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Appendix H Other solutions to the ZLB 
H.1 Equilibrium selection with perpetuities 

The modified inflation target real rate rules of Section 4 of the main text 

delivered uniqueness conditional on a terminal condition ruling out inflation 
explosions or permanent ZLB episodes. In this subappendix, we examine how 

these two classes of undesirable equilibria may be avoided. This will enable us to 
answer Cochrane’s (2011) argument that there is nothing to rule out non-

stationary equilibria under monetary rules satisfying the Taylor-principle, and 
Benhabib, Schmitt-Grohé & Uribe’s (2001) argument that there is nothing to rule 

out permanent ZLB spells under such rules. 
We suppose that perpetuities (also called “consols”) are traded in the 

economy. While actual perpetuities are rare, households may be able to 
approximate the flow of coupons from a perpetuity via holding a portfolio of 

government debt of different maturities. Additionally, there are many regular 
transfers from government to households or firms, such as unemployment 
benefits. While it is hard for households to capitalize and trade their flow of 
unemployment benefits, long-term government contracts (in defence, aerospace, 

etc.) certainly can be capitalized and traded. As long as such contracts enable a 
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flow of nominal firm profits, their value will have a perpetuity-like component. 
Perpetuity prices are functions of the entire expected future path of nominal 

rates, and hence they embed information on the economy’s selected equilibrium. 
Crucially, if the economy is stuck at the ZLB, then perpetuity prices will be 

extremely high, or even infinite. For the sake of exposition, we will derive results 
for the more general class of geometric coupon bonds, and later specialise to the 

perpetuity case. 
We assume that one unit of the period 𝑡𝑡 geometric coupon bond bought at 𝑡𝑡 

returns $1 at 𝑡𝑡 + 1, along with 𝜔𝜔 ∈ (0,1] units of the period 𝑡𝑡 + 1 geometric 
coupon bond. The 𝜔𝜔 = 1 case corresponds to a perpetuity. The geometric coupon 

bond trades at a price of 𝑄𝑄𝑡𝑡 at 𝑡𝑡. Thus, if Ξ𝑡𝑡+1 is the real SDF between periods 𝑡𝑡 and 
𝑡𝑡 + 1, and Π𝑡𝑡+1 ≔ exp 𝜋𝜋𝑡𝑡+1 is gross inflation between these periods, then the price 

of the bond must satisfy: 

𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝜔𝜔𝑄𝑄𝑡𝑡+1 + 1�. 

We assume that the government and central bank are the only institutions 

trusted enough to issue geometric coupon bonds, since private companies 
generally have shorter lives than nations. Thus, the total stock of such bonds, 𝐵𝐵𝑡𝑡, is 

in the government and/or central bank’s control. We assume there is some 𝐵𝐵 > 0 
such that in all states of the world 𝐵𝐵𝑡𝑡 ≥ 𝐵𝐵𝜔𝜔𝑡𝑡. For this it is enough that the 

government issued geometric coupon bonds at some point in the past, with the 
commitment to never buy all of them back. Since it is optimal for governments to 

fund themselves with perpetuities (Debortoli, Nunes & Yared 2017; 2022), this 
does not seem an unreasonable commitment. Then, the household’s period 𝑡𝑡 
transversality condition on geometric coupon bond holdings states that: 

0 = lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡 ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝑄𝑄𝑡𝑡+𝑠𝑠𝐵𝐵𝑡𝑡+𝑠𝑠 ≥ 𝐵𝐵 lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡 ��

Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝑄𝑄𝑡𝑡+𝑠𝑠𝜔𝜔𝑡𝑡+𝑠𝑠 ≥ 0, 

and hence lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡�∏ Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠
𝑘𝑘=1 �𝜔𝜔𝑠𝑠𝑄𝑄𝑡𝑡+𝑠𝑠 = 0. Thus, for all 𝑡𝑡: 

𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡 � ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝜔𝜔𝑠𝑠−1

∞

𝑠𝑠=1
= 𝔼𝔼𝑡𝑡 � ��

1
𝐼𝐼𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=0
� 𝜔𝜔𝑠𝑠

∞

𝑠𝑠=0
, 

where, as usual, 𝐼𝐼𝑡𝑡 is the gross interest rate on a one period nominal bond (so 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1). 
Now suppose that 𝐼𝐼𝑡𝑡+𝑘𝑘 = 1 (with probability one, conditional on period 𝑡𝑡 
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information) for all sufficiently high 𝑘𝑘. Then 𝑄𝑄𝑡𝑡+𝑠𝑠 = 1
1−𝜔𝜔 (with conditional 

probability one) for all sufficiently high 𝑠𝑠. So, the transversality condition holds if 

and only if: 

0 = lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡 ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
�

𝜔𝜔𝑠𝑠

1 − 𝜔𝜔 = lim𝑠𝑠→∞
𝜔𝜔𝑠𝑠

1 − 𝜔𝜔, 

i.e., if and only if |𝜔𝜔| < 1. In particular, it is violated if the bond is a perpetuity, 
meaning 𝜔𝜔 = 1. 1 

In other words, permanent stays at the ZLB do in fact violate a transversality 
constraint when the stock of perpetuities is positive. Intuitively, with households 

having infinite nominal wealth, they wish to spend some of that wealth today on 
real goods, which ends up violating (real) goods market clearing. The only way 

goods market clearing could be restored is if inflation is infinite when nominal 
wealth is. We show this carefully in Appendix K.12 below. However, under 

standard assumptions on money demand, infinite inflation is only possible with 
infinite money supply growth, which is likely to be physically impossible for a 

central bank. Infinite inflation is also ruled out by arbitrarily small degrees of price 
stickiness. Thus, as long as infinite inflation is ruled out by these considerations or 

some other, there is no equilibrium with a permanent ZLB stay.2 
We now use this fact to construct a monetary rule with both global uniqueness 

and local determinacy, the latter helping ensure learnability. We assume that the 
central bank sets nominal interest rates via a tweaked non-linear version of the 

modified inflation target real rate rule of Section 4 of the main text. Our first tweak 
is that for simplicity, we assume that the inflation target is set one period in 

advance. Our second tweak is to introduce “punishment” in the form of a switch 
to the ZLB following large deviations. To define a large deviation, we will 
introduce an upper bound 𝐼𝐼 > 1 on gross nominal interest rates, and we will 

 
1 The necessity of the transversality constraint is non-obvious in the 𝜔𝜔 = 1 case. However, in Appendix K.12 
below we show that the problem with perpetuities can be transformed into a “cake eating” type problem 
with one period bonds, for which the transversality constraint is trivially necessary, even when 𝜔𝜔 = 1. 
2 Government debt leading to a violation of the household transversality constraint at the ZLB may remind 
the reader of Benhabib, Schmitt‐Grohé & Uribe (2002). However, the current proposal preserves fully-
Ricardian fiscal policy (see Appendix K.12 below), and does not require the government to commit to take 

actions that are ex post undesirable (like increasing primary deficits in the face of exploding debt). 
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construct the modified inflation target to ensure gross nominal interest rates are 
strictly inside �1, 𝐼𝐼� in equilibrium. 

We suppose that the central bank sets: 

𝐼𝐼𝑡𝑡 =
⎩�
�⎨
��
⎧

max
⎩�
⎨
�⎧1, 𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡

∗

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�
⎬
�⎫ , if 𝐼𝐼𝑡𝑡−1 ∈ �1, 𝐼𝐼�

1, otherwise
, 

where: 

Π�𝑡𝑡+1|𝑡𝑡
∗ ≔ max �

ℰ
𝑅𝑅𝑡𝑡

, min �
𝐼𝐼

ℰ𝑅𝑅𝑡𝑡
, Π𝑡𝑡+1|𝑡𝑡

∗ ��, 

with 𝜙𝜙 > 1 and ℰ ≔ exp 𝜖𝜖 ∈ �1, �𝐼𝐼�. It is easy to see that Π𝑡𝑡 = Π�𝑡𝑡|𝑡𝑡−1
∗  for all 𝑡𝑡 is 

consistent with this rule and the standard nominal and real bond pricing 

equations: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1, 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

In the local vicinity of this equilibrium path, we have 𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡
∗ � Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ �

𝜙𝜙
, 

which implies: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π�𝑡𝑡+1|𝑡𝑡
∗

Π𝑡𝑡+1
=

⎝
⎜⎛

Π�𝑡𝑡|𝑡𝑡−1
∗

Π𝑡𝑡 ⎠
⎟⎞

𝜙𝜙

. 

This has a unique stationary solution under mild conditions by the results of 
Online Appendix E. 

To analyse potential deviations from this equilibrium, we switch to an economy 
without uncertainty for simplicity. This is in line with Cochrane (2011) which is 

also primarily concerned with deterministic economies. 
First, suppose that for some reason, for some 𝑡𝑡 = 𝑡𝑡0, Π𝑡𝑡 > Π�𝑡𝑡|𝑡𝑡−1

∗ , but 𝐼𝐼𝑡𝑡−1 ∈
�1, 𝐼𝐼�. Then: 

Π𝑡𝑡+1

Π�𝑡𝑡+1|𝑡𝑡
∗ = max

⎩�⎨
�⎧ 1

𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡
∗ ,

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�⎬
�⎫ ≥

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

, 

and so Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗  explodes upwards as 𝑡𝑡 → ∞. Now for all 𝑡𝑡, Π�𝑡𝑡+1|𝑡𝑡

∗ ≥ ℰ
𝑅𝑅𝑡𝑡

, hence Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ≤

𝑅𝑅𝑡𝑡−1Π𝑡𝑡
ℰ < 𝐼𝐼𝑡𝑡−1. Thus, 𝐼𝐼𝑡𝑡 must also (start to) explode upwards as 𝑡𝑡 → ∞. So, 

eventually, for some 𝑡𝑡1 ≥ 𝑡𝑡0, 𝐼𝐼𝑡𝑡1
> 𝐼𝐼. Thus 𝐼𝐼𝑡𝑡1+1 = 𝐼𝐼𝑡𝑡1+2 = ⋯ = 1 according to the 

monetary rule. But this is only consistent with household optimality if Π𝑡𝑡 is infinite 
at least once in [𝑡𝑡0, … , 𝑡𝑡1], which in turn is physically impossible. Hence, there is 
no equilibrium with such a deviation. 
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Now, suppose that for some reason, for some 𝑡𝑡 = 𝑡𝑡0, Π𝑡𝑡 < Π�𝑡𝑡|𝑡𝑡−1
∗ , but 𝐼𝐼𝑡𝑡−1 ∈

�1, 𝐼𝐼�. Then: 
Π𝑡𝑡+1

Π�𝑡𝑡+1|𝑡𝑡
∗ = max

⎩�⎨
�⎧ 1

𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡
∗ ,

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�⎬
�⎫, 

and so Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗  either explodes downwards towards zero forever as 𝑡𝑡 → ∞ or hits 

𝐼𝐼𝑡𝑡1
= 1 at some 𝑡𝑡1 ≥ 𝑡𝑡0. Now for all 𝑡𝑡, Π�𝑡𝑡+1|𝑡𝑡

∗ ≤ 𝐼𝐼
ℰ𝑅𝑅𝑡𝑡

, hence Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ≥ ℰ𝑅𝑅𝑡𝑡−1Π𝑡𝑡

𝐼𝐼
= ℰ

𝐼𝐼
𝐼𝐼𝑡𝑡−1. 

Thus, in fact 𝐼𝐼𝑡𝑡 must hit 𝐼𝐼𝑡𝑡1
= 1 at some 𝑡𝑡1 ≥ 𝑡𝑡0. Thus, just as before, 𝐼𝐼𝑡𝑡1+1 = 𝐼𝐼𝑡𝑡1+2 =

⋯ = 1, which is inconsistent with equilibrium, ruling out the initial deviation. 

Therefore, if households hold perpetuities, this tweaked real rate rules 

succeeds in producing global uniqueness. Admittedly, the punishment reduces its 
robustness, but for moderately high ℰ  and 𝐼𝐼, and high 𝜙𝜙, accidentally falling into 

the punishment regime would be very unlikely, even with additional uncertainty 
coming from wedges in the Fisher equation. 

Of course, if there is something else in the economy ruling out explosive paths 
for inflation, then the punishment regime is unnecessary, and the central bank 

could just use the rule: 

𝐼𝐼𝑡𝑡 = max
⎩�⎨
�⎧1, 𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡

∗

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�⎬
�⎫ , Π�𝑡𝑡+1|𝑡𝑡

∗ ≔ max �
ℰ
𝑅𝑅𝑡𝑡

, Π𝑡𝑡+1|𝑡𝑡
∗ �. 

With households holding perpetuities, this still has no equilibria that are 
permanently stuck at the ZLB. Sticky prices are sufficient to rule out explosive 

equilibria, both as inflation is bounded above under standard price stickiness 
specifications (see Online Appendix E.1), and because under sticky prices, 

exploding inflation implies exploding real costs of this inflation. While prices may 
become more flexible at high inflation rates, there are practical limits on how often 

prices can change even under extreme hyperinflation. The price must at least 
remain constant for the time between picking an item off the shelf and arriving 
with it at the check-out. If this is correct, then even without a punishment regime, 
trade in perpetuities is sufficient to ensure a unique long-run equilibrium with 

inflation at target. 

H.2 Price level real rate rules 
One way to improve the performance of real rate rules near the ZLB is to 
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replace the response to inflation with a response to the price level. Holden (2023) 
shows that responding to the price level is a robust way to ensure the existence of 

a unique solution with the ZLB, at least given that inflation does not converge to 
the deflationary steady state. We discussed how to rule out convergence to the 

deflationary steady state in the previous subappendix. 
Price level rules rule out self-fulfilling temporary jumps to the ZLB as under a 

price level rule, the deflation during the bound period must be made up for by 
high inflation after exiting the bound. Thus, expected inflation is high in the last 

period at the bound, which via the Fisher equation, implies nominal interest rates 
should be high that period as well, unless real rates are still very low. This unwinds 

non-fundamental ZLB spells, as in a non-fundamental jump to the bound, real 
rates are unlikely to move enough to drive the economy to the ZLB on their own. 

Incorporating the ideas from the Subsection 4.2, a variable target price level 
real rate rule takes the form: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗ + 𝜃𝜃�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡
∗��, 

with: 

𝑝𝑝𝑡̌𝑡
∗ = 𝑝𝑝𝑡̌𝑡−1

∗ + max��1 − 𝜚𝜚��𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡̌𝑡−1

∗ � + 𝜚𝜚�𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡𝑡−1

∗ �, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1�, 
where 𝑝𝑝𝑡𝑡 is the logarithm of the price level (so 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1),3 𝑝𝑝𝑡𝑡

∗ is the price level 

target, 𝜃𝜃 > 0 controls the response to price deviations, 𝜖𝜖 > 0 is a small constant 
and 𝜚𝜚 ∈ [0,1) controls the speed with which 𝑝𝑝𝑡̌𝑡

∗ returns to 𝑝𝑝𝑡𝑡
∗ following a 

constrained spell. (Some of our results will require 𝜚𝜚 to be sufficiently close to 1, 
so price level gaps are not closed too quickly.) This has a solution in which 𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡̌𝑡

∗ 

for all 𝑡𝑡, since if this holds, then from the monetary rule: 
𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = max�−𝑟𝑟𝑡𝑡, 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1

∗ − 𝑝𝑝𝑡̌𝑡
∗� = 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1

∗ − 𝑝𝑝𝑡̌𝑡
∗ = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 

as 𝔼𝔼𝑡𝑡𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗ ≥ 𝜖𝜖 − 𝑟𝑟𝑡𝑡 > −𝑟𝑟𝑡𝑡 by the definition of 𝑝𝑝𝑡̌𝑡+1
∗ , so the Fisher equation 

holds as required. 
 

3 Note that there is no reason linearised NK models expressed in terms of the price level should be less 
accurate than linearised NK models expressed in terms of inflation. First, note that the equation 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 −
𝑝𝑝𝑡𝑡−1 holds exactly, as it results from taking logarithms of the equation Π𝑡𝑡 = 𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡−1
, where Π𝑡𝑡 is gross inflation 

and 𝑃𝑃𝑡𝑡 is the price level. Secondly, note that as long as the model’s equations can be expressed in terms of 
inflation, not the price level, prior to linearisation (something which is true in virtually all NK models), then 
they will be accurate as long as inflation is near steady state, even if the price level is far from its path in the 

absence of shocks. We do not impose that prices should be stationary, only that inflation is. 
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Note that 𝜃𝜃 > 0 is sufficient for determinacy in the absence of the ZLB, since 
then the monetary rule and Fisher equation imply that:4 

𝔼𝔼𝑡𝑡�𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡̌𝑡+1
∗ � = (1 + 𝜃𝜃)�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡

∗�. 
Thus, price level rules have the same advantage of smoothed rules in not requiring 

𝜙𝜙 > 1. Convincing agents that 𝜃𝜃 > 0 is likely easier than convincing them that 𝜙𝜙 >
1, as argued in Subsection 2.1. Furthermore, just like standard (inflation) real rate 

rules, price level real rate rules are robust, since away from the bounds, price level 
determination is completely independent of the real interest rate or the rest of the 

model. Their chief advantage over standard real rate rules is in avoiding the 
multiplicity of transition paths highlighted by Holden (2023). In fact, Holden 

(2023) shows that in standard models they would avoid perfect foresight 
multiplicity and non-existence problems even had we set 𝑝𝑝𝑡̌𝑡

∗ ≔ 𝑝𝑝𝑡𝑡
∗. Nonetheless, 

our definition of 𝑝𝑝𝑡̌𝑡
∗ gives additional robustness, as we will now show by 

replicating the arguments and conclusions of Subsection 4.3 of the paper and 

Appendix K.9 below, with the price level real rate rule in place of the smoothed 
real rate rule. 

Uniqueness conditional on the modified target. Closely following Appendix 
K.9 below, we want to prove uniqueness of equilibrium under our price level real 

rate rule (introduced in period 1), without uncertainty, and assuming that 𝑝𝑝𝑡𝑡+1 −
𝑝𝑝𝑡𝑡 and 𝑝𝑝𝑡̌𝑡+1

∗ − 𝑝𝑝𝑡̌𝑡
∗ are bounded in 𝑡𝑡, and that the economy eventually escapes the 

ZLB for good. The latter assumption implies there must exist a smallest possible 
𝑠𝑠 ≥ 1 such that for all 𝑡𝑡 ≥ 𝑠𝑠, the ZLB does not bind. We assume for a contradiction 

that 𝑠𝑠 > 1, hence for all 𝑡𝑡 ≥ 𝑠𝑠, by the monetary rule and Fisher equation:5  
𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡̌𝑡+1

∗ − 𝑝𝑝𝑡̌𝑡
∗ + 𝜃𝜃�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡

∗�, 
meaning: 

�𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡̌𝑡+1
∗ � = (1 + 𝜃𝜃)�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡

∗�, 
so for 𝑡𝑡 ≥ 𝑠𝑠, 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡

∗ = (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠�𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑠̌𝑠
∗�, and hence �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� − �𝑝𝑝𝑡̌𝑡+1

∗ − 𝑝𝑝𝑡̌𝑡
∗� =

𝜃𝜃(1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠�𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑠̌𝑠
∗�. Since (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠 → ∞ as 𝑡𝑡 → ∞, this in turn implies that 𝑝𝑝𝑠𝑠 =

 
4 Note that explosions of 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡

∗ imply explosions of �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� − �𝑝𝑝𝑡̌𝑡+1
∗ − 𝑝𝑝𝑡̌𝑡

∗�, which are ruled out by our 
boundedness assumptions. For example, if 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡̌𝑡

∗ = (1 + 𝜃𝜃)𝑡𝑡�𝑝𝑝0 − 𝑝𝑝0̌
∗�, then �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� − �𝑝𝑝𝑡̌𝑡+1

∗ − 𝑝𝑝𝑡̌𝑡
∗� =

𝜃𝜃(1 + 𝜃𝜃)𝑡𝑡�𝑝𝑝0 − 𝑝𝑝0̌
∗�. 

5 Note that we can drop expectations as there is no uncertainty. 
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𝑝𝑝𝑠̌𝑠
∗, by our boundedness assumptions. But as the economy is at the ZLB in period 

𝑠𝑠 − 1, 0 = 𝑖𝑖𝑠𝑠−1 = 𝑟𝑟𝑠𝑠−1 + 𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑠𝑠−1 = 𝑟𝑟𝑠𝑠−1 + �𝑝𝑝𝑠̌𝑠
∗ − 𝑝𝑝𝑠̌𝑠−1� − �𝑝𝑝𝑠𝑠−1 − 𝑝𝑝𝑠̌𝑠−1� ≥ 𝑟𝑟𝑠𝑠−1 +

𝜖𝜖 − 𝑟𝑟𝑠𝑠−1 − �𝑝𝑝𝑠𝑠−1 − 𝑝𝑝𝑠̌𝑠−1� > −�𝑝𝑝𝑠𝑠−1 − 𝑝𝑝𝑠̌𝑠−1�, meaning that 𝑝𝑝𝑠𝑠−1 − 𝑝𝑝𝑠̌𝑠−1 > 0. Now, 
by the period 𝑠𝑠 − 1 monetary rule, 0 ≥ 𝑟𝑟𝑠𝑠−1 + 𝔼𝔼𝑠𝑠−1𝑝𝑝𝑠̌𝑠

∗ − 𝑝𝑝𝑠̌𝑠−1
∗ + 𝜃𝜃�𝑝𝑝𝑠𝑠−1 − 𝑝𝑝𝑠̌𝑠−1

∗ � >
𝑟𝑟𝑠𝑠−1 + 𝔼𝔼𝑠𝑠−1𝑝𝑝𝑠̌𝑠

∗ − 𝑝𝑝𝑠̌𝑠−1
∗ ≥ 𝑟𝑟𝑠𝑠−1 + 𝜖𝜖 − 𝑟𝑟𝑠𝑠−1 = 𝜖𝜖 > 0, giving the required 

contradiction. Thus 𝑠𝑠 = 1, meaning the economy never hits the ZLB. Combined 

with the determinacy in the absence of the ZLB previously proven, this establishes 
the uniqueness of the 𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡̌𝑡

∗ solution conditional on the path of 𝑝𝑝𝑡̌𝑡
∗. 

Uniqueness of the modified target. Again closely following Appendix K.9 
below, we also want to prove that in the model given by equations (9) and (10), 

from Subsection 4.1, there is a unique perfect foresight solution for 𝑝𝑝𝑡̌𝑡
∗. We assume 

that all exogenous processes are constant at their steady-state level, that 𝑝𝑝𝑡𝑡
∗ =

𝜋𝜋∗(𝑡𝑡 − 1), and that all variables are at steady-state in period 0 (relative to trend in 
the case of prices), since none of these assumptions have any impact on 

uniqueness, by the results of Holden (2023). (This also means that our results are 
robust to adding any shocks to the model.) We also impose that the ZLB never 

binds, since we have already established this under our retained assumptions. 
Given this, we replace the notation 𝑝𝑝𝑡̌𝑡+1

∗  with 𝑝𝑝𝑡̌𝑡+1|𝑡𝑡
∗ , since 𝑝𝑝𝑡̌𝑡+1

∗  is known in period 𝑡𝑡 
given that 𝑝𝑝𝑡𝑡

∗ is now deterministic. Likewise, we replace 𝑝𝑝𝑡𝑡+1 with 𝑝𝑝𝑡𝑡+1|𝑡𝑡, as 𝑝𝑝𝑡𝑡+1 =
𝑝𝑝𝑡̌𝑡+1

∗ = 𝑝𝑝𝑡̌𝑡+1|𝑡𝑡
∗ , known at 𝑡𝑡. Note that 𝑝𝑝1|0 = 𝑝𝑝1̌|0

∗ = 𝑝𝑝1
∗ = 0. Finally, we define 𝑝𝑝𝑡̂𝑡+1|𝑡𝑡 ≔

𝑝𝑝𝑡𝑡+1|𝑡𝑡 − 𝜋𝜋∗𝑡𝑡 and 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡
∗ ≔ 𝑝𝑝𝑡̌𝑡+1|𝑡𝑡

∗ − 𝜋𝜋∗𝑡𝑡. This gives the following equations for 𝑡𝑡 ≥ 1: 

𝛽𝛽�𝑝𝑝𝑡̂𝑡+1|𝑡𝑡 − 𝑝𝑝𝑡̂𝑡|𝑡𝑡−1� + 𝜅𝜅𝑥𝑥𝑡𝑡 = � 0, if 𝑡𝑡 = 1
𝑝𝑝𝑡̂𝑡|𝑡𝑡−1 − 𝑝𝑝𝑡̂𝑡−1|𝑡𝑡−2, if 𝑡𝑡 > 1 

𝑖𝑖𝑡𝑡 =
⎩�⎨
�⎧ 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡

∗ , if 𝑡𝑡 = 1
𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡

∗ − 𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1
∗ + 𝜃𝜃�𝑝𝑝𝑡̂𝑡|𝑡𝑡−1 − 𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1

∗ �, if 𝑡𝑡 > 1
, 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝑝𝑝𝑡̂𝑡+1|𝑡𝑡 − 𝑝𝑝𝑡̂𝑡|𝑡𝑡−1, 
𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡

∗ = max�𝜚𝜚𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1
∗ , 𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1

∗ + 𝜖𝜖 − 𝑟𝑟𝑡𝑡 − 𝜋𝜋∗�, 
where we assume 𝜅𝜅𝜅𝜅 ≠ 0, 𝜃𝜃 > 0 and 𝑛𝑛 + 𝜋𝜋∗ > 𝜖𝜖 > 0. The latter assumption 
ensures that 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡

∗ = 0 in steady state. 

