕ+ ⊆ ℝ𝑛𝑛  with �𝜂𝜂�∞ ≤ 𝜆𝜆 , we write 

𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝜂𝜂� (𝑥𝑥)  for the path followed by the endogenous variables under perfect foresight, when 

started with the given state and shock, with the given forcing process. Thus: 

𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝜂𝜂� (𝑥𝑥) = �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)� , ℊ𝑘𝑘,𝑠𝑠+2,0
∗�𝑅𝑅2𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠+1,0

∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥)�� , … �. 

We assume there exists 𝐶𝐶 > 0  such that for all 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  , 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠  and 

�𝜂𝜂1,𝑠𝑠�𝑠𝑠∈ℕ+, �𝜂𝜂2,𝑠𝑠�𝑠𝑠∈ℕ+ ⊆ ℝ𝑛𝑛 with �𝜂𝜂1�∞ ≤ 𝜆𝜆 and �𝜂𝜂2�∞ ≤ 𝜆𝜆: 

�𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝜂𝜂1�(𝑥𝑥) − 𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝜂𝜂2�(𝑥𝑥)�
∞

≤ 𝐶𝐶�𝜂𝜂1 − 𝜂𝜂2�∞, 

and that there exists 𝐷𝐷 > 0  such that for all 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  , 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠  and 

�𝜂𝜂𝑠𝑠�𝑠𝑠∈ℕ+ ⊆ ℝ𝑛𝑛 with �𝜂𝜂�∞ ≤ 𝜆𝜆: 

�𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝜂𝜂� (𝑥𝑥1) − 𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝜂𝜂� (𝑥𝑥2)�
∞

≤ 𝐷𝐷‖𝑥𝑥1 − 𝑥𝑥2‖2. 



Online Appendix: Page 50 of 97 

This means that the future perfect-foresight path of the endogenous variables when started in 

state (𝑘𝑘, 𝑠𝑠, 𝑒𝑒, 𝑥𝑥) is Lipschitz both in the forcing process 𝜂𝜂 and in the initial state 𝑥𝑥. I.e., small 

changes in the forcing process or initial state will produce small changes in the future path 

followed by the endogenous variables. For determinate linear models, the Lipschitz continuity 

in the initial state is immediate, and the Lipschitz continuity in the forcing process follows from 

the characterization of the solution under such a forcing process given in Appendix H.4. For 

otherwise linear models with occasionally binding constraints, this follows from the 

corresponding result for LCPs (Mangasarian & Shiau 1987) providing 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝜆𝜆 are chosen 

to ensure there is always a unique solution. We give three simple examples of checking these 

forcing process conditions in the next subsection. 

Theorem 3 (Restated) Under the conditions outlined in the text above (from Appendix F), there 

exists 𝛾𝛾 > 0  and 𝜉𝜉 ∈ (0,1)  such that for all 𝜎𝜎 < 𝜉𝜉   and 𝛿𝛿 < 𝜉𝜉  , there exists a policy function 
ℊ(𝜎𝜎,𝛿𝛿) = �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝜎𝜎,𝛿𝛿)�
𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ

  that solves the model (equation (11) ), and satisfies the other 

policy function conditions given above. Moreover, �ℊ(𝜎𝜎,𝛿𝛿) − ℊ∗�
∞

≤ 𝛾𝛾 max{|𝜎𝜎|, |𝛿𝛿|}. 

We prove this in Appendix H.6. Note that the proof is constructive, so this could form the basis 

of an effective algorithm for computing global solutions to non-linear rational expectations 

models. Theorem 3 (Restated) is a powerful tool for proving the existence of rational 

expectations equilibria for general non-linear models. It implies that if there are multiple 

discrete solutions under perfect foresight (so |𝐾𝐾| > 1), then there are a continuum of solutions 

under rational expectations. Even if |𝐾𝐾| = 1, then there are still a continuum of solutions under 

rational expectations if the one perfect-foresight solution is not time invariant, as in the example 

from Subsection 2.6 of the main paper. 

Appendix F.1: Initial simple examples 

For a first example of checking the forcing process conditions, consider the minimal Taylor 

rule model, 0 = 𝑖𝑖𝑡𝑡 − 𝑟𝑟 − 2𝜋𝜋𝑡𝑡, 0 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡. When augmented with the 𝜂𝜂 forcing process, 

this becomes 𝜂𝜂1,𝑡𝑡 = 𝑖𝑖𝑡𝑡 − 𝑟𝑟 − 2𝜋𝜋𝑡𝑡  and 𝜂𝜂2,𝑡𝑡 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡 . Thus, 𝜋𝜋𝑡𝑡 =

− ∑ 2−𝑠𝑠−1�𝜂𝜂1,𝑡𝑡+𝑠𝑠 + 𝜂𝜂2,𝑡𝑡+𝑠𝑠�
∞
𝑠𝑠=0   and 𝑖𝑖𝑡𝑡 = 𝑟𝑟 − ∑ 2−𝑠𝑠�𝜂𝜂1,𝑡𝑡+𝑠𝑠 + 𝜂𝜂2,𝑡𝑡+𝑠𝑠�

∞
𝑠𝑠=0 + 𝜂𝜂1,𝑡𝑡 . These are 

functions of the current and future path of the forcing process, as required. Additionally, the 
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first Lipschitz condition is clearly satisfied with 𝐶𝐶 = �22 + 32 = �13 , and the second is 

trivially satisfied as there are no state variables. 

Next, consider the zero-peg model 0 = 𝑖𝑖𝑡𝑡, 0 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡 which has a perfect foresight 

solution with 𝜋𝜋𝑡𝑡 = −𝑟𝑟  (amongst others). When augmented with the 𝜂𝜂  forcing process, this 

states that 𝜂𝜂1,𝑡𝑡 = 𝑖𝑖𝑡𝑡  and 𝜂𝜂2,𝑡𝑡 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝜂𝜂1,𝑡𝑡 . This would imply that 𝜋𝜋𝑡𝑡 =

−𝑟𝑟 + 𝜂𝜂1,𝑡𝑡−1 + 𝜂𝜂2,𝑡𝑡−1 for 𝑡𝑡 > 1. However, this is not a function of current and future values of 

the forcing process, so does not meet the requirements. The failure here is due to the 

indeterminacy of the zero-peg model. 

Luckily, there is a simple fix. We can always transform an indeterminate model into a 

determinate one (possibly augmented with sunspot shocks) following the method of Farmer, 

Khramov & Nicolò (2015). We can change the model’s equations in this way for only certain 𝑘𝑘 

since we allow 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 to vary with 𝑘𝑘. The solution to this equivalent determinate model will still 

exist even when 𝜂𝜂 is included. Under this transformation, the zero-peg model becomes 0 = 𝑖𝑖𝑡𝑡, 

0 = 𝑟𝑟 + 𝑒𝑒𝑡𝑡 − 𝑖𝑖𝑡𝑡 , with the extra equation 0 = 𝜋𝜋𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 . Adding shocks 𝜂𝜂1,𝑡𝑡 , 𝜂𝜂2,𝑡𝑡  and 𝜂𝜂3,𝑡𝑡 

respectively to the left hand sides of these equations produces the solution: 𝑖𝑖𝑡𝑡 = 𝜂𝜂1,𝑡𝑡, 𝑒𝑒𝑡𝑡 = −𝑟𝑟 +

𝜂𝜂1,𝑡𝑡 + 𝜂𝜂2,𝑡𝑡 and 𝜋𝜋𝑡𝑡 = 𝑒𝑒𝑡𝑡−1 + 𝜂𝜂3,𝑡𝑡. This no longer contains lagged values of the forcing process 

(though of course they enter indirectly via the state variable 𝑒𝑒𝑡𝑡). It satisfies the first Lipschitz 

condition with 𝐶𝐶 = �12 + 22 + 12 = �6, and the second with 𝐷𝐷 = 1. 

For a final example, consider the simple model presented in Subsection 2.2 of the main 

paper, which we examined under rational expectations in Subsection 2.6 there. The model has 

0 = 𝑖𝑖𝑡𝑡 − max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1� , 0 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡 , with 𝜙𝜙 ≔ 2  and 𝜓𝜓 ∈ (0,1) . The 

perfect foresight solution has 𝜋𝜋1 = − 𝑟𝑟
𝐴𝐴 and 𝑖𝑖1 = 0, unconditionally on 𝜋𝜋0, while 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1 

for 𝑡𝑡 > 1, with 𝐴𝐴2 = 𝜙𝜙𝐴𝐴 − 𝜓𝜓. Adding shocks 𝜂𝜂1,𝑡𝑡 and 𝜂𝜂2,𝑡𝑡 to the model means we want to solve 

𝜂𝜂1,𝑡𝑡 = 𝑖𝑖𝑡𝑡 − max�0, 𝑟𝑟 + 2𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1� and 𝜂𝜂2,𝑡𝑡 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡. We fix the domain of 𝜋𝜋𝑡𝑡 to the 

set [− 𝑟𝑟
2𝐴𝐴 − 𝑟𝑟

2𝐴𝐴2 , ∞) (restricting 𝒳𝒳  and 𝒟𝒟𝑘𝑘,𝑠𝑠). This covers the desired perfect foresight solution 

with 𝜋𝜋𝑡𝑡 = −𝐴𝐴𝑡𝑡−2𝑟𝑟. 

We conjecture that for sufficiently small 𝜆𝜆 > 0, if �𝜂𝜂�∞ ≤ 𝜆𝜆, there is a solution of the form: 

𝜋𝜋1 =
1
𝐴𝐴 �−𝑟𝑟 + 𝜂𝜂1,1 + 𝜂𝜂2,1 + �(2 − 𝐴𝐴)−𝑠𝑠−1�𝜂𝜂1,2+𝑠𝑠 + 𝜂𝜂2,2+𝑠𝑠�

∞

𝑠𝑠=0
�, 
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𝑖𝑖1 = 𝜂𝜂1,1, 

with, for 𝑡𝑡 > 1: 

𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1 − �(2 − 𝐴𝐴)−𝑠𝑠−1�𝜂𝜂1,𝑡𝑡+𝑠𝑠 + 𝜂𝜂2,𝑡𝑡+𝑠𝑠�
∞

𝑠𝑠=0
, 

𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋𝑡𝑡−1 + 𝜂𝜂1,𝑡𝑡 − 2 �(2 − 𝐴𝐴)−𝑠𝑠−1�𝜂𝜂1,𝑡𝑡+𝑠𝑠 + 𝜂𝜂2,𝑡𝑡+𝑠𝑠�
∞

𝑠𝑠=0
. 

It is easy to verify that the second equation (𝜂𝜂2,𝑡𝑡 = 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 − 𝑖𝑖𝑡𝑡) is always satisfied, no 

matter the value of 𝜆𝜆. We just have to check the first. In period 1, the first equation holds if and 

only if 𝑟𝑟 + 2𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0. Given that 𝜋𝜋0 ≥ − 𝑟𝑟
2𝐴𝐴 − 𝑟𝑟

2𝐴𝐴2, straightforward computation shows 

that it suffices to take 𝜆𝜆 ≤ (1 − 𝐴𝐴)2 𝑟𝑟
8. In period 𝑡𝑡 > 1, the first equation holds if and only if 

𝑟𝑟 + 2𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 ≥ 0, as the candidate solution satisfies 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 2𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 + 𝜂𝜂1,𝑡𝑡. Given 

that 𝜋𝜋𝑡𝑡−1 ≥ − 𝑟𝑟
2𝐴𝐴 − 𝑟𝑟

2𝐴𝐴2 , for this condition we again need 𝜆𝜆 ≤ (1 − 𝐴𝐴)2 𝑟𝑟
8 , by similar 

computations. Thus, with 𝜆𝜆 ≔ (1 − 𝐴𝐴)2 𝑟𝑟
8, both conditions are satisfied, and our conjectured 

solution is indeed a solution. Having established the solution, it is now easy to see that the 

required Lipschitz conditions are satisfied with 𝐷𝐷 = �𝐴𝐴2 + 𝐴𝐴4 and: 

𝐶𝐶 = max
⎩�
⎨
�⎧��

2
𝐴𝐴 +

2
1 − 𝐴𝐴�

2
+ 12, ��

2
1 − 𝐴𝐴�

2
+ �

3 + 𝐴𝐴
1 − 𝐴𝐴�

2

⎭�
⎬
�⎫

. 

: Results from and for dynamic programming 

Appendix G.1: The linear-quadratic case 

Alternative existence and uniqueness results for the infinite 𝑇𝑇 problem can be established 

via dynamic programming methods, under the assumption that Problem 2 (OBC) comes from 

the first order conditions solution of a social planner problem. These have the advantage that 

their conditions are potentially much easier to evaluate, though they also have somewhat limited 

applicability. We focus here on uniqueness results, since these are of greater interest. 

Suppose that the social planner in some economy solves the following problem: 

Problem 4 (Linear-Quadratic) Suppose 𝜇𝜇 ∈ ℝ𝑛𝑛, Ψ(0) ∈ ℝ𝑐𝑐×1 and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛 are given, 

where 𝑐𝑐 ∈ ℕ. Define Γ̃: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛) (where ℙ denotes the power-set operator) by: 

Γ̃(𝑥𝑥) = �𝑧𝑧 ∈ ℝ𝑛𝑛�0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�� , (13) 
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for all 𝑥𝑥 ∈ ℝ𝑛𝑛. (Note: 𝛤𝛤 ̃(𝑥𝑥) will give the set of feasible values for next period’s state if the 

current state is 𝑥𝑥. Equality constraints may be included by including an identical lower bound 

and upper bound.) Define: 

𝑋𝑋� ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ̃(𝑥𝑥) ≠ ∅�, (14) 

and suppose without loss of generality that for all 𝑥𝑥 ∈ ℝ𝑛𝑛 , Γ̃(𝑥𝑥) ∩ 𝑋𝑋� = Γ̃(𝑥𝑥) . (Note: this 

means that the linear inequalities bounding 𝑋𝑋� are already included in those in the definition of 

𝛤𝛤 ̃(𝑥𝑥). It is without loss of generality as the planner will never choose an 𝑥𝑥̃ ∈ 𝛤𝛤 ̃(𝑥𝑥) such that 

𝛤𝛤 ̃(𝑥𝑥)̃ = ∅.) Further define ℱ̃ : 𝑋𝑋� × 𝑋𝑋� → ℝ by: 

ℱ̃(𝑥𝑥, 𝑧𝑧) = 𝑢𝑢(0) + 𝑢𝑢(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� +

1
2 �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
𝑢𝑢(̃2) �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� , (15) 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋�, where 𝑢𝑢(0) ∈ ℝ, 𝑢𝑢(1) ∈ ℝ1×2𝑛𝑛 and 𝑢𝑢(̃2) = 𝑢𝑢(̃2)′ ∈ ℝ2𝑛𝑛×2𝑛𝑛 are given. Finally, 

suppose 𝑥𝑥0 ∈ 𝑋𝑋� is given and 𝛽𝛽 ∈ (0,1), and choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
(16) 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ̃(𝑥𝑥𝑡𝑡−1). 

To ensure the problem is well behaved, we make the following assumption: 

Assumption 4 𝑢𝑢(̃2) is negative-definite. 

In Appendix H.10, below, we establish the following (unsurprising) result: 

Proposition 14 If either 𝑋𝑋� is compact, or, Γ̃(𝑥𝑥) is compact valued and 𝑥𝑥 ∈ Γ̃(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋�, 

then for all 𝑥𝑥0 ∈ 𝑋𝑋�, there is a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=0
∞  which solves Problem 4 (Linear-Quadratic). 

We wish to use this result to establish the uniqueness of the solution to the first order 

conditions. The Lagrangian for our problem is given by: 

� 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆Ψ,𝑡𝑡

′ �Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��

⎦
⎥⎤

∞

𝑡𝑡=1
, (17) 

for some KKT-multipliers 𝜆𝜆𝑡𝑡 ∈ ℝ𝑐𝑐 for all 𝑡𝑡 ∈ ℕ+. Taking the first order conditions leads to 

the following necessary KKT conditions, for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1) + 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)� , (18) 

0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � , 0 ≤ 𝜆𝜆𝑡𝑡, 0 = 𝜆𝜆𝑡𝑡 ∘ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� , (19) 

where subscripts 1 and 2 refer to blocks of rows or columns of length 𝑛𝑛. Additionally, for 𝜇𝜇 to 

be the steady state of 𝑥𝑥𝑡𝑡 and 𝜆𝜆���� to be the steady state of 𝜆𝜆𝑡𝑡, we require:  
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0 = 𝑢𝑢⋅,2
(1) + 𝜆𝜆����′Ψ⋅,2

(1) + 𝛽𝛽�𝑢𝑢⋅,1
(1) + 𝜆𝜆����′Ψ⋅,1

(1)�, (20) 

0 ≤ Ψ(0), 0 ≤ 𝜆𝜆����, 0 = 𝜆𝜆���� ∘ Ψ(0). (21) 

In Appendix H.11, below, we prove the following result: 

Proposition 15 Suppose that for all 𝑡𝑡 ∈ ℕ , (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   and (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞   satisfy the KKT conditions 

given in equations (18)  and (19) , and that as 𝑡𝑡 → ∞ , 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� , where 𝜇𝜇  and 𝜆𝜆 

satisfy the steady state KKT conditions given in equations (20) and (21). Then (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves 

Problem 4 (Linear-Quadratic). If, further, either condition of Proposition 14 is satisfied, then 

(𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   is the unique solution to Problem 4 (Linear-Quadratic), and there can be no other 

solutions to the KKT conditions given in equations (18) and (19) satisfying 𝑥𝑥𝑡𝑡 → 𝜇𝜇 and 𝜆𝜆𝑡𝑡 →

𝜆𝜆���� as 𝑡𝑡 → ∞. 

Now, it is possible to convert the KKT conditions given in equations (18)  and (19)  into a 

problem in the form of the multiple-bound generalisation of Problem 2 (OBC) quite generally. 

To see this, first note that we may rewrite equation (18) as: 

0 = 𝑢𝑢⋅,2
(1)′

+ 𝑢𝑢2̃,1
(2)�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝑢𝑢2̃,2

(2)�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + Ψ⋅,2
(1)′

𝜆𝜆𝑡𝑡

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,1
(2)�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝑢𝑢1̃,2

(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1
(1)′

𝜆𝜆𝑡𝑡+1�. 

Now, 𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1,1

(2) is negative definite, hence we may define 𝒱𝒱 ≔ Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
, so: 

Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

= Ψ(0) + �Ψ⋅,1
(1) − 𝒱𝒱𝑢𝑢2̃,1

(2)��𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� − 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

−Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
𝜆𝜆𝑡𝑡.

(22) 

Moreover, equation (19) implies that if the 𝑘𝑘th element of Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � is positive, 

then the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is zero, so: 

Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � = max{0, 𝑧𝑧𝑡𝑡} , (23) 

where: 

𝑧𝑧𝑡𝑡 ≔ Ψ(0) + �Ψ⋅,1
(1) − 𝒱𝒱𝑢𝑢2̃,1

(2)��𝑥𝑥𝑡𝑡−1 − 𝜇𝜇�

− 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

− �Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
+ 𝒲𝒲� 𝜆𝜆𝑡𝑡, 

and 𝒲𝒲 ∈ ℝ𝑐𝑐×𝑐𝑐 is an arbitrary, positive diagonal matrix. A natural choice is: 

𝒲𝒲 ≔ − diag−1 diag �Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
�, 
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providing this is positive (it is nonnegative at least as 𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2) is negative definite), where 

the diag  operator maps matrices to a vector containing their diagonal, and diag−1  maps 

vectors to a matrix with the given vector on the diagonal, and zeros elsewhere. 

We claim that we may replace equation (19)  with equation (23)  without changing the 

model. We have already shown that equation (19) implies equation (23), so we just have to 

prove the converse. We continue to suppose equation (18) holds, and thus, so too does equation 

(22)(22). Then, from subtracting equation (22) from equation (23), we have that: 

𝒲𝒲𝜆𝜆𝑡𝑡 = max{−𝑧𝑧𝑡𝑡, 0}. 

Hence, as 𝒲𝒲   is a positive diagonal matrix, and the right-hand side is nonnegative, 𝜆𝜆𝑡𝑡 ≥ 0 . 

Furthermore, the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is non-negative if and only if the 𝑘𝑘th element of 𝑧𝑧𝑡𝑡 is non-

positive (as 𝒲𝒲  is a positive diagonal matrix), which in turn holds if and only if the 𝑘𝑘th element 

of Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � is equal to zero, by equation (23). Thus equation (19) is satisfied.  

Combined with our previous results, this gives the following proposition: 

Proposition 16 Suppose we are given a problem in the form of Problem 4 (Linear-Quadratic). 

