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Abstract: Central banks wish to avoid self-fulfilling fluctuations. Interest rate rules 
with a unit response to real rates achieve this under the weakest possible 

assumptions about the behaviour of households and firms. They are robust to 
household heterogeneity, hand-to-mouth consumers, non-rational household or 

firm expectations, active fiscal policy and to any form of intertemporal or nominal-
real links. They are easy to employ in practice, using inflation-protected bonds to 

infer real rates. With a time-varying short-term inflation target, they can 
implement an arbitrary inflation path, including optimal policy. This provides a 

way to translate policy makers’ desired path for inflation into one for nominal 
rates. US Federal Reserve behaviour is remarkably close to that predicted by a real 

rate rule, given the desired inflation path of US monetary policy makers. Real rate 
rules work thanks to the key role played by the Fisher equation in monetary 

transmission. 
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1 Introduction 
Today you start work as president of the Fictian Central Bank (FCB). As FCB 

president, you have a clear mandate to stabilize inflation, even if that results in 

unemployment or output losses. How should you act? Having studied New 
Keynesian macro, you are inclined to follow some variant of the Taylor rule. You 

recall the Taylor principle: the response of nominal rates to inflation should be 
greater than one to ensure determinacy—the existence of a unique stable solution, 

without self-fulfilling fluctuations. But you also remember reading other papers 
which talked of the Taylor principle being insufficient if there are hand-to-mouth 

households (Galí, Lopez-Salido & Valles 2004), firm-specific capital (Sveen & 
Weinke 2005), high government spending (Natvik 2009), or if the inflation target 

is positive (Ascari & Ropele 2009), particularly in the presence of trend growth 
and sticky wages (Khan, Phaneuf & Victor 2019). More worryingly, you recollect 

that the Taylor principle inverts if there are sufficiently many hand-to-mouth 
households (Bilbiie 2008), financial frictions (Lewis & Roth 2018; Manea 2019), or 

non-rational expectations (Branch & McGough 2010; 2018). You also recall that if 
real government surpluses do not respond to government debt levels, then 

following the Taylor principle can lead to explosive inflation (Leeper 1991; Leeper 
& Leith 2016; Cochrane 2023). Is there a way you could act to ensure determinacy 

and stable inflation, even if one or more of these circumstances is true? This paper 
provides a family of “robust real rate rules” that manage to do this. We then 

reassess classic questions of monetary economics through the lens of these rules. 
For a central bank to use a real rate rule, both nominal and real bonds must be 

traded in the economy. If a unit of the former is purchased at 𝑡𝑡, it returns the 
principal plus a nominal yield of 𝑖𝑖𝑡𝑡 in period 𝑡𝑡 + 1. If a unit of the latter is 

purchased at 𝑡𝑡, it returns the principal plus a nominal yield of 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 in period 
𝑡𝑡 + 1, where 𝜋𝜋𝑡𝑡+1 is realized inflation between 𝑡𝑡 and 𝑡𝑡 + 1. US Treasury Inflation 

Protected Securities (TIPS) are one example of a real bond. 
In equilibrium, the nominal and real bonds must have the same expected 

return, which implies that the Fisher equation must hold, i.e.: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, (1) 

where 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 is the full information rational expectation of period 𝑡𝑡 + 1’s inflation 
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rate, given period 𝑡𝑡’s information. We are abstracting for the moment from 

inflation risk premia, term premia and liquidity premia, all of which can generate 
endogenous wedges in the Fisher equation. However, all our results are robust to 

such wedges, as we show in Section 3. 
We suppose that the central bank observes the nominal and real bond markets, 

and that it can intervene in the former. Then the central bank can choose to set 
nominal interest rates according to the simple “real rate rule”: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, (2) 
where 𝜙𝜙 > 1 (the Taylor principle). Combining these two equations gives that: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, 
which has a unique non-explosive solution of 𝜋𝜋𝑡𝑡 = 0. Determinate inflation! 