We are interested in the constraint in the definition of 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡
∗ , which we note can 

be rewritten as the pair of equations: 

𝑧𝑧𝑡𝑡 = 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡
∗ − 𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1

∗ + 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ − 𝜖𝜖, 
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𝑧𝑧𝑡𝑡 = max�0, −�1 − 𝜚𝜚�𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1
∗ + 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ − 𝜖𝜖�, 

where 𝑧𝑧𝑡𝑡 is an auxiliary variable. The results of Holden (2023) imply that in order 

to prove uniqueness under perfect foresight (conditional on 𝑧𝑧𝑡𝑡 eventually 
converging to its positive steady state value), we should first replace the second 

equation for 𝑧𝑧𝑡𝑡 just given with 𝑧𝑧𝑡𝑡 = −�1 − 𝜚𝜚�𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1
∗ + 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡, where 𝑦𝑦𝑡𝑡 is 

an exogenous forcing process. For convenience, we define 𝑦𝑦𝑡𝑡 ≔ 0 for 𝑡𝑡 ≤ 0. Then, 

for 𝑡𝑡 ≥ 1: 

𝑝𝑝𝑡̂𝑡+1|𝑡𝑡 = 𝑝𝑝̌𝑡̂𝑡+1|𝑡𝑡
∗ = 𝜚𝜚𝑝𝑝̌𝑡̂𝑡|𝑡𝑡−1

∗ + 𝑦𝑦𝑡𝑡 = � 𝜚𝜚𝑗𝑗𝑦𝑦𝑡𝑡−𝑘𝑘

∞

𝑗𝑗=0
, 

𝑥𝑥𝑡𝑡 =
1
𝜅𝜅 ⎣

⎢⎡−𝛽𝛽𝑦𝑦𝑡𝑡 + �1 + �1 − 𝜚𝜚�𝛽𝛽�𝑦𝑦𝑡𝑡−1 + ���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2 ⎦
⎥⎤, 

𝑟𝑟𝑡𝑡 = 𝑛𝑛 +
1
𝜅𝜅𝜅𝜅 ⎣

⎢⎡−𝛽𝛽𝛽𝛽𝑦𝑦𝑡𝑡+1 + �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡

− �𝛿𝛿 + �1 − 𝛿𝛿𝛿𝛿��1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡−1

− ��1 − 𝛿𝛿𝛿𝛿���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2 ⎦
⎥⎤, 

𝑧𝑧𝑡𝑡 = 𝑛𝑛 + 𝜋𝜋∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡 − �1 − 𝜚𝜚�𝑦𝑦𝑡𝑡−1 − � 𝜚𝜚�1 − 𝜚𝜚�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2
 

+
1
𝜅𝜅𝜅𝜅 ⎣

⎢⎡−𝛽𝛽𝛽𝛽𝑦𝑦𝑡𝑡+1 + �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡 − �𝛿𝛿 + �1 − 𝛿𝛿𝛿𝛿��1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡−1

− ��1 − 𝛿𝛿𝛿𝛿���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2 ⎦
⎥⎤, 

from, respectively, the monetary rule and Fisher equation, the equations for 𝑧𝑧𝑡𝑡, the 
Phillips curve, the Euler equation, and the first equation for 𝑧𝑧𝑡𝑡. 

Holden (2023) shows that uniqueness is determined by the determinants of 
the principal sub-matrices of the “𝑀𝑀” matrix for the model, which, here, contains 

the partial derivatives of 𝑧𝑧𝑡𝑡 (𝑡𝑡 in rows) with respect to 𝑦𝑦𝑠𝑠 (𝑠𝑠 in columns). We take 
𝑀𝑀 to have infinitely many rows and columns in the following. By our solution for 

𝑧𝑧𝑡𝑡, 𝑀𝑀 is a Toeplitz, lower Hessenberg matrix. The values on each of the diagonals 
of 𝑀𝑀 may be read off from the solution for 𝑧𝑧𝑡𝑡. We assume for simplicity that 𝛽𝛽 > 0, 

𝛿𝛿 > 0 and 𝜅𝜅𝜅𝜅 > 0, which implies that 1
𝜅𝜅𝜅𝜅 �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽�� > 0, so the diagonal 

elements are greater than one. We also assume that �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0, as in 
Appendix K.8, for example, and that 1 − 𝛽𝛽𝛽𝛽 > �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅, for which it is 
sufficient (but not necessary) that 1 − 𝛽𝛽𝛽𝛽 ≥ 0. Note for future reference that if 𝜚𝜚 =
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1, then the 𝑀𝑀 matrix is identical to the one in Appendix K.9. 
Now consider a finite size principal sub-matrix of 𝑀𝑀. Since 𝑀𝑀 is lower 

Hessenberg and Toeplitz, this sub-matrix must be block lower triangular, where 
each block on the diagonal is either lower triangular (with 1 + 1

𝜅𝜅𝜅𝜅 �𝛽𝛽 +
𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽�� on the diagonal), or Hessenberg and Toeplitz, being a 
contiguous principal sub-matrix of 𝑀𝑀. Recall that the determinant of a block 

triangular matrix is the product of the determinants of the blocks on the diagonal. 
Thus, the sub-matrix will have determinant greater than one if each of the sub-

matrix’s blocks has determinant greater that one. Since 1
𝜅𝜅𝜅𝜅 �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽�� >

0, a triangular block of size 𝑆𝑆 × 𝑆𝑆 has determinant of �1 + 1
𝜅𝜅𝜅𝜅 �𝛽𝛽 + 𝛿𝛿�1 +

�1 − 𝜚𝜚�𝛽𝛽���
𝑆𝑆

> 1. Thus, we just need to check the determinants of the Hessenberg 
and Toeplitz blocks, which are contiguous principal sub-matrices of 𝑀𝑀. 

By the results of Cahill et al. (2002) (which were also used in Online Appendix 
H.3 of Holden (2023)), the determinant of any 𝑆𝑆 × 𝑆𝑆 Hessenberg and Toeplitz 

block is given by 𝑚𝑚𝑆𝑆, where: 

𝑚𝑚−1 ≔ 𝑚𝑚−2 ≔ ⋯ = 0, 𝑚𝑚0 ≔ 1, 

𝑚𝑚𝑆𝑆 =
⎣
⎢⎡1 +

1
𝜅𝜅𝜅𝜅 �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽��

⎦
⎥⎤ 𝑚𝑚𝑆𝑆−1 

−
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 ⎣

⎢⎡�1 − 𝜚𝜚� +
1
𝜅𝜅𝜅𝜅 �𝛿𝛿 + �1 − 𝛿𝛿𝛿𝛿��1 + �1 − 𝜚𝜚�𝛽𝛽��

⎦
⎥⎤ 𝑚𝑚𝑆𝑆−2 

−
⎣
⎢⎡𝜚𝜚�1 − 𝜚𝜚� +

1
𝜅𝜅𝜅𝜅 �1 − 𝛿𝛿𝛿𝛿���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�

⎦
⎥⎤ � �

𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑘𝑘
𝜚𝜚𝑘𝑘−2𝑚𝑚𝑆𝑆−𝑘𝑘−1

∞

𝑘𝑘=2
. 

Multiplying this last equation by the lag polynomial 𝐼𝐼 − 𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 𝜚𝜚𝜚𝜚, then gives the 

simpler expression: 

𝑚𝑚𝑆𝑆 = �1 +
𝛽𝛽 + 𝛿𝛿 + 𝛽𝛽𝛽𝛽

𝜅𝜅𝜅𝜅 � 𝑚𝑚𝑆𝑆−1 −
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 �1 +

𝛽𝛽 + 𝛿𝛿 + 1
𝜅𝜅𝜅𝜅 � 𝑚𝑚𝑆𝑆−2 +

1
𝜅𝜅𝜅𝜅 �

𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

2
𝑚𝑚𝑆𝑆−3, 

which does not directly depend on 𝜚𝜚 (though 𝜚𝜚 will impact the initial conditions). 
As in Appendix K.9, let: 

𝑑𝑑 ≔ �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜅𝜅 �
2

− 4
𝛽𝛽𝛽𝛽

(𝜅𝜅𝜅𝜅)2 = 1 + 2
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜅𝜅 +
�𝛽𝛽 − 𝛿𝛿�2

(𝜅𝜅𝜅𝜅)2 > 1, 

as 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 > 0 by assumption. Additionally, from the fact that 𝛽𝛽𝛽𝛽 > 0, we have that 1 <

𝑑𝑑 < �1 + 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 �

2
, so 1 < �𝑑𝑑 < 1 + 𝛽𝛽+𝛿𝛿

𝜅𝜅𝜅𝜅 . Given the solution for 𝑚𝑚𝑆𝑆 we found for the 
𝜚𝜚 = 1 case in Appendix K.9, the recurrence for 𝑚𝑚𝑆𝑆 just derived implies that for 
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some constants 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶: 

𝑚𝑚𝑆𝑆 = 𝐴𝐴 �
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
+

𝐵𝐵
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 + �𝑑𝑑�

𝑆𝑆
+

𝐶𝐶
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 − �𝑑𝑑�

𝑆𝑆
 

= 𝐴𝐴 �
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
+

1
2𝑆𝑆 � �𝑆𝑆

𝑘𝑘
� �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �

𝑘𝑘
�𝑑𝑑

𝑆𝑆−𝑘𝑘
�𝐵𝐵 + 𝐶𝐶(−1)𝑆𝑆−𝑘𝑘�

𝑆𝑆

𝑘𝑘=0
 

= 𝐴𝐴 �
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
+

𝐵𝐵 + 𝐶𝐶
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �

𝑆𝑆

+
1
2𝑆𝑆 � �𝑆𝑆

𝑘𝑘
� �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �

𝑘𝑘
�𝑑𝑑

𝑆𝑆−𝑘𝑘
�𝐵𝐵 + 𝐶𝐶(−1)𝑆𝑆−𝑘𝑘�

𝑆𝑆−1

𝑘𝑘=0
. 

Furthermore, the initial conditions imply that: 

𝐴𝐴 =
�1 − 𝜚𝜚�𝛽𝛽𝛽𝛽

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅, 

𝐵𝐵 =
1

�𝑑𝑑
�

𝐴𝐴
𝜅𝜅𝜅𝜅 + (1 − 𝐴𝐴)

1
2 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 + �𝑑𝑑��, 

𝐶𝐶 = 1 − 𝐴𝐴 − 𝐵𝐵 = −
1

�𝑑𝑑
�

𝐴𝐴
𝜅𝜅𝜅𝜅 + (1 − 𝐴𝐴)

1
2 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 − �𝑑𝑑��. 

Note, that since �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0 and 𝛽𝛽𝛽𝛽 > 0, 𝛽𝛽𝛽𝛽
�1−𝛽𝛽�(1−𝛿𝛿)−𝜅𝜅𝜅𝜅 < 0, and so 𝐴𝐴 <

0 as 𝜚𝜚 ∈ [0,1). Thus, 𝐵𝐵 + 𝐶𝐶 = 1 − 𝐴𝐴 > 1. Furthermore: 

𝐵𝐵 − 𝐶𝐶 =
1

�𝑑𝑑
�
2𝐴𝐴
𝜅𝜅𝜅𝜅 + (1 − 𝐴𝐴) �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �� 

=
1

�𝑑𝑑
�1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 + 𝐴𝐴

�1 − 𝛽𝛽� + (1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅
𝜅𝜅𝜅𝜅 � , 

so if 𝐴𝐴 = 0, then 𝐵𝐵 − 𝐶𝐶 = 1
�𝑑𝑑

�1 + 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 � > 1, as we already established that �𝑑𝑑 <

1 + 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 . Hence, for all 𝜚𝜚 sufficiently close to 1, 𝐵𝐵 − 𝐶𝐶 > 1. Therefore: 

𝑚𝑚𝑆𝑆 > 𝐴𝐴 �
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
+

1
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �

𝑆𝑆
+

1
2𝑆𝑆 � �𝑆𝑆

𝑘𝑘� �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜅𝜅 �
𝑘𝑘

�𝑑𝑑
𝑆𝑆−𝑘𝑘𝑆𝑆−1

𝑘𝑘=0
 

> 𝐴𝐴 �
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
+

1
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �

𝑆𝑆
+

�𝑑𝑑
𝑆𝑆

2𝑆𝑆 � �𝑆𝑆
𝑘𝑘�

𝑆𝑆−1

𝑘𝑘=0
 

= 𝐴𝐴 �
𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
+ �

1
2 +

𝛽𝛽 + 𝛿𝛿
2𝜅𝜅𝜅𝜅 �

𝑆𝑆
+

2𝑆𝑆 − 1
2𝑆𝑆

�𝑑𝑑
𝑆𝑆
. 

When 𝐴𝐴 = 0, this implies that 𝑚𝑚𝑆𝑆 > 1. Now, we are assuming that 1 − 𝛽𝛽𝛽𝛽 >
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅, so 𝜅𝜅𝜅𝜅 + 𝛽𝛽 + 𝛿𝛿 > 2𝛽𝛽𝛽𝛽, and hence 12 + 𝛽𝛽+𝛿𝛿

2𝜅𝜅𝜅𝜅 > 𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 as 𝜅𝜅𝜅𝜅 > 0. Thus, 

the positive �1
2 + 𝛽𝛽+𝛿𝛿

2𝜅𝜅𝜅𝜅�
𝑆𝑆
 term asymptotically dominates the negative 𝐴𝐴�𝛽𝛽𝛽𝛽

𝜅𝜅𝜅𝜅�
𝑆𝑆
 term. 

Consequently, for all 𝜚𝜚 sufficiently close to 1, and all 𝑆𝑆 ≥ 1, 𝑚𝑚𝑆𝑆 > 1, as required. 
I.e., as long as 𝜚𝜚 ∈ [0,1) is large enough, then the sub-matrix we started with will 
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have determinant greater than one, no-matter how large it was. In this case, all 
principal minors of 𝑀𝑀 are greater or equal to one, meaning that the 𝑀𝑀 matrix is a 

“P-matrix” (Holden 2023), and moreover that no sufficiently small changes to the 
model could change this result.6 (Being a P-matrix only requires positive principal 

minors, not ones greater than one.) Thus, with 𝑝𝑝𝑡𝑡
∗ exogenous, the solution is 

robustly unique conditional on the terminal conditions (bounded inflation, 

eventual escapes from both bounds). 
Ruling out sunspot equilibria. As a final check of the performance of price 

level real rate rules, we examine whether they rule out persistent sunspot 
equilibria, following Subsection 4.3 of the main paper. We assume the model is 

given by equations (9) and (10), much as before, with the price level real rate rule 
introduced in this appendix. We assume that 𝑝𝑝𝑡𝑡

∗ = 𝜋𝜋∗(𝑡𝑡 − 1) and that 𝑛𝑛 + 𝜋𝜋∗ >
𝜖𝜖 > 0, 𝜃𝜃 > 0, 𝜅𝜅𝜅𝜅 > 0 and �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0, again following Subsection 4.3. 
Suppose then that in period 𝑡𝑡 for all 𝑡𝑡 ≤ 0, the economy was away from the ZLB, 

and was expected to stay there with probability one. Thus, by period 0, the impact 
of initial conditions must have dissipated, and so 𝑝𝑝0 = 𝑝𝑝0̌

∗ = 𝑝𝑝0
∗.7 Thus, 𝑖𝑖0 − 𝑟𝑟0 =

𝔼𝔼0𝑝𝑝1 − 𝑝𝑝0 = 𝔼𝔼0𝑝𝑝1̌
∗ − 𝑝𝑝0 = 𝑝𝑝1̌

∗ − 𝑝𝑝0̌
∗ = 𝜋𝜋∗. However, in period 1, a “zero probability 

sunspot shock” hits, so that with probability one, for all 𝑡𝑡 ≥ 1, 0 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1. 

(The expectation drops out of the Fisher equation as there is no other uncertainty.) 
Thus for 𝑡𝑡 ≥ 1, the Phillips curve and Euler equation imply that 𝜋𝜋𝑡𝑡 = 𝜋𝜋Z and 𝑥𝑥𝑡𝑡 =
𝑥𝑥Z where: 

�1 − 𝛽𝛽�(𝜋𝜋Z − 𝜋𝜋∗) = 𝜅𝜅𝑥𝑥𝑡𝑡, (1 − 𝛿𝛿)𝑥𝑥Z = 𝜍𝜍(𝜋𝜋Z + 𝑛𝑛), 
so,  

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅𝜅𝜅(𝑛𝑛 + 𝜋𝜋∗)

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0. 

This is consistent with equilibrium if and only if the interest rate would be non-
positive for 𝑡𝑡 ≥ 1 were it not for the ZLB. In period 1, this requires: 

 
6 As in Appendix K.9, this robustness holds for any fixed size 𝑀𝑀 matrix. I.e., fix 𝑇𝑇 > 0 (potentially extremely 
large) and suppose the bound ceases to apply more than 𝑇𝑇 periods in the future. Then following a 
sufficiently small change to the model, there will be a unique solution that satisfies the bound for 𝑇𝑇 periods, 
but which may violate it after 𝑇𝑇 periods. 
7 Slightly more formally, we could suppose that the rule was introduced in period −𝑘𝑘, and take the limit as 

𝑘𝑘 → ∞, giving the same conclusion.  
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0 ≥ 𝑟𝑟1 + 𝔼𝔼1𝑝𝑝2̌
∗ − 𝑝𝑝1̌

∗ + 𝜃𝜃�𝑝𝑝0
∗ + 𝜋𝜋Z − 𝑝𝑝1̌

∗� 
= max{0, 𝜖𝜖 + 𝜋𝜋Z − 𝜋𝜋∗} + (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗). 

However, if 𝜃𝜃 < 1, then (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗) > 0, so the condition cannot possibly 
hold. Thus, as long as the central bank does not respond too aggressively to the 

price level, there cannot be sunspot solutions of the kind previously described. 
Furthermore, it follows that as long as the economy is currently sufficiently close 

to the “good” steady-state, there is no way for the economy to ever jump to the 
ZLB. Thus, the price level real rate rule delivers robust uniqueness, even in the 

presence of the ZLB. 

H.3 Perpetuity real rate rules 
An even more robust solution to the problems caused by the ZLB is for the 

central bank to intervene in a market which does not have an equivalent to the 

ZLB. Perpetuities (also called “consols”) are one such asset. For suppose that 
nominal interest rates were expected to be at 𝑖𝑖 for all time. Then the price of a 

perpetuity would be 1
𝑖𝑖 .

8 Thus, any finite, positive, perpetuity price is consistent 
with at least one path for future nominal interest rates. In other words, there is no 

upper or lower bound on the price of a perpetuity. 
Note that the central bank does not strictly need the treasury to issue 

perpetuities in order to implement a perpetuity real rate rule. Since central banks 
in developed nations are generally believed to be extremely long-lived institutions, 

the central bank can issue perpetuities itself. As central banks can always print 
money to pay the coupon, central banks may be one of the only institutions that 

could be trusted to pay coupons for ever. Central banks may also decide to trust 
the perpetuities issued by some selected private banks, even if these will always 

carry some default risk. If the central bank views default as very unlikely in the 
short to medium term, then such default risk may not substantially distort pricing. 

In the below, we will call standard perpetuities “nominal perpetuities”. To 
implement a real rate rule on perpetuities, we will also need there to be a 
corresponding “real perpetuity” traded in the economy. In particular, we suppose 

 
8 This is correct under continuous time with a continuous flow of coupons, and approximately correct under 

discrete time, as we will see below. 



 

Page 15 of 72 

that one unit of the period 𝑡𝑡 nominal perpetuity bought at 𝑡𝑡 returns $1 at 𝑡𝑡 + 1, 
along with one unit of the period 𝑡𝑡 + 1 nominal perpetuity. On the other hand, one 

unit of the period 𝑡𝑡 real perpetuity bought at 𝑡𝑡 returns $ 𝑃𝑃𝑡𝑡+1

Π∗𝑡𝑡+1 at 𝑡𝑡 + 1, along with 
one of the period 𝑡𝑡 + 1 real perpetuity, where 𝑃𝑃𝑡𝑡+1 is the price level in period 𝑡𝑡 + 1 

and Π∗ ≥ 1 is the target for the gross inflation rate. The nominal perpetuity trades 
at a price of 𝑄𝑄𝐼𝐼,𝑡𝑡 at 𝑡𝑡, whereas the real perpetuity trades at a price of 𝑄𝑄𝑅𝑅,𝑡𝑡 at 𝑡𝑡. 

If we write Ξ𝑡𝑡+1 for the real SDF between periods 𝑡𝑡 and 𝑡𝑡 + 1, and Π𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

 
for gross inflation between these periods, then the price of these two perpetuities 

must satisfy: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1�, 𝑄𝑄𝑅𝑅,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝑅𝑅,𝑡𝑡+1 +
𝑃𝑃𝑡𝑡+1

Π∗𝑡𝑡+1�. 

The real perpetuity price could be non-stationary due to the potential unit root in 

the logarithm of the price level, so it is helpful to define a detrended version. In 
particular, let: 

𝑄̂𝑄𝑅𝑅,𝑡𝑡 ≔ 𝑄𝑄𝑅𝑅,𝑡𝑡
Π∗𝑡𝑡

𝑃𝑃𝑡𝑡
= 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π∗ �𝑄̂𝑄𝑅𝑅,𝑡𝑡+1 + 1�. 

Rewritten in this way, the analogy between the pricing of nominal and real 
perpetuities is clear. If Π𝑡𝑡 = Π∗ for all 𝑡𝑡, then 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄̂𝑄𝑅𝑅,𝑡𝑡 for all 𝑡𝑡 as well. If inflation 

and the SDF are stationary, then 𝑄̂𝑄𝑅𝑅,𝑡𝑡 and 𝑄𝑄𝐼𝐼,𝑡𝑡 will admit a stationary solution. 
We also assume that one period nominal bonds are traded in the economy, 

with gross return 𝐼𝐼𝑡𝑡. As in Subsection 7.1 of the main text, the pricing for these 
bonds must satisfy: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1. 

We can now redo the argument of this subappendix’s initial paragraph, slightly 

more formally. So, suppose that the gross nominal interest rate 𝐼𝐼𝑡𝑡 is pegged at the 
constant level 𝐼𝐼 (which may be inconsistent with the inflation target of Π∗). Then, 

the pricing equation for nominal perpetuities has a solution in which 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄𝑄𝐼𝐼 for 
all 𝑡𝑡, with 𝑄𝑄𝐼𝐼 = 𝐼𝐼−1[𝑄𝑄𝐼𝐼 + 1], since 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 𝐼𝐼−1, for all 𝑡𝑡. Thus, 𝑄𝑄𝐼𝐼 = 1
𝐼𝐼−1. As 𝐼𝐼 → 1 

(the ZLB), 𝑄𝑄𝐼𝐼 → ∞, while as 𝐼𝐼 → ∞, 𝑄𝑄𝐼𝐼 → 0. Thus, in line with our initial 
argument, any finite, positive, nominal perpetuity price is consistent with at least 

one possible path for nominal rates, no matter the dynamics of the real SDF. This 
ensures that the central bank can set the nominal perpetuity price to an arbitrary 
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level, without any constraints. We do not need the real perpetuity price to be 
unbounded in this manner, as the central bank will not intervene in real perpetuity 

markets. 
The reader might worry that a bound on nominal perpetuity prices could enter 

another way. Suppose that nominal perpetuity prices were known at least one 
period in advance (e.g., because there is no uncertainty), and that money is 

available to trade. Then it would be the case that 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡, else nominal 
perpetuities would have return strictly dominated by that of cash. This inequality 

is an immediate consequence of 𝐼𝐼𝑡𝑡 ≥ 1 though, when 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is known at 𝑡𝑡. 𝐼𝐼𝑡𝑡 ≥ 1 
implies 𝑄𝑄𝐼𝐼,𝑡𝑡

𝐼𝐼𝑡𝑡
≤ 𝑄𝑄𝐼𝐼,𝑡𝑡, so: 

𝑄𝑄𝐼𝐼,𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

=
𝑄𝑄𝐼𝐼,𝑡𝑡
𝐼𝐼𝑡𝑡

≤ 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1�, 

which implies 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡 if 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is known at 𝑡𝑡. Thus, the bound on one 

period nominal rates is all that really matters, and we have already showed that 
this bound does not imply a bound on 𝑄𝑄𝐼𝐼,𝑡𝑡. Intuitively, 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡 is not a 

constraint on 𝑄𝑄𝐼𝐼,𝑡𝑡 as 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is endogenous. 
We can now introduce our perpetuity real rate rule. We suppose that the 

central bank intervenes in nominal perpetuity markets to ensure: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄̂𝑄𝑅𝑅,𝑡𝑡 �
Π𝑡𝑡
Π∗�

−𝜓𝜓
, 

for some exponent 𝜓𝜓 ∈ ℝ. While 𝜓𝜓 > 0 may seem natural (so that high inflation 
results in low bond prices and thus high interest rates), we do not impose this. 

We analyse the resulting dynamics via log-linearizing around the steady-state 
with inflation at Π∗.9 In particular, suppose that: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄𝑄 exp 𝑞𝑞𝐼𝐼,𝑡𝑡 , 𝑄̂𝑄𝑅𝑅,𝑡𝑡 = 𝑄𝑄 exp 𝑞𝑞𝑅𝑅,𝑡𝑡, 
Ξ𝑡𝑡 = Ξ exp 𝜉𝜉𝑡𝑡 , Π𝑡𝑡 = Π∗ exp 𝜋𝜋𝑡𝑡, 

where 𝑄𝑄 ≔ 1
𝐼𝐼∗−1, with 𝐼𝐼∗ ≔ Π∗

Ξ . We assume Ξ < 1, so 𝐼𝐼∗ > 1. Then to a first order 
approximation around 𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 = 𝜉𝜉𝑡𝑡 = 𝜋𝜋𝑡𝑡 = 0: 

𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜉𝜉𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ 𝑞𝑞𝐼𝐼,𝑡𝑡+1� , 𝑞𝑞𝑅𝑅,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜉𝜉𝑡𝑡+1 +
Ξ

Π∗ 𝑞𝑞𝑅𝑅,𝑡𝑡+1�, 

𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡. 