Then, the KKT conditions of that problem may be placed into the form of the multiple-bound 

generalisation of Problem 2 (OBC). Let �𝑞𝑞𝑥𝑥0
, 𝑀𝑀� be the infinite LCP corresponding to this 

representation, given initial state 𝑥𝑥0 ∈ 𝑋𝑋�. Then, if 𝑦𝑦 is a solution to the LCP, 𝑞𝑞𝑥𝑥0
+ 𝑀𝑀𝑦𝑦 gives 

the stacked paths of the bounded variables in a solution to Problem 4 (Linear-Quadratic). If, 

further, either condition of Proposition 14 is satisfied, then this LCP has a unique solution for 

all 𝑥𝑥0 ∈ 𝑋𝑋� , which gives the unique solution to Problem 4 (Linear-Quadratic), and, for 

sufficiently large 𝑇𝑇∗, the finite LCP �𝑞𝑞𝑥𝑥0
(𝑇𝑇∗), 𝑀𝑀(𝑇𝑇∗)� has a unique solution 𝑦𝑦(𝑇𝑇∗) for all 𝑥𝑥0 ∈ 𝑋𝑋�, 

where 𝑞𝑞𝑥𝑥0
(𝑇𝑇∗) + 𝑀𝑀(𝑇𝑇∗)𝑦𝑦(𝑇𝑇∗)  gives the first 𝑇𝑇∗  periods of the stacked paths of the bounded 

variables in a solution to Problem 4 (Linear-Quadratic). 

This proposition provides some evidence that the LCP will have a unique solution when it 

is generated from a dynamic programming problem with a unique solution. In the next 

subsection, we derive similar results for models with more general constraints and objective 

functions. The proof of this proposition also showed an alternative method for converting KKT 

conditions into equations of the form handled by our methods. 
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Appendix G.2: The general case 

Here we consider non-linear dynamic programming problems with general objective 

functions. Consider then the following generalisation of Problem 4 (Linear-Quadratic): 

Problem 5 (Non-linear) Suppose Γ: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛)  is a given compact, convex valued 

continuous function. Define 𝑋𝑋 ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ(𝑥𝑥) ≠ ∅�, and suppose without loss of generality 

that for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ(𝑥𝑥) ∩ 𝑋𝑋 = Γ(𝑥𝑥). Further suppose that ℱ : 𝑋𝑋 × 𝑋𝑋 → ℝ is a given twice 

continuously differentiable, concave function, and that 𝑥𝑥0 ∈ 𝑋𝑋 and 𝛽𝛽 ∈ (0,1) are given. 

Choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
, 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1). 

For tractability, we make the following additional assumption, which enables us to uniformly 

approximate Γ by a finite number of inequalities: 

Assumption 5 𝑋𝑋 is compact. 

Then, by Theorem 4.8 of Stokey, Lucas, and Prescott (1989), there is a unique solution to 

Problem 5 (Non-linear) for any 𝑥𝑥0. We further assume the following to ensure that there is a 

natural point to approximate around:42 

Assumption 6 There exists 𝜇𝜇 ∈ 𝑋𝑋 such that for any given 𝑥𝑥0 ∈ 𝑋𝑋, in the solution to Problem 5 

(Non-linear) with that 𝑥𝑥0, as 𝑡𝑡 → ∞, 𝑥𝑥𝑡𝑡 → 𝜇𝜇. 

Having defined 𝜇𝜇, we can let ℱ̃  be a second order Taylor approximation to ℱ  around 𝜇𝜇, 

which will take the form of equation (15)(15) . Assumption 4 will be satisfied for this 

approximation thanks to the concavity of ℱ . To apply the previous results, we also then need 

to approximate the constraints. 

Suppose first that the graph of Γ is convex, i.e. the set {(𝑥𝑥, z)|𝑥𝑥 ∈ 𝑋𝑋, 𝑧𝑧 ∈ Γ(𝑥𝑥)} is convex. 

Since it is also compact, by Assumption 5, for any 𝜖𝜖 > 0, there exists 𝑐𝑐 ∈ ℕ, Ψ(0) ∈ ℝ𝑐𝑐×1 and 

Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛 such that with Γ̃ defined as in equation (13) and 𝑋𝑋� defined as in equation (14): 

1) 𝜇𝜇 ∈ 𝑋𝑋� ⊆ 𝑋𝑋, 
 

42 If 𝑋𝑋 is convex, then the existence of a fixed point of the policy function is a consequence of Brouwer’s Fixed Point Theorem, 

but there is no reason the fixed point guaranteed by Brouwer’s Theorem should be even locally attractive. 
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2) for all 𝑥𝑥 ∈ 𝑋𝑋, there exists 𝑥𝑥̃ ∈ 𝑋𝑋� such that ‖𝑥𝑥 − 𝑥𝑥‖̃2 < 𝜖𝜖, 

3) for all 𝑥𝑥 ∈ 𝑋𝑋�, Γ̃(𝑥𝑥) ⊆ Γ(𝑥𝑥), 

4) for all 𝑥𝑥 ∈ 𝑋𝑋�, and for all 𝑧𝑧 ∈ Γ(𝑥𝑥), there exists 𝑧𝑧̃ ∈ Γ̃(𝑥𝑥) such that ‖𝑧𝑧 − 𝑧𝑧‖̃2 < 𝜖𝜖. 

(This follows from standard properties of convex sets.) Then, by our previous results, the 

following proposition is immediate: 

Proposition 17 Suppose we are given a problem in the form of Problem 5 (Non-linear) (and 

which satisfies Assumption 5 and Assumption 6). If the graph of Γ  is convex, then we can 

construct a problem in the form of the multiple-bound generalisation of Problem 2 (OBC) 

which encodes a local approximation to the original dynamic programming problem around 

𝑥𝑥𝑡𝑡 = 𝜇𝜇. Furthermore, the LCP corresponding to this approximation will have a unique solution 

for all 𝑥𝑥0 ∈ 𝑋𝑋�. Moreover, the approximation is consistent for quadratic objectives in the sense 

that as the number of inequalities used to approximate Γ goes to infinity, the approximate value 

function converges uniformly to the true value function. 

Unfortunately, if the graph of Γ is non-convex, then we will not be able to derive similar 

results. To see the best we could do along similar proof lines, here we merely sketch the 

construction of an approximation to the graph of Γ in this case. We will need to assume that 

there exists 𝑧𝑧 ∈ int Γ(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋, which precludes the existence of equality constraints.43 

We first approximate the graph of Γ by a polytope (i.e. 𝑛𝑛 dimensional polygon) contained in the 

graph of Γ such that all points in the graph of Γ are within 𝜖𝜖2 of a point in the polytope. Then, 

providing 𝜖𝜖 is sufficiently small, for each simplicial surface element of the polytope, indexed 

by 𝑘𝑘 ∈ {1, … , 𝑐𝑐}, we can find a quadratic function 𝑞𝑞𝑘𝑘: 𝑋𝑋 × 𝑋𝑋 → ℝ with: 

𝑞𝑞𝑘𝑘 = Ψ𝑘𝑘
(0) + Ψ𝑘𝑘,⋅

(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
Ψ𝑘𝑘

(2) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋 and such that 𝑞𝑞𝑘𝑘 is zero at the corners of the simplicial surface element, such 

that 𝑞𝑞𝑘𝑘 is nonpositive on its surface, such that Ψ𝑘𝑘
(2) is symmetric positive definite, and such that 

all points in the polytope are within 𝜖𝜖2 of a point in the set: 

�(𝑥𝑥, 𝑧𝑧) ∈ 𝑋𝑋 × 𝑋𝑋�∀𝑘𝑘 ∈ {1, … , 𝑆𝑆}, 0 ≤ 𝑞𝑞𝑘𝑘(𝑥𝑥, 𝑧𝑧)�. 

 

43 This is often not too much of a restriction, since equality constraints may be substituted out. 



Online Appendix: Page 58 of 97 

This gives a set of quadratic constraints that approximate Γ. If we then define: 

𝑢𝑢(̃2) ≔ 𝑢𝑢(2) + � 𝜆𝜆����Ψ,𝑘𝑘
′ Ψ𝑘𝑘

(2)
𝑐𝑐

𝑘𝑘=1
, 

where 𝑢𝑢(2) is the Hessian of ℱ , then the Lagrangian in equation (17) is the same as what would 

be obtained from taking a second order Taylor approximation to the Lagrangian of the problem 

of maximising our non-linear objective subject to the approximate quadratic constraints, 

suggesting it may perform acceptably well for 𝑥𝑥 near 𝜇𝜇, along similar lines to the results of 

Levine, Pearlman, and Pierse (2008) and Benigno & Woodford (2012). However, existence of 

a unique solution to the original problem cannot be used to establish even the existence of a 

solution of the approximated problem, since only linear approximations to the quadratic 

constraints would be imposed by our algorithm, giving a reduced choice set (as the quadratic 

terms are positive definite). 

: Proofs 

Appendix H.1: Proof of the results of Subsection 2.5 

To recap, the model with “news” shocks is: 

𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1� + 𝜒𝜒𝑝𝑝𝑡𝑡 + 𝜈𝜈𝑡𝑡, 

with 𝜒𝜒 > 0 and 𝜙𝜙 > 1, so: 

𝑝𝑝𝑡𝑡+1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝑝𝑝𝑡𝑡 − 𝜙𝜙𝑝𝑝𝑡𝑡−1 + 𝜈𝜈𝑡𝑡. 

We fix 𝑝𝑝0 = 0. 

We look for a solution in the form 𝑝𝑝𝑡𝑡 = ∑ 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=−∞  , where 𝜈𝜈𝑡𝑡 = 0  for all 𝑡𝑡 ≤ 0 . 

Substituting in, we have: 

� 𝐺𝐺𝑗𝑗−1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=−∞
= �1 + 𝜙𝜙 + 𝜒𝜒� � 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=−∞
− 𝜙𝜙 � 𝐺𝐺𝑗𝑗+1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=−∞
+ 𝜈𝜈𝑡𝑡, 

so from matching coefficients, we have: 

𝐺𝐺−1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝐺𝐺0 − 𝜙𝜙𝐺𝐺1 + 1, 

∀𝑗𝑗 ≠ 0, 𝐺𝐺𝑗𝑗−1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝐺𝐺𝑗𝑗 − 𝜙𝜙𝐺𝐺𝑗𝑗+1. 

We conjecture that 𝐺𝐺𝑗𝑗 = 𝐺𝐺0𝜁𝜁 𝑗𝑗 for 𝑗𝑗 ≥ 0 and 𝐺𝐺𝑗𝑗 = 𝐺𝐺0𝜂𝜂−𝑗𝑗 for 𝑗𝑗 ≤ 0, for some 𝐺𝐺0 ∈ ℝ and 

𝜁𝜁 , 𝜂𝜂 ∈ (−1,1). Then: 

𝜂𝜂 = �1 + 𝜙𝜙 + 𝜒𝜒� − 𝜙𝜙𝜁𝜁 +
1

𝐺𝐺0
, 
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1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝜁𝜁 − 𝜙𝜙𝜁𝜁 2, 

𝜂𝜂2 = �1 + 𝜙𝜙 + 𝜒𝜒�𝜂𝜂 − 𝜙𝜙. 

Thus: 

𝜂𝜂 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2 = 1 −
𝜒𝜒

𝜙𝜙 − 1 + Ο�𝜒𝜒2�, 

𝜁𝜁 =
𝜂𝜂
𝜙𝜙 =

1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙
2𝜙𝜙 =

1
𝜙𝜙 �1 −

𝜒𝜒
𝜙𝜙 − 1� + Ο�𝜒𝜒2�, 

𝐺𝐺0 = −
1

��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙
= −

1
𝜙𝜙 − 1 +

𝜙𝜙 + 1
�𝜙𝜙 − 1�3 𝜒𝜒 + Ο�𝜒𝜒2�, 

where, here and in the following, the Ο�𝜒𝜒2� terms are taken as 𝜒𝜒 → 0. Note that: 

�1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙 = �𝜙𝜙 − 1�2 + 2𝜒𝜒�1 + 𝜙𝜙� + 𝜒𝜒2 > 0 

providing that 𝜒𝜒 ≥ 0, so this solution is real as required. 

Additionally: 

𝜂𝜂 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2 >
1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2

2 = 0, 

and for 𝜒𝜒 > 0: 

𝜂𝜂 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��𝜙𝜙 − 1�2 + 2𝜒𝜒�1 + 𝜙𝜙� + 𝜒𝜒2

2  

<
1 + 𝜙𝜙 + 𝜒𝜒 − ��𝜙𝜙 − 1�2 + 2𝜒𝜒�𝜙𝜙 − 1� + 𝜒𝜒2

2 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��𝜙𝜙 − 1 + 𝜒𝜒�2

2 = 1, 

again as required. 

Substituting back in, we have: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 

= 𝑟𝑟 + 𝐺𝐺0
⎣
⎢⎡ � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+1+𝑗𝑗

−1

𝑗𝑗=−∞
+ � 𝜁𝜁 𝑗𝑗𝜈𝜈𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0
− � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
− � 𝜁𝜁 𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤ 

= 𝑟𝑟 + 𝐺𝐺0
⎣
⎢⎡ � 𝜂𝜂−𝑗𝑗+1𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
+ � 𝜁𝜁 𝑗𝑗−1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
− � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
− � 𝜁𝜁 𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤ 

= 𝑟𝑟 + 𝐺𝐺0
⎣
⎢⎡(1 − 𝜁𝜁) � 𝜁𝜁 𝑗𝑗−1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
− �1 − 𝜂𝜂� � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞ ⎦
⎥⎤ 

= 𝑟𝑟 − �
𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗

∞

𝑗𝑗=1
+ 𝐺𝐺0

⎣
⎢⎡�

⎝
⎜⎜⎛(1 − 𝜁𝜁)𝜁𝜁 𝑗𝑗−1 +

1
𝐺𝐺0𝜙𝜙𝑗𝑗

⎠
⎟⎟⎞ 𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
− �1 − 𝜂𝜂� � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞ ⎦
⎥⎤ 

= 𝑟𝑟 − �
𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗

∞

𝑗𝑗=1
+

⎣
⎢⎡

1
�𝜙𝜙 − 1�2 ⎝

⎜⎛ � 𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
+ �

𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗−1

∞

𝑗𝑗=1 ⎠
⎟⎞ +

1
𝜙𝜙 − 1 �

�𝑗𝑗 − 1�𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤ 𝜒𝜒 + Ο�𝜒𝜒2�. 
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Since the partial derivative of the term in square brackets here with respect to 𝜈𝜈𝑠𝑠 is strictly 

positive for all 𝑠𝑠 ∈ ℕ+ , at least for small 𝜒𝜒 , all of the elements of 𝑀𝑀  must be strictly 

monotonically increasing in 𝜒𝜒. Thus, by Jacobi’s formula, for any principal sub-matrix 𝑊𝑊 of 

𝑀𝑀 with 𝑊𝑊 ∈ ℝ𝑆𝑆×𝑆𝑆 (𝑆𝑆 ≤ 𝑇𝑇), if 𝜒𝜒 = 0: 

𝑑𝑑 det 𝑊𝑊
𝑑𝑑𝜒𝜒 =

𝑑𝑑𝑊𝑊𝑆𝑆,1
𝑑𝑑𝜒𝜒 (−1)𝑆𝑆−1 det 𝑊𝑊1:(𝑆𝑆−1),2:𝑆𝑆 =

𝑑𝑑𝑊𝑊𝑆𝑆,1
𝑑𝑑𝜒𝜒 ��−𝑊𝑊𝑠𝑠,𝑠𝑠+1�

𝑆𝑆−1

𝑠𝑠=1
> 0, 

as with 𝜒𝜒 = 0, 𝑊𝑊 must be strictly upper triangular with negative elements in the upper triangle. 

Thus, as det 𝑊𝑊 = 0  when 𝜒𝜒 = 0 , for any 𝑇𝑇 , there exists 𝜒𝜒𝑇𝑇 ∈ (0, ∞]  such that for all 𝜒𝜒 ∈

�0, 𝜒𝜒𝑇𝑇� , 𝑀𝑀  (of size 𝑇𝑇 × 𝑇𝑇 ) is a P-matrix. (Recall that 𝑀𝑀  is a P-matrix if and only if all its 

principal sub-matrices have positive determinants.) 

We have suggestive evidence that this may be true for all 𝜒𝜒 > 0. Previously we showed 

that, at least for small 𝜒𝜒, the elements of 𝑀𝑀 with 𝜒𝜒 > 0 are strictly greater than the elements of 

𝑀𝑀 with 𝜒𝜒 = 0. In fact, this holds for all 𝜒𝜒 > 0. To see this, note that given 𝐺𝐺0 < 0 and 𝜂𝜂 < 1, 

from examining the square bracketed term of the penultimate expression for 𝑖𝑖𝑡𝑡 above, we just 

need that (1 − 𝜁𝜁)𝜁𝜁 𝑗𝑗−1 + 1
𝐺𝐺0𝜙𝜙𝑗𝑗 < 0 for 𝑗𝑗 ≥ 1. With 𝑗𝑗 = 1 this holds as: 

(1 − 𝜁𝜁)𝜁𝜁 1−1 +
1

𝐺𝐺0𝜙𝜙1 =
2𝜙𝜙 − 1 − 𝜙𝜙 − 𝜒𝜒 + ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2𝜙𝜙 −
2��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2𝜙𝜙  

=
−𝜒𝜒 + �𝜙𝜙 − 1� − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2𝜙𝜙  

=
−𝜒𝜒 + �𝜙𝜙 − 1� − ��𝜙𝜙 − 1�2 + 2𝜒𝜒�1 + 𝜙𝜙� + 𝜒𝜒2

2𝜙𝜙 < 0. 

So, using the fact that 𝜁𝜁 = 𝜂𝜂
𝜙𝜙 < 𝜂𝜂 < 1: 

0 < 1 − 𝜁𝜁 < −
1

𝐺𝐺0𝜙𝜙. 

Thus as 0 < 𝜂𝜂
𝜙𝜙 = 𝜁𝜁 = 𝜂𝜂

𝜙𝜙 < 1
𝜙𝜙, in fact for all 𝑗𝑗 ≥ 1: 

(1 − 𝜁𝜁)𝜁𝜁 𝑗𝑗−1 < −
1

𝐺𝐺0𝜙𝜙𝑗𝑗, 

as required. Thus, for all 𝜒𝜒 > 0 , the elements of 𝑀𝑀  with 𝜒𝜒 > 0  are strictly greater than the 

elements of 𝑀𝑀 with 𝜒𝜒 = 0. 
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Appendix H.2: Proof of the rational expectations results from Subsection 2.6 

𝐴𝐴𝛿𝛿, 𝐵𝐵𝛿𝛿 and 𝐶𝐶𝛿𝛿 must solve: 

𝑟𝑟 + (1 − 𝛿𝛿)[𝐴𝐴𝛿𝛿(𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿) + 𝐵𝐵𝛿𝛿] + 𝛿𝛿𝐶𝐶𝛿𝛿 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙(𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿) − 𝜓𝜓𝜋𝜋𝑡𝑡−1, 

𝑟𝑟 + (1 − 𝛿𝛿)[𝐴𝐴𝛿𝛿𝐶𝐶𝛿𝛿 + 𝐵𝐵𝛿𝛿] + 𝛿𝛿𝐶𝐶 = 𝑖𝑖𝑡𝑡 = 0, 

where the former captures the 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿 case, and the latter captures the 𝜋𝜋𝑡𝑡 = 𝐶𝐶𝛿𝛿 one. 

Collecting terms implies that (1 − 𝛿𝛿)𝐴𝐴𝛿𝛿
2 = 𝜙𝜙𝐴𝐴𝛿𝛿 − 𝜓𝜓, so: 

𝐴𝐴𝛿𝛿 =
1 − �1 − (1 − 𝛿𝛿)𝜓𝜓

1 − 𝛿𝛿 ∈
⎝
⎜⎛0,

1 − �𝛿𝛿
1 − 𝛿𝛿 ⎠

⎟⎞ ⊆ (0,1), 44 

while (1 − 𝛿𝛿)(1 + 𝐴𝐴𝛿𝛿)𝐵𝐵𝛿𝛿 + 𝛿𝛿𝐶𝐶𝛿𝛿 = 𝜙𝜙𝐵𝐵𝛿𝛿 and 𝑟𝑟 + (1 − 𝛿𝛿)[𝐴𝐴𝛿𝛿𝐶𝐶𝛿𝛿 + 𝐵𝐵𝛿𝛿] + 𝛿𝛿𝐶𝐶𝛿𝛿 = 0, so: 

𝐵𝐵𝛿𝛿 = −
𝛿𝛿𝑟𝑟

2𝛿𝛿 + (1 − 𝛿𝛿)[1 − (1 − 𝛿𝛿)𝐴𝐴𝛿𝛿]𝐴𝐴𝛿𝛿
< 0, 

𝐶𝐶𝛿𝛿 = −
𝑟𝑟[2 − (1 − 𝛿𝛿)(1 + 𝐴𝐴𝛿𝛿)]

2𝛿𝛿 + (1 − 𝛿𝛿)[1 − (1 − 𝛿𝛿)𝐴𝐴𝛿𝛿]𝐴𝐴𝛿𝛿
< 0. 

Note that as 𝛿𝛿 → 0 , 𝐴𝐴𝛿𝛿 → 𝐴𝐴  (as defined in Subsection 2.2 of the main paper), 𝐵𝐵𝛿𝛿 → 0  and 

𝐶𝐶𝛿𝛿 → −𝐴𝐴−1𝑟𝑟. 

We just have to check that this solution does not violate the monetary rule. First suppose it 

were the case that 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿 for all 𝑡𝑡. Then 𝜋𝜋𝑡𝑡 would converge to the pseudo-steady 

state 𝜋𝜋���� solving 𝜋𝜋���� = 𝐴𝐴𝛿𝛿𝜋𝜋���� + 𝐵𝐵𝛿𝛿. Thus: 

𝜋𝜋���� − 𝐶𝐶𝛿𝛿 = �
1 − 𝜓𝜓
1 − 𝐴𝐴𝛿𝛿

�
𝑟𝑟

2𝛿𝛿 + (1 − 𝛿𝛿)[1 − (1 − 𝛿𝛿)𝐴𝐴𝛿𝛿]𝐴𝐴𝛿𝛿
> 0. 

Since 𝜋𝜋���� − 𝐶𝐶𝛿𝛿 > 0 , and 𝐴𝐴𝛿𝛿 ∈ (0,1) , in fact for all 𝑡𝑡 , 𝜋𝜋𝑡𝑡 ∈ [𝐶𝐶𝛿𝛿, 𝜋𝜋����) , assuming 𝜋𝜋0  is in this 

interval. Now note that: 

𝐶𝐶𝛿𝛿 +
𝑟𝑟 + 2𝐵𝐵𝛿𝛿

(1 − 𝛿𝛿)𝐴𝐴𝛿𝛿
2 = 𝐶𝐶𝛿𝛿 −

𝑟𝑟 + 2𝐶𝐶𝛿𝛿
𝜓𝜓 = �

1 − 𝜓𝜓
𝐴𝐴𝛿𝛿

�
𝑟𝑟

2𝛿𝛿 + (1 − 𝛿𝛿)[1 − (1 − 𝛿𝛿)𝐴𝐴𝛿𝛿]𝐴𝐴𝛿𝛿
> 0. 

So, for all 𝑡𝑡: 

𝜋𝜋𝑡𝑡−1 ≥ 𝐶𝐶𝛿𝛿 > −
𝑟𝑟 + 2𝐵𝐵𝛿𝛿

(1 − 𝛿𝛿)𝐴𝐴𝛿𝛿
2, 

and thus when 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝛿𝛿𝜋𝜋𝑡𝑡−1 + 𝐵𝐵𝛿𝛿 , 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 = 𝑟𝑟 + (1 − 𝛿𝛿)𝐴𝐴𝛿𝛿
2𝜋𝜋𝑡𝑡−1 + 2𝐵𝐵𝛿𝛿 > 0 , as 

required. Similarly, for all 𝑡𝑡: 

𝜋𝜋𝑡𝑡−1 ≥ 𝐶𝐶𝛿𝛿 >
𝑟𝑟 + 2𝐶𝐶𝛿𝛿

𝜓𝜓 , 

 

44 Determinacy requires that 1 − 𝛿𝛿 times the other root is greater than one. This holds as 1 + �1 − (1 − 𝛿𝛿)𝜓𝜓 > 1. 
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and thus when 𝜋𝜋𝑡𝑡 = 𝐶𝐶𝛿𝛿 , 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 = 𝑟𝑟 + 2𝐶𝐶𝛿𝛿 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 < 0 , again as required. This 

means that the monetary rule is satisfied: the economy is away from the ZLB when the 𝛿𝛿 shock 

does not hit, and at the ZLB when it does. 

Appendix H.3: Proof of the NK result from Subsection 4.3 

Let 𝜀𝜀 > 0 . Consider increasing the bottom left element of 𝑀𝑀  by ±𝜀𝜀 . By Sylvester’s 

determinant theorem, this increases the determinant of 𝑀𝑀 by ±𝜀𝜀(−1)𝑇𝑇+1 det 𝑀𝑀1:𝑇𝑇−1,2:𝑇𝑇. 

Write 𝑎𝑎𝑘𝑘 = 𝑀𝑀𝑇𝑇−𝑘𝑘,𝑇𝑇 for 𝑘𝑘 ≥ 0. Since 𝑀𝑀 is Toeplitz, the definition of 𝑎𝑎𝑘𝑘 is independent of 

𝑇𝑇, so we may consider 𝑎𝑎𝑘𝑘 defined for all 𝑘𝑘 ∈ ℕ. 

To make the determinant of the resulting matrix negative (for an appropriate choice of ±), 

we need �det 𝑀𝑀1:𝑇𝑇−1,2:𝑇𝑇 �
𝑎𝑎0

𝑇𝑇 ≥ 1
𝜀𝜀. 

With 𝑀𝑀  upper triangular, 𝑀𝑀1:𝑇𝑇−1,2:𝑇𝑇  is upper Hessenberg. It is also Toeplitz as 𝑀𝑀  is. 

Hence, by Theorem 1 of Cahill et al. (2002), det 𝑀𝑀1:𝑇𝑇−1,2:𝑇𝑇 = 𝑑𝑑𝑇𝑇−1, where 𝑑𝑑0 = 1 and: 

𝑑𝑑𝑡𝑡 = �(−𝑎𝑎0)𝑘𝑘𝑎𝑎𝑘𝑘+1𝑑𝑑𝑡𝑡−𝑘𝑘−1

𝑡𝑡−1

𝑘𝑘=0
, 

for 𝑡𝑡 > 0. Write 𝑒𝑒𝑡𝑡 = 𝑑𝑑𝑡𝑡

𝑎𝑎0
𝑡𝑡+1 for 𝑡𝑡 ≥ 0, so we need |𝑒𝑒𝑇𝑇−1| ≥ 1

𝜀𝜀. Then 𝑒𝑒0 = 1
𝑎𝑎0

 and: 

𝑒𝑒𝑡𝑡 = �(−1)𝑘𝑘 𝑎𝑎𝑘𝑘+1
𝑎𝑎0

𝑒𝑒𝑡𝑡−𝑘𝑘−1

𝑡𝑡−1

𝑘𝑘=0
, 

for 𝑡𝑡 > 0 . To ensure |𝑒𝑒𝑡𝑡| → ∞  as 𝑡𝑡 → ∞ , we need at least one of the roots of the infinite 

polynomial 𝑝𝑝(𝑧𝑧) = ∑ (−𝑧𝑧)𝑘𝑘 𝑎𝑎𝑘𝑘
𝑎𝑎0

∞
𝑘𝑘=0  to lie strictly inside the unit circle. As 𝑝𝑝(0) = 1, it suffices 

that 0 > 𝑝𝑝(−1) = ∑ 𝑎𝑎𝑘𝑘
𝑎𝑎0

∞
𝑘𝑘=0 . Since 𝑎𝑎0 > 0, we just need ∑ 𝑎𝑎𝑘𝑘

∞
𝑘𝑘=0 < 0, i.e. for the the sum of the 

IRF of 𝑖𝑖𝑡𝑡 to an anticipated monetary policy shock in the very far future to be negative. 

To see whether this holds, we need to solve the original model without the ZLB but with a 

forcing process: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅𝑦𝑦𝑡𝑡 + 𝛽𝛽𝜋𝜋𝑡𝑡+1, 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡+1 − 𝜎𝜎−1�𝑖𝑖𝑡𝑡 − 𝜋𝜋𝑡𝑡+1 + log 𝛽𝛽�, 

𝑖𝑖𝑡𝑡 = − log 𝛽𝛽 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜈𝜈𝑡𝑡, 

where unlike in the main text, we do not assume that 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 ≠ 1. We guess that: 

𝜋𝜋𝑡𝑡 = � 𝐹𝐹𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=0
. 
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So: 

𝑦𝑦𝑡𝑡 =
1
𝜅𝜅 𝐹𝐹0𝜈𝜈𝑡𝑡 +

1
𝜅𝜅 ��𝐹𝐹𝑗𝑗 − 𝛽𝛽𝐹𝐹𝑗𝑗−1�𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
, 

𝑖𝑖𝑡𝑡 = − log 𝛽𝛽 + �1 + �𝜙𝜙𝜋𝜋 +
𝜙𝜙𝑦𝑦

𝜅𝜅 � 𝐹𝐹0� 𝜈𝜈𝑡𝑡 + � �𝜙𝜙𝜋𝜋𝐹𝐹𝑗𝑗 +
𝜙𝜙𝑦𝑦

𝜅𝜅 �𝐹𝐹𝑗𝑗 − 𝛽𝛽𝐹𝐹𝑗𝑗−1�� 𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
, 

�1 + �𝜙𝜙𝜋𝜋 +
𝜙𝜙𝑦𝑦

𝜅𝜅 +
𝜎𝜎
𝜅𝜅� 𝐹𝐹0� 𝜈𝜈𝑡𝑡 + �𝜙𝜙𝜋𝜋𝐹𝐹1 +

𝜙𝜙𝑦𝑦

𝜅𝜅 �𝐹𝐹1 − 𝛽𝛽𝐹𝐹0� − 𝐹𝐹0 +
𝜎𝜎
𝜅𝜅 �𝐹𝐹1 − �1 + 𝛽𝛽�𝐹𝐹0�� 𝜈𝜈𝑡𝑡+1 

+ � �𝜙𝜙𝜋𝜋𝐹𝐹𝑗𝑗 +
𝜙𝜙𝑦𝑦

𝜅𝜅 �𝐹𝐹𝑗𝑗 − 𝛽𝛽𝐹𝐹𝑗𝑗−1� − 𝐹𝐹𝑗𝑗−1 +
𝜎𝜎
𝜅𝜅 �𝐹𝐹𝑗𝑗 − �1 + 𝛽𝛽�𝐹𝐹𝑗𝑗−1 + 𝛽𝛽𝐹𝐹𝑗𝑗−2�� 𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=2
= 0, 

Matching terms gives: 

𝐹𝐹0 = −
𝜅𝜅

𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦
, 

𝐹𝐹1 = −
𝜅𝜅�𝜅𝜅 + 𝛽𝛽𝜙𝜙𝑦𝑦 + �1 + 𝛽𝛽�𝜎𝜎�

�𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦�2 , 

𝐹𝐹𝑗𝑗 =
�𝜅𝜅 + 𝛽𝛽𝜙𝜙𝑦𝑦 + �1 + 𝛽𝛽�𝜎𝜎�𝐹𝐹𝑗𝑗−1 − 𝛽𝛽𝜎𝜎𝐹𝐹𝑗𝑗−2

𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦
, 

for 𝑗𝑗 ≥ 2. From standard results on stationarity of 𝐴𝐴𝑅𝑅(2) processes, we have that 𝐹𝐹𝑗𝑗 → 0 as 𝑗𝑗 →

∞ if and only if the following three conditions are met: 
𝛽𝛽𝜎𝜎

𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦
< 1 

𝜎𝜎 + 𝜅𝜅 + 𝛽𝛽𝜙𝜙𝑦𝑦

𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦
< 1 

−𝛽𝛽𝜎𝜎 − �𝜅𝜅 + 𝛽𝛽𝜙𝜙𝑦𝑦 + �1 + 𝛽𝛽�𝜎𝜎�
𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦

< 1 

The first always holds as 𝛽𝛽 < 1  and other parameters are non-negative. The second follows 

from our assumption (for determinacy without the ZLB) that: 

𝜅𝜅�𝜙𝜙𝜋𝜋 − 1� + �1 − 𝛽𝛽�𝜙𝜙𝑦𝑦 > 0. 

The third always holds as the numerator is negative and the denominator is positive. Thus, 𝐹𝐹𝑗𝑗 →

0 as 𝑗𝑗 → ∞. Moreover, this convergence is geometric. 

From this solution for 𝐹𝐹𝑗𝑗  we can infer 𝑎𝑎𝑗𝑗 , since 𝑎𝑎𝑗𝑗  gives the response of 𝑖𝑖𝑡𝑡  to a shock 

anticipated in 𝑗𝑗 periods. I.e.: 

𝑎𝑎0 = 1 + �𝜙𝜙𝜋𝜋 +
𝜙𝜙𝑦𝑦

𝜅𝜅 � 𝐹𝐹0 =
𝜎𝜎

𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦
, 

𝑎𝑎1 = −
𝜙𝜙𝜋𝜋𝜅𝜅�𝜅𝜅 + �1 + 𝛽𝛽�𝜎𝜎� + 𝜙𝜙𝑦𝑦(𝜅𝜅 + 𝜎𝜎)

�𝜎𝜎 + 𝜅𝜅𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑦𝑦�2 , 
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𝑎𝑎𝑗𝑗 = 𝜙𝜙𝜋𝜋𝐹𝐹𝑗𝑗 +
𝜙𝜙𝑦𝑦

𝜅𝜅 �𝐹𝐹𝑗𝑗 − 𝛽𝛽𝐹𝐹𝑗𝑗−1�, 

for 𝑗𝑗 ≥ 1. Now let 𝑏𝑏𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗−1, with 𝑏𝑏0 = 𝑎𝑎0. So: 

𝑏𝑏𝑗𝑗 = 𝜙𝜙𝜋𝜋𝐹𝐹𝑗𝑗 +
𝜙𝜙𝑦𝑦

𝜅𝜅 �𝐹𝐹𝑗𝑗 − 𝛽𝛽𝐹𝐹𝑗𝑗−1� + 𝑏𝑏𝑗𝑗−1. 

lim
𝑗𝑗→∞

𝑏𝑏𝑗𝑗 exists and is finite as 𝐹𝐹𝑗𝑗 converges geometrically. We just need to prove that lim
𝑗𝑗→∞

𝑏𝑏𝑗𝑗 < 0. 

Since the calculations involved in this rapidly turn messy, we turn to Maple (worksheet 

available on request). Maple gives that: 

lim
𝑗𝑗→∞

𝑏𝑏𝑗𝑗 = −
𝜅𝜅

𝜅𝜅�𝜙𝜙𝜋𝜋 − 1� + �1 − 𝛽𝛽�𝜙𝜙𝑦𝑦
< 0 

as we assumed 𝜅𝜅 > 0 and 𝜅𝜅�𝜙𝜙𝜋𝜋 − 1� + �1 − 𝛽𝛽�𝜙𝜙𝑦𝑦 > 0. 

This establishes that as 𝑇𝑇 → ∞ , �det 𝑀𝑀1:𝑇𝑇−1,2:𝑇𝑇 �
𝑎𝑎0

𝑇𝑇 = |𝑒𝑒𝑇𝑇| → ∞ . Hence, for any 𝜀𝜀 > 0 , for 

sufficiently large 𝑇𝑇, �det 𝑀𝑀1:𝑇𝑇−1,2:𝑇𝑇 �
𝑎𝑎0

𝑇𝑇 ≥ 1
𝜀𝜀, so our proposed ±𝜀𝜀 change to the 𝑀𝑀 matrix is sufficient 

to push its determinant negative. 

Appendix H.4: Proof of Proposition 2 

We first establish the following Lemma: 

Lemma 4 The (time-reversed) difference equation 𝐴𝐴𝑑𝑑�̂�𝑘+1 + 𝐵𝐵𝑑𝑑�̂�𝑘 + 𝐶𝐶𝑑𝑑�̂�𝑘−1 = 0 for all 𝑘𝑘 ∈ ℕ+ 

has a unique solution satisfying the terminal condition 𝑑𝑑�̂�𝑘 → 0  as 𝑘𝑘 → ∞ , given by 𝑑𝑑�̂�𝑘 =

𝐻𝐻𝑑𝑑�̂�𝑘−1, for all 𝑘𝑘 ∈ ℕ+, for some 𝐻𝐻 with eigenvalues in the unit circle. 

First, define 𝐺𝐺 ≔ −𝐶𝐶(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, and note that if 𝐿𝐿 is the lag (right-shift) operator, the 

model from Problem 1 (Linear) can be written as: 

𝐿𝐿−1(𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶)�𝑥𝑥 − 𝜇𝜇� = 0. 

Furthermore, by the definitions of 𝐹𝐹 and 𝐺𝐺: 

(𝐿𝐿 − 𝐺𝐺)(𝐵𝐵 + 𝐶𝐶𝐹𝐹)(𝐼𝐼 − 𝐹𝐹𝐿𝐿) = 𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶, 

so, the stability of the model from Problem 1 (Linear) is determined by the solutions for 𝑧𝑧 ∈ ℂ 

of the polynomial: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� = det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼 − 𝐹𝐹𝑧𝑧). 

Now by Assumption 1, all of the roots of det(𝐼𝐼 − 𝐹𝐹𝑧𝑧) are strictly outside of the unit circle, and 

all of the other roots of det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� are weakly inside the unit circle (else there would 

be indeterminacy), thus, all of the roots of det(𝐼𝐼𝑧𝑧 − 𝐺𝐺)  are weakly inside the unit circle. 
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Therefore, if we write 𝜌𝜌ℳ  for the spectral radius of some matrix ℳ , then, by this discussion 

and Assumption 2, 𝜌𝜌𝐺𝐺 < 1. 

Now consider the time reversed model: 

𝐿𝐿�𝐴𝐴𝐿𝐿−1𝐿𝐿−1 + 𝐵𝐵𝐿𝐿−1 + 𝐶𝐶�𝑑𝑑 = 0, 

subject to the terminal condition that 𝑑𝑑𝑘𝑘 → 0 as 𝑘𝑘 → ∞. Now, let 𝑧𝑧 ∈ ℂ, 𝑧𝑧 ≠ 0 be a solution 

to: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�, 

and define 𝑧𝑧̃ = 𝑧𝑧−1, so: 

0 = det�𝐴𝐴 + 𝐵𝐵𝑧𝑧̃ + 𝐶𝐶𝑧𝑧2̃� = 𝑧𝑧−2 det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� 

= det(𝐼𝐼 − 𝐺𝐺𝑧𝑧)̃ det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼𝑧𝑧̃ − 𝐹𝐹). 

By Assumption 1, all the roots of det(𝐼𝐼𝑧𝑧̃ − 𝐹𝐹)  are inside the unit circle, thus they cannot 

contribute to the dynamics of the time reversed process, else the terminal condition would be 

violated. Thus, the time reversed model has a unique solution satisfying the terminal condition 

with a transition matrix with the same eigenvalues as 𝐺𝐺. Consequently, this solution can be 

calculated via standard methods for solving linear DSGE models, and it will be given by 𝑑𝑑𝑘𝑘 =

𝐻𝐻𝑑𝑑𝑘𝑘−1, for all 𝑘𝑘 > 0, where 𝐻𝐻 = −(𝐵𝐵 + 𝐴𝐴𝐻𝐻)−1𝐶𝐶, and 𝜙𝜙𝐻𝐻 = 𝜙𝜙𝐺𝐺 < 1, by Assumption 2. This 

completes the proof of Lemma 4. 

Now let 𝑠𝑠𝑡𝑡
∗, 𝑥𝑥𝑡𝑡

∗ ∈ ℝ𝑛𝑛×ℕ+  be such that for any 𝑦𝑦 ∈ ℝℕ+ , the 𝑘𝑘 th columns of 𝑠𝑠𝑡𝑡
∗𝑦𝑦  and 𝑥𝑥𝑡𝑡

∗𝑦𝑦 

give the value of 𝑠𝑠𝑡𝑡 and 𝑥𝑥𝑡𝑡 following a magnitude 1 news shock at horizon 𝑘𝑘, i.e. when 𝑥𝑥0 = 𝜇𝜇 

and 𝑦𝑦0 is the 𝑘𝑘th row of 𝐼𝐼ℕ+×ℕ+. Then: 

𝑠𝑠𝑡𝑡
∗ = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ + 𝐺𝐺𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+1,1:∞ + 𝐺𝐺2𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+2,1:∞ + ⋯ � 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1 �(𝐺𝐺𝐿𝐿)𝑘𝑘
∞

𝑘𝑘=0
𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞, 

where the infinite sums are well defined as 𝜌𝜌𝐺𝐺 < 1, and where 𝐼𝐼𝑡𝑡,1:∞ ∈ ℝ1×ℕ+ is a row vector 

with zeros everywhere except position 𝑡𝑡 where there is a 1. Thus: 

𝑠𝑠𝑡𝑡
∗ = �0𝑛𝑛×(𝑡𝑡−1) 𝑠𝑠1

∗� = 𝐿𝐿𝑡𝑡−1𝑠𝑠1
∗. 