 
9 While it would ideally be better to examine these determinacy questions in a fully non-linear model, this is 

not tractable. We take comfort from the fact that even Cochrane (2011) primarily relies on linearized models. 
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Thus: 

𝜓𝜓𝜋𝜋𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 − 𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ �𝑞𝑞𝑅𝑅,𝑡𝑡+1 − 𝑞𝑞𝐼𝐼,𝑡𝑡+1�� = 𝔼𝔼𝑡𝑡 �𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ 𝜓𝜓𝜋𝜋𝑡𝑡+1�. 

Hence, if we define 𝜙𝜙 ≔ 𝜓𝜓�1 + Ξ
Π∗ 𝜓𝜓�

−1
, we then have that 𝜙𝜙𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, just as 

when one period bonds are used. With 𝜙𝜙 > 1, this has the unique stationary 
solution 𝜋𝜋𝑡𝑡 = 0 (so Π𝑡𝑡 = Π∗), as usual. The crucial difference is that with the 

perpetuity real rate rule, this is achieved without violating the ZLB. 
As a final observation, note that our definition of 𝜙𝜙 implies that 𝜓𝜓 =

−𝜙𝜙� Ξ
Π∗ 𝜙𝜙 − 1�

−1
, so, for sufficiently large 𝜙𝜙 (𝜙𝜙 > 𝐼𝐼∗ = Π∗

Ξ ) 𝜓𝜓 < − Π∗

Ξ < 0. Thus, 
under a perpetuity real rate rule with sufficiently large 𝜙𝜙, the central bank will 

raise nominal perpetuity prices in response to high inflation. This sign becomes 
more intuitive once money flows are considered. While if the central bank buys 

perpetuities, they are raising the money supply in the period of purchase, in every 
subsequent period they are reducing the money supply, as the private sector must 

pay coupons back to the central bank. Given the forward-looking nature of 
inflation determination, it is this long-run reduction which is crucial. 

Appendix I The empirical performance of the Fisher 
equation 

For real rate rules to work, the Fisher equation must hold at least approximately 
with whatever assets the central bank considers using. There may be time-varying 

wedges in the Fisher equation from liquidity and risk premia, and there could even 
be a non-unit coefficient on expected inflation,10 but there must be at least some 

relationship between 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 and expected inflation. 
Since our main empirical exercise will use five-year TIPS and treasuries, we 

will be most interested in whether the Fisher equation holds for these assets. We 
will perform our tests using monthly data on five-year breakeven inflation rates 

constructed from five-year treasuries and five-year TIPS. Breakeven inflation rates 
give us a measure of 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 for these assets.11 

 
10 If 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜅𝜅𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and the central bank uses the simple rule 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡, then 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙

𝜅𝜅 𝜋𝜋𝑡𝑡, so �𝜙𝜙𝜅𝜅� > 1 
is necessary and sufficient for determinacy. If 𝜅𝜅 ∈ (0,1), then 𝜙𝜙 > 1 is sufficient. 
11 We obtain breakeven inflation from Federal Reserve Bank of St. Louis (2024a), and converted to a 

continuously compounded rate.  
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Unsurprisingly, there is much prior work testing the Fisher equation. 
Balfoussia & Wickens (2006) find evidence in favour of the Fisher equation when 

real rates are inferred from ex-post real returns. Zeng (2013) finds that breakeven 
inflation rates tend to underestimate inflation expectations, due to liquidity 

premia. However, static wedges in the Fisher equation are removed by 
differencing, and so pose no challenge to the use of real rate rules. Abrahams et al. 

(2016) find that beyond the five-year horizon, breakeven rates are mostly driven 
by changes in risk premia, which justifies our focus on five-year breakeven rates. 

Bennett & Owyang (2023) survey the literature on the substantial role of inflation 
and liquidity premia in driving breakeven inflation rates. They go on to test the 

forecasting performance of five-year TIPS breakeven rates, and find them to be 
more accurate than VARs or breakeven rates from inflation swaps. They also find 

that TIPS breakeven rates are unbiased, unlike breakeven rates from inflation 
swaps. Using UK data, Scholtes (2002) finds that UK two-year breakeven rates 

outperform professional forecasters in forecasting RPI inflation. 
In the rest of this appendix, we perform two additional tests of the Fisher 

equation. We first check that professional forecasts predict breakeven rates, and 
then we check that breakeven rates predict realised inflation. Throughout 

Appendix I we convert all rates into continuously compounded ones, which are 
100 times the difference in logarithms of the price levels. 

I.1 Do professional forecasts of inflation predict breakeven rates? 
We first examine the association between breakeven inflation and professional 

forecasts from the Survey of Professional Forecasters (SPF). SPF forecasts are 
produced quarterly. We use the median across respondents given that surveys 

tend to have fat tails.12 
Each survey contains a prediction for five-year CPI inflation over the period 

starting from quarter four of the year before the survey year, where quarterly CPI 
levels are averages of monthly CPI levels. For simplicity, we approximate this by 

assuming instead that logarithms of quarterly levels are averages of logarithms of 
monthly levels. This approximation implies that once converted into a 

 
12 Taken from Federal Reserve Bank of Philadelphia (2024). 
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continuously compounded rate, the reported quantity is 1
180 times the annualized 

continuously compounded (ACC) inflation rate in November the year before, plus 
1

90 times the ACC inflation rate in December the year before, plus 1
60 times the ACC 

inflation rate in January of the survey year, …, plus 1
60 times the ACC inflation rate 

in October of the year four years after the survey year, plus 1
90 times the ACC 

inflation rate in November of the year four years after the survey year, plus 1
180 

times the ACC inflation rate in December of the year four years after the survey 
year. 

Surveys have a deadline in the second week of month two of the quarter, which 
is usually before the release of CPI inflation for the first month of that quarter. For 

simplicity, we assume this is always the case, as in any case, many surveyed will 
submit their answers before the deadline. Thus, we treat the final month of the 

previous quarter as the last month observed by survey participants. Given this, it 
is natural to compare forecasts to breakeven rates from the first month of the 

survey quarter, as these are based on bonds priced with the same information set. 
Given the indexation lag in breakeven inflation, this means that in quarter one, 

breakeven rates cover inflation from October of the year before; in quarter two, 
breakeven rates cover inflation from January; in quarter three, breakeven rates 

cover inflation from April; and, in quarter four, breakeven rates cover inflation 
from July. However, SPF forecasts are always the average of three forecasts, one 

from November of the year before, one from December of the year before, and one 
from January of the current year. We construct modified breakeven and SPF 

forecasts which start from the period covered by breakeven forecasts in quarters 
two to four, but which matches the SPF forecast period in quarter one. 

In quarter one of each year, we need to construct three modified breakeven 
forecasts starting from one month later (November, not October), two months 

later (December) and three months later (January). We create the first by 
subtracting 1

60 times realized ACC inflation rate for October from the forecast, and 

then adding back 1
60 times the five-year, five-year forward breakeven rate derived 

from five and ten-year TIPS and treasuries.13 This treats the five-year, five-year 

 
13 Taken from Federal Reserve Bank of St. Louis (2024b), and converted to a continuously compounded rate.  
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forward breakeven rate as a measure of market long-run inflation expectations. 
For the second, we subtract 1

60 times the sum of the ACC rates of October and 

November, and add back 1
30 times the five-year, five-year forward breakeven rate. 

For the third, we subtract 1
60 times the sum of the ACC rates of October, November 

and December, and add back 1
20 times the five-year, five-year forward breakeven 

rate. The final quarter one modified breakeven inflation forecast is the average of 

these three. 
In the other quarters of the year, we need to construct a modified survey 

forecast starting from either two months later (in quarter two), five months later 
(in quarter three) or eight months later (in quarter four). We do this by subtracting 

realized ACC inflation rates for the future months (from the perspective of the 
forecast), multiplied by the appropriate weights ( 1

180 , 1
90 , 1

60 , 1
60 , …), and then 

adding back the forecast of five-year, five-year forward inflation, multiplied by the 
sum of the same weights. This treats the five-year, five-year forward SPF forecast 

as a measure of SPF forecasters’ long-run inflation expectations. 
Having done all this, we then have a consistent set of breakeven and SPF 

inflation forecasts. We plot the relationship between the two over the full period of 
available data (2005 Q3 to 2024 Q1) in Figure 1.14 The figure also shows the result 

of a regression of five-year breakeven inflation on five-year SPF inflation 
expectations and a constant. The estimated slope is 0.90, with a heteroskedasticity 

and autocorrelation (HAC) robust standard error of 0.17. This gives a p-value for 
the null hypothesis of zero slope below 10−4, and a p-value for the null hypothesis 

of a unit slope of 0.53. Thus, we cannot reject the null that breakeven inflation 
responds one-for-one to movements in inflation expectations, in line with the 

Fisher equation. This provides strong support for the Fisher equation, as long as 
we allow for it to contain a stochastic wedge. 

 
14 This figure and the accompanying regression can be generated by running the MATLAB script “Main.m” 

provided in this paper’s replication materials. 
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Figure 1: The relationship between five-year SPF inflation expectations and five-year breakeven 

inflation rates, over matched horizons. 

I.2 Do breakeven rates forecast inflation? 
We now examine whether five-year breakeven rates contain information useful 

for forecasting inflation. For each month’s observation of breakeven inflation, we 

construct the five-year average of realised CPI inflation over the same horizon as 
used by the TIPS, taking account of the three-month indexation lag.15 Under 

rational expectations: 
1
60 � 𝜋𝜋𝑡𝑡+𝑘𝑘

59

𝑘𝑘=0
= 𝔼𝔼𝑡𝑡

1
60 � 𝜋𝜋𝑡𝑡+𝑘𝑘

59

𝑘𝑘=0
+ an unexpected shock, 

(where 𝑡𝑡 is monthly), so if the Fisher equation holds, then realized inflation 

( 1
60 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

59
𝑘𝑘=0 ) equals breakeven inflation plus an unexpected shock. 

Regressing average realized inflation on breakeven inflation and a constant 

gives an estimated slope of 0.25, but the standard errors are unreliable as the error 
is near 𝐼𝐼(1). However, since our preferred “practical” real rate rule specification is 

in terms of changes in 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡, it makes more sense to instead examine whether 
changes in breakeven inflation forecast changes in average realized inflation. 

Differencing ensures the errors are stationary and removes the slow-moving 
component of the Fisher equation wedge. Regressing changes in realized inflation 
on changes in breakeven inflation (without a constant) gives an estimated slope of 

 
15 Our sample for breakeven inflation is from January 2003 to June 2019. 
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0.09, with a heteroskedasticity and auto-correlation robust standard error of 0.02 
(and corresponding P-value below 10−4).16 Thus, breakeven inflation contains 

statistically significant information about future inflation. We plot this relationship 
in Figure 2.17 Note that since the coefficient is likely to be heavily biased towards 

zero due to the noise in breakeven rates coming from fluctuating risk premia, we 
cannot infer from this that the slope is necessarily different than one. 

Figure 2: The relationship between changes in five-year breakeven inflation rates, and five-year 

realised inflation over the same horizon. 

Appendix J Details of the empirical exercise 
J.1 Background on the Summary of Economic Projections (SEP) 

The United States Federal Open Market Committee releases a “Summary of 

Economic Projections” (SEP) approximately once every three months. This 
contains statistics summarising the projections of the seven Federal Reserve board 

members and the twelve Federal Reserve bank presidents. Crucially, these 
projections are conditional on the Fed following what the individual believes to be 

“appropriate monetary policy”:18 
 

16 This result and the previous one may be generated by running the MATLAB script “Main.m” provided in 
this paper’s replication materials. 
17 This figure can also be generated by running the MATLAB script “Main.m” provided in this paper’s 
replication materials. 
18 Federal Open Market Committee (2024). 
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“Each participant’s projections [are] based on information available at 
the time of the meeting, together with her or his assessment of 

appropriate monetary policy—including a path for the federal funds rate 
and its longer-run value—and assumptions about other factors likely to 

affect economic outcomes. The longer-run projections represent each 
participant’s assessment of the value to which each variable would be 

expected to converge, over time, under appropriate monetary policy and 
in the absence of further shocks to the economy. ‘Appropriate monetary 

policy’ is defined as the future path of policy that each participant deems 
most likely to foster outcomes for economic activity and inflation that 

best satisfy his or her individual interpretation of the statutory mandate 
to promote maximum employment and price stability.” 

We will use the projections for the PCEPI inflation rate, both for the next few 
years, and for the long-run. Since these are projections for what inflation ought to 

be if monetary policy is set optimally, we take them as capturing 𝜋𝜋𝑡𝑡
∗ from our 

model of a time-varying short-run inflation target.19 

While recent releases of the SEP contain information on the median forecast 
across participants, this is not available for the full sample (from November 2007). 

Instead, we have to rely on the mid-point of the central tendency. This is the 
average of the fourth largest forecast, and the fourth smallest forecast. (Recall that 

at most 19 individuals give projections each round.) 
To give an indication of the reliability of the mid-point of the central tendency 

as a measure of a distribution’s location, Table 1 gives the raw moments (from a 
sample of size 108) of the absolute value of the mean, median and central-

tendency mid-point of samples of size 19 from a standard T-distribution with 
degrees of freedom parameter 5, and Table 2 repeats this for draws from a standard 
normal distribution.20 While the central tendency mid-point is less efficient than 
either the mean or the median in the T-distribution case, the difference is not 

 
19 See Kocherlakota (2023) for more background on the Summary of Economic Projections. 
20 These tables may be generated by running the MATLAB script “Main.m” provided in this paper’s 
replication materials. For the mean of a normal distribution, closed form analytical moments are available, 

which agree perfectly with the numbers given in Table 2. 
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massive (below 30% for all moments). In the Gaussian case, the mid-point of 
central tendency is more efficient than the median for all moments, but its 

efficiency loss relative to the mean is larger (about 61% for the fourth moment). 
Overall, these results suggest that the mid-point of the central tendency is a 

reasonable measure of the location of the centre of the distribution of projections. 
 

Raw moment Mean Median Central tendency mid-point 

1 0.234 0.240 0.250 

2 0.088 0.092 0.100 

3 0.043 0.045 0.052 

4 0.026 0.026 0.033 
Table 1: Raw moments of the absolute value of the mean, median and central-tendency mid-point 

of samples of size 19 from a standard T-distribution with degrees of freedom parameter 5. 

 

Raw moment Mean Median Central tendency mid-point 

1 0.183 0.227 0.206 

2 0.053 0.081 0.067 

3 0.019 0.037 0.027 

4 0.008 0.020 0.013 
Table 2: Raw moments of the absolute value of the mean, median and central-tendency mid-point 

of samples of size 19 from a standard normal distribution. 

J.2 From PCEPI inflation expectations to CPI inflation expectations 
In the Summary of Economic Projections, participants give forecasts for PCEPI 

inflation, in line with the Fed’s target being stated in terms of PCEPI inflation. 

However, the pay-off of TIPS is a function of CPI inflation. Thus, we need to 
convert projections from PCEPI inflation to CPI inflation. 

In order to avoid contaminating the projections with information not available 
at the time, we work with the first released estimates of the seasonally adjusted 

values of monthly, continuously compounded, CPI inflation and PCEPI 
inflation,21 unless these first released estimates are updated within one month of 

 
21 Obtained from Federal Reserve Bank of St. Louis (2024c) (based on underlying data from U.S. Bureau of 
Labor Statistics (2024)) and Federal Reserve Bank of St. Louis (2024d) (based on underlying data from U.S. 
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the end of the month for which inflation is being measured, in which case we use 
the updated estimates. Throughout Appendix J, continuously compounded 

inflation rates are 100 times the difference in logarithms of the price levels. The 
estimate of CPI inflation for a month is always released less than a month after the 

end of the month in question in our sample (median and mean delay in our 
sample: 14 days; maximum delay: 29 days), while for PCEPI inflation it can 

sometimes take over a month, but less than two (median and mean delay in our 
sample: 28 days; maximum delay: 59 days). For simplicity, we treat both series as 

having a one-month release lag though. 
Let 𝜋𝜋𝑡𝑡

CPI and 𝜋𝜋𝑡𝑡
PCE be the estimates of continuously compounded CPI and 

PCEPI inflation for month 𝑡𝑡, (released in month 𝑡𝑡 + 1). We estimate the following 
time-varying linear regression on data from January 2002 to February 2024:22 

𝜋𝜋𝑡𝑡
CPI = 𝛼𝛼𝑡𝑡 + 𝛽𝛽𝑡𝑡𝜋𝜋𝑡𝑡

PCE + 𝜎𝜎𝜀𝜀𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡 ∼ N(0,1), 
𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑡𝑡−1 + 𝜎𝜎𝛼𝛼𝛼𝛼𝜈𝜈𝛼𝛼,𝑡𝑡 + 𝜎𝜎𝛼𝛼𝛼𝛼𝜈𝜈𝛽𝛽,𝑡𝑡, 𝛼𝛼0 ∼ N(0,1), 𝜈𝜈𝛼𝛼,𝑡𝑡 ∼ N(0,1), 

𝛽𝛽𝑡𝑡 = 𝛽𝛽𝑡𝑡−1 + 𝜎𝜎𝛽𝛽𝛽𝛽𝜈𝜈𝛽𝛽,𝑡𝑡, 𝛽𝛽0 ∼ N(0,36), 𝜈𝜈𝛽𝛽,𝑡𝑡 ∼ N(0,1). 
We take 𝛽𝛽0 ∼ N(0,36) as we expect the mean of 𝜋𝜋𝑡𝑡

PCE to be about two (percent 

annual inflation target) divided by twelve (months in a year), so this choice 
ensures 𝛽𝛽0𝜋𝜋𝑡𝑡

PCE|𝜋𝜋𝑡𝑡
PCE is roughly distributed as N(0,1), just like 𝛼𝛼0. 

We estimate (sandwich (robust/QMLE) standard errors in brackets) 𝜎𝜎𝛼𝛼𝛼𝛼 ≈
0.0024 (0.0028), 𝜎𝜎𝛼𝛼𝛼𝛼 ≈ −0.0050 (0.0024), 𝜎𝜎𝛽𝛽𝛽𝛽 ≈ 0.0171 (0.0081), 𝜎𝜎𝜀𝜀 ≈ 0.0789 

(0.0045), via maximum likelihood. We plot the estimated (smoothed) paths of 𝛼𝛼𝑡𝑡 
and 𝛽𝛽𝑡𝑡 in Figure 3 and Figure 4.23 We also plot the implied correlation between 

PCEPI and CPI inflation in Figure 5. We will convert forecasts made in month 𝑡𝑡 
from PCEPI inflation to CPI inflation using the smoothed estimates of 𝛼𝛼𝑡𝑡−1 and 

𝛽𝛽𝑡𝑡−1. For simplicity, we ignore the uncertainty associated with these estimates in 
all of the following exercises. 

 
Bureau of Economic Analysis (2024)) respectively. 
22 We start in 2002 rather than say 2007 (when the Summary of Economic Projections data starts) in order to 
have a sufficient run-in for the impact of initial conditions to dissipate. 
23 These estimates and figures may be produced by running the MATLAB script “Main.m” provided in this 

paper’s replication materials. 



 

Page 26 of 72 

Figure 3: Estimated (smoothed) value of 𝜶𝜶𝒕𝒕 . 

Figure 4: Estimated (smoothed) value of 𝜷𝜷𝒕𝒕 . 
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Figure 5: Implied correlation between PCE and CPI inflation. 

J.3 A simple annual exercise 
The Summary of Economic Projections contains forecasts for PCEPI inflation 

over particular calendar years.24,25 Using our time-varying mapping PCEPI to CPI 

inflation map, we can convert these to CPI forecasts. Averaging all (CPI) forecasts 
made in a year gives us an annual forecast “made” in that year. Thus, if we work 

with an annual frequency model, then we have the relevant forecasts to estimate 
the monetary rule, without doing anything very sophisticated. It is simple enough 

that the entire exercise could be performed using spreadsheets. 
In particular, we want to estimate 𝜃𝜃 in the following smoothed real rate rule, 

where now 𝑡𝑡 is measured in years, and where we have substituted in the Fisher 
equation for five year bonds to remove 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 and 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1: 

𝔼𝔼𝑡𝑡
1
5 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
5

𝑘𝑘=1
− 𝔼𝔼𝑡𝑡−1

1
5 ��𝜋𝜋𝑡𝑡−1+𝑘𝑘 − 𝜋𝜋𝑡𝑡−1+𝑘𝑘

∗ �
5

𝑘𝑘=1
= 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). 

We do not worry about observation or indexation lags, as these are small relative 
to the length of a time period (a year). 

The only data missing is forecasts at longer horizons, as each SEP release only 
contains forecasts for three or four years, including the current year, but we need 

 
24 Technically, they are Q4 to Q4 forecasts. 
25 The SEP inflation forecast data is taken from Federal Reserve Bank of St. Louis (2024e) (based on 

underlying data from U.S. Federal Open Market Committee and Federal Reserve Bank of St. Louis (2024a)). 
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forecasts for six years, including the current one. We estimate an AR(1) model by 
regressing: 

• SEP annual (CPI converted from PCEPI) inflation forecasts at the longest 
horizon available, minus the long-run SEP (CPI converted from PCEPI) 

inflation forecast,26 
on: 

• SEP annual (CPI converted from PCEPI) inflation forecasts at the previous 
horizon, minus the long-run SEP (CPI converted from PCEPI) inflation 

forecast, 
using the full SEP data set of vintages from November 2007 to March 2024. This 

gives an estimate of the perceived persistence of desired inflation according to the 
SEP.  We obtain a persistence of 0.55 (HAC standard error: 0.10).27 We then 

forecast projections beyond the available horizon using this estimated AR(1) 
model, and the relevant SEP long-run inflation forecast. Averaging over all 

vintages in a year then gives us 𝔼𝔼𝑡𝑡
1
5 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

∗5
𝑘𝑘=1  and 𝜋𝜋𝑡𝑡

∗. 
We just need data on 𝔼𝔼𝑡𝑡

1
5 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

5
𝑘𝑘=1  and 𝜋𝜋𝑡𝑡. For the former, we use breakeven 

inflation constructed from five-year treasuries and five-year TIPS, as discussed in 
Appendix I.28 Since we need an end of year value, as all terms in 𝔼𝔼𝑡𝑡

1
5 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

5
𝑘𝑘=1  

are future dated, we use the average of the December and following January 
observations. Likewise, we use the average of the December and following January 

observations of annual CPI inflation to obtain 𝜋𝜋𝑡𝑡.29 
Figure 6 plots the data, and an estimated slope line with zero intercept. The 

first observation is 2009, as there is a lag in the model (consuming the 2008 data 
point), and there is too little SEP data in 2007 to use that year. The final observation 

is 2023. There is a clear positive association, as would be expected were the Fed 
close to following a real rate rule. The 𝑅𝑅2 value is 0.46 meaning that this simple 

linear model is capturing around half of the variance in the data. 𝜃𝜃 is estimated at 

 
26 The long-run SEP inflation forecasts are taken from U.S. Federal Open Market Committee and Federal 
Reserve Bank of St. Louis (2024b) and are extrapolated backwards with their first observation. 
27 This entire exercise is performed in the MATLAB script “Main.m”. 
28 We obtain breakeven inflation from Federal Reserve Bank of St. Louis (2024a). 
29 We take CPI data from U.S. Bureau of Labor Statistics (2024).  
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0.513, with a heteroskedasticity and autocorrelation robust p-value of 0.006. Of 
course, endogeneity is a concern here. We address this in the quarterly estimates 

that follow. 

Figure 6: Annual real rate rule data and estimated slope. 

J.4 Inferring monthly or quarterly short-run inflation targets from 
the SEP 

In averaging to annual, we threw away a lot of data, and thus ended up with 
less precise estimates. The difficulty with using quarterly or monthly data though, 

is that we only observe forecasts for inflation over particular calendar years, not for 
specific quarters. Furthermore, the month in which the forecasts are made changes 

over the sample. Thus, we need a model to infer consistent monthly or quarterly 
observations of 𝜋𝜋𝑡𝑡

∗ from what we do observe. Given the changing observation 

months, it makes sense to work with a monthly model. 
Writing 𝐿𝐿 for the lag operator and 𝐼𝐼 for the identity operator, and with 𝑡𝑡 now 

being measured in months, we assume that: 
𝜋𝜋∞,𝑡𝑡

∗ = (𝐼𝐼 − 0.9999𝐿𝐿)−1𝜎𝜎∞𝜀𝜀∞,𝑡𝑡, 
𝜋𝜋1,𝑡𝑡

∗ = �𝐼𝐼 − 𝜌𝜌1∗𝐿𝐿�−1�𝐼𝐼 + 𝜓𝜓1∗𝐿𝐿�𝜎𝜎1∗𝜀𝜀1∗,𝑡𝑡, 
𝜋𝜋1,𝑡𝑡 = �𝐼𝐼 − 𝜌𝜌1𝐿𝐿�−1�𝐼𝐼 + 𝜓𝜓1𝐿𝐿�𝜎𝜎1𝜀𝜀1,𝑡𝑡, 

𝜋𝜋2,𝑡𝑡
∗ = �

1
1 + 𝑘𝑘 exp �

𝑘𝑘
1 + 𝑘𝑘� �𝐼𝐼 − exp �−

1
1 + 𝑘𝑘� 𝐿𝐿�

−2
𝜎𝜎2𝜀𝜀2,𝑘𝑘,𝑡𝑡

𝑘𝑘∈{0,12,24,36}
, 
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𝜋𝜋𝑡𝑡
∗ = 𝜋𝜋∞,𝑡𝑡

∗ + 𝜋𝜋1,𝑡𝑡
∗ + 𝜋𝜋2,𝑡𝑡

∗ , 
𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗ + 𝜋𝜋1,𝑡𝑡, 
where 𝜀𝜀∞,𝑡𝑡, 𝜀𝜀1∗,𝑡𝑡, 𝜀𝜀2,0,𝑡𝑡, 𝜀𝜀2,12,𝑡𝑡, 𝜀𝜀2,24,𝑡𝑡, 𝜀𝜀2,36,𝑡𝑡, 𝜀𝜀1,𝑡𝑡 ∼ N(0,1). 