Furthermore,  

�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗� = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠𝑘𝑘

∗
𝑡𝑡

𝑗𝑗=1
= � 𝐹𝐹𝑡𝑡−𝑗𝑗𝐿𝐿𝑗𝑗−1𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
, 
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i.e.: 

�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗�⋅,𝑘𝑘 = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠1,⋅,𝑘𝑘+1−𝑗𝑗

∗
𝑡𝑡

𝑗𝑗=1
= − � 𝐹𝐹𝑡𝑡−𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑘𝑘−𝑗𝑗𝐼𝐼⋅,1

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
, 

and so, the 𝑘𝑘th offset diagonal of 𝑀𝑀 (𝑘𝑘 ∈ ℤ) is given by the first row of the 𝑘𝑘th column of: 

𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗� = 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑡𝑡−𝑗𝑗𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
= 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
, 

where we abuse notation slightly by allowing 𝐿𝐿−1 to give a result with indices in ℤ rather than 

ℕ+, with padding by zeros. Consequently, for all 𝑘𝑘 ∈ ℕ+, 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐹𝐹
𝑡𝑡 �, as 𝑡𝑡 → ∞, for all 

𝑡𝑡 ∈ ℕ+ , 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑘𝑘𝑛𝑛𝜌𝜌𝐺𝐺
𝑘𝑘 � , as 𝑘𝑘 → ∞ , and for all 𝑘𝑘 ∈ ℤ , 𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘 =

Ο�𝑡𝑡𝑛𝑛−1�𝜌𝜌𝐹𝐹𝜌𝜌𝐺𝐺�𝑡𝑡�, as 𝑡𝑡 → ∞. 

Hence, 

sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

exists and is well defined. We need to provide conditions under which sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 >

0.45 

To produce such conditions, we need constructive bounds on 𝑀𝑀, even if they have slightly 

worse convergence rates. For any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜙𝜙 ∈ �𝜌𝜌ℳ , 1�, let: 

𝒞𝒞ℳ ,𝜙𝜙 ≔ sup
𝑘𝑘∈ℕ

��ℳ𝜙𝜙−1�𝑘𝑘�2. 

Furthermore, for any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜖𝜖 > 0, let: 

𝜌𝜌ℳ ,𝜖𝜖 ≔ max�|𝑧𝑧|�𝑧𝑧 ∈ ℂ, 𝜎𝜎min�ℳ − 𝑧𝑧𝐼𝐼� = 𝜖𝜖�, 

where 𝜎𝜎min�ℳ − 𝑧𝑧𝐼𝐼�  is the minimum singular value of ℳ − 𝑧𝑧𝐼𝐼 , and let 𝜖𝜖∗�ℳ� ∈ (0, ∞] 

solve: 

𝜌𝜌ℳ ,𝜖𝜖∗�ℳ� = 1. 

(This has a solution in (0, ∞] by continuity as 𝜌𝜌ℳ < 1.) Then, by Theorem 16.2 of Trefethen 

and Embree (2005), for any 𝐾𝐾 ∈ ℕ and 𝑘𝑘 > 𝐾𝐾: 

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2��ℳ𝜙𝜙−1�𝑘𝑘−𝐾𝐾�2 ≤
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

 

45 We might ideally have liked a lower bound on sup
𝑦𝑦∈ℓ1∩[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 since by the Moore-Osgood theorem, this would 

imply a lower bound on lim
𝑇𝑇→∞

max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡∈{1,…,𝑇𝑇}

𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦  and thus imply that 𝑀𝑀  was an S-matrix for all sufficiently large 𝑇𝑇 . 

However, we have not managed to obtain a non-trivial lower bound on sup
𝑦𝑦∈ℓ1∩[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦. 
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Now, ��ℳ𝜙𝜙−1�𝐾𝐾�2 → 0 as 𝐾𝐾 → ∞, hence, there exists some 𝐾𝐾 ∈ ℕ such that: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

≥ sup
𝑘𝑘>𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2, 

meaning 𝒞𝒞ℳ ,𝜙𝜙 = sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 . The quantity 𝜌𝜌ℳ ,𝜖𝜖  (and hence 𝜖𝜖∗�ℳ� ) may be 

efficiently computed using the methods described by Wright and Trefethen (2001), and 

implemented in their EigTool toolkit46 . Thus, given ℳ   and 𝜙𝜙 , 𝒞𝒞ℳ ,𝜙𝜙  may be calculated in 

finitely many operations by iterating over 𝐾𝐾 ∈ ℕ until a 𝐾𝐾 is found which satisfies: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

From the definition of 𝒞𝒞ℳ ,𝜙𝜙, we have that for any 𝑘𝑘 ∈ ℕ and any 𝜙𝜙 ∈ �𝜌𝜌ℳ , 1�: 

�ℳ𝑘𝑘�2 ≤ 𝒞𝒞ℳ ,𝜙𝜙𝜙𝜙𝑘𝑘. 

Now, fix 𝜙𝜙𝐹𝐹 ∈ �𝜌𝜌𝐹𝐹, 1� and 𝜙𝜙𝐺𝐺 ∈ �𝜌𝜌𝐺𝐺, 1�,47 and define: 

𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
≔ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝒞𝒞𝐺𝐺,𝜙𝜙𝐹𝐹
�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2, 

then, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘� = ��𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗�1,𝑘𝑘� ≤ ��𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗�⋅,𝑘𝑘�2 ≤ � �𝐹𝐹𝑡𝑡−𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑘𝑘−𝑗𝑗�2

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑡𝑡−𝑗𝑗𝜙𝜙𝐺𝐺
𝑘𝑘−𝑗𝑗

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘 �𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺�− min{𝑡𝑡,𝑘𝑘} − 1
1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

. 

Additionally, for all 𝑡𝑡 ∈ ℕ+, 𝑘𝑘 ∈ ℤ: 

�𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘� = ��𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗��

1,𝑘𝑘
− � lim𝜏𝜏→∞ 𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗��
1,𝑘𝑘

� 

≤
�
�
�
�

⎝
⎜⎛𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
− 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
∞

𝑗𝑗=0 ⎠
⎟⎞

⋅,𝑘𝑘�
�
�
�

2

 

=
�
��
�
�

⎝
⎜⎛ � 𝐹𝐹𝑗𝑗𝑠𝑠1,⋅,𝑗𝑗+𝑘𝑘+1

∗
∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} ⎠
⎟⎞

⋅,0�
��
�
�

2

 

=
�
��
�

� 𝐹𝐹𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑗𝑗+𝑘𝑘𝐼𝐼⋅,1

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} �
��
�

2

 

≤ � �𝐹𝐹𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑗𝑗+𝑘𝑘�2

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑗𝑗 𝜙𝜙𝐺𝐺
𝑗𝑗+𝑘𝑘

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
max{𝑡𝑡,−𝑘𝑘}𝜙𝜙𝐺𝐺

max{0,𝑡𝑡+𝑘𝑘}

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, 

 

46 This toolkit is available from https://github.com/eigtool/eigtool, and is included in DynareOBC.  

47 In practice, we try a grid of values, as it is problem dependent whether high 𝜙𝜙𝐹𝐹 and low 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
 is preferable to low 𝜙𝜙𝐹𝐹 and 

high 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
. 
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so, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡� ≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. 

To evaluate lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡, note that this limit is the top element from the (𝑘𝑘 − 𝑡𝑡)th column 

of: 

𝑑𝑑 ≔ lim𝜏𝜏→∞ 𝐿𝐿−𝜏𝜏�𝑥𝑥𝜏𝜏
∗ − 𝜇𝜇∗� = 𝐿𝐿−1�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1𝑠𝑠1

∗ 

= −�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼0,−∞:∞, 

where 𝐼𝐼0,−∞:∞ ∈ ℝ1×ℤ is zero everywhere apart from index 0 where it equals 1. Hence, by the 

definitions of 𝐹𝐹 and 𝐺𝐺: 

𝐴𝐴𝐿𝐿−1𝑑𝑑 + 𝐵𝐵𝑑𝑑 + 𝐶𝐶𝐿𝐿𝑑𝑑 = −𝐼𝐼⋅,1𝐼𝐼0,−∞:∞. 

In other words, if we write 𝑑𝑑𝑘𝑘 in place of 𝑑𝑑⋅,𝑘𝑘 for convenience, then, for all 𝑘𝑘 ∈ ℤ: 

𝐴𝐴𝑑𝑑𝑘𝑘+1 + 𝐵𝐵𝑑𝑑𝑘𝑘 + 𝐶𝐶𝑑𝑑𝑘𝑘−1 = − �𝐼𝐼⋅,1 if 𝑘𝑘 = 0
0 otherwise

 

I.e. the homogeneous part of the difference equation for 𝑑𝑑−𝑡𝑡 is identical to that of 𝑥𝑥𝑡𝑡 − 𝜇𝜇. The 

time reversal here is intuitive since we are indexing diagonals such that indices increase as we 

move up and to the right in 𝑀𝑀, but time is increasing as we move down in 𝑀𝑀. 

Exploiting the possibility of reversing time is the key to easy evaluating 𝑑𝑑𝑘𝑘. First, note that 

for 𝑘𝑘 < 0 , it must be the case that 𝑑𝑑𝑘𝑘 = 𝐹𝐹𝑑𝑑𝑘𝑘+1 , since the shock has already “occurred” 

(remember, that we are going forwards in “time” when we reduce 𝑘𝑘). Likewise, since 𝑑𝑑𝑘𝑘 → 0 

as 𝑘𝑘 → ∞, as we have already proved that the first row of 𝑀𝑀 converges to zero, by Lemma 4, it 

must be the case that 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1, for all 𝑘𝑘 > 0, where 𝐻𝐻 = −(𝐵𝐵 + 𝐴𝐴𝐻𝐻)−1𝐶𝐶, and 𝜙𝜙𝐻𝐻 < 1. 

It just remains to determine the value of 𝑑𝑑0. By the previous results, this must satisfy: 

−𝐼𝐼⋅,1 = 𝐴𝐴𝑑𝑑1 + 𝐵𝐵𝑑𝑑0 + 𝐶𝐶𝑑𝑑−1 = (𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)𝑑𝑑0. 

Hence: 

𝑑𝑑0 = −(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1. 

This gives a readily computed solution for the limits of the diagonals of 𝑀𝑀. Lastly, note that: 

�𝑑𝑑−𝑡𝑡,1� ≤ ‖𝑑𝑑−𝑡𝑡‖2 = �𝐹𝐹𝑡𝑡𝑑𝑑0�2 ≤ �𝐹𝐹𝑡𝑡�2�𝑑𝑑0�2 ≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡 �𝑑𝑑0�2, 

and: 

�𝑑𝑑𝑡𝑡,1� ≤ ‖𝑑𝑑𝑡𝑡‖2 = �𝐻𝐻𝑡𝑡𝑑𝑑0�2 ≤ �𝐻𝐻𝑡𝑡�2�𝑑𝑑0�2 ≤ 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
𝜙𝜙𝐻𝐻

𝑡𝑡 �𝑑𝑑0�2. 

We will use these results in producing our bounds on 𝜍𝜍. 
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First, fix 𝑇𝑇 ∈ ℕ+, and define a new matrix 𝑀𝑀(𝑇𝑇) ∈ ℝℕ+×ℕ+ by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇
(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇, and 

for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇, 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) = 𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, then: 

𝜍𝜍 ≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

𝑦𝑦∞1∞×1
� ≥ max

𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
𝑦𝑦∞1∞×1

� 

= max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
⎨
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
� ,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>𝑇𝑇

�� �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
�

⎭�
��
⎬
��
�⎫

 

≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
��
⎨
��
��
��
��
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢
⎢
⎢
⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞ ⎦
⎥
⎥
⎥
⎥
⎤

,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡ � 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�⎦
⎥⎥
⎥⎥
⎤

⎭�
��
��
��
��
��
⎬
��
��
��
��
��
�⎫

. 

Now, for 𝑡𝑡 ≥ 𝑇𝑇: 

��(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1� ≤ �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2 ≤ �(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2

≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2, 

so: 

� 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
− �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1𝑦𝑦∞

≥ − � 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑘𝑘�𝑑𝑑0�2

𝑇𝑇

𝑘𝑘=1
− 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞

= −𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡 �𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

�𝑑𝑑0�2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞. 

Thus 𝜍𝜍 ≥ 𝜍𝜍𝑇𝑇, where: 

𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
��
⎨
��
��
��
��
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢
⎢
⎢
⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞ ⎦
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢⎢
⎢⎢
⎡−𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
2𝑇𝑇+1�𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

�𝑑𝑑0�2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑇𝑇+1�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞ + �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� ⎦
⎥⎥
⎥⎥
⎤

⎭�
��
��
��
��
��
⎬
��
��
��
��
��
�⎫

. 
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The final minimand in this expression is less than (but converges to): 

�(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞ + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞, 

i.e. a weakly positive multiple of the doubly infinite sum of 𝑑𝑑1,𝑘𝑘  over all 𝑘𝑘 ∈ ℤ . If this 

expression is negative, then the optimum will have 𝑦𝑦∞ = 0 giving (uninformatively) 𝜍𝜍𝑇𝑇 ≤ 0. 

To construct an upper bound on 𝜍𝜍, fix 𝑇𝑇 ∈ ℕ+, and define a new matrix 𝑀𝑀(𝑇𝑇) ∈ ℝℕ+×ℕ+ 

by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇
(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 , and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+ , with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇 , 𝑀𝑀𝑡𝑡,𝑘𝑘

(𝑇𝑇) = �𝑑𝑑𝑘𝑘−𝑡𝑡,1� +

𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. Then: 

𝜍𝜍 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) 𝑦𝑦 ≤ sup

𝑦𝑦∈[0,1]ℕ+
min

𝑡𝑡=1,…,𝑇𝑇
𝑀𝑀𝑡𝑡,1:∞

(𝑇𝑇) 𝑦𝑦 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
1∞×1

� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1�
∞

𝑘𝑘=𝑇𝑇+1
+ � 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

∞

𝑘𝑘=𝑇𝑇+1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘,1�
∞

𝑘𝑘=𝑇𝑇+1−𝑡𝑡
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐺𝐺

𝑘𝑘
∞

𝑘𝑘=0
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
�𝑑𝑑0�2𝜙𝜙𝐻𝐻

𝑇𝑇+1−𝑡𝑡 � 𝜙𝜙𝐻𝐻
𝑘𝑘

∞

𝑘𝑘=0
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�� 

= 𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇 ⎣

⎢⎡𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 +
𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻

�𝑑𝑑0�2𝜙𝜙𝐻𝐻
𝑇𝑇+1−𝑡𝑡

1 − 𝜙𝜙𝐻𝐻
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�⎦
⎥⎤. 

Note that if 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 is an S-matrix, 𝜍𝜍𝑇𝑇 > 0. 

Appendix H.5: Proof of Proposition 3 

Consider the model: 

𝒶𝒶𝑡𝑡 = max�0, 𝒷𝒷𝑡𝑡� , 𝒶𝒶𝑡𝑡 = 1 − 𝒸𝒸𝑡𝑡, 𝒸𝒸𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡. 

The model has steady state 𝒶𝒶 = 𝒷𝒷 = 1, 𝒸𝒸 = 0. Furthermore, in the model’s Problem 3 (News) 

type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �
𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇
, 

where 𝑦𝑦⋅,⋅ is defined as in Problem 3 (News), we have that: 

𝒸𝒸𝑡𝑡 = �𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
0 if 𝑡𝑡 > 𝑇𝑇

, 

so: 

𝒷𝒷𝑡𝑡 = �1 − 2𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
1 if 𝑡𝑡 > 𝑇𝑇

, 

implying: 
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𝒶𝒶𝑡𝑡 = �1 − 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
1 if 𝑡𝑡 > 𝑇𝑇

. 

thus, 𝑀𝑀 = −𝐼𝐼 for this model. 

Appendix H.6: Proof of Theorem 3 

First note that without loss of generality, we may assume that 𝐿𝐿�𝒻𝒻� = 1, since multiplying 

𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 by a constant does not change the solution. Additionally, we may assume that 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 is linear 

in its third argument for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ . To see this, consider the augmented system 

of equations: 

𝑢𝑢𝑡𝑡 = 𝜀𝜀𝑡𝑡, 

𝑣𝑣𝑡𝑡 = 𝑥𝑥𝑡𝑡−1, 

𝑤𝑤𝑡𝑡 = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑢𝑢𝑡𝑡−1
(𝑣𝑣𝑡𝑡−1, 𝑣𝑣𝑡𝑡, 𝑥𝑥𝑡𝑡), 

0 = 𝔼𝔼𝑡𝑡𝑤𝑤𝑡𝑡+1. 

This new system has the same solution(s) for 𝑥𝑥𝑡𝑡 as the original one. It is also Lipschitz and 

linear in 𝑡𝑡 + 1 terms as required. Thus, we can assume that there exists a Lipschitz function 

𝒻𝒻�̃�𝑘,𝑠𝑠,𝑒𝑒: 𝒳𝒳2 → ℝ𝑛𝑛 and a matrix 𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 ∈ ℝ𝑛𝑛×𝑛𝑛 such that for all 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒳𝒳: 

𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2) = 𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥0, 𝑥𝑥1) + 𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒𝑥𝑥2. 

We also have that max�𝐿𝐿�𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

�, �𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
� ≤ 𝐿𝐿�𝒻𝒻

𝑘𝑘,𝑠𝑠,𝑒𝑒
� ≤ 1, for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ . 

Let 𝒱𝒱 ≔ ∏ �𝒟𝒟𝑘𝑘,𝑠𝑠 → ℝ𝑛𝑛�𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ . This is the vector space of 𝐾𝐾-vectors of sequences 

of ℰ  -vectors of functions. Note that ℊ(𝜎𝜎,𝛿𝛿) = �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝜎𝜎,𝛿𝛿)�

𝑘𝑘∈𝐾𝐾,𝑠𝑠∈ℕ+,𝑒𝑒∈ℰ
  is a zero of the function 

Φ(𝜎𝜎,𝛿𝛿): 𝒱𝒱 → 𝒱𝒱  defined by: 

Φ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) 

= (1 − 𝛿𝛿) �𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

�𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�

+ 𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 �(1 − 𝜎𝜎)ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� + 𝜎𝜎 � ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

�� 

+𝛿𝛿 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) �𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

�𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
𝑙𝑙∈𝐾𝐾

+ 𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 �(1 − 𝜎𝜎)ℊ𝑙𝑙,1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� + 𝜎𝜎 � ℊ𝑙𝑙,1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

�� 

= 𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

�𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� + 𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 

+𝜎𝜎𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 � �ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝛿𝛿(1 − 𝜎𝜎)𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)�ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
𝑙𝑙∈𝐾𝐾
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+𝛿𝛿𝜎𝜎𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � �ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

for all ℊ ∈ 𝒱𝒱 , 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠, where the equality follows from the fact 

that ∑ 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)𝑙𝑙∈𝐾𝐾 = ∫ 1 𝑑𝑑𝓅𝓅(𝜀𝜀)ℰ = 1. 

We want to use the known perfect foresight solutions in order to prove the existence of the 

sunspot rational expectations solution for sufficiently small 𝜎𝜎  and 𝛿𝛿. A natural approach to a 

problem like this is to use an implicit function theorem on Φ(𝜎𝜎,𝛿𝛿) . There are two main 

difficulties. Firstly, we need the existence of a function, which requires an implicit function 

theorem for infinite dimensional spaces. Secondly, since 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒  (and hence Φ(𝜎𝜎,𝛿𝛿) ) is not 

everywhere differentiable, we need an implicit function theorem that does not rely on 

differentiability. We provide one with the required properties in Lemma 5 (An Implicit Function 

Theorem). This is an immediate special case of the result of Exercise 5H.6 of Dontchev & 

Rockafellar (2014). The notation we use in the statement of the Lemma follows that work: 

Lemma 5 (An Implicit Function Theorem) Let 𝑃𝑃 , 𝑋𝑋 , 𝑌𝑌  and 𝑍𝑍  be metric spaces, with 𝑋𝑋 

complete and 𝑌𝑌 ⊆ 𝑍𝑍 with the subspace metric. 

Let 𝑝𝑝 ̅ ∈ 𝑃𝑃 , 𝑥𝑥 ̅ ∈ 𝑋𝑋 . Let 𝑓𝑓 : 𝑃𝑃 × 𝑋𝑋 → 𝑍𝑍  and 𝐹𝐹: 𝑋𝑋 → 𝑌𝑌 , with 𝑓𝑓 �𝑝𝑝,̅ 𝑥𝑥�̅ = 𝐹𝐹(𝑥𝑥)̅ = 0 . (Note: 𝐹𝐹  will 

act as an approximation to 𝑓𝑓 .) 

Assume subtraction is defined on 𝑍𝑍 , with 𝐹𝐹(𝑥𝑥) − 𝑓𝑓 �𝑝𝑝, 𝑥𝑥� ∈ 𝑌𝑌  for all 𝑝𝑝 ∈ 𝑃𝑃  and 𝑥𝑥 ∈ 𝑋𝑋 , and 

that 0 ∈ 𝑌𝑌, where 𝑦𝑦 − 0 = 𝑦𝑦 for all 𝑦𝑦 ∈ 𝑌𝑌. 

Define 𝑔𝑔: 𝑃𝑃 × 𝑋𝑋 → 𝑌𝑌 by 𝑔𝑔�𝑝𝑝, 𝑥𝑥� = 𝐹𝐹(𝑥𝑥) − 𝑓𝑓 �𝑝𝑝, 𝑥𝑥�. 

Let 𝜅𝜅, 𝜇𝜇, 𝜈𝜈 ∈ (0, ∞) with 𝜅𝜅𝜇𝜇 < 1. 

Suppose: 

1) There exist neighbourhoods 𝑈𝑈 ∋ 𝑥𝑥 ̅ and 𝑉𝑉 ∋ 0  such that 𝐹𝐹  is a bijection from 𝑈𝑈 ⊆ 𝑋𝑋  to 

𝑉𝑉 ⊆ 𝑌𝑌, and for all 𝑦𝑦1, 𝑦𝑦2 ∈ 𝑉𝑉 with 𝑦𝑦1 ≠ 𝑦𝑦2, 
𝑑𝑑𝑋𝑋�𝐹𝐹−1�𝑦𝑦1�,𝐹𝐹−1�𝑦𝑦2��

𝑑𝑑𝑌𝑌�𝑦𝑦1,𝑦𝑦2� ≤ 𝜅𝜅. 

2) There exists 𝑟𝑟𝑎𝑎 > 0  such that if 𝑝𝑝 ∈ 𝑃𝑃 , 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑋𝑋 , with 𝑥𝑥1 ≠ 𝑥𝑥2 , 𝑑𝑑𝑃𝑃�𝑝𝑝, 𝑝𝑝�̅ ≤ 𝑟𝑟𝑎𝑎 , 

𝑑𝑑𝑋𝑋(𝑥𝑥1, 𝑥𝑥)̅ ≤ 𝑟𝑟𝑎𝑎, 𝑑𝑑𝑋𝑋(𝑥𝑥2, 𝑥𝑥)̅ ≤ 𝑟𝑟𝑎𝑎, then 𝑑𝑑𝑌𝑌�𝑔𝑔�𝑝𝑝,𝑥𝑥1�,𝑔𝑔�𝑝𝑝,𝑥𝑥2��
𝑑𝑑𝑋𝑋(𝑥𝑥1,𝑥𝑥2) ≤ 𝜇𝜇. 

3) There exists 𝑟𝑟𝑏𝑏 > 0  such that if 𝑝𝑝1, 𝑝𝑝2 ∈ 𝑃𝑃 , 𝑥𝑥 ∈ 𝑋𝑋 , with 𝑝𝑝1 ≠ 𝑝𝑝2 , 𝑑𝑑𝑃𝑃�𝑝𝑝1, 𝑝𝑝�̅ ≤ 𝑟𝑟𝑏𝑏 , 

𝑑𝑑𝑃𝑃�𝑝𝑝2, 𝑝𝑝�̅ ≤ 𝑟𝑟𝑏𝑏, 𝑑𝑑𝑋𝑋(𝑥𝑥, 𝑥𝑥)̅ ≤ 𝑟𝑟𝑏𝑏, then 𝑑𝑑𝑌𝑌�𝑔𝑔�𝑝𝑝1,𝑥𝑥�,𝑔𝑔�𝑝𝑝2,𝑥𝑥��
𝑑𝑑𝑃𝑃�𝑝𝑝1,𝑝𝑝2� ≤ 𝜈𝜈. 
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Then for all 𝛾𝛾 > 𝜅𝜅𝜈𝜈
1−𝜅𝜅𝜅𝜅, there exists a neighbourhood 𝑄𝑄𝛾𝛾 ∋ 𝑝𝑝 ̅such that for all 𝑝𝑝 ∈ 𝑄𝑄𝛾𝛾 ⊆ 𝑃𝑃 there 

exists 𝑥𝑥 ∈ 𝑋𝑋 with 𝑓𝑓 �𝑝𝑝, 𝑥𝑥� = 0 such that 𝑑𝑑𝑋𝑋(𝑥𝑥,̅ 𝑥𝑥) ≤ 𝛾𝛾𝑑𝑑𝑃𝑃�𝑝𝑝,̅ 𝑝𝑝�. 

The proof of the underlying result is based on a contraction mapping theorem, and hence is 

constructive. 

Our Φ will play the role of 𝑓𝑓  in this Lemma (with an appropriately restricted domain), with 

ℊ∗ playing the role of 𝑥𝑥.̅ 

Let 𝒢𝒢 ≔ �ℊ ∈ 𝒱𝒱 ��ℊ − ℊ∗�
∞

< ∞�  and let ℋ ≔ �𝒽𝒽 ∈ 𝒱𝒱 ��𝒽𝒽�∞ < ∞� , so ℊ∗ ∈ 𝒢𝒢  . 𝒢𝒢   and 

ℋ   are complete metric spaces under the metric 𝑑𝑑𝒱𝒱�ℊ , 𝒽𝒽� = �ℊ − 𝒽𝒽�
∞

  for ℊ , 𝒽𝒽 ∈ 𝒱𝒱  . 

Completeness for ℋ  follows from the fact that the space of bounded functions 𝒟𝒟𝑘𝑘,𝑠𝑠 → ℝ𝑛𝑛 is 

Banach for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, and from the fact that bounded norm, countable products of 

complete spaces are complete under the sup norm over the product. Completeness for 𝒢𝒢  comes 

from the fact that 𝒢𝒢 = ℋ + ℊ∗, with an identical metric. 

Recall that our assumptions imply 𝐴𝐴 ≔ 𝐴𝐴(0,0) < ∞ and 𝐵𝐵 = 𝐵𝐵(0,0) < ∞. So, for ℊ ∈ 𝒢𝒢 , 

and 𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠+1: 

�ℊ𝑘𝑘,𝑠𝑠+1,𝑒𝑒(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠+1,0(𝑥𝑥)�
2

= ��ℊ − ℊ∗�
𝑘𝑘,𝑠𝑠+1,𝑒𝑒

(𝑥𝑥) + ℊ𝑘𝑘,𝑠𝑠+1,𝑒𝑒
∗ (𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠+1,0

∗ (𝑥𝑥) − �ℊ − ℊ∗�
𝑘𝑘,𝑠𝑠+1,0

(𝑥𝑥)�
2
, 

so: 

�ℊ𝑘𝑘,𝑠𝑠+1,𝑒𝑒(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠+1,0(𝑥𝑥)�
2

≤ 𝐴𝐴 + 2�ℊ − ℊ∗�
∞

< ∞, (24) 

and likewise: 

�ℊ𝑙𝑙,1,𝑒𝑒(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠+1,𝑒𝑒(𝑥𝑥)�
2

≤ 𝐵𝐵 + 2�ℊ − ℊ∗�
∞

< ∞. (25) 

Thus, to ensure 𝐴𝐴(𝜎𝜎,𝛿𝛿) and 𝐵𝐵(𝜎𝜎,𝛿𝛿) are finite, it suffices to ensure ℊ(𝜎𝜎,𝛿𝛿) ∈ 𝒢𝒢 . 

We now proceed with the definitions of the key spaces. The space 𝑋𝑋 will be a closed (hence 

complete) subspace of a closed subspace 𝑊𝑊 of 𝒢𝒢 , with the subspace metric. The spaces 𝑌𝑌 and 

𝑍𝑍 will be closed subspaces of ℋ , again with the subspace metric. In particular, we fix: 

𝑐𝑐 ∈ �0, 𝐶𝐶−1�, 

then define: 

𝜅𝜅 ≔ 𝐶𝐶(1 − 𝑐𝑐𝐶𝐶)−1, 

𝜒𝜒 ≔ (1 + 𝜅𝜅𝑐𝑐)𝐷𝐷, 



Online Appendix: Page 74 of 97 

and fix: 

�̂�𝜆 ∈ �0, min�𝜆𝜆, 𝜁𝜁𝜅𝜅−1�� ≤ 𝜆𝜆, 

𝜇𝜇 ∈ �0, 𝜅𝜅−1�, 

and finally, define: 

𝜁𝜁 ̂ ≔ 𝜅𝜅�̂�𝜆 ≤ 𝜁𝜁 , 

𝜎𝜎����� ≔ min
⎩�⎨
�⎧1,

�̂�𝜆
2�𝐴𝐴 + 2𝜁𝜁 �̂

,
𝑐𝑐

4𝜒𝜒2 ,
𝜇𝜇

4(1 + 𝜒𝜒)⎭�⎬
�⎫ > 0, 

𝛿𝛿 ̅ ≔ min
⎩�⎨
�⎧1,

�̂�𝜆
2�𝐵𝐵 + 2𝜁𝜁 �̂

,
𝑐𝑐

2�𝐿𝐿Σ(𝜔𝜔)�𝐵𝐵 + 2𝜁𝜁 �̂ + 2𝜒𝜒2�
,

𝜇𝜇
4(1 + 𝜒𝜒)⎭�⎬

�⎫ > 0, 

𝑊𝑊 ≔ �ℊ ∈ 𝒢𝒢 ��ℊ − ℊ∗�
∞

≤ 𝜁𝜁 ,̂ 𝐿𝐿�ℊ� ≤ 𝜒𝜒�, 

𝑌𝑌 ≔ �𝒽𝒽 ∈ ℋ ��𝒽𝒽�∞ ≤ �̂�𝜆, 𝐿𝐿�𝒽𝒽� ≤ 𝑐𝑐�, 

𝑍𝑍 ≔ �𝒽𝒽 ∈ ℋ ��𝒽𝒽�∞ ≤ 2�̂�𝜆, 𝐿𝐿�𝒽𝒽� ≤ 2𝑐𝑐�. 

𝑊𝑊, 𝑌𝑌 and 𝑍𝑍 are all closed as the set of functions with bounded Lipschitz norm is closed in the 

Banach space of bounded functions 𝒟𝒟𝑘𝑘,𝑠𝑠 → ℝ𝑛𝑛  for 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ . Note that ℊ∗ ∈ 𝑊𝑊  as 

𝐿𝐿�ℊ∗� ≤ 𝐷𝐷 ≤ 𝜒𝜒. We will define 𝑋𝑋 ⊆ 𝑊𝑊 later. 

We take the space [0, 𝜎𝜎�����] × �0, 𝛿𝛿�̅ to be the space 𝑃𝑃 of parameters in the Lemma. The first 

coordinate gives 𝜎𝜎   and the second coordinate gives 𝛿𝛿 . We give this space the metric 

𝑑𝑑𝑃𝑃�(𝜎𝜎1, 𝛿𝛿1), (𝜎𝜎2, 𝛿𝛿2)� = max{|𝜎𝜎1 − 𝜎𝜎2|, |𝛿𝛿1 − 𝛿𝛿2|}, for 𝜎𝜎1, 𝜎𝜎2, 𝛿𝛿1, 𝛿𝛿2 ∈ [0,1]. The point (0,0) 

(i.e. 𝜎𝜎 = 0, 𝛿𝛿 = 0) fulfils the role of 𝑝𝑝 ̅from the Lemma. 

Let ℓ∞(ℕ+, ℝ𝑛𝑛)  be the Banach space of bounded ℝ𝑛𝑛  valued, ℕ+  indexed, sequences, 

with the sup norm ‖⋅‖∞. Let ℬ�̂�𝜆 ≔ �𝜂𝜂 ∈ ℓ∞(ℕ+, ℝ𝑛𝑛)��𝜂𝜂�∞ ≤ �̂�𝜆�. This is a closed subset of 

ℓ∞(ℕ+, ℝ𝑛𝑛), thus it is a complete metric space. 

For 𝒽𝒽 ∈ 𝑌𝑌  (so �𝒽𝒽�∞ ≤ �̂�𝜆  and 𝐿𝐿�𝒽𝒽� ≤ 𝑐𝑐 ), and for 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  , we define the 

operator Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� : 𝒟𝒟𝑘𝑘,𝑠𝑠 → �ℬ�̂�𝜆 → ℬ�̂�𝜆� by: 

Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�𝜂𝜂� =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝒽𝒽𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥),

𝒽𝒽𝑘𝑘,𝑠𝑠+1,0 �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥)� ,

𝒽𝒽𝑘𝑘,𝑠𝑠+2,0 �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)�� ,

𝒽𝒽𝑘𝑘,𝑠𝑠+3,0
⎝
⎜⎛ℊ𝑘𝑘,𝑠𝑠+2,0

∗�𝑅𝑅2𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)��
⎠
⎟⎞ ,

⋮ ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

, 
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for all 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝜂𝜂 ∈ ℬ�̂�𝜆. Note that for 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝜂𝜂1, 𝜂𝜂2 ∈ ℬ�̂�𝜆: 

�Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�𝜂𝜂1� − Θ𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥)�𝜂𝜂2��
∞

≤ 𝐿𝐿�𝒽𝒽� sup

⎩�
��
��
⎨
��
��
�⎧ �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂1�(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂2�(𝑥𝑥)�

2
,

�ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂1� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂1�(𝑥𝑥)� − ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂2� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂2�(𝑥𝑥)��
2

,

�ℊ𝑘𝑘,𝑠𝑠+2,0
∗�𝑅𝑅2𝜂𝜂1� �ℊ𝑘𝑘,𝑠𝑠+1,0

∗�𝑅𝑅𝜂𝜂1� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂1�(𝑥𝑥)�� − ℊ𝑘𝑘,𝑠𝑠+2,0

∗�𝑅𝑅2𝜂𝜂2� �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂2� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂2�(𝑥𝑥)���
2

,

⋮ ⎭�
��
��
⎬
��
��
�⎫

≤ 𝐿𝐿�𝒽𝒽�𝐶𝐶�𝜂𝜂1 − 𝜂𝜂2�∞ ≤ 𝑐𝑐𝐶𝐶�𝜂𝜂1 − 𝜂𝜂2�∞, 

by our assumption of 𝒫𝒫𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝜂𝜂� (𝑥𝑥) being 𝐶𝐶-Lipschitz in 𝜂𝜂. 

Also note that for 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝜂𝜂 ∈ ℬ�̂�𝜆: 

𝑅𝑅Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�𝜂𝜂� =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛ 𝒽𝒽𝑘𝑘,𝑠𝑠+1,0 �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)� ,

𝒽𝒽𝑘𝑘,𝑠𝑠+2,0 �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)�� ,

𝒽𝒽𝑘𝑘,𝑠𝑠+3,0
⎝
⎜⎛ℊ𝑘𝑘,𝑠𝑠+2,0

∗�𝑅𝑅2𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)��
⎠
⎟⎞ ,

⋮ ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

= Θ𝑘𝑘,𝑠𝑠+1,0
�𝒽𝒽� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)� �𝑅𝑅𝜂𝜂�. 

Furthermore, note that for 𝒽𝒽1, 𝒽𝒽2 ∈ 𝑌𝑌 , and for all 𝑘𝑘 ∈ 𝐾𝐾 , 𝑠𝑠 ∈ ℕ+ , 𝑒𝑒 ∈ ℰ  , 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠  and 𝜂𝜂 ∈

ℬ�̂�𝜆: 

�Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽1�(𝑥𝑥)�𝜂𝜂� − Θ𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽2�(𝑥𝑥)�𝜂𝜂��
∞

= sup

⎩�
��
��
��
�⎨
��
��
��
��
⎧ ��𝒽𝒽1 − 𝒽𝒽2�𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�2,

��𝒽𝒽1 − 𝒽𝒽2�𝑘𝑘,𝑠𝑠+1,0 �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥)��

2
,

��𝒽𝒽1 − 𝒽𝒽2�𝑘𝑘,𝑠𝑠+2,0 �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)���
2

,

��𝒽𝒽1 − 𝒽𝒽2�𝑘𝑘,𝑠𝑠+3,0
⎝
⎜⎛ℊ𝑘𝑘,𝑠𝑠+2,0

∗�𝑅𝑅2𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥)��
⎠
⎟⎞�

2
,

⋮ ⎭�
��
��
��
�⎬
��
��
��
��
⎫

≤ �𝒽𝒽1 − 𝒽𝒽2�∞. 

Additionally, for 𝒽𝒽 ∈ 𝑌𝑌, and for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ , 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝜂𝜂 ∈ ℬ�̂�𝜆: 
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�Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥1)�𝜂𝜂� − Θ𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥2)�𝜂𝜂��
∞

≤ 𝐿𝐿�𝒽𝒽� sup

⎩�
��
��
⎨
��
��
�⎧ �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥1) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥2)�

2
,

�ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥1)� − ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥2)��
2

,

�ℊ𝑘𝑘,𝑠𝑠+2,0
∗�𝑅𝑅2𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠+1,0

∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂�(𝑥𝑥1)�� − ℊ𝑘𝑘,𝑠𝑠+2,0

∗�𝑅𝑅2𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂� �ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂�(𝑥𝑥2)���
2

,

⋮ ⎭�
��
��
⎬
��
��
�⎫

≤ 𝐿𝐿�𝒽𝒽�𝐷𝐷‖𝑥𝑥1 − 𝑥𝑥2‖2 ≤ 𝑐𝑐𝐷𝐷‖𝑥𝑥1 − 𝑥𝑥2‖2. 

Therefore, if 𝒽𝒽 ∈ 𝑌𝑌, Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥): ℬ�̂�𝜆 → ℬ�̂�𝜆 is a contraction mapping for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 

𝑒𝑒 ∈ ℰ   and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 . Thus as ℬ�̂�𝜆  is complete, by the Banach fixed point theorem, 

Θ𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥): ℬ�̂�𝜆 → ℬ�̂�𝜆  has a unique fixed point, which we denote 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥) ∈ ℬ�̂�𝜆 . Clearly 

𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
(0) (𝑥𝑥) = 0. Moreover, by the parametric version of the Banach fixed point theorem given in 

Theorem 1A.4 of Dontchev & Rockafellar (2014), in fact 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥) is Lipschitz continuous in 𝒽𝒽  

(with 𝑘𝑘, 𝑠𝑠, 𝑒𝑒, 𝑥𝑥 fixed), with Lipschitz modulus (1 − 𝑐𝑐𝐶𝐶)−1, and 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥) is Lipschitz continuous 

in 𝑥𝑥 (with 𝒽𝒽, 𝑘𝑘, 𝑠𝑠, 𝑒𝑒 fixed), with Lipschitz modulus 𝑐𝑐𝐷𝐷(1 − 𝑐𝑐𝐶𝐶)−1. 

Furthermore, by the definition of ℊ∗�𝜂𝜂�, we have that: 

𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒

⎝
⎜⎜⎜
⎜⎛𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�

(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0
∗�𝑅𝑅𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥)�

⎝
⎜⎜⎜
⎛ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�

(𝑥𝑥)
⎠
⎟⎟⎟
⎞

⎠
⎟⎟⎟
⎟⎞ = 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥)1, 

so as 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥) = Θ𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥) �𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)� and: 

𝑅𝑅𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥) = 𝑅𝑅Θ𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥) �𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)� = Θ𝑘𝑘,𝑠𝑠+1,0

�𝒽𝒽�

⎝
⎜⎜⎜
⎛ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�

(𝑥𝑥)
⎠
⎟⎟⎟
⎞ �𝑅𝑅𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥)� , 

implying 𝜂𝜂𝑘𝑘,𝑠𝑠+1,0
�𝒽𝒽�

⎝
⎜⎜⎜
⎛ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�

(𝑥𝑥)
⎠
⎟⎟⎟
⎞ = 𝑅𝑅𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥): 

𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎛

𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥)�
(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0

∗

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎛

𝜂𝜂𝑘𝑘,𝑠𝑠+1,0
�𝒽𝒽�

⎝
⎜⎜⎜
⎜⎜⎜
⎛

ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗
⎝
⎜⎛𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥)
⎠
⎟⎞

(𝑥𝑥)

⎠
⎟⎟⎟
⎟⎟⎟
⎞

⎠
⎟⎟⎟
⎟⎟⎟
⎟⎞

⎝
⎜⎜⎜
⎛ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�

(𝑥𝑥)
⎠
⎟⎟⎟
⎞

⎠
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎞

= 𝒽𝒽𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥). 