We unpick this term by term. 𝜋𝜋∞,𝑡𝑡
∗  gives a near unit root AR(1) component to 

𝜋𝜋𝑡𝑡
∗ (and hence 𝜋𝜋𝑡𝑡) that will capture the changing long-run inflation target. 𝜋𝜋1,𝑡𝑡

∗  
gives an ARMA(1,1) component to 𝜋𝜋𝑡𝑡

∗, and 𝜋𝜋1,𝑡𝑡 gives an ARMA(1,1) component 

to 𝜋𝜋𝑡𝑡. These are reasonable as ARMA(1,1) models tend to perform well for 
forecasting inflation, and it is not obvious a priori whether this is best captured by 

ARMA(1,1) fluctuations in 𝜋𝜋𝑡𝑡 or 𝜋𝜋𝑡𝑡
∗. 

Finally, for any 𝑘𝑘: 
1

1 + 𝑘𝑘 exp �
𝑘𝑘

1 + 𝑘𝑘� �𝐼𝐼 − exp �−
1

1 + 𝑘𝑘� 𝐿𝐿�
−2

𝜎𝜎2𝜀𝜀2,𝑘𝑘,𝑡𝑡 

gives a repeated root AR(2) component with the following key properties. Firstly, 
the IRF to a unit shock to 𝜀𝜀2,𝑘𝑘,𝑡𝑡 in period 0 peaks in period 𝑘𝑘 (the IRF is hump-

shaped for 𝑘𝑘 > 0). Secondly, the peak value of this IRF is 𝜎𝜎2, which is common 
across 𝑘𝑘 to avoid over-parameterization. In particular, this IRF is given by: 

𝜎𝜎2
1 + 𝑡𝑡
1 + 𝑘𝑘 exp �

𝑘𝑘 − 𝑡𝑡
1 + 𝑘𝑘�. 

This has a broadly similar shape to the Nelson & Siegel (1987) curvature factor, 

used for modelling inflation expectations by Aruoba (2020).30 In our specific 
context, our approach has the advantage of enabling us to use the information in 

realised inflation, which helps make-up for the sparsity of the SEP data set. 
We include these repeated root AR(2) terms for 𝑘𝑘 ∈ {0,12,24,36} as the SEP 

contains inflation forecasts at horizons of about zero, one, two and possibly three 
years. The 𝑘𝑘 = 0 term will capture movements in the zero-year horizon projections, 

the 𝑘𝑘 = 12 term will capture movements in the one-year horizon projections, and 
so on. Thus, we will not need to include any measurement error terms. 

We estimate the model using monthly data from the same sources as in the 
previous subappendices, with data from January 2007 to March 2024.31 The first 

 
30 The slope and curvature factors are Ο�𝑡𝑡−1� as 𝑡𝑡 → ∞, which implies greater persistence than any 
stationary finite-order ARMA process. We instead capture a near permanent component with the 

(𝐼𝐼 − 0.9999𝐿𝐿)−1𝜎𝜎∞𝜀𝜀∞,𝑡𝑡 term. 
31 The code for performing the estimation is contained in the MATLAB script “Main.m” in this paper’s 
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SEP release is in November 2007, and the last is in March of 2024. The initial 
months of 2007 allow the smoother to infer something about the higher frequency 

state variables, before the SEP data starts. 
In line with the SEP, we construct Q4 on Q4 annual inflation measures as 

December observations of 13 ∑ ∑ 𝜋𝜋𝑡𝑡−𝑙𝑙−𝑘𝑘
11
𝑘𝑘=0

2
𝑙𝑙=0 . Expectations of such measures are 

constructed by iterating on the state space model’s transition matrix. We include 

every available SEP inflation forecast, with each linked to the month in which it 
was released. Our observed measure of CPI inflation is the real time one detailed 

in J.2. We take the observed SEP long-run inflation forecasts as being observations 
of the 𝜋𝜋∞,𝑡𝑡

∗  term. (Since this series is constant almost everywhere, whenever two 

adjacent observations are the same, we interpolate to monthly with that value.) 
We assume that the initial state is drawn from the model’s stationary distribution, 

but with the level modified so that any state that contains 𝜋𝜋∞,𝑡𝑡
∗  has mean two 

(percent annual inflation target) over twelve (months in a year). In order to avoid 

favouring 𝜋𝜋1,𝑡𝑡
∗  over 𝜋𝜋1,𝑡𝑡, we start the optimization with identical parameters for 

these two ARMA(1,1) processes, taken from an initial estimate of an ARMA(1,1) 

on CPI. 
We estimate (sandwich (robust/QMLE) standard errors in brackets) 𝜌𝜌1 ≈

−0.03 (0.14), 𝜓𝜓1 ≈ 0.26 (0.03), 𝜎𝜎1 ≈ 0.12 (0.03), 𝜌𝜌1∗ ≈ 0.64 (0.05), 𝜓𝜓1∗ ≈ 0.03 
(0.03), 𝜎𝜎1∗ ≈ 0.19 (0.03), 𝜎𝜎∞ ≈ 0.0010 (0.0004), 𝜎𝜎2 ≈ 0.0103 (0.0010), via 

maximum likelihood. Thus, 𝜋𝜋1,𝑡𝑡 is essentially an MA(1) process, while 𝜋𝜋1,𝑡𝑡
∗  is 

essentially an AR(1) process. This means that 𝜋𝜋𝑡𝑡 does not deviate persistently 

from 𝜋𝜋𝑡𝑡
∗, so the projections are tracking inflation well. It also means that 

movements in 𝜋𝜋𝑡𝑡
∗ explains much of the variance in 𝜋𝜋𝑡𝑡 except at the highest 

frequencies. This is also clear from Figure 7 which plots the smoothed estimates of 
𝜋𝜋𝑡𝑡

∗ and 𝜋𝜋𝑡𝑡, aggregated to quarterly frequency. 

 
replication materials. 
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Figure 7: Estimated (smoothed) value of 𝝅𝝅𝒕𝒕
∗ (solid line, 90% confidence band in grey) and 𝝅𝝅𝒕𝒕 

(dashed line). Quarterly aggregates. Annualized continuously compounded rates. 

We use quarterly frequency aggregates here and in our estimation exercise for 

two reasons. Firstly, since most macroeconomic models are calibrated or estimated 
on quarterly frequency data. Secondly, because the SEP is only released about once 

every three months. Thus, the monthly estimates of 𝜋𝜋𝑡𝑡
∗ do not really contain any 

more information than quarterly aggregates of this series. In effect, the additional 

variation in the monthly series is likely to be pure measurement error. By 
aggregating to quarterly, we reduce this measurement error, lessening the impact 

of “errors in variables” bias. 
In our estimation exercise, for simplicity we ignore the uncertainty associated 

with these quarterly estimates of 𝜋𝜋𝑡𝑡
∗. We drop the observations before the first SEP 

release in 2007 Q4 as these are unlikely to be uninformative, and we drop a further 

year of observations as the multi-year horizons of the SEP forecasts mean that early 
inferences about 𝜋𝜋𝑡𝑡

∗ will be less reliable than later ones. Thus, the first observation 

we use will be 2008 Q4 (except where a lag enters in which case we also use the 
2008 Q3 observation for the lag). 

Two data points in Figure 7 warrant further discussion. The implied Q3 and Q4 
2021 values of 𝜋𝜋𝑡𝑡

∗ are above the realised values of 𝜋𝜋𝑡𝑡. This may be surprising! But 

this does come directly from the underlying SEP data. Mapped to CPI, the 
December 2021 SEP forecast for inflation over 2021 was 6.93%. Realised CPI 
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inflation for 2021 came in at 6.62% (calculated with the formula 
1
3 ∑ ∑ 𝜋𝜋𝑡𝑡−𝑙𝑙−𝑘𝑘

11
𝑘𝑘=0

2
𝑙𝑙=0  mentioned previously). So, realised CPI inflation for 2021 was 

below the Fed’s SEP “target”. Given that the SEP was below realised inflation for 
the first two quarters of 2021, the model needs a fairly sizeable overshoot in the 

final two quarters to hit the December 2021 SEP forecast. (In March and June of 
2021, the SEP forecast for 2021 inflation (mapped to CPI) were 2.83% and 4.17% 

respectively, while Q1 and Q2 CPI inflation were 4.91% and 9.24%, annualized, 
respectively.) 

The only remaining question is why the 2021 Q4 SEP forecast should be so 
high. Perhaps policy makers believe that by the time of the Q4 SEP, there is nothing 

they can do to influence that year’s inflation. (But note that the December 2021 
SEP release was prepared for the December 2021 FOMC meeting, and that the 

estimates of Miranda-Agrippino & Ricco (2021) imply monetary shocks have a 
same month impact on CPI.) Perhaps our estimated mapping from PCEPI to CPI 

is not accurate enough. Or perhaps it reflects a desire to make up for past low 
inflation during the ZLB period, given the Fed’s average inflation targeting. Or to 

follow through on past “lower for longer” commitments. Perhaps it reflects a belief 
in the costliness of unanticipated interest rises. Or a desire to shrink the output 

gap. Given the Fed did not begin raising rates until March 2022, it does not seem 
outrageous that the model views monetary policy as dovish in 2021. 

J.5 Estimating a real rate rule on quarterly data 
Armed with data on 𝜋𝜋𝑡𝑡

∗, we can now estimate the real rate rule of Subsection 

5.2 form the main text, over the period 2008 Q4 to 2023 Q2. (The final date is the 
latest available observation of the Känzig (2021; 2024) oil price news shock we use 

as an instrument, as documented in the main text.) We work with five-year US 
treasuries and TIPS, so 𝑇𝑇 = 20. Since annual yields on five-year US treasuries 

never dropped below 0.19% over our sample,32 we ignore the ZLB. As suggested 
in the main text for the US, we take 𝐿𝐿 = 1 (i.e., three months). We take 𝑆𝑆 = 0, since 

the true CPI release delay of below one month is less than half of the length of a 

 
32 Data from Board of Governors of the Federal Reserve System (US) (2024a). The minimum is found by the 

MATLAB script “Main.m” in this paper’s replication materials. 



 

Page 34 of 72 

period (three months) and so for simplicity we write (e.g.) 𝜈𝜈𝑡𝑡 rather than 𝜈𝜈𝑡𝑡|𝑡𝑡. Thus, 
we wish to estimate: 

𝑦𝑦𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
− 𝔼𝔼𝑡𝑡−1

1
𝑇𝑇 ��𝜋𝜋𝑡𝑡−1+𝑘𝑘 − 𝜋𝜋𝑡𝑡−1+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
+ 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1

−
1
𝑇𝑇 �(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ �� = 𝜃𝜃𝑥𝑥𝑡𝑡 + 𝜀𝜀𝜈𝜈̅,𝑡𝑡, 

where 𝑥𝑥𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ and 𝜀𝜀𝜈𝜈̅,𝑡𝑡 ≔ 𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡̅𝑡−1. We also estimate this equation without 

the 1
𝑇𝑇 �(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ �� term on the left-hand side. 

For consistency with the information set used to price TIPS, we proxy 

𝔼𝔼𝑡𝑡
1
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

∗𝑇𝑇−1
𝑘𝑘=0  with 𝑡𝑡 measured in quarters by the final month of quarter 𝑡𝑡 value 

of 𝔼𝔼𝑡𝑡−1
1

3𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘−3
∗3𝑇𝑇

𝑘𝑘=1  with 𝑡𝑡 measured in months, derived from the state space 

model. And we use final month of quarter 𝑡𝑡 values of breakeven inflation as 
estimates of 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡

1
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

𝑇𝑇−1
𝑘𝑘=0 + 𝜈𝜈𝑡𝑡 (𝑡𝑡 quarterly). These proxies for the 

components of the left-hand side variable will not bias our estimates as, for 
example, 𝔼𝔼𝑡𝑡−1

1
3𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘−3

∗3𝑇𝑇
𝑘𝑘=1 = 𝔼𝔼𝑡𝑡

1
3𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘−3

∗3𝑇𝑇
𝑘𝑘=1 + an unexpected shock (𝑡𝑡 

monthly). 
Figure 8 plots our estimate of 𝔼𝔼𝑡𝑡

4
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

𝑇𝑇−1
𝑘𝑘=0 + 4𝜈𝜈𝑡𝑡 (from observed breakeven 

inflation from five-year TIPS and treasuries) versus our estimate of 𝔼𝔼𝑡𝑡
4
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

∗𝑇𝑇−1
𝑘𝑘=0  

(from the state space model). The targeted five-year inflation rate was above the 

breakeven one for most of the sample, perhaps reflecting an intention to make-up 
for the low inflation of the ZLB period, or perhaps reflecting liquidity premia on 

nominal bonds pushing down breakeven rates. However, since we time difference 
both quantities, any static wedge between the two will drop out. 

See the main text for the results of estimating 𝜃𝜃.33 Note that in the main text, 
we give the fraction of variance explained of five-year breakeven inflation 

expectations and five-year treasury yields. These are from Federal Reserve Bank 
of St. Louis (2024a) and Board of Governors of the Federal Reserve System (US)  
(2024b). 

 

 
33 These estimates and the subsequent ones may be obtained by running the MATLAB script “Main.m” in 
this paper’s replication materials. The code describes these regressions as the “modified” ones, and the ones 

without the 1
𝑇𝑇 ��𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗� − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ �� term on the left hand side as the unmodified ones. 
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Appendix K Proofs and additional results 
K.1 Responding to other endogenous variables in a general model 

Suppose the central bank uses the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜄𝜄𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡 + 𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 
Here, 𝑧𝑧𝑡𝑡 is a vector of other endogenous variables, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡, 𝜄𝜄 > 0 is a scalar 

governing the strength of response to all of them, and 𝜈𝜈𝑡𝑡 is an arbitrary exogenous 
stochastic process (potentially vector valued). As usual, we assume 𝜙𝜙𝜋𝜋 > 1. We 

also assume without loss of generality that the elements of 𝑧𝑧𝑡𝑡 are all zero in steady 
state. 

Without loss of generality, we suppose that the other endogenous variables 
satisfy the general linear expectational difference equation: 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + 𝐸𝐸𝜈𝜈𝑡𝑡, 
where the coefficient matrices are such that there is a unique matrix 𝐹𝐹 with 

eigenvalues in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝐶𝐶.34 This condition on 𝐹𝐹 
just states that there is no real indeterminacy in the model. Once inflation is 

 
34 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by 

adding an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 

Figure 8: Estimated (smoothed) value of 𝔼𝔼𝒕𝒕
𝟒𝟒
𝑻𝑻 ∑ 𝝅𝝅𝒕𝒕+𝒌𝒌

∗𝑻𝑻−𝟏𝟏
𝒌𝒌=𝟎𝟎  from the state space model (solid line) 

and 𝔼𝔼𝒕𝒕
𝟒𝟒
𝑻𝑻 ∑ 𝝅𝝅𝒕𝒕+𝒌𝒌

𝑻𝑻−𝟏𝟏
𝒌𝒌=𝟎𝟎 + 𝟒𝟒𝝂𝝂𝒕𝒕 from observed breakeven inflation (dashed line). Annualized continuously 

compounded rates. 
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determined, so too is 𝑧𝑧𝑡𝑡. Having the same shock process entering both the 
monetary rule and the model’s other equations is without loss of generality as it is 

multiplied by 𝜙𝜙𝜈𝜈
⊤ and 𝐸𝐸 respectively. 

Now define: 

𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1. 
Let 𝐿𝐿 be the lag operator, then note that: 

�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹) = 𝐴𝐴𝐿𝐿−1 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶. 
Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside 

the unit circle. 
In terms of the lag operator, the model to be solved is then: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡 = −𝜄𝜄𝜙𝜙𝜋𝜋

−1𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡 − 𝜙𝜙𝜋𝜋

−1𝜙𝜙𝜈𝜈
⊤𝜈𝜈𝑡𝑡, 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − 𝐸𝐸𝜈𝜈𝑡𝑡. 
Note for future reference that since 𝜙𝜙𝜋𝜋

−1, 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues in 
the unit circle, �1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�, �𝐼𝐼 − 𝐺𝐺𝐿𝐿−1� and (𝐼𝐼 − 𝐹𝐹𝐹𝐹) are all invertible. 

We conjecture a series solution of the form: 

𝜋𝜋𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝜋𝜋𝑡𝑡

(𝑘𝑘), 𝑧𝑧𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝑧𝑧𝑡𝑡

(𝑘𝑘). 

Matching terms gives that 𝜋𝜋𝑡𝑡
(0) solves: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡

(0) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡, 
implying that 𝜋𝜋𝑡𝑡

(0) is determinate with: 

𝜋𝜋𝑡𝑡
(0) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 
Similarly, from matching terms in the law of motion for 𝑧𝑧𝑡𝑡, we have that: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡
(0) = −𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡 
so 𝑧𝑧𝑡𝑡

(0) is also determinate (by our assumption on 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶) with: 

𝑧𝑧𝑡𝑡
(0) = −(𝐼𝐼 − 𝐹𝐹𝐹𝐹)−1(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�−1�𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡�. 
Note that 𝜋𝜋𝑡𝑡

(0) can be treated as exogenous for solving for 𝑧𝑧𝑡𝑡
(0), as the causation 

only runs one way, from 𝜋𝜋𝑡𝑡
(0) to 𝑧𝑧𝑡𝑡

(0). 
Now suppose that we have established that 𝜋𝜋𝑡𝑡

(𝑘𝑘) and 𝑧𝑧𝑡𝑡
(𝑘𝑘) are determinate for 

some 𝑘𝑘 ∈ ℕ, with a determined solution not a function of higher order terms. (We 
have already proven the base case of 𝑘𝑘 = 0.) We seek to prove that 𝜋𝜋𝑡𝑡

(𝑘𝑘+1) and 𝑧𝑧𝑡𝑡
(𝑘𝑘+1) 

are also determinate. Matching terms again gives that: 
𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�𝜋𝜋𝑡𝑡
(𝑘𝑘+1) = −𝜙𝜙𝜋𝜋

−1𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡

(𝑘𝑘), 
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so 𝜋𝜋𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝜋𝜋𝑡𝑡
(𝑘𝑘+1) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 

where we used the inductive hypothesis that 𝑧𝑧𝑡𝑡
(𝑘𝑘) is already determined, and so it 

is effectively exogenous for the purpose of determining 𝜋𝜋𝑡𝑡
(𝑘𝑘+1). Then from 

matching terms in the law of motion for 𝑧𝑧𝑡𝑡: 
𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡

(𝑘𝑘+1) = −𝑑𝑑𝜋𝜋𝑡𝑡
(𝑘𝑘+1), 

so 𝑧𝑧𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝑧𝑧𝑡𝑡
(𝑘𝑘+1) = −(𝐼𝐼 − 𝐹𝐹𝐹𝐹)−1(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�−1𝑑𝑑𝜋𝜋𝑡𝑡

(𝑘𝑘+1), 
much as before. This completes our proof by induction, establishing that there is a 
series solution of the given form. 

The only remaining thing to check is that the series does indeed converge for 
sufficiently small 𝜄𝜄. This follows immediately from the product structure of the 

solution above, which means that the variances of 𝑧𝑧𝑡𝑡
(𝑘𝑘) and 𝜋𝜋𝑡𝑡

(𝑘𝑘) must be 𝑂𝑂�ℎ𝑘𝑘� for 
some ℎ ≥ 1. Hence for sufficiently small 𝜄𝜄, the model is determinate. I.e., given the 

Taylor principle is satisfied, a sufficiently small response to other endogenous 
variables will not break determinacy. 

K.2 Phillips curve based forecasting with ARMA(1,1) policy shocks 
As before, we have the monetary rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, which combined with 

the Fisher equation gives 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. Suppose 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) 
process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2� 

with 𝜌𝜌, 𝜃𝜃 ∈ (−1,1). Then from matching coefficients, with 𝜙𝜙 > 1 we have the 

unique solution: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙 − 𝜌𝜌 �𝜁𝜁𝑡𝑡 +
𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡�. 

Thus: 

𝜋𝜋𝑡𝑡 − 𝜌𝜌𝜋𝜋𝑡𝑡−1 = −
1

𝜙𝜙 − 𝜌𝜌 �1 +
𝜃𝜃
𝜙𝜙� �𝜀𝜀𝜁𝜁,𝑡𝑡 +

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 + 𝜃𝜃 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1�, 

so 𝜋𝜋𝑡𝑡 also follows an ARMA(1,1) process. Suppose for now that −𝜌𝜌 ≤ 𝜃𝜃, which is 
likely to be satisfied in reality as we expect 𝜌𝜌 to be large and positive, while 𝜃𝜃 

should be close to zero. (For example, Dotsey, Fujita & Stark (2018) find that an 
IMA(1,1) model fits inflation well, in which case −𝜌𝜌 = −1 < 𝜃𝜃 as required.) Then 
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0 < 𝜙𝜙−𝜌𝜌
𝜙𝜙+𝜃𝜃 < 1, so �𝜙𝜙−𝜌𝜌

𝜙𝜙+𝜃𝜃 𝜃𝜃� < 1 meaning the process for inflation is invertible. With 
inflation following an invertible linear process, the full-information optimal 

forecast of 𝜋𝜋𝑡𝑡+1 is a linear combination of 𝜋𝜋𝑡𝑡, 𝜋𝜋𝑡𝑡−1, …. In particular, as before 𝑥𝑥𝑡𝑡 is 
not useful. 

In the unlikely case in which −𝜌𝜌 > 𝜃𝜃, of if the forecaster’s information set ℐ𝑡𝑡 is 
smaller than {𝜋𝜋𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝜋𝜋𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1, … },35 then 𝑥𝑥𝑡𝑡 may contain some useful information. 

Combining the solution for inflation with the Phillips curve: 
𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡,  

gives: 

𝑥𝑥𝑡𝑡 = −
1
𝜅𝜅 �

1 − 𝛽𝛽𝜌𝜌
𝜙𝜙 − 𝜌𝜌 �𝜁𝜁𝑡𝑡 +

𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝛽𝛽

𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡 

=
1
𝜅𝜅 ��1 − 𝛽𝛽𝜌𝜌�𝜋𝜋𝑡𝑡 + 𝛽𝛽

𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. 

In this case, it is possible that 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡� ≠ 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡−1, 𝜋𝜋𝑡𝑡� as 𝑥𝑥𝑡𝑡 provides an 
independent signal about 𝜀𝜀𝜁𝜁,𝑡𝑡. 

There are two important special cases. If 𝜔𝜔𝑡𝑡 = 0, and the forecaster knows this, 
then: 

𝜀𝜀𝜁𝜁,𝑡𝑡 =
𝜙𝜙
𝛽𝛽𝜃𝜃 �𝜅𝜅𝑥𝑥𝑡𝑡 − �1 − 𝛽𝛽𝜌𝜌�𝜋𝜋𝑡𝑡�, 

so: 

𝜁𝜁𝑡𝑡 = − �𝜙𝜙 −
1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡, 

which enables the forecaster to form the full-information optimal forecast: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = −
1

𝜙𝜙 − 𝜌𝜌 �𝜌𝜌𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡� =
1
𝛽𝛽 (𝜋𝜋𝑡𝑡 − 𝜅𝜅𝑥𝑥𝑡𝑡). 

(This formula also follows immediately from the Phillips curve.) Note that the 
output gap has what Dotsey, Fujita & Stark (2018) call the “wrong” sign, meaning 

Phillips curve based forecasting regressions may have surprising results. However, 
in the general case in which 𝜔𝜔𝑡𝑡 has positive variance, then output’s signal about 

𝜀𝜀𝜁𝜁,𝑡𝑡 will be polluted by the noise from 𝜔𝜔𝑡𝑡, making it much less informative. Indeed, 
with 𝜙𝜙 large, as we expect, then 𝜃𝜃𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡 will have low variance, making it more likely 

that it is drowned out by the noise from 𝜔𝜔𝑡𝑡.  
The second important special case is when 𝜀𝜀𝜁𝜁,𝑡𝑡 = 0, and again the forecaster 

 
35 We nonetheless assume that 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 are in ℐ𝑡𝑡. 
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knows this. In this case, much as in the main text: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜌𝜌𝜋𝜋𝑡𝑡 −
1

𝜙𝜙 − 𝜌𝜌 �1 +
𝜃𝜃
𝜙𝜙� �𝔼𝔼𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡+1 +

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 + 𝜃𝜃 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡� = 𝜌𝜌𝜋𝜋𝑡𝑡, 

so 𝑥𝑥𝑡𝑡 is unhelpful. 
The general case will inherit aspects of these two special cases, as well as the 

case in which 𝜋𝜋𝑡𝑡’s stochastic process was invertible. Inflation and its lags will 
certainly help forecast inflation, but the output gap may also provide a little extra 

information, possibly with the “wrong” sign. 

K.3 Determinacy under traditional price level rules 
We are interested in the properties of standard Taylor-type monetary rules 

when augmented with a response to the price level. Suppose the model is given 

by equations (4) and (8), from the main text, without shocks, and with the simple 
monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜃𝜃𝑝𝑝𝑡𝑡 + 𝜓𝜓𝑥𝑥𝑡𝑡, 
where 𝑝𝑝𝑡𝑡 is the logarithm of the price level, so 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1.36 Thus, we have the 

three equations: 
𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 + 𝛿𝛿−1𝜍𝜍𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛿𝛿−1𝜍𝜍𝜍𝜍𝑝𝑝𝑡𝑡 = 𝛿𝛿−1�1 + 𝜍𝜍𝜍𝜍�𝑥𝑥𝑡𝑡 + 𝛿𝛿−1𝜍𝜍𝜍𝜍𝜋𝜋𝑡𝑡, 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = −𝛽𝛽−1𝜅𝜅𝑥𝑥𝑡𝑡 + 𝛽𝛽−1𝜋𝜋𝑡𝑡, 
𝑝𝑝𝑡𝑡 = 𝜋𝜋𝑡𝑡 + 𝑝𝑝𝑡𝑡−1. 

If we subtract 𝛿𝛿−1𝜍𝜍 times the second equation from the first equation, and then add 
on 𝛿𝛿−1𝜍𝜍𝜍𝜍 times the third, we are left with the system: 

𝔼𝔼𝑡𝑡
⎣
⎢⎡

𝑥𝑥𝑡𝑡+1
𝜋𝜋𝑡𝑡+1

𝑝𝑝𝑡𝑡 ⎦
⎥⎤ =

⎣
⎢⎢
⎡𝛿𝛿−1�1 + 𝜍𝜍𝜍𝜍 + 𝛽𝛽−1𝜅𝜅𝜍𝜍� 𝛿𝛿−1𝜍𝜍�𝜙𝜙 + 𝜃𝜃 − 𝛽𝛽−1� 𝛿𝛿−1𝜍𝜍𝜍𝜍

−𝛽𝛽−1𝜅𝜅 𝛽𝛽−1 0
0 1 1 ⎦

⎥⎥
⎤

⎣
⎢⎡

𝑥𝑥𝑡𝑡
𝜋𝜋𝑡𝑡

𝑝𝑝𝑡𝑡−1⎦
⎥⎤. 

Determinacy requires that the matrix has one eigenvalue with modulus in 
[0,1] (1 is included as prices need not be stationary), and two eigenvalues with 

modulus in (1, ∞). The eigenvalues of the matrix are solutions for 𝜆𝜆 of: 
0 = 𝛽𝛽𝛽𝛽𝜆𝜆3 − �𝜅𝜅𝜍𝜍 + 𝛿𝛿 + 𝛽𝛽�1 + 𝛿𝛿 + 𝜍𝜍𝜍𝜍��𝜆𝜆2

+ �1 + 𝛽𝛽 + 𝛿𝛿 + 𝜅𝜅𝜍𝜍�1 + 𝜙𝜙 + 𝜃𝜃� + 𝜍𝜍𝜍𝜍�1 + 𝛽𝛽��𝜆𝜆 − �1 + 𝜅𝜅𝜍𝜍𝜙𝜙 + 𝜍𝜍𝜍𝜍�. 
We will analyse determinacy under two alternate sets of assumptions. The first 

will assume that 𝜙𝜙, 𝜃𝜃 and 𝜓𝜓 are all small; the second will instead assume that 𝜙𝜙 −

 
36 See Footnote 3 for discussion of the validity of including the price level in this way. 



 

Page 40 of 72 

1, 𝜃𝜃 and 𝜓𝜓 are small. 
Determinacy with small 𝝓𝝓, 𝜽𝜽 and 𝝍𝝍. For the former, fix 𝜙𝜙,̂ 𝜃𝜃,̂ 𝜓𝜓̂ ∈ [0, ∞), 

with 𝜃𝜃 ̂ > 0, and suppose that 𝜙𝜙 = 𝜖𝜖𝜙𝜙,̂ 𝜃𝜃 = 𝜖𝜖𝜃𝜃 ̂ and 𝜓𝜓 = 𝜖𝜖𝜓𝜓,̂ where 𝜖𝜖 > 0 is a 
perturbation parameter. We will work in the limit as 𝜖𝜖 → 0 to assess whether an 

arbitrarily small positive response to prices is sufficient for determinacy, as it is 
under a real rate rule (see Appendix H.2 in this document). Note that since we are 

assuming 𝜃𝜃 ̂ > 0 and 𝜖𝜖 > 0, we always have 𝜃𝜃 > 0, so there is a response to the price 
level. We make the following very mild assumptions in our determinacy analysis: 

𝜅𝜅𝜅𝜅 ≠ 0, 
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 ≠ 0, 
�1 + 𝛽𝛽�(1 + 𝛿𝛿) + 𝜅𝜅𝜍𝜍 > 0. 

Given these assumptions, as 𝜖𝜖 → 0, we have the following solution for 𝜆𝜆: 

𝜆𝜆 ∈ �𝜆𝜆1(𝜖𝜖) + Ο�𝜖𝜖2�, 𝜆𝜆2 + Ο(𝜖𝜖), 𝜆𝜆3 + Ο(𝜖𝜖)�, 
where for all 𝜖𝜖: 

𝜆𝜆1(𝜖𝜖) = 1 −
𝜅𝜅𝜅𝜅

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 𝜃𝜃𝜖̂𝜖, 

and where 𝜆𝜆2 and 𝜆𝜆3 solve 0 = 𝑓𝑓 (𝜆𝜆2) = 𝑓𝑓 (𝜆𝜆3), where the function 𝑓𝑓  is defined by: 

𝑓𝑓 (𝜆𝜆) = 𝛽𝛽𝛽𝛽𝜆𝜆2 − �𝜅𝜅𝜍𝜍 + 𝛽𝛽 + 𝛿𝛿�𝜆𝜆 + 1, 
for all 𝜆𝜆. Without loss of generality, we assume �𝜆𝜆3� ≥ |𝜆𝜆2|. 

We now distinguish two cases. 
Case 1: Firstly, suppose that: 

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅
𝜅𝜅𝜅𝜅 < 0. 

Then for all 𝜖𝜖 > 0, 𝜆𝜆1(𝜖𝜖) > 1, so we must have that �𝜆𝜆3� > 1 and |𝜆𝜆2| ≤ 1. Note also 

that 𝜆𝜆2 and 𝜆𝜆3 must be real, else they would be complex conjugates and hence have 
equal modulus, contradicting �𝜆𝜆3� > 1 ≥ |𝜆𝜆2|. 

Now, note that 𝑓𝑓 (0) = 1 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 𝜅𝜅𝜍𝜍 > 0 (by our 
assumption), so there cannot be a single root in the interval (−1,0). Since there 
cannot be two, in fact there must be zero. Thus, it must be the case that 𝑓𝑓 (1) ≤ 0, 
else there would be zero or two roots in (0,1]. So, 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 ≤ 0. 

But �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 ≠ 0, so in fact �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0. Hence, 𝜅𝜅𝜅𝜅 > 0, as 
�1−𝛽𝛽�(1−𝛿𝛿)−𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 < 0 in the currently considered case. Given 𝜅𝜅𝜅𝜅 > 0, we are then 

guaranteed that 𝜆𝜆2 ∈ (0,1) and 𝜆𝜆3 ∈ (1, ∞), as required for determinacy. 
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Case 2: Now suppose instead that: 
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 > 0. 

(Note that we do not have to consider the equality case as �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 ≠ 0 

by assumption.) Then, 𝜆𝜆1 < 1 so we must have that 1 < |𝜆𝜆2| ≤ �𝜆𝜆3�. 
Much as before, 𝑓𝑓 (0) = 1 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 𝜅𝜅𝜍𝜍 > 0 (by 

assumption), so we must have that 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 > 0, else there 
would be a root in the unit circle. This implies that 𝜅𝜅𝜅𝜅 > 0 as �1−𝛽𝛽�(1−𝛿𝛿)−𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 > 0 in 

the currently considered case. 
Therefore, in either case, 𝜅𝜅𝜅𝜅 > 0 is necessary for determinacy. 

Determinacy with small 𝝓𝝓 − 𝟏𝟏, 𝜽𝜽 and 𝝍𝝍.  We now consider the 
case in which rather than 𝜙𝜙 being small and non-negative, instead 𝜙𝜙 − 1 is small 

and non-negative, so there is at least a unit response to inflation. Some researchers 
include at least a unit response to inflation in price level rules (for example, 

Bernanke, Kiley & Roberts (2019)). 
Then, as before, we fix 𝜙𝜙,̂ 𝜃𝜃,̂ 𝜓𝜓̂ ∈ [0, ∞), with 𝜃𝜃 ̂ > 0, and suppose that 𝜙𝜙 = 1 +

𝜖𝜖𝜙𝜙,̂ 𝜃𝜃 = 𝜖𝜖𝜃𝜃 ̂and 𝜓𝜓 = 𝜖𝜖𝜓𝜓,̂ where 𝜖𝜖 > 0 is a perturbation parameter. We will again 
work in the limit as 𝜖𝜖 → 0 to assess whether an arbitrarily small positive response 

to prices is sufficient for determinacy, as it is under a real rate rule (see Appendix 
H.2 in this document). Note that since we are assuming 𝜃𝜃 ̂ > 0 and 𝜖𝜖 > 0, we 

always have 𝜃𝜃 > 0, so there is a response to the price level. We make the following 
quite mild assumptions in our determinacy analysis: 

𝜅𝜅𝜅𝜅 ≠ 0, 
�1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0, 

1 + 𝜅𝜅𝜅𝜅 > 0, 
�1 + 𝛽𝛽�(1 + 𝛿𝛿) + 2𝜅𝜅𝜍𝜍 > 0. 

(Note that �1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0 does rule out the classical NK model with 𝛿𝛿 = 1, but 
only an arbitrarily small departure from this benchmark is needed for our results 

to go through.) 
Given these assumptions, as 𝜖𝜖 → 0, we have the following solution for 𝜆𝜆: 

𝜆𝜆 ∈ �𝜆𝜆1(𝜖𝜖) + Ο�𝜖𝜖2�, 𝜆𝜆2 + Ο(𝜖𝜖), 𝜆𝜆3 + Ο(𝜖𝜖)�, 
where for all 𝜖𝜖: 
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𝜆𝜆1(𝜖𝜖) = 1 −
𝜅𝜅𝜅𝜅

�1 − 𝛽𝛽�(1 − 𝛿𝛿) 𝜃𝜃𝜖̂𝜖, 

and where 𝜆𝜆2 and 𝜆𝜆3 solve 0 = 𝑓𝑓 (𝜆𝜆2) = 𝑓𝑓 (𝜆𝜆3), where the function 𝑓𝑓  is defined by: 

𝑓𝑓 (𝜆𝜆) = 𝛽𝛽𝛽𝛽𝜆𝜆2 − �𝜅𝜅𝜍𝜍 + 𝛽𝛽 + 𝛿𝛿�𝜆𝜆 + 1 + 𝜅𝜅𝜍𝜍, 
for all 𝜆𝜆. Without loss of generality, we assume �𝜆𝜆3� ≥ |𝜆𝜆2|. 

We now distinguish two cases. 
Case 1: Firstly, suppose that: 

�1 − 𝛽𝛽�(1 − 𝛿𝛿)
𝜅𝜅𝜅𝜅 < 0. 

Then for all 𝜖𝜖 > 0, 𝜆𝜆1(𝜖𝜖) > 1, so we must have that �𝜆𝜆3� > 1 and |𝜆𝜆2| ≤ 1. Note also 

that 𝜆𝜆2 and 𝜆𝜆3 must be real, else they would be complex conjugates and hence have 
equal modulus, contradicting �𝜆𝜆3� > 1 ≥ |𝜆𝜆2|. 

Now, note that 𝑓𝑓 (0) = 1 + 𝜅𝜅𝜍𝜍 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 2𝜅𝜅𝜍𝜍 > 0 (by 
our assumptions), so there cannot be a single root in the interval (−1,0). Since 

there cannot be two, in fact there must be zero. Thus, it must be the case that 𝑓𝑓 (1) ≤
0, else there would be zero or two roots in (0,1]. So, 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) ≤ 0. But 

�1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0, so in fact �1 − 𝛽𝛽�(1 − 𝛿𝛿) < 0. Hence, 𝜅𝜅𝜅𝜅 > 0, as �1−𝛽𝛽�(1−𝛿𝛿)
𝜅𝜅𝜅𝜅 < 0 

in the currently considered case. Given 𝜅𝜅𝜅𝜅 > 0, we are then guaranteed that 𝜆𝜆2 ∈
(0,1) and 𝜆𝜆3 ∈ (1, ∞), as required for determinacy. 

Case 2: Now suppose instead that: 
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝜅𝜅𝜅𝜅 > 0. 

(Note that we do not have to consider the equality case as �1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0 by 

assumption.) Then, 𝜆𝜆1 < 1 so we must have that 1 < |𝜆𝜆2| ≤ �𝜆𝜆3�. 
Much as before, 𝑓𝑓 (0) = 1 + 𝜅𝜅𝜍𝜍 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 2𝜅𝜅𝜍𝜍 > 0 (by 

assumption), so we must have that 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) > 0, else there would be 
a root in the unit circle. This implies that 𝜅𝜅𝜅𝜅 > 0 as �1−𝛽𝛽�(1−𝛿𝛿)−𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 > 0 in the currently 
considered case. 

Therefore, again, in either case, 𝜅𝜅𝜅𝜅 > 0 is necessary for determinacy. 

K.4 Robustness to non-unit responses to real interest rates 
Suppose that the central bank is unable to respond with a precise unit 

coefficient to real interest rates, so instead follows the monetary rule: 
𝑖𝑖𝑡𝑡 = (1 + 𝛾𝛾)𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 



 

Page 43 of 72 

where 𝛾𝛾 ∈ ℝ is some small value giving the departure from unit responses. 
For simplicity, suppose the rest of the model takes the same form as in 

Subsection 3.2, with: 
𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

We suppose 𝜙𝜙 > 1, but do not make any assumptions on the signs of 𝛿𝛿, 𝛽𝛽, 𝜅𝜅, 𝜍𝜍, 𝛾𝛾, 
beyond assuming that 𝜍𝜍 ≠ 0 (so monetary policy has some effect on the output 

gap) and 𝜅𝜅 ≠ 0 (so monetary policy has some effect on inflation, via the output 
gap). 

Combining the monetary rule with the Fisher equation gives: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝛾𝛾𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

so 𝑟𝑟𝑡𝑡 = 1
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜁𝜁𝑡𝑡�, meaning: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 −
𝜍𝜍
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡� + 𝜍𝜍𝑛𝑛𝑡𝑡 +

𝜍𝜍
𝛾𝛾 𝜁𝜁𝑡𝑡. 

Then, since: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
1
𝛽𝛽 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡, 

we have that: 

𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 = �
1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾� 𝑥𝑥𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝜙𝜙 −

1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝛾𝛾𝑛𝑛𝑡𝑡 + 𝜁𝜁𝑡𝑡 +

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡�. 

Woodford (2003) (Addendum to Chapter 4, Proposition C.1) proves that this 

model is determinate if and only if both eigenvalues of the matrix: 

𝑀𝑀 ≔

⎣
⎢
⎢
⎢
⎡

1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝜙𝜙 −

1
𝛽𝛽�

−
𝜅𝜅
𝛽𝛽

1
𝛽𝛽 ⎦

⎥
⎥
⎥
⎤

 

are outside of the unit circle, which in turn is proven to hold if and only if EITHER: 
Case I: 1 < det 𝑀𝑀, 0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀, and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀, OR Case II: 

0 > 1 + det 𝑀𝑀 − tr 𝑀𝑀, and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀. Note: 

det 𝑀𝑀 =
1

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 𝜙𝜙, 

tr 𝑀𝑀 =
1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 +

1
𝛽𝛽. 

Thus, Case I requires: 
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1 < det 𝑀𝑀 =
1

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 𝜙𝜙, 

0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �𝜙𝜙 − 1�, 

and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �1 + 𝜙𝜙�. 

And Case II requires: 

0 > 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �𝜙𝜙 − 1�, 

and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �1 + 𝜙𝜙�. 

To see when these conditions are satisfied, first suppose that 𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 < 0, so 𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 =
− |𝜍𝜍𝜍𝜍|

|𝛾𝛾|�𝛽𝛽𝛽𝛽�. Then if 𝛾𝛾 is sufficiently small in magnitude, it is immediately clear that all 

three conditions of Case I are satisfied, since 𝜙𝜙 > 0, 𝜙𝜙 − 1 > 0 and 1 + 𝜙𝜙 > 0. In 
particular, in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽� − �𝛽𝛽𝛽𝛽��� ,

𝜙𝜙 − 1
max�0, −�sign�𝛽𝛽𝛽𝛽���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Alternatively, suppose that 𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 > 0, so 𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 = |𝜍𝜍𝜍𝜍|
|𝛾𝛾|�𝛽𝛽𝛽𝛽�. Then, similarly, if 𝛾𝛾 is 

sufficiently small in magnitude, both conditions of Case II are satisfied, since 𝜙𝜙 −
1 > 0 and 1 + 𝜙𝜙 > 0. In particular, in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
⎨
���
⎧ 𝜙𝜙 − 1

max�0, �sign�𝛽𝛽𝛽𝛽���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, �sign�𝛽𝛽𝛽𝛽���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
⎬
���
⎫

. 

Thus, it is always sufficient for determinacy that: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽� − �𝛽𝛽𝛽𝛽��� ,

𝜙𝜙 − 1
��1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
��1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Since the right-hand side is strictly positive, there is a positive measure of 𝛾𝛾 for 
which we have determinacy. 
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K.5 Real-time learning of Phillips curve coefficients 
We start by assuming that the central bank knows the Phillips curve 

coefficients. A close examination of this case will lead to a natural learning scheme 
for when the central bank does not know these coefficients. 

As in the main text, suppose the central bank is using the rule: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 − 𝜅𝜅−1�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1�� + 𝜁𝜁𝑡𝑡, 

and that the model also contains the Phillips curve: 
𝜋𝜋𝑡𝑡 = 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

and the Fisher equation, 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
We suppose that 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2�, 

with 𝜌𝜌, 𝜃𝜃 ∈ (−1,1), and for simplicity, we suppose that 𝜔𝜔𝑡𝑡 = 𝜀𝜀𝜔𝜔,𝑡𝑡, where 𝜀𝜀𝜔𝜔,𝑡𝑡 ∼
𝑁𝑁�0, 𝜎𝜎𝜔𝜔

2 �. 
From combining all the above equations, we have that if 𝜙𝜙𝜋𝜋 > 1, there is a 

unique solution with: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙𝜋𝜋 − 𝜌𝜌 �𝜁𝜁𝑡𝑡 +
𝜃𝜃

𝜙𝜙𝜋𝜋
𝜀𝜀𝜁𝜁,𝑡𝑡� +

𝜙𝜙𝑥𝑥
𝜙𝜙𝜋𝜋

𝜀𝜀𝜔𝜔,𝑡𝑡. 

Thus, if we define: 

𝑚𝑚0 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌� �𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝜌𝜌 + 𝜃𝜃� − �1 +
𝜃𝜃

𝜙𝜙𝜋𝜋
��, 

𝑚𝑚1 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌� ⎣
⎢⎡�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌 − 1��𝜌𝜌 + 𝜃𝜃� + 𝛽𝛽𝜚̃𝜚𝜋𝜋 �1 +

𝜃𝜃
𝜙𝜙𝜋𝜋

�
⎦
⎥⎤, 

𝑚𝑚2 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌� ��𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌 − 1�𝜌𝜌 + 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝜌𝜌 + 𝜃𝜃�, 

then by the Phillips curve 𝑚𝑚0 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡, 𝑚𝑚1 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝑚𝑚2 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2. Also 
note that: 

𝜅𝜅 =
𝜎𝜎𝜁𝜁

2

𝜙𝜙𝜋𝜋−𝜌𝜌
�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝜌𝜌�

2

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0−��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2�
,  

𝛽𝛽 =
�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝜌𝜌��𝑚𝑚0−�𝜌𝜌𝑚𝑚1−𝑚𝑚2��− 𝜙𝜙𝜋𝜋+𝜃𝜃

�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋
��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝑚𝑚2�

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0−��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2�
,  

𝜚𝜚𝜋𝜋 = −
�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝜌𝜌��𝜌𝜌𝑚𝑚1−𝑚𝑚2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌��𝑚𝑚0−�𝜌𝜌𝑚𝑚1−𝑚𝑚2��− 𝜙𝜙𝜋𝜋+𝜃𝜃
�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋

��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2�
.  

In other words, once the central bank knows 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 they can infer the 
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parameters of the Phillips curve from the known properties of their monetary rule 
and monetary shock. This is essentially an instrumental variables regression. We 

are using 𝜀𝜀𝜁𝜁,𝑡𝑡, 𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝜀𝜀𝜁𝜁,𝑡𝑡−2 as instruments for 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 𝜋𝜋𝑡𝑡 and 𝜋𝜋𝑡𝑡−1 in a 
regression of the output gap on those variables. This works as long as 𝜃𝜃 ≠ 0, else 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡 are colinear. 
If the central bank does not know the true values of 𝜅𝜅, 𝛽𝛽 ̃and 𝜚𝜚𝜋𝜋, we suppose 

they dynamically update estimates of 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 using the following 
decreasing gain learning rules (for 𝑡𝑡 > 0): 

𝑚𝑚0,𝑡𝑡 = 𝑚𝑚0,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 − 𝑚𝑚0,𝑡𝑡−1�, 
𝑚𝑚1,𝑡𝑡 = 𝑚𝑚1,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝑚𝑚1,𝑡𝑡−1�, 
𝑚𝑚2,𝑡𝑡 = 𝑚𝑚2,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 − 𝑚𝑚2,𝑡𝑡−1�, 

where 𝜄𝜄 ∈ (0,1] is a gain parameter. Then they can use the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 + 𝑞𝑞1,𝑡𝑡−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝑞𝑞0,𝑡𝑡−1𝜋𝜋𝑡𝑡 + 𝑞𝑞−1,𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜁𝜁𝑡𝑡, 
where: 

𝑞𝑞1,𝑡𝑡 ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0,𝑡𝑡− 𝜙𝜙𝜋𝜋+𝜃𝜃
�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋

��𝜌𝜌+𝜃𝜃�𝑚𝑚1,𝑡𝑡−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞0,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0,𝑡𝑡−��𝜌𝜌+𝜃𝜃�𝑚𝑚1,𝑡𝑡−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞−1,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌��𝜌𝜌𝑚𝑚1,𝑡𝑡−𝑚𝑚2,𝑡𝑡�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 .  

This is reasonable, as if 𝑚𝑚0,𝑡𝑡−1 ≈ 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡−1 ≈ 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡−1 ≈ 𝑚𝑚2 then 𝑞𝑞1,𝑡𝑡−1 ≈
𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�, 𝑞𝑞0,𝑡𝑡−1 ≈ −𝜅𝜅−1 and 𝑞𝑞−1,𝑡𝑡−1 ≈ 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋, so this monetary rule is 
approximately the same as the full information one previously considered. Using 

lagged estimates (𝑞𝑞1,𝑡𝑡−1 not 𝑞𝑞1,𝑡𝑡 etc.) in the monetary rule reflects central bank 
information (processing) delays and simplifies the model’s solution. It is also a 
common assumption in the reduced form learning literature (Evans & 
Honkapohja 2001). 

With the new monetary rule, the model is no-longer linear. As a result, the 
exact solution is analytically intractable. However, we are only really interested in 

asymptotic dynamics. If 𝑚𝑚0,𝑡𝑡 → 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡 → 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡 → 𝑚𝑚2 as 𝑡𝑡 → ∞ then we 
know the asymptotic solution will be the stable full information one we found 
previously. We will analyse the system’s behaviour with help from the stochastic 



 

Page 47 of 72 

approximation tools frequently used in the reduced form learning literature 
(Evans & Honkapohja 2001). These tools only require a zeroth order 

approximation in 𝑡𝑡−1 to the dynamics of 𝑥𝑥𝑡𝑡 and 𝜋𝜋𝑡𝑡.37 Intuitively, this is because 𝑥𝑥𝑡𝑡 
(hence 𝜋𝜋𝑡𝑡) enters the law of motion for 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 multiplied by 𝑡𝑡−1, so a 

zeroth order approximation to the dynamics of 𝑥𝑥𝑡𝑡 and 𝜋𝜋𝑡𝑡 in 𝑡𝑡−1 delivers a first 
order approximation to the dynamics of 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 in 𝑡𝑡−1. 

We conjecture a time-varying coefficients solution with: 
𝜋𝜋𝑡𝑡 = 𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 

where we conjecture 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 +
𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. Substituting this into the monetary rule, Fisher 

equation and Phillips curve implies: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐴𝐴𝑡𝑡�𝜌𝜌𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡�
= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡−1

− �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡

+ 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡−1 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1 − 𝜙𝜙𝑥𝑥𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝜁𝜁𝑡𝑡

+ 𝑂𝑂�𝑡𝑡−1�. 
Matching terms and using 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� then 
gives that: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜌𝜌
= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐴𝐴𝑡𝑡

+ 1 + 𝑂𝑂�𝑡𝑡−1�, 
�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜃𝜃

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐵𝐵𝑡𝑡

+ 𝑂𝑂�𝑡𝑡−1�, 
0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡�𝐶𝐶𝑡𝑡 − 𝜙𝜙𝑥𝑥

+ 𝑂𝑂�𝑡𝑡−1�, 
0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐷𝐷𝑡𝑡

+ 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋� + 𝑂𝑂�𝑡𝑡−1�. 
The final equation has two roots, but we know we need to pick the one that gives 

 
37 Given certain regularity conditions on the higher order terms. These conditions will be satisfied here, at 
least providing we restrict 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 to a small enough open set around 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, using a so 

called projection facility. 
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𝐷𝐷𝑡𝑡 → 0 as 𝜙𝜙𝑥𝑥 → 0. Now if 𝑞𝑞0,𝑡𝑡 is sufficiently close to 𝑞𝑞0, then 𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 >
0, so: 

𝐷𝐷𝑡𝑡 =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�

+ 𝑂𝑂�𝑡𝑡−1�, 
and: 

𝐴𝐴𝑡𝑡 = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝐷𝐷𝑡𝑡 + 𝜌𝜌� − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡��
−1

+ 𝑂𝑂�𝑡𝑡−1�, 

𝐵𝐵𝑡𝑡 =
𝜃𝜃�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�, 

𝐶𝐶𝑡𝑡 =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�. 