We now define ℊ ̂∗�𝒽𝒽� by: 

ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽�(𝑥𝑥) = ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)�

(𝑥𝑥), 

for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠. With this definition, the previous equality can be 

restated as: 
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𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽�(𝑥𝑥), ℊ�̂�𝑘,𝑠𝑠+1,0

∗�𝒽𝒽� �ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽�(𝑥𝑥)�� = 𝒽𝒽𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥). (26) 

Additionally, note that for 𝒽𝒽1, 𝒽𝒽2 ∈ 𝑌𝑌, and for all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠: 

�ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽1�(𝑥𝑥) − ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒

∗�𝒽𝒽2�(𝑥𝑥)�
2

=
�
��
�
�
ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽1�(𝑥𝑥)�

(𝑥𝑥) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽2�(𝑥𝑥)�

(𝑥𝑥)
�
��
�
�

2

 

≤ 𝐶𝐶�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽1�(𝑥𝑥) − 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽2�(𝑥𝑥)�
∞

 

≤ 𝐶𝐶(1 − 𝑐𝑐𝐶𝐶)−1�𝒽𝒽1 − 𝒽𝒽2�∞ 

where the first inequality comes from our assumption on ℊ∗�𝜂𝜂�, and the latter comes from our 

previous result that 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥) is (1 − 𝑐𝑐𝐶𝐶)−1-Lipschitz in 𝒽𝒽 . Thus as 𝜅𝜅 = 𝐶𝐶(1 − 𝑐𝑐𝐶𝐶)−1: 

�ℊ ̂∗�𝒽𝒽1� − ℊ ̂∗�𝒽𝒽2��
∞

≤ 𝜅𝜅�𝒽𝒽1 − 𝒽𝒽2�∞, 

i.e., ℊ ̂∗�𝒽𝒽�  is 𝜅𝜅 -Lipschitz in 𝒽𝒽  . Since ℊ ̂∗(0) = ℊ∗  (as 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
(0) (𝑥𝑥) = 0 ), setting 𝒽𝒽2 = 0  in this 

relationship implies that for 𝒽𝒽1 ∈ 𝑌𝑌, 

�ℊ ̂∗�𝒽𝒽1� − ℊ∗�
∞

≤ 𝜅𝜅�𝒽𝒽1�∞ ≤ 𝜅𝜅�̂�𝜆 = 𝜁𝜁 .̂ 

Furthermore, since for 𝒽𝒽 ∈ 𝑌𝑌, 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠: 

�ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽�(𝑥𝑥1) − ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒

∗�𝒽𝒽�(𝑥𝑥2)�
2
 

=
�
��
�
ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥1)�

(𝑥𝑥1) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥1)�
(𝑥𝑥2) + ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥1)�

(𝑥𝑥2) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥2)�
(𝑥𝑥2)

�
��
�

2
 

≤
�
��
�
ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥1)�

(𝑥𝑥1) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥1)�
(𝑥𝑥2)

�
��
�

2
+

�
��
�
ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒

∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥1)�

(𝑥𝑥2) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒
∗�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥2)�
(𝑥𝑥2)

�
��
�

2
 

≤ 𝐷𝐷‖𝑥𝑥1 − 𝑥𝑥2‖2 + 𝐶𝐶�𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥1) − 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒

�𝒽𝒽� (𝑥𝑥2)�
2

≤ 𝐷𝐷‖𝑥𝑥1 − 𝑥𝑥2‖2 + 𝑐𝑐𝐶𝐶𝐷𝐷(1 − 𝑐𝑐𝐶𝐶)−1‖𝑥𝑥1 − 𝑥𝑥2‖2, 

as 𝜂𝜂𝑘𝑘,𝑠𝑠,𝑒𝑒
�𝒽𝒽� (𝑥𝑥)  is 𝑐𝑐𝐷𝐷(1 − 𝑐𝑐𝐶𝐶)−1 -Lipschitz in 𝑥𝑥 . Thus, 𝐿𝐿�ℊ ̂∗�𝒽𝒽�� ≤ 𝐷𝐷 + 𝑐𝑐𝐶𝐶𝐷𝐷(1 − 𝑐𝑐𝐶𝐶)−1 = 𝜒𝜒 . 

This establishes that for all 𝒽𝒽 ∈ 𝑌𝑌, 𝒽𝒽 ∈ 𝑊𝑊. We set: 

𝑋𝑋 ≔ ℊ ̂∗(𝑌𝑌) ≔ �ℊ ̂∗�𝒽𝒽��𝒽𝒽 ∈ 𝑌𝑌�. 

Hence, we have that 𝑋𝑋 ⊆ 𝑊𝑊 . We still need to prove that 𝑋𝑋  is closed as required for 

completeness. 

Next, we define the operator Ψ: 𝑊𝑊 → 𝒱𝒱  by: 

Ψ�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥), ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�� 

= 𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

�𝑥𝑥, ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� + 𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�, 

for all ℊ ∈ 𝑊𝑊, 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠. We write 𝑎𝑎|𝑆𝑆 for the restriction of (the 

domain of) some function 𝑎𝑎 to some set 𝑆𝑆. Ψ|𝑋𝑋 will play the role of 𝐹𝐹 in the Lemma. 
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Now, for ℊ1, ℊ2 ∈ 𝑊𝑊, 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠: 

�Ψ�ℊ
1
�

𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝑥𝑥) − Ψ�ℊ

2
�

𝑘𝑘,𝑠𝑠,𝑒𝑒
(𝑥𝑥)�

2
 

≤ 𝐿𝐿�𝒻𝒻�̃�𝑘,𝑠𝑠,𝑒𝑒� �ℊ
1,𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) − ℊ
2,𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)�
2
 

+�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2 �ℊ
1,𝑘𝑘,𝑠𝑠+1,0

�ℊ
1,𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)� − ℊ
2,𝑘𝑘,𝑠𝑠+1,0

�ℊ
1,𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)� + ℊ
2,𝑘𝑘,𝑠𝑠+1,0

�ℊ
1,𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)�

− ℊ
2,𝑘𝑘,𝑠𝑠+1,0

�ℊ
2,𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)��
2
 

≤ 𝐿𝐿�𝒻𝒻�̃�𝑘,𝑠𝑠,𝑒𝑒��ℊ
1

− ℊ
2
�

∞
+ �𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2 ��ℊ

1
− ℊ

2
�

∞
+ 𝐿𝐿�ℊ

2
��ℊ

1
− ℊ

2
�

∞
� 

≤ [2 + 𝜒𝜒]�ℊ
1

− ℊ
2
�

∞
, 

where the first inequality follows from the triangle inequality, the definition of the matrix norm, 

and the fact that 𝒻𝒻�̃�𝑘,𝑠𝑠,𝑒𝑒 is Lipschitz, the second comes from the triangle inequality and the fact 

that ℊ2 is Lipschitz and the third comes from the fact that max�𝐿𝐿�𝒻𝒻
�̃�𝑘,𝑠𝑠,𝑒𝑒

�, �𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
� ≤ 1. Thus Ψ 

is [2 + 𝜒𝜒]-Lipschitz. With ℊ2 = ℊ∗ ∈ 𝑊𝑊, this implies that for all ℊ1 ∈ 𝑊𝑊, �Ψ�ℊ
1
��

∞
≤ [2 + 𝜒𝜒]𝜁𝜁 ̂, so 

Ψ�ℊ
1
� ∈ ℋ . Hence as 𝑋𝑋 = ℊ̂∗(𝑌𝑌) ⊆ 𝑊𝑊 , Ψ|𝑋𝑋: 𝑋𝑋 → ℋ  is continuous. Thus as 𝑌𝑌  is closed in ℋ  , by 

continuity (Ψ�𝑋𝑋)−1(𝑌𝑌) ⊆ 𝑊𝑊 is closed in 𝑊𝑊 and thus closed in 𝒢𝒢 . 

Now note that for all 𝒽𝒽 ∈ 𝑌𝑌, and all 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠: 

Ψ�ℊ ̂∗�𝒽𝒽��
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) = 𝒻𝒻𝑘𝑘,𝑠𝑠,𝑒𝑒 �𝑥𝑥, ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽�(𝑥𝑥), ℊ�̂�𝑘,𝑠𝑠+1,0

∗�𝒽𝒽� �ℊ�̂�𝑘,𝑠𝑠,𝑒𝑒
∗�𝒽𝒽�(𝑥𝑥)�� = 𝒽𝒽𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥), 

by our result in equation (26). I.e., Ψ�ℊ ̂∗�𝒽𝒽�� = 𝒽𝒽 . Thus if ℊ ∈ 𝑋𝑋, then by the definition of 𝑋𝑋, 

there exists 𝒽𝒽 ∈ 𝑌𝑌  such that ℊ = ℊ ̂∗�𝒽𝒽�  and Ψ�ℊ� = Ψ�ℊ ̂∗�𝒽𝒽�� = 𝒽𝒽 ∈ 𝑌𝑌 . Hence, Φ(𝑋𝑋) = 𝑌𝑌 . 

Similarly, if for ℊ1, ℊ2 ∈ 𝑋𝑋 , Ψ�ℊ1� = Ψ�ℊ2� , then ℊ1 = ℊ2 = ℊ ̂∗�Ψ�ℊ1�� . Thus Ψ|𝑋𝑋  is a 

bijection from 𝑋𝑋 to 𝑌𝑌. Thus, as we already established that (Ψ|𝑋𝑋)−1(𝑌𝑌) is closed in 𝒢𝒢 , 𝑋𝑋 is 

closed in 𝒢𝒢   as required for completeness. Moreover, Ψ|𝑋𝑋: 𝑋𝑋 → 𝑌𝑌  is [2 + 𝜒𝜒] -Lipschitz and 

(Ψ|𝑋𝑋)−1: 𝑌𝑌 → 𝑋𝑋 is 𝜅𝜅-Lipschitz, with (Ψ|𝑋𝑋)−1�𝒽𝒽� = ℊ ̂∗�𝒽𝒽� for all 𝒽𝒽 ∈ 𝑌𝑌. 

Then, for the first condition of the Lemma, we claim we can take 𝑈𝑈 ≔ 𝑋𝑋, 𝑉𝑉 ≔ 𝑌𝑌 and 𝜅𝜅 =

𝐶𝐶(1 − 𝑐𝑐𝐶𝐶)−1  as already defined. 𝐹𝐹 = Ψ|𝑋𝑋  is a 𝜅𝜅 -Lipschitz bijection from 𝑈𝑈  to 𝑉𝑉 . The only 

thing left to check is that 𝑈𝑈 is a neighbourhood of ℊ∗ and 𝑉𝑉 is a neighbourhood of 0. Let 𝑌𝑌0 ≔

�𝒽𝒽 ∈ 𝑌𝑌��𝒽𝒽�∞ < �̂�𝜆� ⊆ 𝑌𝑌 = 𝑉𝑉. 𝑌𝑌0 is the intersection of a set open in ℋ  with 𝑌𝑌, thus 𝑌𝑌0 is open 

in 𝑌𝑌. Let 𝑋𝑋0 ≔ (Ψ|𝑋𝑋)−1(𝑌𝑌0) ⊆ 𝑋𝑋 = 𝑈𝑈. 𝑋𝑋0 is open in 𝑋𝑋 as Ψ|𝑋𝑋: 𝑋𝑋 → 𝑌𝑌 is continuous and 𝑌𝑌0 

is open in 𝑌𝑌 . Since 0 ∈ 𝑌𝑌0 ⊆ 𝑉𝑉 , ℊ∗ ∈ 𝑋𝑋0 ⊆ 𝑈𝑈 , as required. This establishes that 𝑈𝑈  is a 
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neighbourhood of ℊ∗ and 𝑉𝑉 is a neighbourhood of 0, completing the proof that the Lemma’s 

first condition holds. 

Following the Lemma, we now define the operator Γ(𝜎𝜎,𝛿𝛿): 𝑋𝑋 → 𝒱𝒱  for 𝜎𝜎 < 𝜎𝜎�����  and 𝛿𝛿 < 𝛿𝛿 ̅by: 

Γ(𝜎𝜎,𝛿𝛿)�ℊ� = Φ(𝜎𝜎,𝛿𝛿)�ℊ� − Ψ�ℊ�, 

for all ℊ ∈ 𝑋𝑋. Γ will play the role of −𝑔𝑔 in the Lemma. (The sign makes no difference in the 

below.) For 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑒𝑒 ∈ ℰ  and 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠: 

Γ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) = 𝜎𝜎𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 � �ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝛿𝛿(1 − 𝜎𝜎)𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)�ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
𝑙𝑙∈𝐾𝐾

 

+𝛿𝛿𝜎𝜎𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � �ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

. 

We want to show that Γ(𝜎𝜎,𝛿𝛿)(𝑋𝑋) ⊆ 𝑌𝑌. Let ℊ ∈ 𝑋𝑋, 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+ and 𝑒𝑒 ∈ ℰ . We need to prove 

that �Γ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

�
∞

≤ �̂�𝜆 and 𝐿𝐿�Γ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

� ≤ 𝑐𝑐. 

First let 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠. Then: 

�Γ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)�
2
 

≤ 𝜎𝜎�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
� ��ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��

2
𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ
 

+𝛿𝛿(1 − 𝜎𝜎)�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
� 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)��ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��

2𝑙𝑙∈𝐾𝐾
 

+𝛿𝛿𝜎𝜎�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
� 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � ��ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��

2
𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ𝑙𝑙∈𝐾𝐾
 

≤ 𝜎𝜎 � �𝐴𝐴 + 2�ℊ − ℊ∗�
∞

� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

+ 𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)�𝐵𝐵 + 2�ℊ − ℊ∗�
∞

�
𝑙𝑙∈𝐾𝐾

+ 𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � �𝐵𝐵 + 2�ℊ − ℊ∗�
∞

� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

≤ 𝜎𝜎�𝐴𝐴 + 2𝜁𝜁 �̂ + 𝛿𝛿�𝐵𝐵 + 2𝜁𝜁 ̂ + 𝐵𝐵� ≤
�̂�𝜆
2 +

�̂�𝜆
2 = �̂�𝜆. 

The first inequality comes from the triangle inequality. The second comes from the results in 

equations (24)  and (25)  and the fact that �𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2 ≤ 1 . The third comes from the fact that 

∑ 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)𝑙𝑙∈𝐾𝐾 = ∫ 1 𝑑𝑑𝓅𝓅(𝜀𝜀)ℰ = 1 and from the definition of 𝑊𝑊 ⊇ 𝑋𝑋. The fourth comes from 

the definition of 𝜎𝜎�����  and 𝛿𝛿.̅ 

Now let 𝑥𝑥1, 𝑥𝑥2 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠. Then: 

�Γ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥1) − Γ(𝜎𝜎,𝛿𝛿)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥2)�
2
 

≤ 𝜎𝜎�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
� ��ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��

2ℰ

+ �ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� − ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2
� d𝓅𝓅(𝜀𝜀) 
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+𝛿𝛿(1 − 𝜎𝜎)�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
�� 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)�ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)�

𝑙𝑙∈𝐾𝐾

− � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)�ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)�
𝑙𝑙∈𝐾𝐾

+ � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)�ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)�
𝑙𝑙∈𝐾𝐾

− � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥2)�ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)�
𝑙𝑙∈𝐾𝐾

�
2

 

+𝛿𝛿𝜎𝜎�𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2
�� 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) � �ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� 𝑑𝑑𝓅𝓅(𝜀𝜀)

ℰ𝑙𝑙∈𝐾𝐾

− � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) � �ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

+ � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) � �ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

− � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥2) � �ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

�
2

 

≤ 𝜎𝜎 � 2𝐿𝐿�ℊ��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1) − ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)�
2

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) ��ℊ𝑙𝑙,1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� − ℊ𝑙𝑙,1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2𝑙𝑙∈𝐾𝐾

+ �ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� − ℊ𝑘𝑘,𝑠𝑠+1,0�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2
� 

+𝛿𝛿(1 − 𝜎𝜎) ��𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) − 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥2)���ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2𝑙𝑙∈𝐾𝐾
 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) � ��ℊ𝑙𝑙,1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� − ℊ𝑙𝑙,1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2ℰ𝑙𝑙∈𝐾𝐾

+ �ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥1)� − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀�ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2
� 𝑑𝑑𝓅𝓅(𝜀𝜀) 

+𝛿𝛿𝜎𝜎 ��𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) − 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥2)� � ��ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥2)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

≤ 𝜎𝜎 � 2𝐿𝐿�ℊ�2‖𝑥𝑥1 − 𝑥𝑥2‖2 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)2𝐿𝐿�ℊ�2‖𝑥𝑥1 − 𝑥𝑥2‖2
𝑙𝑙∈𝐾𝐾

 

+𝛿𝛿(1 − 𝜎𝜎) � 𝐿𝐿�𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒�‖𝑥𝑥1 − 𝑥𝑥2‖2�𝐵𝐵 + 2�ℊ − ℊ∗�
∞

�
𝑙𝑙∈𝐾𝐾

 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1) � 2𝐿𝐿�ℊ�2‖𝑥𝑥1 − 𝑥𝑥2‖2 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

+𝛿𝛿𝜎𝜎 � 𝐿𝐿�𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒�‖𝑥𝑥1 − 𝑥𝑥2‖2 � �𝐵𝐵 + 2�ℊ − ℊ∗�
∞

� 𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

≤ 𝜎𝜎�2𝜒𝜒2�‖𝑥𝑥1 − 𝑥𝑥2‖2 + 𝛿𝛿�𝐿𝐿Σ(𝜔𝜔)�𝐵𝐵 + 2𝜁𝜁 �̂ + 2𝜒𝜒2�‖𝑥𝑥1 − 𝑥𝑥2‖2 
≤

𝑐𝑐
2 ‖𝑥𝑥1 − 𝑥𝑥2‖2 +

𝑐𝑐
2 ‖𝑥𝑥1 − 𝑥𝑥2‖2 ≤ 𝑐𝑐‖𝑥𝑥1 − 𝑥𝑥2‖2. 

The first inequality comes from the triangle inequality. The second comes from the triangle 

inequality, ℊ  being Lipschitz, and the fact that �𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2 ≤ 1. The third comes from ℊ  and 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒 

being Lipschitz, and from the result in equations (25). The fourth comes from the fact that 
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∑ 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)𝑙𝑙∈𝐾𝐾 = ∫ 1 𝑑𝑑𝓅𝓅(𝜀𝜀)ℰ = 1, and from the definitions of 𝐿𝐿Σ(𝜔𝜔) and 𝑊𝑊 ⊇ 𝑋𝑋. The fifth 

comes from the definitions of 𝜎𝜎�����   and 𝛿𝛿 ̅. This completes the proof that Γ(𝜎𝜎,𝛿𝛿)(𝑋𝑋) ⊆ 𝑌𝑌 . 

Additionally, note that for ℊ ∈ 𝑋𝑋 , Φ(𝜎𝜎,𝛿𝛿)�ℊ� = Ψ�ℊ� + Γ(𝜎𝜎,𝛿𝛿)�ℊ� . As Ψ�ℊ� ∈ 𝑌𝑌  and 

Γ(𝜎𝜎,𝛿𝛿)�ℊ� ∈ 𝑌𝑌, so by the definition of 𝑍𝑍, Φ(𝜎𝜎,𝛿𝛿)�ℊ� ∈ 𝑍𝑍, as required. 

For the Lemma’s second condition, let ℊ1, ℊ2 ∈ 𝑋𝑋, 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝑒𝑒 ∈ ℰ . 

Then: 

�Γ(𝜎𝜎,𝛿𝛿)�ℊ1�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) − Γ(𝜎𝜎,𝛿𝛿)�ℊ2�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)�
2
 

≤ 𝜎𝜎 � ��ℊ1,𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ1,𝑘𝑘,𝑠𝑠+1,0��ℊ1,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� − �ℊ1,𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ1,𝑘𝑘,𝑠𝑠+1,0��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝜎𝜎 � ��ℊ1,𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ1,𝑘𝑘,𝑠𝑠+1,0��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)� − �ℊ2,𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ2,𝑘𝑘,𝑠𝑠+1,0��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)��ℊ1,𝑙𝑙,1,0 − ℊ1,𝑘𝑘,𝑠𝑠+1,0��ℊ1,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
𝑙𝑙∈𝐾𝐾

− �ℊ1,𝑙𝑙,1,0 − ℊ1,𝑘𝑘,𝑠𝑠+1,0��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2
 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)��ℊ1,𝑙𝑙,1,0 − ℊ1,𝑘𝑘,𝑠𝑠+1,0��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
𝑙𝑙∈𝐾𝐾

− �ℊ2,𝑙𝑙,1,0 − ℊ2,𝑘𝑘,𝑠𝑠+1,0��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2
 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � ��ℊ1,𝑙𝑙,1,𝜀𝜀 − ℊ1,𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ1,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
ℰ𝑙𝑙∈𝐾𝐾

− �ℊ1,𝑙𝑙,1,𝜀𝜀 − ℊ1,𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀) 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � ��ℊ1,𝑙𝑙,1,𝜀𝜀 − ℊ1,𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)�
ℰ𝑙𝑙∈𝐾𝐾

− �ℊ2,𝑙𝑙,1,𝜀𝜀 − ℊ2,𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ2,𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀) 

≤ 𝜎𝜎 � 2𝐿𝐿�ℊ1��ℊ1 − ℊ2�
∞

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

+ 𝜎𝜎 � 2�ℊ1 − ℊ2�
∞

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)2𝐿𝐿�ℊ1��ℊ1 − ℊ2�
∞

𝑙𝑙∈𝐾𝐾
+ 𝛿𝛿(1 − 𝜎𝜎) � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)2�ℊ1 − ℊ2�

∞
𝑙𝑙∈𝐾𝐾

 

+𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � 2𝐿𝐿�ℊ1��ℊ1 − ℊ2�
∞

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

+ 𝛿𝛿𝜎𝜎 � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � 2�ℊ1 − ℊ2�
∞

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

≤ 2(𝜎𝜎 + 𝛿𝛿)(1 + 𝜒𝜒)�ℊ1 − ℊ2�
∞

≤ 𝜇𝜇�ℊ1 − ℊ2�
∞

. 

The first inequality comes from the triangle inequality and the fact that �𝒬𝒬𝑘𝑘,𝑠𝑠,𝑒𝑒�2 ≤ 1 . The 

second comes from the triangle inequality and ℊ1 being Lipschitz. The third comes from the 

fact that ∑ 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)𝑙𝑙∈𝐾𝐾 = ∫ 1 𝑑𝑑𝓅𝓅(𝜀𝜀)ℰ = 1 , and from the definition of 𝑊𝑊 ⊇ 𝑋𝑋 . The fourth 

comes from the definitions of 𝜎𝜎�����  and 𝛿𝛿.̅ This establishes the Lemma’s second condition for any 

arbitrarily large 𝑟𝑟𝑎𝑎 > 0. 