Since 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 

as required we have that 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 +
𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. 

Using this result again, we then have that: 
𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷𝑡𝑡−1 + 𝜌𝜌��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡

+ �𝐵𝐵𝑡𝑡−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�(𝐴𝐴𝑡𝑡−1𝜃𝜃 + 𝐵𝐵𝑡𝑡−1𝐷𝐷𝑡𝑡−1)�𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐶𝐶𝑡𝑡−1 − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐷𝐷𝑡𝑡−1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� + 𝑂𝑂�𝑡𝑡−1�. 
Plugging this into the law of motion for 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 gives a purely backward 

looking non-linear system in the endogenous states 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡, 𝑚𝑚2,𝑡𝑡 and 𝜋𝜋𝑡𝑡. This 
system is of the correct form to be analysed by the stochastic approximation results 

given in Evans & Honkapohja (2001). 
To apply these results, first suppose that for all 𝑡𝑡, 𝑚𝑚0,𝑡𝑡 = 𝑚𝑚�0, 𝑚𝑚1,𝑡𝑡 = 𝑚𝑚�1 and 

𝑚𝑚2,𝑡𝑡 = 𝑚𝑚�2, for some values 𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2. Then 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1̂, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0̂ and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−̂1 
for all 𝑡𝑡, where: 

𝑞𝑞1̂ ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚�0− 𝜙𝜙𝜋𝜋+𝜃𝜃
�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋

��𝜌𝜌+𝜃𝜃�𝑚𝑚�1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚�2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞0̂ ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚�0−��𝜌𝜌+𝜃𝜃�𝑚𝑚�1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚�2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  
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𝑞𝑞−̂1 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌��𝜌𝜌𝑚𝑚�1−𝑚𝑚�2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 .  

Thus, for all 𝑡𝑡, 𝐴𝐴𝑡𝑡 = 𝐴𝐴,̂ 𝐵𝐵𝑡𝑡 = 𝐵̂𝐵, 𝐶𝐶𝑡𝑡 = 𝐶𝐶 ̂and 𝐷𝐷𝑡𝑡 = 𝐷𝐷� , where: 

𝐷𝐷� =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝑞𝑞−̂1 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�
, 

and: 

𝐴𝐴̂ = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝐷𝐷� + 𝜌𝜌� − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂��
−1

, 

𝐵̂𝐵 =
𝜃𝜃�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐴𝐴̂

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
, 

𝐶𝐶̂ =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
. 

So: 

𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜁̂𝜁𝑡𝑡 + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−1, 
and: 

𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴𝜁̂𝜁𝑡𝑡 + �𝐵̂𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝜃̂𝜃 + 𝐵̂𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� 
= 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴�̂𝜌𝜌�𝜌𝜌𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−2� + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1�

+ �𝐵̂𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝜃̂𝜃 + 𝐵̂𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡 + ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−2�
+ 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡−1 + 𝐷𝐷� �𝐴𝐴𝜁̂𝜁𝑡𝑡−2 + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−2 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡−2 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−3���. 

Hence: 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌 + 𝜃𝜃��𝐴𝐴̂ + �1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐵̂𝐵�, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴�̂𝜌𝜌 + 𝜃𝜃�
+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴̂ + 𝐵̂𝐵��, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴𝜌̂𝜌�𝜌𝜌 + 𝜃𝜃�
+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌 + 𝜃𝜃� + 𝐷𝐷� �𝐴𝐴̂ + 𝐵̂𝐵���. 

Now denote by 𝒯𝒯  the map taking the vector: 

𝑚𝑚�: =
⎣
⎢
⎡

𝑚𝑚�0
𝑚𝑚�1
𝑚𝑚�2⎦

⎥
⎤ 

to the vector: 
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𝒯𝒯 (𝑚𝑚�): =
⎣
⎢⎢
⎡

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2⎦

⎥⎥
⎤

. 

Stochastic approximation theory relates the stability of our nonlinear difference 

equation to the stability of the ODE: 
𝑑𝑑𝑚𝑚�(𝜏𝜏)

𝑑𝑑𝜏𝜏 = 𝒯𝒯 �𝑚𝑚�(𝜏𝜏)� − 𝑚𝑚�(𝜏𝜏). 
The 𝒯𝒯  map here plays the role usually played by the mapping from the perceived 
law of motion to the actual law of motion in the reduced form learning literature 

(Evans & Honkapohja 2001). 
We conjecture that: 

𝑚𝑚 ≔
⎣
⎢⎡

𝑚𝑚0
𝑚𝑚1
𝑚𝑚2⎦

⎥⎤ 

is a locally asymptotically stable point of this ODE. To check this, note that tedious 
algebra gives that: 

𝜕𝜕𝒯𝒯 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚

=
𝜙𝜙𝑥𝑥

𝜅𝜅𝜙𝜙𝜋𝜋

⎣
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎡ 1 𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋 − 𝜌𝜌

−𝛽𝛽𝜚̃𝜚𝜋𝜋 1 − 𝜙𝜙𝜋𝜋
−1𝛽𝛽𝜚̃𝜚𝜋𝜋

𝜙𝜙𝜋𝜋�𝜙𝜙𝜋𝜋
−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�� − 𝜙𝜙𝜋𝜋

−1𝛽𝛽𝜚̃𝜚𝜋𝜋
𝜙𝜙𝜋𝜋 − 𝜌𝜌

0 −𝛽𝛽𝜚̃𝜚𝜋𝜋
𝜙𝜙𝜋𝜋�1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌� − 𝛽𝛽𝜚̃𝜚𝜋𝜋

𝜙𝜙𝜋𝜋 − 𝜌𝜌 ⎦
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎤

. 

For simplicity, we assume 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ≥ 0, 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌 ∈ [0,1) and 
𝜙𝜙𝜋𝜋 ≥ �𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��−1. Under these assumptions, the off-diagonal elements of this 

matrix are all non-positive. Other cases may also go through, but for the sake of 
brevity we concentrate on this most relevant case. Given these assumptions, 

applying the Gershgorin circle theorem to the columns of this matrix gives the 
following upper bound on the real part of the eigenvalues of 𝜕𝜕𝜕𝜕 (𝑚𝑚�)

𝜕𝜕𝑚𝑚� �
𝑚𝑚�=𝑚𝑚

: 

𝜙𝜙𝑥𝑥
𝜅𝜅𝜙𝜙𝜋𝜋

max
⎩�
�⎨
��
⎧ 1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋, 𝜙𝜙𝜋𝜋

−1�𝛽𝛽�̃𝜙𝜙𝜋𝜋 − 𝜚𝜚𝜋𝜋� + 𝜙𝜙𝜋𝜋 − 1�,
�1 − 𝜙𝜙𝜋𝜋

−1��𝜙𝜙𝜋𝜋 − 𝛽𝛽𝜚̃𝜚𝜋𝜋� + 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��1 + 𝜙𝜙𝜋𝜋�1 − 𝜌𝜌�� − 𝜙𝜙𝜋𝜋
−1

𝜙𝜙𝜋𝜋 − 𝜌𝜌 ⎭�
�⎬
��
⎫

. 

The first and second arguments in curly brackets here are both less than 1 + 𝛽𝛽.̃ 
Taking the derivative of the third argument in curly brackets with respect to 𝜌𝜌 

produces an expression whose sign is not a function of 𝜌𝜌. Thus, the third argument 
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in curly brackets is maximized at either 𝜌𝜌 = 0 or 𝜌𝜌 = 1. In the former case, the 
argument is less or equal to 1 + 𝛽𝛽 ̃providing 𝛽𝛽̃ ≤ 1. In the latter case, the argument 

is less or equal to 1 + 𝛽𝛽 ̃providing that 2�1 − 𝜚𝜚𝜋𝜋� ≤ 𝜙𝜙𝜋𝜋. Therefore, if 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥
0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ∈ [0,1], 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌 ∈ [0,1) and: 

𝜙𝜙𝜋𝜋 > max
⎩�⎨
�⎧ 1

𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
, 2�1 − 𝜚𝜚𝜋𝜋�,

𝜙𝜙𝑥𝑥�1 + 𝛽𝛽�̃
𝜅𝜅 ⎭�⎬

�⎫, 

then all of the eigenvalues of 𝜕𝜕𝜕𝜕 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
 are less than one. Consequently, in this 

case the ODE is locally asymptotically stable, so the stochastic approximation 
results of Evans & Honkapohja (2001) apply. In particular, if we suppose that 𝑚𝑚�0, 

𝑚𝑚�1 and 𝑚𝑚�2 are constrained to remain within a sufficiently small ball around 𝑚𝑚0, 
𝑚𝑚1 and 𝑚𝑚2, then the central bank’s estimates of the Phillips curve parameters will 

converge to their true values, and the model’s dynamics will converge to the 
determinate ones under rational expectations. 

K.6 Real rate rules with exogenous targets 
We want to prove that even with an exogenous 𝜋𝜋𝑡𝑡

∗, rules in the form of (7) can 

still mimic the outcomes of any other monetary policy regime. 
Suppose that the central bank were to set interest rates in a different (though 

time invariant) way, for example by using another rule, or by adopting optimal 
policy under either commitment or discretion, given some objective. For simplicity, 

suppose further that the economy’s equilibrium conditions are linear, e.g., because 
we are working under a first order approximation. Let �𝜀𝜀1,𝑡𝑡, … , 𝜀𝜀𝑁𝑁,𝑡𝑡�𝑡𝑡∈ℤ be the set 

of structural shocks in the economy,38 all of which are assumed mean zero and 
independent both of each other, and over time. Finally, assume that the central 

bank’s behaviour produces stationary inflation, 𝜋̃𝜋𝑡𝑡, with the � denoting that this 
is inflation under the alternative monetary regime. Then, by linearity and 

stationarity, there must exist a constant 𝜋̃𝜋∗ and coefficients �𝜃𝜃1,𝑘𝑘, … , 𝜃𝜃𝑁𝑁,𝑘𝑘�𝑘𝑘∈ℕ such 
that: 

𝜋̃𝜋𝑡𝑡 = 𝜋̃𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

with ∑ 𝜃𝜃𝑛𝑛,𝑘𝑘
2∞

𝑘𝑘=0 < ∞ for 𝑛𝑛 = 1, … , 𝑁𝑁. So, if the central bank sets: 

 
38 This may include sunspot shocks if they are added following Farmer, Khramov & Nicolò (2015). 
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𝜋𝜋𝑡𝑡
∗ = 𝜋̃𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

(exogenous!) and uses the rule (7), then for all 𝑡𝑡 and in all states of the world, 

𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ = 𝜋̃𝜋𝑡𝑡. Moreover, this implies in turn that all the endogenous variables in 

the two economies must be identical in all periods and in all states of the world. 

To see this final claim, let 𝑧𝑧𝑡𝑡 and 𝑧𝑧𝑡̃𝑡 be vectors stacking the endogenous variables 
other than inflation in the economy with our rule and the economy with the 

alternative rule, respectively, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡 and 𝑧𝑧𝑡̃𝑡,1 = 𝑟𝑟𝑡̃𝑡. We assume without loss 
of generality that the elements of 𝑧𝑧𝑡𝑡 and 𝑧𝑧𝑡̃𝑡 are all zero in steady state. 

By linearity, without loss of generality, the equations other than the monetary 
rule or monetary policy first order condition must have the form:39 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, (18) 

in the economy with our rule, and they must have the form: 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡̃𝑡+1 + 𝐵𝐵𝑧𝑧𝑡̃𝑡 + 𝐶𝐶𝑧𝑧𝑡̃𝑡−1 + 𝑑𝑑𝜋̃𝜋𝑡𝑡 + � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, 

in the economy with the alternative rule. (Here, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are square matrices, 
while 𝑑𝑑 and 𝑓𝑓1, … , 𝑓𝑓𝑁𝑁 are vectors.) Since 𝜋𝜋𝑡𝑡 = 𝜋̃𝜋𝑡𝑡 for all 𝑡𝑡, 𝑧𝑧𝑡𝑡 = 𝑧𝑧𝑡̃𝑡 must solve 

equation (18) for all 𝑡𝑡. It will be the unique solution providing the model has no 
source of indeterminacy other than perhaps monetary policy. For example, in a 

three equation NK model, given that 𝜋𝜋𝑡𝑡 ≡ 𝜋̃𝜋𝑡𝑡, the Phillips curve implies that the 
output gap must agree in the two economies, thus the Euler equation then implies 

that the interest rate must also agree. 
To see the uniqueness more formally, suppose that there is a unique matrix 𝐹𝐹 

with eigenvalues in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝐶𝐶. This condition on 
𝐹𝐹 just states that there is no real indeterminacy in the model. 

Now define: 
𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1. 

Let 𝐿𝐿 be the lag operator, then note that: 
�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹) = 𝐴𝐴𝐿𝐿−1 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶. 

Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside 
 

39 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by 

adding an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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the unit circle. Hence, since 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues in the unit circle, 
�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1� and (𝐼𝐼 − 𝐹𝐹𝐹𝐹) are both invertible. 

In terms of the lag operator, the equations determining 𝑧𝑧𝑡𝑡 and 𝑧𝑧𝑡̃𝑡 are: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
 

= −𝑑𝑑𝜋̃𝜋𝑡𝑡 − � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
 

= 𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡̃𝑡, 
as 𝜋𝜋𝑡𝑡 = 𝜋̃𝜋𝑡𝑡 for all 𝑡𝑡. Consequently: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡̃𝑡) = 0. 
Therefore, by the invertibility of �𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�, (𝐴𝐴𝐴𝐴 + 𝐵𝐵) and (𝐼𝐼 − 𝐹𝐹𝐹𝐹), 𝑧𝑧𝑡𝑡 = 𝑧𝑧𝑡̃𝑡 for all 
𝑡𝑡, as required. (Expectations drop out as the right-hand side is deterministic.) 

The only slight difficulty with setting 𝜋𝜋𝑡𝑡
∗ as a function of structural shocks is 

that the central bank may struggle to observe these shocks. The central bank can 

certainly observe linear combinations of structural shocks, via estimating a VAR 
with sufficiently many lags. For variables that are plausibly contemporaneously 

exogenous, such as commodity prices for a small(ish) economy, this is already 
sufficient to recover the corresponding structural shock. To infer other shocks, the 

central bank needs to know more about the structure of the economy. However, 
we do not need to assume any more than is standard in rational expectations 

models. Forming rational expectations requires you to know the structure of the 
economy; if you know this structure, then you know the mapping from the 

reduced form shocks estimated by a VAR to the model’s structural shocks.40 
Additionally, it is common to assume that the central bank responds to an output 

gap constructed by comparing outcomes to an economy without price rigidity. 
This already requires the central bank to know the values of all parameters and 
structural shocks. 

K.7 Partially smoothed real rate rules 
Suppose that the central bank sets interest rates according to the partially 

 
40 This mapping may not be unique valued if there are more shocks than observables. However, since we 
expect a relatively small number of shocks to explain the bulk of business cycle variance, this is unlikely to 

be problematic in practice. 
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smoothed real rate rule: 
𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜚𝜚𝑖𝑖(𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ − 𝜚𝜚𝑖𝑖𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡
∗ + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), 
where 𝜙𝜙 > 1, 𝜚𝜚𝑖𝑖 < 1 and where 𝜋𝜋𝑡𝑡

∗ is the inflation target. Then, from the standard 
Fisher equation (without a wedge): 

𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1
∗ � = 𝜚𝜚𝑖𝑖𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). 

Now let 𝜋̂𝜋𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ and 𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ �. Then we have the system: 

𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋̂𝜋𝑡𝑡+1, 
𝑒𝑒𝑡𝑡 = 𝜚𝜚𝑖𝑖𝑒𝑒𝑡𝑡−1 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙𝜋̂𝜋𝑡𝑡. 

Equivalently: 

�1 −1
0 1 � 𝔼𝔼𝑡𝑡 �𝜋̂𝜋𝑡𝑡+1

𝑒𝑒𝑡𝑡
� = � 0 0

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
� � 𝜋̂𝜋𝑡𝑡

𝑒𝑒𝑡𝑡−1
�, 

so, from pre-multiplying by �1 1
0 1�: 

𝔼𝔼𝑡𝑡 �𝜋̂𝜋𝑡𝑡+1
𝑒𝑒𝑡𝑡

� = �
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖

� � 𝜋̂𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

�. 

Now: 

�
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖

� =
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤ �0 0

0 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤

−1

. 

Thus, if we define: 

�
𝑢𝑢𝑡𝑡
𝑣𝑣𝑡𝑡

� ≔
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤

−1

� 𝜋̂𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

� =
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙

𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 ⎣
⎢⎡

−1 1
1

𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙⎦

⎥⎤ � 𝜋̂𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

�, 

then: 

𝔼𝔼𝑡𝑡 �
𝑢𝑢𝑡𝑡+1
𝑣𝑣𝑡𝑡+1

� = �0 0
0 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙� �

𝑢𝑢𝑡𝑡
𝑣𝑣𝑡𝑡

�. 

Now, since 𝜙𝜙 > 1 and 𝜚𝜚𝑖𝑖 < 1, 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 = 𝜙𝜙 − 𝜚𝜚𝑖𝑖�𝜙𝜙 − 1� > 1. Thus, the 

unique non-explosive solution for 𝑣𝑣𝑡𝑡 is 𝑣𝑣𝑡𝑡 = 0. (Note that 𝑣𝑣𝑡𝑡 must be stationary as 
𝜋̂𝜋𝑡𝑡 and 𝑒𝑒𝑡𝑡−1 must be stationary.) Hence, by the definition of 𝑣𝑣𝑡𝑡, 𝜋̂𝜋𝑡𝑡 = − 𝜚𝜚𝑖𝑖

�1−𝜚𝜚𝑖𝑖�𝜙𝜙 𝑒𝑒𝑡𝑡−1. 

So as 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋̂𝜋𝑡𝑡+1, 𝑒𝑒𝑡𝑡 = − 𝜚𝜚𝑖𝑖
�1−𝜚𝜚𝑖𝑖�𝜙𝜙 𝑒𝑒𝑡𝑡, i.e., �𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�𝑒𝑒𝑡𝑡 = 0, so 𝑒𝑒𝑡𝑡 = 0, and hence 

𝜋̂𝜋𝑡𝑡 = 0. 

Therefore, with 𝜙𝜙 > 1, 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ is the unique stationary solution. 

Finally, note that the coefficient on 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ in the original rule was �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙, 

so for any 𝜃𝜃 > 0 if we set 𝜙𝜙 ≔ 𝜃𝜃
1−𝜚𝜚𝑖𝑖

 then for 𝜚𝜚𝑖𝑖 sufficiently close to 1, 𝜙𝜙 > 1 as 
required. Thus, for 𝜚𝜚𝑖𝑖 sufficiently close to 1 a coefficient of 𝜃𝜃 > 0 on 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗ will 

do. This links the results of this appendix to those of the main text. 
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K.8 Sunspot solutions under real rate rules 
We are interested in sunspot solutions to the equations: 

𝜋𝜋𝑡𝑡 − 𝜋𝜋∗ = 𝛽𝛽𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋∗� + 𝜅𝜅𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), 
max�0, 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋∗)� = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 

with 𝜅𝜅𝜅𝜅 ≠ 0, 𝜙𝜙 > 1 and 𝑛𝑛 + 𝜋𝜋∗ > 0 which take the following form. While at the 
ZLB, there is a constant probability of 𝑞𝑞Z ∈ [0,1] of remaining there in the next 

period. With probability 1 − 𝑞𝑞Z though, the economy escapes the ZLB. While 
nominal interest rates are positive, there is a constant probability of 𝑞𝑞P ∈ [0,1] of 

remaining there in the next period. With probability 1 − 𝑞𝑞P though, the economy 
goes to the ZLB. Note that when 𝑞𝑞P = 1, the non-ZLB state is absorbing, so this 

two-state sunspot solution nests the absorbing case discussed in the main text. 
We write 𝑟𝑟Z, 𝜋𝜋Z and 𝑥𝑥Z for the values of 𝑟𝑟𝑡𝑡, 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 while at the ZLB, and 𝑟𝑟P, 

𝜋𝜋P and 𝑥𝑥P for the values of these variables when nominal interest rates are positive 
at 𝑖𝑖P. Then, from the Euler equation and Phillips curve: 

𝑥𝑥Z = −
𝜍𝜍�𝛿𝛿�1 − 𝑞𝑞Z�(𝑟𝑟P − 𝑛𝑛) + �1 − 𝛿𝛿𝑞𝑞P�(𝑟𝑟Z − 𝑛𝑛)�

(1 − 𝛿𝛿)�1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1�� , 

𝑥𝑥P = −
𝜍𝜍�𝛿𝛿�1 − 𝑞𝑞P�(𝑟𝑟Z − 𝑛𝑛) + �1 − 𝛿𝛿𝑞𝑞Z�(𝑟𝑟P − 𝑛𝑛)�

(1 − 𝛿𝛿)�1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1�� , 

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅�𝛽𝛽�1 − 𝑞𝑞Z�𝑥𝑥P + �1 − 𝛽𝛽𝑞𝑞P�𝑥𝑥Z�
�1 − 𝛽𝛽��1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1��  

= −
𝜅𝜅𝜅𝜅[𝑎𝑎ZZ(𝑟𝑟Z − 𝑛𝑛) + 𝑎𝑎ZP(𝑟𝑟P − 𝑛𝑛)]

�1 − 𝛽𝛽�(1 − 𝛿𝛿)�1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��, 

𝜋𝜋P − 𝜋𝜋∗ =
𝜅𝜅�𝛽𝛽�1 − 𝑞𝑞P�𝑥𝑥Z + �1 − 𝛽𝛽𝑞𝑞Z�𝑥𝑥P�
�1 − 𝛽𝛽��1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1��  

= −
𝜅𝜅𝜅𝜅[𝑎𝑎PP(𝑟𝑟P − 𝑛𝑛) + 𝑎𝑎PZ(𝑟𝑟Z − 𝑛𝑛)]

�1 − 𝛽𝛽�(1 − 𝛿𝛿)�1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��, 

where: 
𝑎𝑎ZZ ≔ 𝛽𝛽𝛽𝛽�1 − 𝑞𝑞Z��1 − 𝑞𝑞P� + �1 − 𝛽𝛽𝑞𝑞P��1 − 𝛿𝛿𝑞𝑞P�, 

𝑎𝑎ZP ≔ �1 − 𝑞𝑞Z��𝛽𝛽 + 𝛿𝛿 − 𝛽𝛽𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P��, 
𝑎𝑎PP ≔ 𝛽𝛽𝛽𝛽�1 − 𝑞𝑞Z��1 − 𝑞𝑞P� + �1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�, 

𝑎𝑎PZ ≔ �1 − 𝑞𝑞P��𝛽𝛽 + 𝛿𝛿 − 𝛽𝛽𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P��, 
and from the Fisher equation and monetary rule: 

0 = 𝑟𝑟Z + 𝑞𝑞Z𝜋𝜋Z + �1 − 𝑞𝑞Z�𝜋𝜋P = 𝑟𝑟Z + 𝜋𝜋∗ + 𝑞𝑞Z(𝜋𝜋Z − 𝜋𝜋∗) + �1 − 𝑞𝑞Z�(𝜋𝜋P − 𝜋𝜋∗), 
𝜙𝜙(𝜋𝜋P − 𝜋𝜋∗) = 𝑞𝑞P(𝜋𝜋P − 𝜋𝜋∗) + �1 − 𝑞𝑞P�(𝜋𝜋Z − 𝜋𝜋∗). 
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So, if we define 𝜓𝜓 ≔ 1−𝑞𝑞P
𝜙𝜙−𝑞𝑞P

∈ [0,1) and 𝑏𝑏 ≔ 𝜅𝜅𝜅𝜅
𝑎𝑎PP−𝜓𝜓𝑎𝑎ZP

, then: 

𝜋𝜋Z − 𝜋𝜋∗ = −𝑏𝑏(𝑟𝑟Z − 𝑛𝑛), 𝜋𝜋P − 𝜋𝜋∗ = 𝜓𝜓(𝜋𝜋Z − 𝜋𝜋∗) = −𝜓𝜓𝜓𝜓(𝑟𝑟Z − 𝑛𝑛), 

𝑟𝑟P − 𝑛𝑛 =
𝜓𝜓𝑎𝑎ZZ − 𝑎𝑎PZ
𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP

(𝑟𝑟Z − 𝑛𝑛), 

𝑟𝑟Z + 𝜋𝜋∗ = −�𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�(𝜋𝜋Z − 𝜋𝜋∗) = 𝑏𝑏�𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�(𝑟𝑟Z − 𝑛𝑛), 
as: 

𝑎𝑎ZZ𝑎𝑎PP − 𝑎𝑎ZP𝑎𝑎PZ = �1 − 𝛽𝛽�(1 − 𝛿𝛿)�1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��. 
Thus: 

𝑟𝑟Z − 𝑛𝑛 = −
𝑛𝑛 + 𝜋𝜋∗

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏, 

𝑟𝑟P − 𝑛𝑛 = −
𝜓𝜓𝑎𝑎ZZ − 𝑎𝑎PZ
𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP

𝑛𝑛 + 𝜋𝜋∗

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏, 

𝜋𝜋Z − 𝜋𝜋∗ =
𝑏𝑏(𝑛𝑛 + 𝜋𝜋∗)

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏 , 𝜋𝜋P − 𝜋𝜋∗ =
𝜓𝜓𝜓𝜓(𝑛𝑛 + 𝜋𝜋∗)

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏. 

Our solution is consistent with equilibrium if and only if the monetary rule 

implies zero nominal rates in the Z state and positive nominal rates in the P state, 
i.e., if and only if: 

0 ≥ 𝑟𝑟Z + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋Z − 𝜋𝜋∗) = 𝜅𝜅𝜅𝜅
𝜙𝜙 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�

𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝜅𝜅𝜅𝜅 (𝑛𝑛 + 𝜋𝜋∗), 

and: 

0 ≤ 𝑟𝑟P + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋P − 𝜋𝜋∗) 

=
𝜓𝜓�𝜙𝜙 − 1�𝜅𝜅𝜅𝜅 + �1 − 𝜓𝜓��𝑎𝑎PP + 𝑎𝑎PZ − 𝑞𝑞Z𝜅𝜅𝜅𝜅�

𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝜅𝜅𝜅𝜅 (𝑛𝑛 + 𝜋𝜋∗), 

as 𝑎𝑎PP + 𝑎𝑎PZ = 𝑎𝑎ZZ + 𝑎𝑎ZP. For simplicity, suppose 𝜅𝜅𝜅𝜅 > 0. Then, since 𝑛𝑛 + 𝜋𝜋∗ > 0 

and 𝜙𝜙 > 1 but 𝑞𝑞Z, 𝜓𝜓 ∈ [0,1], the two conditions hold if and only if 𝑐𝑐1 ≔ 𝑎𝑎PP −
𝜓𝜓𝑎𝑎ZP − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝜅𝜅𝜅𝜅 ≤ 0 and 𝑐𝑐2 ≔ 𝜓𝜓�𝜙𝜙 − 1�𝜅𝜅𝜅𝜅 + �1 − 𝜓𝜓��𝑎𝑎PP + 𝑎𝑎PZ −
𝑞𝑞Z𝜅𝜅𝜅𝜅� ≤ 0. Now, note that as 𝜙𝜙 → ∞: 

𝑐𝑐1 → 𝑞𝑞Z��1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅� + �1 − 𝑞𝑞Z��1 − 𝛽𝛽𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1��, 
𝑐𝑐2 → �𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅�

+ �1 − �𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛽𝛽𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1��. 
Thus, at least when �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0 and 𝛽𝛽𝛽𝛽 ≥ 0 (so 1 − 𝛽𝛽𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1� 
is decreasing in 𝑞𝑞Z and 𝑞𝑞P), for sufficiently high 𝜙𝜙, the first condition holds if and 

only if 𝑞𝑞Z is sufficiently high, and the second condition holds as well if and only if 
𝑞𝑞P is also sufficiently high. 

Cleaner results (without assumptions on 𝜅𝜅𝜅𝜅 or 𝛽𝛽𝛽𝛽, and without taking the limit 
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as 𝜙𝜙 → ∞) are available in the absorbing case with 𝑞𝑞P = 1, in which case we have: 
𝑎𝑎ZZ = �1 − 𝛽𝛽�(1 − 𝛿𝛿), 𝑎𝑎ZP = �1 − 𝑞𝑞Z��𝛽𝛽 + 𝛿𝛿 − 𝛽𝛽𝛽𝛽�𝑞𝑞Z + 1��, 

𝑎𝑎PP = �1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�, 𝑎𝑎PZ = 0, 𝜓𝜓 = 0, 𝑏𝑏 =
𝜅𝜅𝜅𝜅

�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�, 

𝑟𝑟Z − 𝑛𝑛 = −
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�(𝑛𝑛 + 𝜋𝜋∗)
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜅𝜅 , 𝑟𝑟P − 𝑛𝑛 = 0, 

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅𝜅𝜅(𝑛𝑛 + 𝜋𝜋∗)

�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜅𝜅 , 𝜋𝜋P − 𝜋𝜋∗ = 0, 

so the conditions become: 
0 ≥ �𝜙𝜙 − 𝑞𝑞Z�

𝜅𝜅𝜅𝜅
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜅𝜅 (𝑛𝑛 + 𝜋𝜋∗), 

and 0 ≤ 𝑛𝑛 + 𝜋𝜋∗. Given that 𝜙𝜙 > 1 > 𝑞𝑞Z, 𝜅𝜅𝜅𝜅 ≠ 0 and 𝑛𝑛 + 𝜋𝜋∗ > 0 by assumption, 

these hold if and only if: 
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 ≤ 0. 

If this equality holds strictly, then by continuity, a sunspot solution must also 
exist for all 𝑞𝑞P ∈ (1 − 𝜖𝜖, 1], for some 𝜖𝜖 > 0. 

K.9 Perfect foresight uniqueness with the modified inflation target 
Uniqueness conditional on the modified target. We want to prove 

uniqueness of equilibrium under the modified inflation target real rate rule of 
equations (11) and (12) of Subsection 4.2 (introduced in period 1), without 

uncertainty, and assuming that 𝜋𝜋𝑡𝑡 and 𝜋̌𝜋𝑡𝑡
∗ are bounded in 𝑡𝑡, and that the economy 

eventually escapes the ZLB for good. The latter assumption implies there must 

exist a smallest possible 𝑠𝑠 ≥ 1 such that for all 𝑡𝑡 ≥ 𝑠𝑠, the ZLB does not bind. We 
assume for a contradiction that 𝑠𝑠 > 1, hence for all 𝑡𝑡 ≥ 𝑠𝑠, by the monetary rule and 

Fisher equation:41  
𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡 + �𝜋̌𝜋𝑡𝑡+1

∗ − 𝜋̌𝜋𝑡𝑡
∗� + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗), 
meaning: 

𝜋𝜋𝑡𝑡+1 − 𝜋̌𝜋𝑡𝑡+1
∗ = (1 + 𝜃𝜃)(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗), 
so for 𝑡𝑡 ≥ 𝑠𝑠, 𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗ = (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠(𝜋𝜋𝑠𝑠 − 𝜋̌𝜋𝑠𝑠
∗). Since (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠 → ∞ as 𝑡𝑡 → ∞, this 

in turn implies that 𝜋𝜋𝑠𝑠 = 𝜋̌𝜋𝑠𝑠
∗, by our boundedness assumptions. But as the 

economy is at the ZLB in period 𝑠𝑠 − 1, 0 = 𝑖𝑖𝑠𝑠−1 = 𝑟𝑟𝑠𝑠−1 + 𝜋𝜋𝑠𝑠, so −𝑟𝑟𝑠𝑠−1 = 𝜋𝜋𝑠𝑠 = 𝜋̌𝜋𝑠𝑠
∗ ≥

 
41 Note that we can drop expectations as there is no uncertainty. It is OK to replace the lagged terms 𝑖𝑖𝑡𝑡−1 −
𝑟𝑟𝑡𝑡−1 − 𝔼𝔼𝑡𝑡−1𝜋̌𝜋𝑡𝑡

∗ with 𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡
∗ as 𝑡𝑡 ≥ 𝑠𝑠 > 1 so 𝑡𝑡 − 1 ≥ 1. 



 

Page 58 of 72 

𝜖𝜖 − 𝑟𝑟𝑠𝑠−1 > −𝑟𝑟𝑠𝑠−1, giving the required contradiction. Thus 𝑠𝑠 = 1, meaning the 
economy never hits the ZLB. Combined with the results of Subsection 2.1, this 

establishes the uniqueness of the 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡
∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗) solution 
conditional on the path of 𝜋̌𝜋𝑡𝑡

∗. 

Uniqueness of the modified target. The only remaining source of potential 
multiplicity is the bound in the definition of 𝜋̌𝜋𝑡𝑡

∗, which may mean there are 

multiple possible paths of 𝜋̌𝜋𝑡𝑡
∗. Even if we assume that 𝜋𝜋𝑡𝑡

∗ is exogenous, 𝑟𝑟𝑡𝑡 is not, so 
if 𝑟𝑟𝑡𝑡 is sufficiently responsive to 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, in theory there could be one solution in 

which 𝜋𝜋𝑡𝑡+1 = 𝜋̌𝜋𝑡𝑡+1
∗ = 𝜋𝜋𝑡𝑡+1

∗ > −𝑟𝑟𝑡𝑡 + 𝜖𝜖 and one solution in which 𝜋𝜋𝑡𝑡+1 = 𝜋̌𝜋𝑡𝑡+1
∗ =

−𝑟𝑟𝑡𝑡 + 𝜖𝜖 > 𝜋𝜋𝑡𝑡+1
∗ . However, this does not occur for standard models. 

We illustrate this in the model given by equations (9) and (10), from 
Subsection 4.1. We assume that all exogenous processes (including 𝜋𝜋𝑡𝑡

∗) are 

constant at their steady-state level, and that all variables are at steady-state in 
period 0, since neither assumption has any impact on uniqueness, by the results of 

Holden (2023). (This also means that our results are robust to adding any shocks 
to the model.) We also impose that the ZLB never binds, since we have already 

established this under our retained assumptions. Given this, we replace the 
notation 𝜋̌𝜋𝑡𝑡+1

∗  with 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡
∗ , since 𝜋̌𝜋𝑡𝑡+1

∗  is known in period 𝑡𝑡 given that 𝜋𝜋𝑡𝑡
∗ is now 

constant. Likewise, we replace 𝜋𝜋𝑡𝑡+1 with 𝜋𝜋𝑡𝑡+1|𝑡𝑡, as 𝜋𝜋𝑡𝑡+1 = 𝜋̌𝜋𝑡𝑡+1
∗ = 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡

∗ , known at 
𝑡𝑡. This gives the following equations for 𝑡𝑡 ≥ 1: 

𝛽𝛽�𝜋𝜋𝑡𝑡+1|𝑡𝑡 − 𝜋𝜋∗� + 𝜅𝜅𝑥𝑥𝑡𝑡 = � 0, if 𝑡𝑡 = 1
𝜋𝜋𝑡𝑡|𝑡𝑡−1 − 𝜋𝜋∗, if 𝑡𝑡 > 1 

𝑖𝑖𝑡𝑡 = �
𝑟𝑟𝑡𝑡 + 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡

∗ , if 𝑡𝑡 = 1
𝑟𝑟𝑡𝑡 + 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡

∗ + (1 + 𝜃𝜃)�𝜋𝜋𝑡𝑡|𝑡𝑡−1 − 𝜋̌𝜋𝑡𝑡|𝑡𝑡−1
∗ �, if 𝑡𝑡 > 1

, 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1|𝑡𝑡, 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡
∗ = max{𝜋𝜋∗, 𝜖𝜖 − 𝑟𝑟𝑡𝑡}, 

where we assume 𝜅𝜅𝜅𝜅 ≠ 0, 𝜃𝜃 > 0 and 𝑛𝑛 + 𝜋𝜋∗ > 𝜖𝜖 > 0. The latter assumption 

ensures that 𝜋̌𝜋𝑡𝑡|𝑡𝑡−1
∗ = 𝜋𝜋∗ in steady state. 

We are interested in the constraint in the definition of 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡
∗ , which we note can 

be rewritten as the pair of equations: 
𝑧𝑧𝑡𝑡 = 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡

∗ + 𝑟𝑟𝑡𝑡 − 𝜖𝜖, 𝑧𝑧𝑡𝑡 = max{0, 𝜋𝜋∗ + 𝑟𝑟𝑡𝑡 − 𝜖𝜖}, 
where 𝑧𝑧𝑡𝑡 is an auxiliary variable. The results of Holden (2023) imply that in order 
to prove uniqueness under perfect foresight (conditional on 𝑧𝑧𝑡𝑡 eventually 
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converging to its positive steady state value), we should first replace the second 
equation for 𝑧𝑧𝑡𝑡 just given with 𝑧𝑧𝑡𝑡 = 𝜋𝜋∗ + 𝑟𝑟𝑡𝑡 − 𝜖𝜖 + 𝑦𝑦𝑡𝑡, where 𝑦𝑦𝑡𝑡 is an exogenous 

forcing process. For convenience, we define 𝑦𝑦0 ≔ 0. This implies that for 𝑡𝑡 ≥ 1: 
𝜋𝜋𝑡𝑡+1|𝑡𝑡 = 𝜋̌𝜋𝑡𝑡+1|𝑡𝑡

∗ = 𝜋𝜋∗ + 𝑦𝑦𝑡𝑡, 

𝑥𝑥𝑡𝑡 =
1
𝜅𝜅 �𝑦𝑦𝑡𝑡−1 − 𝛽𝛽𝑦𝑦𝑡𝑡�, 𝑟𝑟𝑡𝑡 = 𝑛𝑛 +

1
𝜅𝜅𝜅𝜅 �−𝑦𝑦𝑡𝑡−1 + �𝛽𝛽 + 𝛿𝛿�𝑦𝑦𝑡𝑡 − 𝛽𝛽𝛿𝛿𝑦𝑦𝑡𝑡+1�, 

𝑧𝑧𝑡𝑡 = 𝑛𝑛 + 𝜋𝜋∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡 +
1
𝜅𝜅𝜅𝜅 �−𝑦𝑦𝑡𝑡−1 + �𝛽𝛽 + 𝛿𝛿�𝑦𝑦𝑡𝑡 − 𝛽𝛽𝛿𝛿𝑦𝑦𝑡𝑡+1�, 

from, respectively, the monetary rule and Fisher equation, the equations for 𝑧𝑧𝑡𝑡, the 

Phillips curve, the Euler equation, and the first equation for 𝑧𝑧𝑡𝑡. 
Holden (2023) shows that uniqueness is determined by the determinants of 

the principal sub-matrices of the “𝑀𝑀” matrix for the model, which, here, contains 
the partial derivatives of 𝑧𝑧𝑡𝑡 (𝑡𝑡 in rows) with respect to 𝑦𝑦𝑠𝑠 (𝑠𝑠 in columns). We take 

𝑀𝑀 to have infinitely many rows and columns in the following. By our solution for 
𝑧𝑧𝑡𝑡, 𝑀𝑀 is tridiagonal with − 1

𝜅𝜅𝜅𝜅 , 1 + 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 , − 𝛽𝛽𝛽𝛽

𝜅𝜅𝜅𝜅 on the left, main and right diagonals 

respectively. We assume for now that 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 ≥ 0.  

Now consider a finite size principal sub-matrix of 𝑀𝑀. Since 𝑀𝑀 is tridiagonal 

and Toeplitz, this sub-matrix must be block diagonal, where each block on the 
diagonal is either diagonal (with 1 + 𝛽𝛽+𝛿𝛿

𝜅𝜅𝜅𝜅  on the diagonal), or tridiagonal (with 

− 1
𝜅𝜅𝜅𝜅 , 1 + 𝛽𝛽+𝛿𝛿

𝜅𝜅𝜅𝜅 , − 𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 on the left, main and right diagonals respectively). Recall that 

the determinant of a block diagonal matrix is the product of the determinants of 

the blocks on the diagonal. Thus, the sub-matrix will have determinant greater or 
equal to one if each of the sub-matrix’s blocks has determinant greater or equal to 

one. Since 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 ≥ 0, a diagonal block of size 𝑆𝑆 × 𝑆𝑆 has determinant of �1 + 𝛽𝛽+𝛿𝛿

𝜅𝜅𝜅𝜅 �
𝑆𝑆

≥
1. Thus, we just need to check the determinants of the tridiagonal blocks. 

Let: 

𝑑𝑑 ≔ �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜅𝜅 �
2

− 4
𝛽𝛽𝛽𝛽

(𝜅𝜅𝜅𝜅)2 = 1 + 2
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜅𝜅 +
�𝛽𝛽 − 𝛿𝛿�2

(𝜅𝜅𝜅𝜅)2 ≥ 1, 

as we are assuming that 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 ≥ 0. Then, by standard results on determinants of 

tridiagonal matrices,42 the determinant of any 𝑆𝑆 × 𝑆𝑆 tridiagonal block is given by: 

 
42 This may be proven by using Laplace expansion twice to derive a recurrence for the determinant. 
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1

2𝑆𝑆+1�𝑑𝑑 ⎣
⎢⎡�1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 + �𝑑𝑑�

𝑆𝑆+1
− �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 − �𝑑𝑑�

𝑆𝑆+1

⎦
⎥⎤

=
1
2𝑆𝑆 � �𝑆𝑆 + 1

𝑘𝑘
� �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜅𝜅 �

𝑘𝑘
�𝑑𝑑

𝑆𝑆−𝑘𝑘 �1 − (−1)𝑆𝑆+1−𝑘𝑘�
2

𝑆𝑆+1

𝑘𝑘=0

≥
1
2𝑆𝑆 � �𝑆𝑆 + 1

𝑘𝑘
�

�1 − (−1)𝑆𝑆+1−𝑘𝑘�
2

𝑆𝑆+1

𝑘𝑘=0
= 1. 

Hence, the sub-matrix has determinant greater or equal to one. Thus, all 
principal minors of 𝑀𝑀 are greater or equal to one, meaning that the 𝑀𝑀 matrix is a 

“P-matrix” (Holden 2023), and moreover that no sufficiently small changes to the 
model could change this result.43 (Being a P-matrix only requires positive 

principal minors, not ones greater or equal to one.) Thus, with 𝜋𝜋𝑡𝑡
∗ exogenous, the 

solution is robustly unique conditional on the terminal conditions (bounded 

inflation, eventual escapes from both bounds). For uniqueness without this 
additional robustness property, it is clearly sufficient that 𝑑𝑑 > 0 and 1 + 𝛽𝛽+𝛿𝛿

𝜅𝜅𝜅𝜅 > 0, 

for example it is enough that 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 > − 1

2. 

K.10 Approximate uniqueness with endogenous wedges and multi-
period bonds 

In the set-up of Section 5, suppose we assume that Δ𝑡𝑡 is stationary, and that 

there exists some 𝜇𝜇����0, 𝜇𝜇����1, 𝜇𝜇����2, 𝛾𝛾����0, 𝛾𝛾����1, 𝛾𝛾����2 ≥ 0 such that for any stationary solution for 
𝑒𝑒𝑡𝑡, |𝔼𝔼Δ𝑡𝑡| ≤ 𝜇𝜇����0 + 𝜇𝜇����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)� + 𝜇𝜇����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) and Var Δ𝑡𝑡 ≤ 𝛾𝛾����0 + 𝛾𝛾����1�𝔼𝔼(𝜋𝜋𝑡𝑡 −

𝜋𝜋𝑡𝑡
∗)� + 𝛾𝛾����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), for all 𝑡𝑡 ∈ ℤ and 𝑗𝑗, 𝑘𝑘 ∈ ℕ. This assumption is very mild, 
as discussed in Subsection 3.3 (and the form here is even milder, since it applies to 

Δ𝑡𝑡, not 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡). Now note that: 

�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� =

1
𝜃𝜃 |𝔼𝔼(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 + Δ𝑡𝑡)| ≤

1
𝜃𝜃 [2|𝔼𝔼𝑒𝑒𝑡𝑡| + |𝔼𝔼Δ𝑡𝑡|], 

(by the triangle inequality and stationarity) and: 

 
43 This robustness holds for any fixed size 𝑀𝑀 matrix. I.e., fix 𝑇𝑇 > 0 (potentially extremely large) and suppose 
the bound ceases to apply more than 𝑇𝑇 periods in the future. Then following a sufficiently small change to 
the model, there will be a unique solution that satisfies the bound for 𝑇𝑇 periods, but which may violate it 

after 𝑇𝑇 periods. 
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Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) =

1
𝜃𝜃2 Var(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 + Δ𝑡𝑡)

≤
1
𝜃𝜃2 �4 Var 𝑒𝑒𝑡𝑡 + 4�(Var 𝑒𝑒𝑡𝑡)(Var Δ𝑡𝑡) + Var Δ𝑡𝑡�

≤
1
𝜃𝜃2 [8 Var 𝑒𝑒𝑡𝑡 + 2 Var Δ𝑡𝑡], 

(by Cauchy-Schwarz, stationarity and the fact that for all 𝑧𝑧 ≥ 0, 4�(Var 𝑒𝑒𝑡𝑡)𝑧𝑧 ≤
4 Var 𝑒𝑒𝑡𝑡 + 𝑧𝑧). Thus, if 𝜃𝜃 is large enough to ensure 𝜃𝜃 > 𝜇𝜇����1, 𝜃𝜃2 > 2𝛾𝛾����2 and 

�𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� > 2𝜇𝜇����2𝛾𝛾����1, then: 

|𝔼𝔼Δ𝑡𝑡|

≤
�𝜃𝜃2 − 2𝛾𝛾����2��𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + 2𝜇𝜇����2�𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

𝜃𝜃��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
, 

and: 

Var Δ𝑡𝑡

≤
𝛾𝛾����1�𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + �𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

�𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1
. 

Therefore, as 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 ∑ (1 + 𝜃𝜃𝜃𝜃)−� 𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�Δ𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=1 : 

|𝔼𝔼𝑒𝑒𝑡𝑡| ≤ �(1 + 𝜃𝜃𝜃𝜃)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�∞

𝑗𝑗=1
|𝔼𝔼Δ𝑡𝑡| 

= (𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆) �(1 + 𝜃𝜃𝜃𝜃)−𝑗𝑗
∞

𝑗𝑗=1
|𝔼𝔼Δ𝑡𝑡| =

𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆
𝜃𝜃𝜃𝜃 |𝔼𝔼Δ𝑡𝑡| ≤

|𝔼𝔼Δ𝑡𝑡|
𝜃𝜃  

≤
�𝜃𝜃2 − 2𝛾𝛾����2��𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + 2𝜇𝜇����2�𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
, 

(using the triangle inequality and stationarity), and: 

Var 𝑒𝑒𝑡𝑡 = � �(1 + 𝜃𝜃𝜃𝜃)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�

(1 + 𝜃𝜃𝜃𝜃)−� 𝑘𝑘
𝑇𝑇−𝐿𝐿+𝑆𝑆� Cov�𝔼𝔼𝑡𝑡Δ𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡Δ𝑡𝑡+𝑘𝑘�

∞

𝑘𝑘=0

∞

𝑗𝑗=0
 

≤ � �(1 + 𝜃𝜃𝜃𝜃)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�

(1 + 𝜃𝜃𝜃𝜃)−� 𝑘𝑘
𝑇𝑇−𝐿𝐿+𝑆𝑆�∞

𝑘𝑘=0

∞

𝑗𝑗=0
Var Δ𝑡𝑡 

=
⎣
⎢⎡(𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆) �(1 + 𝜃𝜃𝜃𝜃)−𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤

2

Var Δ𝑡𝑡 = �
𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆

𝜃𝜃𝜃𝜃 �
2

Var Δ𝑡𝑡 ≤
Var Δ𝑡𝑡

𝜃𝜃2  

≤
𝛾𝛾����1�𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + �𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
 

(by the inequality for covariances of conditional expectations derived in 

Subsection 3.3). Now, define: 

𝜇𝜇0 ≔
𝜃𝜃2�𝜃𝜃2 − 2𝛾𝛾����2�𝜇𝜇����0 + 2𝜃𝜃2𝜇𝜇����2𝛾𝛾����0

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃�  as 𝜃𝜃 → ∞, 
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𝜇𝜇1 ≔
2𝜃𝜃�𝜃𝜃2 − 2𝛾𝛾����2�𝜇𝜇����1 + 4𝜃𝜃𝜇𝜇����2𝛾𝛾����1

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

𝜇𝜇2 ≔
8�𝜃𝜃2 − 2𝛾𝛾����2�𝜇𝜇����2 + 16𝜇𝜇����2𝛾𝛾����2

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃3�  as 𝜃𝜃 → ∞, 

𝛾𝛾0 ≔
𝜃𝜃2𝛾𝛾����1𝜇𝜇����0 + 𝜃𝜃2�𝜃𝜃 − 𝜇𝜇����1�𝛾𝛾����0

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

𝛾𝛾1 ≔
2𝜃𝜃𝛾𝛾����1𝜇𝜇����1 + 2𝜃𝜃�𝜃𝜃 − 𝜇𝜇����1�𝛾𝛾����1

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃3�  as 𝜃𝜃 → ∞, 

𝛾𝛾2 ≔
8𝛾𝛾����1𝜇𝜇����2 + 8�𝜃𝜃 − 𝜇𝜇����1�𝛾𝛾����2

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃4�  as 𝜃𝜃 → ∞, 

then we can rewrite the previous inequalities as: 

|𝔼𝔼Δ𝑡𝑡| ≤ 𝜃𝜃𝜇𝜇0 + 𝜃𝜃𝜇𝜇1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜃𝜃𝜇𝜇2 Var 𝑒𝑒𝑡𝑡, 
Var Δ𝑡𝑡 ≤ 𝜃𝜃2𝛾𝛾0 + 𝜃𝜃2𝛾𝛾1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜃𝜃2𝛾𝛾2 Var 𝑒𝑒𝑡𝑡, 

|𝔼𝔼𝑒𝑒𝑡𝑡| ≤ 𝜇𝜇0 + 𝜇𝜇1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜇𝜇2 Var 𝑒𝑒𝑡𝑡, 
Var 𝑒𝑒𝑡𝑡 ≤ 𝛾𝛾0 + 𝛾𝛾1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝛾𝛾2 Var 𝑒𝑒𝑡𝑡, 

Now, suppose that 𝜃𝜃 is large enough that additionally 1 > 𝜇𝜇1, 1 > 𝛾𝛾1 and 
�1 − 𝜇𝜇1�(1 − 𝛾𝛾2) > 𝜇𝜇2𝛾𝛾1 (note that these inequalities always hold for sufficiently 

large 𝜃𝜃, by the previously derived big-Ο asymptotics), then: 

|𝔼𝔼𝑒𝑒𝑡𝑡| ≤
(1 − 𝛾𝛾2)𝜇𝜇0 + 𝜇𝜇2𝛾𝛾0

�1 − 𝜇𝜇1�(1 − 𝛾𝛾2) − 𝜇𝜇2𝛾𝛾1
= Ο �

1
𝜃𝜃�  as 𝜃𝜃 → ∞, 

Var 𝑒𝑒𝑡𝑡 ≤
�1 − 𝜇𝜇1�𝛾𝛾0 + 𝛾𝛾1𝜇𝜇0

�1 − 𝜇𝜇1�(1 − 𝛾𝛾2) − 𝜇𝜇2𝛾𝛾1
= Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

by the previously derived big-Ο asymptotics. Hence, as 𝜃𝜃 → ∞, 𝔼𝔼𝑒𝑒𝑡𝑡 → 0 and 

Var 𝑒𝑒𝑡𝑡 → 0, as required. 
Finally, note that by the bounds on �𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)� and Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) derived 

above, we have that: 

�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� ≤

1
𝜃𝜃 [2|𝔼𝔼𝑒𝑒𝑡𝑡| + |𝔼𝔼Δ𝑡𝑡|] ≤

2
𝜃𝜃 |𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜇𝜇0 + 𝜇𝜇1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜇𝜇2 Var 𝑒𝑒𝑡𝑡 

= Ο �
1
𝜃𝜃�  as 𝜃𝜃 → ∞, 

and: 

Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) ≤

1
𝜃𝜃2 [8 Var 𝑒𝑒𝑡𝑡 + 2 Var Δ𝑡𝑡]

≤ 8
1
𝜃𝜃2 Var 𝑒𝑒𝑡𝑡 + 2𝛾𝛾0 + 2𝛾𝛾1|𝔼𝔼𝑒𝑒𝑡𝑡| + 2𝛾𝛾2 Var 𝑒𝑒𝑡𝑡 = Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

so, as required, 𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) → 0 and Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) → 0 as 𝜃𝜃 → ∞. 
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K.11 Convergence under least squares learning 
We have that 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 are updated according to the recursion: 

�
𝑎𝑎𝑡𝑡
𝑏𝑏𝑡𝑡

� = �
𝑎𝑎𝑡𝑡−1
𝑏𝑏𝑡𝑡−1

� +
1

𝑡𝑡 + 𝑤𝑤
1
𝑣𝑣 �

𝑣𝑣
𝜁𝜁𝑡𝑡

� (𝜋𝜋𝑡𝑡 − 𝑎𝑎𝑡𝑡−1 − 𝑏𝑏𝑡𝑡−1𝜁𝜁𝑡𝑡), 

where: 

𝜋𝜋𝑡𝑡 =
1

𝜙𝜙 − 𝑚𝑚𝑡𝑡
�(1 − 𝑚𝑚𝑡𝑡)𝑎𝑎𝑡𝑡−1 + �𝜌𝜌 − 𝑚𝑚𝑡𝑡�𝑏𝑏𝑡𝑡−1𝜁𝜁𝑡𝑡 − 𝜁𝜁𝑡𝑡�, 

and: 

𝑚𝑚𝑡𝑡 =
1

𝑡𝑡 + 𝑤𝑤 �1 + 𝜌𝜌
𝜁𝜁𝑡𝑡

2

𝑣𝑣 �. 