For the Lemma’s third and final condition, let ℊ ∈ 𝑋𝑋, 𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ ℕ+, 𝑥𝑥 ∈ 𝒟𝒟𝑘𝑘,𝑠𝑠 and 𝑒𝑒 ∈

ℰ . Then for 𝜎𝜎1 < 𝜎𝜎����� , 𝜎𝜎2 < 𝜎𝜎����� , 𝛿𝛿1 < 𝛿𝛿 ̅and 𝛿𝛿2 < 𝛿𝛿:̅ 
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�Γ(𝜎𝜎1,𝛿𝛿1)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥) − Γ(𝜎𝜎2,𝛿𝛿2)�ℊ�
𝑘𝑘,𝑠𝑠,𝑒𝑒

(𝑥𝑥)�
2
 

≤ |𝜎𝜎1 − 𝜎𝜎2| � ��ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ

 

+[|𝛿𝛿1(1 − 𝜎𝜎1) − 𝛿𝛿1(1 − 𝜎𝜎2)|
+ |𝛿𝛿1(1 − 𝜎𝜎2) − 𝛿𝛿2(1 − 𝜎𝜎2)|] � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥)��ℊ𝑙𝑙,1,0 − ℊ𝑘𝑘,𝑠𝑠+1,0��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��

2𝑙𝑙∈𝐾𝐾
 

+[|𝛿𝛿1𝜎𝜎1 − 𝛿𝛿1𝜎𝜎2| + |𝛿𝛿1𝜎𝜎2 − 𝛿𝛿2𝜎𝜎2|] � 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥) � ��ℊ𝑙𝑙,1,𝜀𝜀 − ℊ𝑘𝑘,𝑠𝑠+1,𝜀𝜀��ℊ𝑘𝑘,𝑠𝑠,𝑒𝑒(𝑥𝑥)��
2

𝑑𝑑𝓅𝓅(𝜀𝜀)
ℰ𝑙𝑙∈𝐾𝐾

 

≤ |𝜎𝜎1 − 𝜎𝜎2|�𝐴𝐴 + 2�ℊ − ℊ∗�
∞

� + [2𝛿𝛿1|𝜎𝜎1 − 𝜎𝜎2| + |𝛿𝛿1 − 𝛿𝛿2|]�𝐵𝐵 + 2�ℊ − ℊ∗�
∞

� 

≤ �𝐴𝐴 + 2𝜁𝜁 ̂ + �1 + 2𝛿𝛿�̅�𝐵𝐵 + 2𝜁𝜁 �̂� max{|𝜎𝜎1 − 𝜎𝜎2|, |𝛿𝛿1 − 𝛿𝛿2|}, 

where the first inequality follows from the triangle inequality, the second comes from the results 

in equations (24) and (25), and the fact that ∑ 𝜔𝜔𝑘𝑘,𝑙𝑙,𝑠𝑠,𝑒𝑒(𝑥𝑥1)𝑙𝑙∈𝐾𝐾 = ∫ 1 𝑑𝑑𝓅𝓅(𝜀𝜀)ℰ = 1, and the third 

comes from the definition of 𝑊𝑊 ⊇ 𝑋𝑋. Thus, we can take: 

𝜈𝜈 ≔ 𝐴𝐴 + 2𝜁𝜁 ̂ + �1 + 2𝛿𝛿�̅�𝐵𝐵 + 2𝜁𝜁 �̂, 

and then the Lemma’s third condition will be satisfied for arbitrarily large 𝑟𝑟𝑏𝑏 > 0. 

Thus, from the conclusion of the lemma, for all 𝛾𝛾 > 𝜅𝜅𝜈𝜈
1−𝜅𝜅𝜅𝜅, there exists: 

𝜉𝜉 ∈ �0, min�𝜎𝜎����� , 𝛿𝛿�̅�, 

such that for all 𝜎𝜎 < 𝜉𝜉   and 𝛿𝛿 < 𝜉𝜉  , there exists ℊ(𝜎𝜎,𝛿𝛿) ∈ 𝑋𝑋  with Φ(𝜎𝜎,𝛿𝛿)�ℊ(𝜎𝜎,𝛿𝛿)� = 0  (i.e., 

solving the model) such that �ℊ(𝜎𝜎,𝛿𝛿) − ℊ∗�
∞

≤ 𝛾𝛾 max{|𝜎𝜎|, |𝛿𝛿|}. 

Appendix H.7: Proof of Corollary 5 

For a given initial state 𝑥𝑥0 ∈ ℝ𝑛𝑛 , and initial shock 𝜀𝜀1 ∈ ℰ  , we write 𝑖𝑖𝑡𝑡(𝑥𝑥0, 𝜀𝜀1)  and 

𝑥𝑥𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) for the values of 𝑖𝑖𝑡𝑡 and 𝑥𝑥𝑡𝑡, respectively, under the perfect foresight solution given 

those initial conditions, with 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1. The existence of such a solution is guaranteed 

by our assumption above.  

Now let: 

𝑇𝑇(𝑥𝑥0, 𝜀𝜀1) ≔ min{𝑇𝑇 ∈ ℕ�∀𝑡𝑡 > 𝑇𝑇, 𝑖𝑖𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) > 0} . 

This is well defined by our assumption that the path eventually escapes the bound. Since the 𝑀𝑀 

matrix corresponding to 𝑇𝑇 = 𝑇𝑇(𝑥𝑥0, 𝜀𝜀1) is a P-matrix, by Corollary 1 from the paper, 𝑥𝑥𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) 

is the unique solution for which 𝑖𝑖𝑡𝑡 > 0 for all 𝑡𝑡 > 𝑇𝑇 = 𝑇𝑇(𝑥𝑥0, 𝜀𝜀1). 

Also, for any given initial state 𝑥𝑥0 ∈ ℝ𝑛𝑛, and initial shock 𝜀𝜀1 ∈ ℰ , we write 𝑖𝑖𝑇𝑇,𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) 

and 𝑥𝑥𝑇𝑇,𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) for the unique values of 𝑖𝑖𝑡𝑡 and 𝑥𝑥𝑡𝑡, respectively, under perfect foresight given 
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those initial conditions, with 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1, and where the bound is only imposed for the first 

𝑇𝑇 periods. (Uniqueness follows from Corollary 1 by the fact that the 𝑀𝑀-matrix corresponding 

to 𝑇𝑇 is a P-matrix.) Now let: 

𝑖𝑖𝑇𝑇(𝑥𝑥0, 𝜀𝜀1) ≔ min
𝑡𝑡>𝑇𝑇

𝑖𝑖𝑇𝑇,𝑡𝑡(𝑥𝑥0, 𝜀𝜀1). 

This is well defined as after period 𝑇𝑇 , the endogenous variables 𝑥𝑥𝑡𝑡  just follow a stationary 

VAR(1), for which there must exist a period 𝑆𝑆 > 𝑇𝑇 such that for any 𝑥𝑥0 and 𝜀𝜀1, 𝑖𝑖𝑇𝑇,𝑆𝑆(𝑥𝑥0, 𝜀𝜀1) >

𝑖𝑖𝑇𝑇,𝑇𝑇(𝑥𝑥0, 𝜀𝜀1). 

Now, since 𝑀𝑀 is a P-matrix, the solution 𝑦𝑦 of the associated LCP is Lipschitz continuous 

in the 𝑞𝑞 vector (Mangasarian & Shiau 1987). Thus 𝑖𝑖𝑇𝑇 must be continuous in 𝑥𝑥0 and 𝜀𝜀1. Thus, 

for any 𝑥𝑥0 ∈ ℝ𝑛𝑛 , and 𝜀𝜀1 ∈ ℰ  , 𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1)
−1 �(0, ∞)�  is open. Furthermore, by construction, 

(𝑥𝑥0, 𝜀𝜀1) ∈ 𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1)
−1 �(0, ∞)�, as 𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1),𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) = 𝑖𝑖𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) for all 𝑡𝑡 ∈ ℕ, and 𝑖𝑖𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) > 0 

for 𝑡𝑡 > 𝑇𝑇(𝑥𝑥0, 𝜀𝜀1). 

Consider the function 𝜙𝜙: ℝ𝑛𝑛 × ℰ → ℝ𝑛𝑛 × ℰ  defined by: 

𝜙𝜙(𝑥𝑥0, 𝜀𝜀1) = (𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1), 0), 

for all 𝑥𝑥0 ∈ ℝ𝑛𝑛, and 𝜀𝜀1 ∈ ℰ . ℝ𝑛𝑛 × ℰ  is a complete, proper metric space, as ℰ  is closed. Note 

that for all, for all 𝑥𝑥0 ∈ ℝ𝑛𝑛 , and 𝜀𝜀1 ∈ ℰ  , on the open set 𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1)
−1 �(0, ∞)� ∋ (𝑥𝑥0, 𝜀𝜀1) , 𝜙𝜙  is 

Lipschitz continuous, as on this set it is sufficient to solve a size 𝑇𝑇(𝑥𝑥0, 𝜀𝜀1) LCP and the 𝑀𝑀-

matrix of this size is a P-matrix, which is sufficient for Lipschitz continuity (Mangasarian & 

Shiau 1987). Thus as 𝜙𝜙  is locally Lipschitz continuous everywhere, it is continuous 

everywhere. Additionally, by assumption 𝜙𝜙 has a unique fixed point (𝑥𝑥∗, 0), where 𝑥𝑥∗ denotes 

the steady state of 𝑥𝑥𝑡𝑡, and for all 𝑥𝑥0 ∈ ℝ𝑛𝑛, and 𝜀𝜀1 ∈ ℰ , 𝜙𝜙𝑗𝑗(𝑥𝑥0, 𝜀𝜀1) converges to (𝑥𝑥∗, 0) as 𝑗𝑗 →

∞. Finally, there exists an open ball 𝑈𝑈 ∋ 𝑥𝑥∗ such that for any open set 𝑉𝑉 ∋ 𝑥𝑥∗, there exists 𝑗𝑗 ∈

ℕ such that 𝜙𝜙𝑗𝑗(𝑈𝑈) ⊆ 𝑉𝑉, as for a small enough open ball 𝑈𝑈, 𝜙𝜙 is linear on 𝑈𝑈. This means that 

𝜙𝜙 satisfies the conditions of the converse to Banach’s fixed point theorem given in Daskalakis, 

Tzamos & Zampetakis (2018). Consequently, there exists a metric 𝑑𝑑∗  on ℝ𝑛𝑛 × ℰ   which is 

topologically equivalent to the usual Euclidean one, and such that �ℝ𝑛𝑛 × ℰ, 𝑑𝑑∗� is a complete 

metric space with: 

𝑑𝑑∗�𝜙𝜙(𝑥𝑥0, 𝜀𝜀1), 𝜙𝜙(𝑥𝑥0̃, 𝜀𝜀1̃)� ≤
1
2 𝑑𝑑∗�(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥0̃, 𝜀𝜀1̃)�, 
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for all 𝑥𝑥0, 𝑥𝑥0̃ ∈ ℝ𝑛𝑛 , and 𝜀𝜀1, 𝜀𝜀1̃ ∈ ℰ  . Now 𝒳𝒳̃ × ℰ   is closed and compact under the Euclidean 

metric, thus it is also closed and compact under 𝑑𝑑∗ . Hence, 𝒳𝒳̃ × ℰ   is bounded under the 𝑑𝑑∗ 

metric, i.e., there exists 𝑟𝑟 > 0 such that for all (𝑥𝑥0, 𝜀𝜀1) ∈ 𝒳𝒳̃ × ℰ , 𝑑𝑑∗�(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥∗, 0)� ≤ 𝑟𝑟. Let: 

𝒲𝒲 ≔ �𝑥𝑥0 ∈ ℝ𝑛𝑛�∀𝜀𝜀1 ∈ ℰ, 𝑑𝑑∗�(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥∗, 0)� ≤ 𝑟𝑟� 

and: 

𝒳𝒳 ≔ �𝑥𝑥0 ∈ ℝ𝑛𝑛�∀𝜀𝜀1 ∈ ℰ, 𝑑𝑑∗�(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥∗, 0)� ≤ 2𝑟𝑟� 
= � �𝑥𝑥0 ∈ ℝ𝑛𝑛�𝑑𝑑∗�(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥∗, 0)� ≤ 3𝑟𝑟�

𝜀𝜀1∈ℰ
 

Then 𝒳𝒳̃ ⊆ 𝒲𝒲 ⊆ 𝒳𝒳 , and 𝒲𝒲  & 𝒳𝒳  are closed sets, since they are intersections of closed sets. (The 

individual sets are closed since 𝑑𝑑∗ is continuous under the 𝑑𝑑∗ metric, so it is also continuous 

under the Euclidean metric.) 

Furthermore: 

𝒳𝒳 × ℰ ⊆ �𝑥𝑥0 ∈ ℝ𝑛𝑛, 𝜀𝜀1 ∈ ℰ�𝑑𝑑∗�(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥∗, 0)� ≤ 3𝑟𝑟�, 

which is a closed ball in �ℝ𝑛𝑛 × ℰ, 𝑑𝑑∗�, and hence is compact. Thus as 𝒳𝒳 × ℰ  is a closed subset 

of a compact set, it is compact. Likewise, 𝒲𝒲  is compact. Additionally, for all 𝑥𝑥0 ∈ 𝒳𝒳 , 𝜀𝜀1 ∈ ℰ , 

𝑑𝑑∗�𝜙𝜙(𝑥𝑥0, 𝜀𝜀1), (𝑥𝑥∗, 0)� ≤ 𝑟𝑟, so 𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1) ∈ 𝒲𝒲 ⊆ 𝒳𝒳 . Now let: 

𝒱𝒱 ≔ �(𝑧𝑧, 𝑥𝑥0) ∈ ℝ𝑛𝑛 × 𝒲𝒲 �𝑑𝑑∗�(𝑥𝑥0 + 𝑧𝑧, 0), (𝑥𝑥0, 0)� < 𝑟𝑟�, 

𝒰𝒰 ≔ �𝑧𝑧 ∈ ℝ𝑛𝑛�∀(𝑥𝑥0, 𝜀𝜀1) ∈ 𝒲𝒲 , (𝑧𝑧, 𝑥𝑥0) ∈ 𝒱𝒱�. 

𝒱𝒱  is open by the continuity of 𝑑𝑑∗ and the equivalence of the metrics. Hence, by the compactness 

of 𝒲𝒲 , and the result of Theorem 2.3 of Escardó (2020), 𝒰𝒰  is open as well. Thus, if we define 

ℬ  to be the closed unit ball in ℝ𝑛𝑛 under the Euclidean metric, there must exist some 𝜁𝜁 > 0 

such that 𝜁𝜁ℬ ⊆ 𝒰𝒰 . So, if 𝑥𝑥0 ∈ 𝒳𝒳 , 𝜀𝜀1 ∈ ℰ , then for 𝑧𝑧 ∈ 𝜁𝜁ℬ ⊆ 𝒰𝒰: 

𝑑𝑑∗�(𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1) + 𝑧𝑧, 0), (𝑥𝑥∗, 0)�

≤ 𝑑𝑑∗�(𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1) + 𝑧𝑧, 0), (𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1), 0)� + 𝑑𝑑∗�(𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1), 0), (𝑥𝑥∗, 0)�

< 𝑟𝑟 + 𝑟𝑟 = 2𝑟𝑟, 

as 𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1) ∈ 𝒲𝒲 . Thus, 𝑥𝑥1(𝑥𝑥0, 𝜀𝜀1) + 𝜁𝜁ℬ ⊆ 𝒳𝒳  as required. 

Now recall that for any 𝑥𝑥0 ∈ ℝ𝑛𝑛, and 𝜀𝜀1 ∈ ℰ ,  𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1)
−1 �(0, ∞)� is an open set containing 

(𝑥𝑥0, 𝜀𝜀1). Consequently, �𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1)
−1 �(0, ∞)��𝑥𝑥0 ∈ 𝒳𝒳, 𝜀𝜀1 ∈ ℰ� is an open cover of 𝒳𝒳 × ℰ . Hence, 
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by compactness, there exists finite sets 𝒳𝒳̂ ⊆ 𝒳𝒳   and ℰ ̂ ⊆ ℰ   such that 

�𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1)
−1 �(0, ∞)��𝑥𝑥0 ∈ 𝒳𝒳̂, 𝜀𝜀1 ∈ ℰ�̂ is also an open cover of 𝒳𝒳 × ℰ . 

Now define 𝑇𝑇∗ ≔ max�𝑇𝑇(𝑥𝑥0, 𝜀𝜀1)�𝑥𝑥0 ∈ 𝒳𝒳̂, 𝜀𝜀1 ∈ ℰ�̂ . This is well defined as it is a 

maximum over a finite set. As the 𝑀𝑀 corresponding to 𝑇𝑇 = 𝑇𝑇∗ is a P-matrix, for all 𝑥𝑥0 ∈ 𝒳𝒳 , 

and 𝜀𝜀1 ∈ ℰ  , and 𝑡𝑡 ∈ ℕ , 𝑖𝑖𝑇𝑇∗,𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) = 𝑖𝑖𝑇𝑇(𝑥𝑥0,𝜀𝜀1),𝑡𝑡(𝑥𝑥0, 𝜀𝜀1) = 𝑖𝑖𝑡𝑡(𝑥𝑥0, 𝜀𝜀1)  (again using Corollary 

1). Thus, over the entire domain we only ever need to solve LCPs of size at most 𝑇𝑇∗. Finally, as 

the 𝑀𝑀 corresponding to 𝑇𝑇 = 𝑇𝑇∗ is a P-matrix, the LCP is Lipschitz in 𝑞𝑞, which is then sufficient 

for the Lipschitz conditions required for Theorem 3 (Restated) to apply. Hence, the model has 

a solution under rational expectations for shock distributions with sufficient mass at zero, 

completing the proof. 

Appendix H.8: Proof of Proposition 12 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝜕𝜕,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝜋𝜋,𝑡𝑡]′, the BPY model is in the form of Problem 2 (OBC), with: 

𝐴𝐴 ≔
⎣
⎢⎡

0 −𝛼𝛼∆𝑦𝑦 0
0 0 0
0 0 0⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 −1 0

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡

0 0 0

0 1
1
𝜎𝜎

0 0 𝛽𝛽⎦
⎥⎥
⎥
⎤

. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢⎢
⎢
⎡

−1 0 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 0

1
𝜎𝜎

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

≠ 0 

as 𝛼𝛼𝜋𝜋 ≠ 1 and 𝛾𝛾 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹2,2, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0 𝛼𝛼∆𝑦𝑦�𝑓𝑓 − 1� + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 0

0 𝑓𝑓 0

0
𝛾𝛾𝑓𝑓

1 − 𝛽𝛽𝑓𝑓 0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

Hence: 

𝑓𝑓 = 𝑓𝑓 2 −
1
𝜎𝜎 �𝛼𝛼∆𝑦𝑦�𝑓𝑓 − 1� + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 −

𝛾𝛾𝑓𝑓 2

1 − 𝛽𝛽𝑓𝑓 �, 

i.e.: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. (27) 

When 𝑓𝑓 ≤ 0 , the left-hand side is negative, and when 𝑓𝑓 = 1 , the left-hand side equals 

(𝛼𝛼𝜋𝜋 − 1)𝛾𝛾 > 0 (by assumption on 𝛼𝛼𝜋𝜋), hence equation (27) has either one or three solutions 
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in (0,1), and no solutions in (−∞, 0]. We wish to prove there is a unique solution in (−1,1). 

First note that when 𝛼𝛼𝜋𝜋 = 1, the discriminant of the polynomial is: 

��1 − 𝛽𝛽��𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� − 𝛾𝛾�
2
��𝛽𝛽𝛼𝛼∆𝑦𝑦�2 + 2𝛽𝛽(𝛾𝛾 − 𝜎𝜎)𝛼𝛼∆𝑦𝑦 + (𝛾𝛾 + 𝜎𝜎)2�. 

The first multiplicand is positive. The second is minimised when 𝜎𝜎 = 𝛽𝛽𝛼𝛼∆𝑦𝑦 − 𝛾𝛾, at the value 

4𝛽𝛽𝛾𝛾𝛼𝛼∆𝑦𝑦 > 0, hence this multiplicand is positive too. Consequently, at least for small 𝛼𝛼𝜋𝜋 , there 

are three real solutions for 𝑓𝑓 , so there may be multiple solutions in (0,1). 

Suppose for a contradiction that there were at least three solutions to equation (27) in (0,1) 

(double counting repeated roots), even for arbitrary large 𝛽𝛽 ∈ (0,1). Let 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 ∈ (0,1) be the 

three roots. Then, by Vieta’s formulas: 

3 > 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 =
�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

3 > 𝑓𝑓1𝑓𝑓2 + 𝑓𝑓1𝑓𝑓3 + 𝑓𝑓2𝑓𝑓3 =
�1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

1 > 𝑓𝑓1𝑓𝑓2𝑓𝑓3 =
𝛼𝛼∆𝑦𝑦

𝛽𝛽𝜎𝜎 , 

so: 

�2𝛽𝛽 − 1�𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 > 𝛾𝛾 > 0 

𝛽𝛽 >
1
2 , �2𝛽𝛽 − 1�𝜎𝜎 > 𝛾𝛾, 

𝛽𝛽𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 + 𝜎𝜎�1 − 𝛽𝛽�, 

2𝛽𝛽𝜎𝜎 > �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�1 − 𝛽𝛽�, 

𝛽𝛽𝜎𝜎 > 𝛼𝛼∆𝑦𝑦. 