Note: 

𝜋𝜋𝑡𝑡 =
𝑎𝑎𝑡𝑡−1 + �𝜌𝜌𝑏𝑏𝑡𝑡−1 − 1�𝜁𝜁𝑡𝑡

𝜙𝜙 −
𝑚𝑚𝑡𝑡

𝜙𝜙 − 𝑚𝑚𝑡𝑡

�𝜙𝜙 − 1�𝑎𝑎𝑡𝑡−1 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝜁𝜁𝑡𝑡
𝜙𝜙 . 

Now define: 

ℋ��𝑎𝑎
𝑏𝑏�, 𝜁𝜁� = −

1
𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�𝑎𝑎 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝑏𝑏 + 𝜁𝜁� �

𝑣𝑣
𝜁𝜁�, 

ℛ𝑡𝑡��𝑎𝑎
𝑏𝑏�, 𝜁𝜁� = −

1 + 𝜌𝜌 𝜁𝜁2

𝑣𝑣

𝜙𝜙 − 1
𝑡𝑡 + 𝑤𝑤 �1 + 𝜌𝜌 𝜁𝜁2

𝑣𝑣 �

1
𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�𝑎𝑎 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝑏𝑏 + 𝜁𝜁� �

𝑣𝑣
𝜁𝜁�. 

We now verify each of the parts of assumption D.1 of Subsection 6.7 of Evans 
& Honkapohja (2001). We assume that 𝜙𝜙 > 1. 

Part (i): 
ℋ��𝑎𝑎

𝑏𝑏�, 𝜁𝜁1� − ℋ��𝑎𝑎
𝑏𝑏�, 𝜁𝜁2�

= −
1

𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�𝑎𝑎 �0
1� + ��𝜙𝜙 − 𝜌𝜌�𝑏𝑏 + 1� �

𝑣𝑣
𝜁𝜁1 + 𝜁𝜁2

�� (𝜁𝜁1 − 𝜁𝜁2). 

So: 
�ℋ��𝑎𝑎

𝑏𝑏�, 𝜁𝜁1� − ℋ��𝑎𝑎
𝑏𝑏�, 𝜁𝜁2��

2

≤
1

𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�|𝑎𝑎| + ��𝜙𝜙 − 𝜌𝜌�|𝑏𝑏| + 1�(𝑣𝑣 + |𝜁𝜁1| + |𝜁𝜁2|)�|𝜁𝜁1 − 𝜁𝜁2|

≤
max{1, 𝑣𝑣}

𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�|𝑎𝑎| + �𝜙𝜙 − 𝜌𝜌�|𝑏𝑏| + 1�|𝜁𝜁1 − 𝜁𝜁2|(1 + |𝜁𝜁1| + |𝜁𝜁2|)

≤ �2
�𝜙𝜙 − 𝜌𝜌� max{1, 𝑣𝑣}

𝜙𝜙𝜙𝜙 �1 + ��𝑎𝑎
𝑏𝑏��

2
� |𝜁𝜁1 − 𝜁𝜁2|(1 + |𝜁𝜁1| + |𝜁𝜁2|). 

Part (ii): 

ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 0� − ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 0� = −
𝜙𝜙 − 1

𝜙𝜙𝜙𝜙 (𝑎𝑎1 − 𝑎𝑎2)�𝑣𝑣
0�. 

So: 
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�ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 0� − ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 0��
2

=
𝜙𝜙 − 1

𝜙𝜙 |𝑎𝑎1 − 𝑎𝑎2| ≤
𝜙𝜙 − 1

𝜙𝜙 ��
𝑎𝑎1
𝑏𝑏1

� − �
𝑎𝑎2
𝑏𝑏2

��
2
. 

Part (iii): 
𝜕𝜕

𝜕𝜕𝜕𝜕 ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 𝜁𝜁� −
𝜕𝜕

𝜕𝜕𝜕𝜕 ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 𝜁𝜁�

= −
1

𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�(𝑎𝑎1 − 𝑎𝑎2) �0
1� + �𝜙𝜙 − 𝜌𝜌�(𝑏𝑏1 − 𝑏𝑏2) �

𝑣𝑣
2𝜁𝜁��. 

So: 

�
𝜕𝜕

𝜕𝜕𝜕𝜕 ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 𝜁𝜁� −
𝜕𝜕

𝜕𝜕𝜕𝜕 ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 𝜁𝜁��
2

≤
1

𝜙𝜙𝜙𝜙 ��𝜙𝜙 − 1�|𝑎𝑎1 − 𝑎𝑎2| + �𝜙𝜙 − 𝜌𝜌�|𝑏𝑏1 − 𝑏𝑏2|(𝑣𝑣 + 2|𝜁𝜁 |)�

≤
�𝜙𝜙 − 𝜌𝜌� max{2, 𝑣𝑣}

𝜙𝜙𝜙𝜙 [|𝑎𝑎1 − 𝑎𝑎2| + |𝑏𝑏1 − 𝑏𝑏2|](1 + |𝜁𝜁 |)

≤ �2
�𝜙𝜙 − 𝜌𝜌� max{2, 𝑣𝑣}

𝜙𝜙𝜙𝜙 ��
𝑎𝑎1
𝑏𝑏1

� − �
𝑎𝑎2
𝑏𝑏2

��
2

(1 + |𝜁𝜁 |). 

Part (iv): 
Let Φ be the cumulative distribution function of the standard normal 

distribution. Then: 

Pr �
1

𝑡𝑡 + 𝑤𝑤 �1 + �𝜌𝜌�
𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1� = 2Φ
⎝
⎜⎛−�𝑡𝑡 + 𝑤𝑤 − 1

�𝜌𝜌� ⎠
⎟⎞. 

Thus: 

� Pr �
1

𝑡𝑡 + 𝑤𝑤 �1 + �𝜌𝜌�
𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1�
∞

𝑡𝑡=1
= 2Φ �−�

𝑤𝑤
�𝜌𝜌�� + � 2Φ

⎝
⎜⎛−�𝑡𝑡 + 𝑤𝑤 − 1

�𝜌𝜌� ⎠
⎟⎞

∞

𝑡𝑡=2

≤ 2Φ �−�
𝑤𝑤
�𝜌𝜌�� + � 2Φ

⎝
⎜⎛−�𝑡𝑡 + 𝑤𝑤 − 1

�𝜌𝜌� ⎠
⎟⎞ d𝑡𝑡

∞

1

= �2�𝜌𝜌�𝑤𝑤
𝜋𝜋���� exp �−

𝑤𝑤
2�𝜌𝜌�� + 2�1 − 𝑤𝑤 + �𝜌𝜌��Φ �−�

𝑤𝑤
�𝜌𝜌�� < ∞ 

where 𝜋𝜋���� is the mathematical constant usually denoted by 𝜋𝜋. Hence, by the Borel-
Cantelli lemma, with probability one 1

𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁𝑡𝑡
2

𝑣𝑣 � > 1 for only finitely many 𝑡𝑡. 
When 1

𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁 2

𝑣𝑣 � ≤ 1, we have that: 

�ℛ𝑡𝑡��𝑎𝑎
𝑏𝑏�, 𝜁𝜁�� ≤

1 + �𝜌𝜌� 𝜁𝜁2

𝑣𝑣
𝜙𝜙 − 1

�𝜙𝜙 − 1�|𝑎𝑎| + �𝜙𝜙 − 𝜌𝜌�|𝑏𝑏||𝜁𝜁 | + |𝜁𝜁 |
𝜙𝜙𝜙𝜙 (𝑣𝑣 + |𝜁𝜁 |) 

≤
max{1, 𝑣𝑣}

𝜙𝜙𝜙𝜙 max �1,
�𝜌𝜌�
𝑣𝑣 �

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 − 1 (1 + |𝑎𝑎| + |𝑏𝑏|)(1 + |𝜁𝜁 |)2�1 + |𝜁𝜁 |2� 

≤ 4�2
max{1, 𝑣𝑣}

𝜙𝜙𝜙𝜙 max �1,
�𝜌𝜌�
𝑣𝑣 �

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 − 1 �1 + ��𝑎𝑎

𝑏𝑏��
2
� �1 + |𝜁𝜁 |4�. 
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If this held without assuming 1
𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁 2

𝑣𝑣 � ≤ 1, then this would satisfy Part (iv) 
of Assumption D.1 of Section 6.7 of Evans & Honkapohja (2001). However, from 

inspecting the proof of Theorem 6.10 of Evans & Honkapohja (2001), contained in 
the proof of Theorem 17 of Section 1.9 of Benveniste, Métivier & Priouret (1990), a 

weaker assumption is sufficient. In fact, it is enough that there exists 𝐶𝐶2 > 0 and 
𝑞𝑞 > 0 such that for all 𝑎𝑎, 𝑏𝑏 ∈ ℝ:44 

Pr �∃𝑇𝑇 s.t. ∀𝑡𝑡 ≥ 𝑇𝑇, �ℛ𝑡𝑡��𝑎𝑎
𝑏𝑏�, 𝜁𝜁𝑡𝑡�� ≤ 𝐶𝐶2 �1 + ��𝑎𝑎

𝑏𝑏��
2
� (1 + |𝜁𝜁𝑡𝑡|𝑞𝑞)� = 1. 

This is satisfied, by our result that with probability one 1
𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1 for only 
finitely many 𝑡𝑡. 

This completes the verification of Assumption D.1 of Section 6.7 of Evans & 
Honkapohja (2001). Assumption D.2 trivially holds, as 𝜁𝜁𝑡𝑡 is a stationary AR(1) 

process. Assumption A.1 also clearly holds. 
Now define: 

ℎ��𝑎𝑎
𝑏𝑏�� = lim

𝑡𝑡→∞
𝔼𝔼ℋ��𝑎𝑎

𝑏𝑏�, 𝜁𝜁𝑡𝑡� = −
1

𝜙𝜙𝜙𝜙 𝔼𝔼 �
��𝜙𝜙 − 1�𝑎𝑎 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝜁𝜁𝑡𝑡 + 𝜁𝜁𝑡𝑡�𝑣𝑣
�𝜙𝜙 − 1�𝑎𝑎𝜁𝜁𝑡𝑡 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝜁𝜁𝑡𝑡

2 + 𝜁𝜁𝑡𝑡
2 � 

= −
1
𝜙𝜙 �

�𝜙𝜙 − 1�𝑎𝑎
1 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏�. 

Then, the ordinary differential equation (ODE): 

d �𝑎𝑎(𝜏𝜏)
𝑏𝑏(𝜏𝜏)�

d𝜏𝜏 = ℎ ��𝑎𝑎(𝜏𝜏)
𝑏𝑏(𝜏𝜏)��, 

has the unique solution 𝑎𝑎(𝜏𝜏) = 𝑎𝑎(0) exp�− 𝜙𝜙−1
𝜙𝜙 𝜏𝜏�, 𝑏𝑏(𝜏𝜏) = − 1

𝜙𝜙−𝜌𝜌 + �𝑏𝑏0 +
1

𝜙𝜙−𝜌𝜌� exp�− 𝜙𝜙−𝜌𝜌
𝜙𝜙 𝜏𝜏�, which converges to the unique equilibrium point 𝑎𝑎 = 0 and 

𝑏𝑏 = − 1
𝜙𝜙−𝜌𝜌 as 𝜏𝜏 → ∞, since 𝜙𝜙 > 1 > 𝜌𝜌. Now define 𝒰𝒰: ℝ2 → ℝ by: 

𝒰𝒰��𝑎𝑎
𝑏𝑏�� = 𝑎𝑎2 + �𝑏𝑏 +

1
𝜙𝜙 − 𝜌𝜌�

2
. 

Clearly 𝒰𝒰  is non-negative and twice continuously differentiable. We now verify 𝒰𝒰  

satisfies the other conditions of Theorem 6.10 of Evans & Honkapohja (2001). 
Part (i): 

𝜕𝜕𝒰𝒰��𝑎𝑎
𝑏𝑏��

𝜕𝜕�𝑎𝑎
𝑏𝑏�

ℎ ��𝑎𝑎(𝜏𝜏)
𝑏𝑏(𝜏𝜏)�� = −2

𝜙𝜙 − 1
𝜙𝜙 𝑎𝑎2 − 2

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 �𝑏𝑏 +

1
𝜙𝜙 − 𝜌𝜌�

2
≤ 0, 

 
44 Note that the condition in equation (1.9.2) of Benveniste, Métivier & Priouret (1990) is only used in the 

proof of Lemma 18 of Section 1.9. 
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(using numerator layout notation for the derivative), with equality if and only if 
𝑎𝑎 = 0 and 𝑏𝑏 = − 1

𝜙𝜙−𝜌𝜌. 
Part (ii): 
𝒰𝒰��𝑎𝑎

𝑏𝑏�� = �0
0� if and only if 𝑎𝑎 = 0 and 𝑏𝑏 = − 1

𝜙𝜙−𝜌𝜌. 

Part (iii): 
Suppose ��𝑎𝑎

𝑏𝑏��
2

≥ 2
𝜙𝜙−𝜌𝜌. Then 𝑎𝑎2 + 𝑏𝑏2 ≥ 4

�𝜙𝜙−𝜌𝜌�2, so: 

𝒰𝒰��𝑎𝑎
𝑏𝑏�� −

1
4 ��𝑎𝑎

𝑏𝑏��
2

2
=

3
4 �𝑎𝑎2 + 𝑏𝑏2� +

2𝑏𝑏
𝜙𝜙 − 𝜌𝜌 +

1
�𝜙𝜙 − 𝜌𝜌�2 

≥
3
4 �𝑎𝑎2 + 𝑏𝑏2� −

2 � 1
𝜙𝜙 − 𝜌𝜌 + 𝜙𝜙 − 𝜌𝜌

4 �𝑎𝑎2 + 𝑏𝑏2��

𝜙𝜙 − 𝜌𝜌 +
1

�𝜙𝜙 − 𝜌𝜌�2 

=
1
4 �𝑎𝑎2 + 𝑏𝑏2� −

1
�𝜙𝜙 − 𝜌𝜌�2 ≥ 0. 

This completes the verification of the conditions of Theorem 6.10 of Evans & 
Honkapohja (2001). Hence, with probability one, 𝑎𝑎𝑡𝑡 converges to 0 and 𝑏𝑏𝑡𝑡 

converges to − 1
𝜙𝜙−𝜌𝜌. 

K.12 Optimal consumption with perpetuities and a permanent ZLB 
For the sake of illustration, we adopt the simple parametric set-up used in 

Online Appendix G.1. It is clear our results are not specific to this set-up, however. 

We suppose the representative household supplies one unit of labour, 
inelastically. Production of the final good is given by 𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡(= 1). In period 𝑡𝑡, the 

representative household maximises 𝔼𝔼𝑡𝑡 ∑ 𝛽𝛽𝑘𝑘 log 𝑐𝑐𝑡𝑡+𝑘𝑘
∞
𝑘𝑘=0 , subject to the budget 

constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝐴𝐴𝑡𝑡 + 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐴𝐴𝑡𝑡−1 + 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡), 
where 𝑐𝑐𝑡𝑡 is consumption, 𝜏𝜏𝑡𝑡 are real lump sum taxes, 𝑃𝑃𝑡𝑡 is the price of the final 

good, 𝐴𝐴𝑡𝑡 is the number of one period nominal bonds purchased by the household 
at 𝑡𝑡, which each return 𝐼𝐼𝑡𝑡 in period 𝑡𝑡 + 1, 𝑄𝑄𝑡𝑡 is the price of a long (geometric 

coupon) bond and 𝐵𝐵𝑡𝑡 are the number of units of this long bond purchased by the 
household at 𝑡𝑡. One unit of the period 𝑡𝑡 long bond bought at 𝑡𝑡 returns $1 at 𝑡𝑡 + 1, 

along with 𝜔𝜔 ∈ (0,1] units of the period 𝑡𝑡 + 1 bond. 
The household first order conditions imply: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, 𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡
𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1

�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 
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The household transversality conditions are that: 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝐴𝐴𝑡𝑡+𝑘𝑘

𝑃𝑃𝑡𝑡+𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘
= 0, lim

𝑘𝑘→∞
𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡

𝑄𝑄𝑡𝑡+𝑘𝑘𝐵𝐵𝑡𝑡+𝑘𝑘
𝑃𝑃𝑡𝑡+𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘

= 0, 

but we do not assume the second is necessary when 𝜔𝜔 = 1. (The necessity of the 

transversality constraint when 𝜔𝜔 < 1 follows from the following test given in 
Kamihigashi (2006), and formally proven in Kamihigashi (2003): “Shift the entire 

optimal path [for the state variable] downward by a small fixed proportion. Does 
it reduce the value of the objective function by only a finite amount? If so, the 

transversality condition is necessary.”) 
The government issues no one period bonds, so 𝐴𝐴𝑡𝑡 = 0. The government fixes 

the supply of long-bonds at 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡
∗ ≔ 𝐵𝐵−1𝜔𝜔𝑡𝑡+1. The central bank pegs nominal 

interest rates at the ZLB, meaning 𝐼𝐼𝑡𝑡 = 1. 

The final goods market clears, so 𝑦𝑦𝑡𝑡 = 𝑐𝑐𝑡𝑡 = 1. Thus, from the household budget 
constraint, we have the following government budget constraint: 

𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
∗ + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝐵𝐵𝑡𝑡−1

∗ (1 + 𝜔𝜔𝑄𝑄𝑡𝑡). 
We assume that the government adjusts taxes 𝜏𝜏𝑡𝑡 period by period to ensure this 

always holds (i.e., fiscal policy is passive and Ricardian). Thus, 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝐵𝐵−1𝜔𝜔𝑡𝑡. 
Let Π𝑡𝑡 ≔ 𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡−1
, then from market clearing and the Euler equation for nominal 

bonds, 1 = 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
. So, from the Euler equation for the long bond: 

𝑄𝑄𝑡𝑡 =
1

1 − 𝜔𝜔 + lim
𝑘𝑘→∞

𝜔𝜔𝑘𝑘𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
⎣
⎢⎡�

1
Π𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑄𝑄𝑡𝑡+𝑘𝑘 ≥

1
1 − 𝜔𝜔, 

with equality when 𝜔𝜔 < 1 as the transversality constraint definitely holds in that 
case. But, when 𝜔𝜔 = 1, this says 𝑄𝑄𝑡𝑡 ≥ ∞, so 𝑄𝑄𝑡𝑡 = ∞, hence 𝑄𝑄𝑡𝑡 = 1

1−𝜔𝜔 for all 𝜔𝜔 ∈
[0,1]. Now let 𝑏𝑏𝑡𝑡 ≔ 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡

𝑃𝑃𝑡𝑡
, then from the budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑏𝑏𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡 +
𝑃𝑃𝑡𝑡−1𝑏𝑏𝑡𝑡−1

𝑄𝑄𝑡𝑡−1
(1 + 𝜔𝜔𝑄𝑄𝑡𝑡) = 𝑃𝑃𝑡𝑡 + 𝑃𝑃𝑡𝑡−1𝑏𝑏𝑡𝑡−1, 

and thus: 

𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜏𝜏𝑡𝑡 = 1 +
𝑏𝑏𝑡𝑡−1
Π𝑡𝑡

. 

It is instructive to re-solve the original household problem under this rewritten 
budget constraint. This must have the same solution as the original problem. In 
particular, consider the problem of maximising 𝔼𝔼𝑡𝑡 ∑ 𝛽𝛽𝑘𝑘 log 𝑐𝑐𝑡𝑡+𝑘𝑘

∞
𝑘𝑘=0 , subject to: 

𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜏𝜏𝑡𝑡 = 1 +
𝑏𝑏𝑡𝑡−1
Π𝑡𝑡

, 
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by choosing 𝑐𝑐𝑡𝑡, 𝑐𝑐𝑡𝑡+1, … , 𝑏𝑏𝑡𝑡, 𝑏𝑏𝑡𝑡+1, …. This is the “textbook” cake eating problem with 
exogenous income, 1 − 𝜏𝜏𝑡𝑡, and gross interest rate 1

Π𝑡𝑡
. The Euler equation is 1

𝑐𝑐𝑡𝑡
=

𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, and the (always necessary) transversality constraint states that 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝑏𝑏𝑡𝑡+𝑘𝑘
𝑐𝑐𝑡𝑡+𝑘𝑘

= 0. 

Additionally, the government budget constraint can be rewritten as: 

𝜏𝜏𝑡𝑡 = (1 − 𝜔𝜔)𝑏𝑏−1 ��
1

Π𝑠𝑠

𝑡𝑡

𝑠𝑠=0
� 𝜔𝜔𝑡𝑡. 

We know that in equilibrium, market clearing implies 𝑐𝑐𝑡𝑡 = 1, but for now, we 

will “forget” this fact, and merely suppose that 𝑐𝑐𝑡𝑡 = 𝑐𝑐 for all 𝑡𝑡, for some 𝑐𝑐 > 0. This 
satisfies the Euler equation as: 

1
𝑐𝑐 = 𝛽𝛽𝔼𝔼𝑡𝑡

1
Π𝑡𝑡+1𝑐𝑐 =

1
𝑐𝑐, 

as 1 = 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
. Then transversality simplifies to lim

𝑘𝑘→∞
𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡𝑏𝑏𝑡𝑡+𝑘𝑘 = 0, and the budget 

constraint gives: 

𝑏𝑏𝑡𝑡 = �
⎣
⎢⎡�

1
Π𝑡𝑡−𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0 ⎦
⎥⎤ (1 − 𝑐𝑐𝑡𝑡−𝑘𝑘 − 𝜏𝜏𝑡𝑡−𝑘𝑘)

𝑡𝑡

𝑘𝑘=0
+

⎣
⎢⎡�

1
Π𝑡𝑡−𝑗𝑗

𝑡𝑡

𝑗𝑗=0 ⎦
⎥⎤ 𝑏𝑏−1 

= (1 − 𝑐𝑐) � �
1

Π𝑠𝑠

𝑡𝑡

𝑠𝑠=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑘𝑘=0
+ 𝜔𝜔𝑡𝑡+1𝑏𝑏−1 �

1
Π𝑠𝑠

𝑡𝑡

𝑠𝑠=0
, 

by the simplified government budget constraint previously derived. Hence, since 
1 = 𝔼𝔼𝑡𝑡𝛽𝛽

1
Π𝑡𝑡+1

: 

𝛽𝛽𝑡𝑡𝔼𝔼0𝑏𝑏𝑡𝑡 = (1 − 𝑐𝑐)
1 − 𝛽𝛽𝑡𝑡+1

1 − 𝛽𝛽 + 𝜔𝜔𝑡𝑡+1𝑏𝑏−1
1

Π0
, 

so, by the period 0 transversality constraint: 

0 = lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝔼𝔼0𝑏𝑏𝑡𝑡 =
1 − 𝑐𝑐
1 − 𝛽𝛽 + 𝑏𝑏−1

1
Π0

lim
𝑡𝑡→∞

𝜔𝜔𝑡𝑡+1. 

If 𝜔𝜔 ∈ (0,1), then this implies that 𝑐𝑐 = 1 as expected. However, if 𝜔𝜔 = 1, then: 

𝑐𝑐 = 1 + �1 − 𝛽𝛽�
𝑏𝑏−1
Π0

. 

Thus, if Π0 is finite, then 𝑐𝑐 > 1, violating the market clearing condition. The only 
way to restore market clearing is if Π0 is infinite. This is intuitive, as when 𝜔𝜔 = 1, 

households have infinite nominal wealth, which cannot fail to push up prices. 
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