Also, the first derivative of equation (27) must be positive at 𝑓𝑓 = 1, so: 

�1 − 𝛽𝛽��𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� + (𝛼𝛼𝜋𝜋 − 2)𝛾𝛾 > 0. 

Combining these inequalities gives the bounds: 

0 < 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 −
𝛾𝛾 + 𝜎𝜎

𝛽𝛽 , 

2 +
�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 <
�3𝛽𝛽 − 1�𝜎𝜎 − �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦

𝛾𝛾 . 

Furthermore, if there are multiple solutions to equation (27), then the discriminant of its first 

derivative must be nonnegative, i.e.: 

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� ≥ 0. 
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Therefore, we have the following bounds on 𝛼𝛼𝜋𝜋: 

2 +
�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 ≤
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾  

since, 

�3𝛽𝛽 − 1�𝜎𝜎 − �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦

𝛾𝛾 −
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾

=
��2𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�𝛽𝛽 − 𝛾𝛾 − 𝜎𝜎���4𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

3𝛽𝛽𝛾𝛾𝜎𝜎 > 0 

as 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾+𝜎𝜎
𝛽𝛽 . 

Consequently, there exists 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1] such that: 

𝛼𝛼𝜋𝜋 = (1 − 𝜆𝜆)
⎣
⎢⎡2 +

�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�
𝛾𝛾 ⎦

⎥⎤

+ 𝜆𝜆
⎣
⎢⎢
⎡��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾
⎦
⎥⎥
⎤

, 

𝛼𝛼∆𝑦𝑦 = �1 − 𝜇𝜇�[0] + 𝜇𝜇 �2𝜎𝜎 −
𝛾𝛾 + 𝜎𝜎

𝛽𝛽 �, 

𝛾𝛾 = (1 − 𝜅𝜅)[0] + 𝜅𝜅��2𝛽𝛽 − 1�𝜎𝜎� 

These simultaneous equations have unique solutions for 𝛼𝛼𝜋𝜋 , 𝛼𝛼∆𝑦𝑦 and 𝛾𝛾 in terms of 𝜆𝜆, 𝜇𝜇 and 𝜅𝜅. 

Substituting these solutions into the discriminant of equation (27)(27) gives a polynomial in 

𝜆𝜆, 𝜇𝜇, 𝜅𝜅, 𝛽𝛽, 𝜎𝜎 . As such, an exact global maximum of the discriminant may be found subject to 

the constraints 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1], 𝛽𝛽 ∈ �1
2 , 1�, 𝜎𝜎 ∈ [0, ∞), by using an exact compact polynomial 

optimisation solver, such as that in the Maple computer algebra package. Doing this gives a 

maximum of 0 when 𝛽𝛽 ∈ �1
2 , 1�, 𝜅𝜅 = 1 and 𝜎𝜎 = 0. But of course, we actually require that 𝛽𝛽 ∈

�1
2 , 1�, 𝜅𝜅 < 1, 𝜎𝜎 > 0. Thus, by continuity, the discriminant is negative over the entire domain. 

This gives the required contradiction to our assumption of three roots to the polynomial, 

establishing that Assumption 1 holds for this model. 

Now, when 𝑇𝑇 = 1, 𝑀𝑀 is equal to the top left element of the matrix −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, i.e.: 

𝑀𝑀 =
𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎

𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦�𝑓𝑓 + 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋

. 
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Now, multiplying the denominator by 𝑓𝑓  gives: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦�𝑓𝑓 2 + �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓

= �𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦�

− �𝛽𝛽𝛼𝛼∆𝑦𝑦𝑓𝑓 − 𝛼𝛼∆𝑦𝑦� = �1 − 𝛽𝛽𝑓𝑓 �𝛼𝛼∆𝑦𝑦 > 0, 

by equation (27) . Hence, the sign of 𝑀𝑀  is that of 𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎  . I.e., 𝑀𝑀  is 

negative if and only if: 

��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� − ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 < 𝑓𝑓

<
��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� + ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

The upper limit is greater than 1, so only the lower is relevant. To translate this bound on 𝑓𝑓  into 

a bound on 𝛼𝛼∆𝑦𝑦, we first need to establish that 𝑓𝑓  is monotonic in 𝛼𝛼∆𝑦𝑦. 

Totally differentiating equation (27) gives: 

�3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎��
d𝑓𝑓

d𝛼𝛼∆𝑦𝑦
= �1 − 𝛽𝛽𝑓𝑓 ��1 − 𝑓𝑓 �

> 0. 
Thus, the sign of d𝑓𝑓

d𝛼𝛼∆𝑦𝑦
 is equal to that of: 

3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�. 

Note, however, that this expression is just the derivative of the left-hand side of equation (27) 

with respect to 𝑓𝑓 . 

To establish the sign of 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

, we consider two cases. First, suppose that equation (27) has 

three real solutions. Then, the unique solution to equation (27) in (0,1) is its lowest solution. 

Hence, this solution must be below the first local maximum of the left-hand side of equation 

(27). Consequently, at the 𝑓𝑓 ∈ (0,1), which solves equation (27), 3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 +

𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Alternatively, suppose that equation (27)  has a 

unique real solution. Then the left-hand side of this equation cannot change sign in between its 

local maximum and its local minimum (if it has any). Thus, at the 𝑓𝑓 ∈ (0,1) at which it changes 

sign, we must have that 3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� >

0. Therefore, in either case 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

> 0, meaning that 𝑓𝑓  is monotonic increasing in 𝛼𝛼∆𝑦𝑦. 



Online Appendix: Page 89 of 97 

Consequently, to find the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign, it is sufficient to find 

the lowest solution with respect to both 𝑓𝑓  and 𝛼𝛼∆𝑦𝑦 of the pair of equations: 

𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0, 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. 

The former implies that: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 2 + 𝜎𝜎𝑓𝑓 = 0, 

so, by the latter: 

𝛼𝛼∆𝑦𝑦𝛽𝛽𝑓𝑓 2 − ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓 + 𝛼𝛼∆𝑦𝑦 = 0. 

If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, then this equation holds if and only if: 

𝜎𝜎𝛽𝛽𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0. 

Therefore, the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign are given by: 

𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, 

𝑓𝑓 =
��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� − ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

Thus, 𝑀𝑀 is negative if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋, and 𝑀𝑀 is zero if and only if 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋 . 

Appendix H.9: Proof of Proposition 13 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝜕𝜕,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝑝𝑝,𝑡𝑡]′ , the price targeting model from 0 is in the form of 

Problem 2 (OBC), with: 

𝐴𝐴 ≔
⎣
⎢⎡

0 0 0
0 0 0
0 0 1⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 −1 −

1
𝜎𝜎

0 𝛾𝛾 −1 − 𝛽𝛽⎦
⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡

0 0 0

0 1
1
𝜎𝜎

0 0 𝛽𝛽⎦
⎥⎥
⎥
⎤

. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 0 0

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

≠ 0 

as 𝛼𝛼∆𝑦𝑦 ≠ 0 and 𝛼𝛼𝜋𝜋 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹3,3, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 0

𝑓𝑓 �1 − 𝑓𝑓 ��𝜎𝜎𝛼𝛼𝜋𝜋 − 𝛼𝛼∆𝑦𝑦�
𝛼𝛼∆𝑦𝑦 + �1 − 𝑓𝑓 �𝜎𝜎

0 0
𝑓𝑓 �1 − 𝑓𝑓 − 𝛼𝛼𝜋𝜋�

𝛼𝛼∆𝑦𝑦 + �1 − 𝑓𝑓 �𝜎𝜎
0 0 𝑓𝑓 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 
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and so: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 2𝛽𝛽�𝜎𝜎 + 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾�𝑓𝑓 2 + ��2 + 𝛽𝛽�𝜎𝜎 + �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + (1 + 𝛼𝛼𝜋𝜋)𝛾𝛾�𝑓𝑓

− �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦� = 0. 

Now define: 

𝛼𝛼∆̂𝑦𝑦 ≔ 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦, 𝛼𝛼�̂�𝜋 ≔ 1 + 𝛼𝛼𝜋𝜋  

so: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆̂𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆̂𝑦𝑦 + 𝛾𝛾𝛼𝛼�̂�𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆̂𝑦𝑦 = 0. 

This is identical to the equation for 𝑓𝑓  in Appendix H.8, apart from the fact that 𝛼𝛼∆̂𝑦𝑦 has replaced 

𝛼𝛼∆𝑦𝑦 and 𝛼𝛼�̂�𝜋  has replaced 𝛼𝛼𝜋𝜋 . Hence, by the results of Appendix H.8, Assumption 1 holds for 

this model as well. 

Finally, for this model, with 𝑇𝑇 = 1, we have that: 

𝑀𝑀 =
�1 − 𝑓𝑓 ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝜎𝜎2 + ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝛼𝛼∆𝑦𝑦 + ��1 − 𝑓𝑓 � + 𝛼𝛼𝜋𝜋𝑓𝑓 �𝛾𝛾� 𝜎𝜎 + �1 − 𝑓𝑓 �𝛾𝛾𝛼𝛼∆𝑦𝑦

��1 − 𝑓𝑓 ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝜎𝜎 + �1 + �1 − 𝑓𝑓 �𝛽𝛽�𝛼𝛼∆𝑦𝑦 + ��1 − 𝑓𝑓 � + 𝛼𝛼𝜋𝜋�𝛾𝛾� �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�
> 0. 

Appendix H.10: Proof of Proposition 14 

If 𝑋𝑋�  is compact, then Γ  is compact valued. Furthermore, 𝑋𝑋�  is clearly convex, and Γ  is 

continuous. Thus assumption 4.3 of Stokey, Lucas, and Prescott (1989) (henceforth: SLP) is 

satisfied. Since the continuous image of a compact set is compact, ℱ̃  is bounded above and 

below, so assumption 4.4 of SLP is satisfied as well. Furthermore, ℱ̃   is concave and Γ  is 

convex, so assumptions 4.7 and 4.8 of SLP are satisfied too. Thus, by Theorem 4.6 of SLP, with 

ℬ  defined as in equation (28) and 𝑣𝑣∗ defined as in equation (29)(29), ℬ  has a unique fixed 

point which is continuous and equal to 𝑣𝑣∗. Moreover, by Theorem 4.8 of SLP, there is a unique 

policy function which attains the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

Now suppose that 𝑋𝑋� is possibly non-compact, but Γ̃(𝑥𝑥) is compact valued and 𝑥𝑥 ∈ Γ̃(𝑥𝑥) 

for all 𝑥𝑥 ∈ 𝑋𝑋�. We first note that for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋�: 

ℱ̃(𝑥𝑥, 𝑧𝑧) ≤ 𝑢𝑢(0) −
1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′, 

thus, our objective function is bounded above without additional assumptions. For a lower 

bound, we assume that for all 𝑥𝑥 ∈ 𝑋𝑋�, 𝑥𝑥 ∈ Γ̃(𝑥𝑥), so holding the state fixed is always feasible. 

This is true in very many standard applications. Then, the value of setting 𝑥𝑥𝑡𝑡 = 𝑥𝑥0 for all 𝑡𝑡 ∈

ℕ+ provides a lower bound for our objective function. 
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More precisely, we define 𝕍𝕍 ≔ �𝑣𝑣�𝑣𝑣: 𝑋𝑋� → [−∞, ∞)� and 𝑣𝑣, 𝑣𝑣 ∈ 𝕍𝕍 by: 

𝑣𝑣(𝑥𝑥) =
1

1 − 𝛽𝛽 ℱ̃(𝑥𝑥0, 𝑥𝑥0), 

𝑣𝑣(𝑥𝑥) =
1

1 − 𝛽𝛽 �𝑢𝑢(0) −
1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′�, 

for all 𝑥𝑥 ∈ 𝑋𝑋�. 

Finally, define ℬ : 𝕍𝕍 → 𝕍𝕍 by: 

ℬ(𝑣𝑣)(𝑥𝑥) = sup
𝑧𝑧∈Γ�(𝑥𝑥)

�ℱ̃(𝑥𝑥, 𝑧𝑧) + 𝛽𝛽𝑣𝑣(𝑧𝑧)� (28) 

for all 𝑣𝑣 ∈ 𝕍𝕍  and for all 𝑥𝑥 ∈ 𝑋𝑋� . Then ℬ(𝑣𝑣) ≥ 𝑣𝑣  and ℬ(𝑣𝑣) ≤ 𝑣𝑣 . Furthermore, if some 

sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  satisfies the constraint that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ̃(𝑥𝑥𝑡𝑡−1), and the objective in 

(16) is finite for that sequence, then it must be the case that ‖𝑥𝑥𝑡𝑡‖∞𝑡𝑡𝛽𝛽
𝑡𝑡
2 → 0 as 𝑡𝑡 → ∞ (by the 

comparison test), so:  

lim inf
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Additionally, for any sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ : 

lim sup
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Thus, our dynamic programming problem satisfies the assumptions of Theorem 2.1 of 

Kamihigashi (2014), and so ℬ  has a unique fixed point in [𝑣𝑣, 𝑣𝑣] to which ℬ𝑘𝑘(𝑣𝑣) converges 

pointwise, monotonically, as 𝑘𝑘 → ∞, and which is equal to the function 𝑣𝑣∗: 𝑋𝑋� → ℝ defined by: 

𝑣𝑣∗(𝑥𝑥0) = sup�∑ 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞
𝑡𝑡=1 �∀𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1)� , (29) 

for all 𝑥𝑥0 ∈ 𝑋𝑋�. 

Furthermore, if we define: 

𝕎𝕎 ≔ �𝑣𝑣 ∈ 𝑉𝑉�𝑣𝑣 is continuous on 𝑋𝑋�, 𝑣𝑣 is concave on 𝑋𝑋��, 

then as 𝑢𝑢(̃2)  is negative-definite, 𝑣𝑣 ∈ 𝕎𝕎 . Additionally, under the assumption that Γ̃(𝑥𝑥)  is 

compact valued, if 𝑣𝑣 ∈ 𝕎𝕎 , then ℬ(𝑣𝑣) ∈ 𝕎𝕎 , by the Theorem of the Maximum, 48  and, 

furthermore, there is a unique policy function which attains the supremum in the definition of 

ℬ(𝑣𝑣). Moreover, 𝑣𝑣∗ = lim
𝑘𝑘→∞

ℬ𝑘𝑘(𝑣𝑣) is concave and lower semi-continuous on 𝑋𝑋�.49 We just need 

to prove that 𝑣𝑣∗ is upper semi-continuous.50 Suppose for a contradiction that it is not, so there 

exists 𝑥𝑥∗ ∈ 𝑋𝑋� such that: 

 

48 See e.g. Theorem 3.6 and following of Stokey, Lucas, and Prescott (1989). 

49 See e.g. Lemma 2.41 of Aliprantis and Border (2013). 

50 In the following, we broadly follow the proof of Lemma 3.3 of Kamihigashi and Roy (2003). 
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lim sup
𝑥𝑥→𝑥𝑥∗

𝑣𝑣∗(𝑥𝑥) > lim
𝑘𝑘→∞

𝑣𝑣∗(𝑥𝑥∗). 

Then, there exists 𝛿𝛿 > 0 such that for all 𝜖𝜖 > 0, there exists 𝑥𝑥0
(𝜖𝜖) ∈ 𝑋𝑋� with �𝑥𝑥∗ − 𝑥𝑥0

(𝜖𝜖)�∞ < 𝜖𝜖 

such that: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� > 𝛿𝛿 + 𝑣𝑣∗(𝑥𝑥∗). 

Now, by the definition of a supremum, for all 𝜖𝜖 > 0, there exists �𝑥𝑥𝑡𝑡
(𝜖𝜖)�𝑡𝑡=1

∞
 such that for all 𝑡𝑡 ∈

ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) � and: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� < 𝛿𝛿 + � 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) , 𝑥𝑥𝑡𝑡
(𝜖𝜖)�

∞

𝑡𝑡=1
. 

Hence: 

� 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1
(𝜖𝜖) , 𝑥𝑥𝑡𝑡

(𝜖𝜖)�
∞

𝑡𝑡=1
> 𝑣𝑣∗�𝑥𝑥0

(𝜖𝜖)� − 𝛿𝛿 > 𝑣𝑣∗(𝑥𝑥∗). 

Now, let 𝒮𝒮0 ≔ �𝑥𝑥 ∈ 𝑋𝑋��‖𝑥𝑥∗ − 𝑥𝑥‖∞ ≤ 1 �, and for 𝑡𝑡 ∈ ℕ+, let 𝒮𝒮𝑡𝑡 ≔ Γ�𝒮𝒮𝑡𝑡−1�. Then, since we are 

assuming Γ  is compact valued, for all 𝑡𝑡 ∈ ℕ , 𝒮𝒮𝑡𝑡  is compact by the continuity of Γ . 

Furthermore, for all 𝑡𝑡 ∈ ℕ and 𝜖𝜖 ∈ (0,1), 𝑥𝑥𝑡𝑡
(𝜖𝜖) ∈ 𝒮𝒮𝑡𝑡. Hence, ∏ 𝒮𝒮𝑡𝑡

∞
𝑡𝑡=0  is sequentially compact 

in the product topology. Thus, there exists a sequence (𝜖𝜖𝑘𝑘)𝑘𝑘=1
∞  with 𝜖𝜖𝑘𝑘 → 0 as 𝑘𝑘 → ∞ and such 

that 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) converges for all 𝑡𝑡 ∈ ℕ. Let 𝑥𝑥𝑡𝑡 ≔ lim

𝑘𝑘→∞
𝑥𝑥𝑡𝑡

(𝜖𝜖𝑘𝑘), and note that 𝑥𝑥∗ = 𝑥𝑥0 ∈ 𝒮𝒮0 ⊆ 𝑋𝑋�, and 

that for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖𝑘𝑘)�, so by the continuity of Γ, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. 

Thus, by Fatou’s Lemma: 

𝑣𝑣∗(𝑥𝑥∗) ≥ � 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞

𝑡𝑡=1
≥ lim sup

𝑘𝑘→∞
� 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1

(𝜖𝜖,𝑘𝑘), 𝑥𝑥𝑡𝑡
(𝜖𝜖,𝑘𝑘)�

∞

𝑡𝑡=1
> 𝑣𝑣∗(𝑥𝑥∗), 

which gives the required contradiction. Thus, 𝑣𝑣∗  is continuous and concave, and there is a 

unique policy function attaining the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

Appendix H.11: Proof of Proposition 15 

Suppose that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  , (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞   satisfy the KKT conditions given in equations (18)  and 

(19), and that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� as 𝑡𝑡 → ∞. Let (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞  satisfy 𝑧𝑧0 = 𝑥𝑥0 and 𝑧𝑧𝑡𝑡 ∈ Γ̃(𝑧𝑧𝑡𝑡−1) for 

all 𝑡𝑡 ∈ ℕ+. Then, by the KKT conditions and the concavity of: 

(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) ↦ ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��, 

we have that for all 𝑇𝑇 ∈ ℕ+:51 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1
 

 

51 Here, we broadly follow the proof of Theorem 4.15 of Stokey, Lucas, and Prescott (1989). 
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= � 𝛽𝛽𝑡𝑡−1 �ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1
 

≥ � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡

′ �Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)

𝑇𝑇

𝑡𝑡=1

− 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑧𝑧𝑡𝑡−1 − 𝜇𝜇
𝑧𝑧𝑡𝑡 − 𝜇𝜇 ��

⎦
⎥⎤ 

≥ � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡�𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+ �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,1

(1)� (𝑥𝑥𝑡𝑡−1 − 𝑧𝑧𝑡𝑡−1)
⎦
⎥⎤ 

= � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡

⎣
⎢⎡𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)
𝑇𝑇

𝑡𝑡=1

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)�
⎦
⎥⎤ (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)

⎦
⎥⎤

+ 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇) 

= 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇). 

Thus: 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1

≥ lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇)

= lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇�𝑢𝑢⋅,1
(1) + 𝜆𝜆����′Ψ⋅,1

(1)��𝑧𝑧𝑇𝑇 − 𝜇𝜇� = lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇�𝑢𝑢⋅,1
(1) + 𝜆𝜆����′Ψ⋅,1

(1)�𝑧𝑧𝑇𝑇. 

Now, suppose lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇𝑧𝑧𝑇𝑇 ≠ 0, then since 𝑢𝑢(̃2) is negative definite: 

� 𝛽𝛽𝑡𝑡−1ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)
∞

𝑡𝑡=1
= −∞, 

so (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞  cannot be optimal. 

Hence, regardless of the value of lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇𝑧𝑧𝑇𝑇: 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1
≥ 0, 

which implies that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves Problem 4 (Linear-Quadratic). 
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