Here we have ignored the zero lower bound (ZLB), as the focus of this paper 
is on determinacy away from the ZLB. Nonetheless, in Section 4 we show that real 

rate rules continue to perform well even with the ZLB. We are also sidestepping 
the equilibrium selection issues raised by Cochrane (2011) and following the 

standard New Keynesian literature in assuming agents select non-explosive paths 
for inflation. The limited memory arguments of Angeletos & Lian (2023) give one 

justification for this. Alternatively, the escape clause rules of Christiano & 
Takahashi (2018; 2020) give central banks a way to ensure coordination on 

expectations consistent with non-explosive inflation. 
Why are real rate rules so robust? Firstly, they do not require an aggregate Euler 

equation to hold, even approximately. For the Fisher equation (1) to hold (still 
ignoring risk/term/liquidity premia for now), there only need to be two deep 

pocketed, fully informed, rational agents. Trade takes care of the rest. Even full 
information is not necessary. In a large market, the Fisher equation can come to 

hold even when information about future inflation is dispersed amongst market 
participants (Hellwig 1980; Lou et al. 2019). If there is an aggregate Euler equation, 

its role is only to determine equilibrium real interest rates, given the values of other 
variables. More generally, the real interest rate will be determined by the Euler 
equation of the marginal holder of real bonds. 

Given that the rule does not require an aggregate Euler equation to hold, it is 

automatically robust to household heterogeneity, hand-to-mouth agents, and non-
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rational consumer expectations. The only expectations that matter are the 

expectations of participants in the markets for nominal and real bonds. It is much 
more reasonable to assume that financial markets lead to pricing consistent with 

rational expectations than to assume rationality of households more generally. In 
fact, even financial market participants do not need to be fully rational. Real rate 

rules continue to work if financial market participants are learning, or if they are 
not fully rational. 

Real rate rules also have a second source of robustness: they do not require an 
aggregate Phillips curve to hold. The slope of the Phillips curve can have no impact 

on the dynamics of inflation. If a central bank is unconcerned with output, they do 
not even need to know if the Phillips curve holds, let alone its slope. Nor does it 

matter how firms form inflation expectations. The Fisher equation and the 
monetary rule pin down inflation, so while non-rational firm expectations could 

affect output fluctuations, they will not alter inflation dynamics. The only 
requirement is that at least some prices are updated each period using current 

information. If there is a Phillips curve, it determines the output gap from the level 
of inflation consistent with the Fisher equation and the monetary rule. 

The possibility of decoupling inflation from the rest of the economy has far-
reaching implications. For example, there is a tradition in monetary economics of 

examining model features producing amplification or dampening of monetary 
shocks. Under a real rate rule, if the Fisher equation holds then no change to the 

model can ever produce amplification or dampening, except a change to the 
monetary rule itself. Thus, such amplification/dampening results were always 

dependent on the particular monetary rule being used. With a greater than unit 
response to real rates, amplification can be flipped to dampening, and vice versa. 

Another persistent question in monetary economics has been “which shocks 
drive inflation?”. Here too, the answer must be crucially sensitive to the monetary 

rule being used. Under a real rate rule, only monetary policy shocks or shocks to 
the Fisher equation could move inflation. While this does not tell us anything 
about which shocks drove inflation in the past (as it is unlikely any central bank 
used a real rate rule), it does tell us something about which shocks must 

necessarily cause inflation. Real rate rules give central banks almost perfect control 
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of inflation, so ultimate responsibility for it must rest with them. 

An even more fundamental question of monetary economics is “how does 
monetary policy work?”. The traditional answer involves movements in nominal 

rates leading to movements in real rates, due to sticky prices. But this cannot be 
the transmission mechanism under flexible prices, as then real rates are 

exogenous. Nor too can it be the transmission mechanism under a real rate rule, as 
then real rate movements are irrelevant. In these cases, monetary policy works 

exclusively through the Fisher equation’s link between nominal rates and expected 
inflation. Since we will see that dynamics under a real rate rule are qualitatively so 

similar to dynamics under a traditional rule, it would be surprising if monetary 
policy worked by a fundamentally different channel under a traditional rule. 

Instead, this suggests that the main channel of monetary policy in New Keynesian 
models is the one also present even under flexible prices, via the Fisher equation. 

Rupert & Šustek (2019) draw the same conclusion based on the observation that 
contractionary (positive) monetary shocks can lower real rates in New Keynesian 

models with capital. 
The rest of this paper further examines real rate rules, along with the classic 

questions of monetary economics they help answer. The next section shows how 
real rate rules can ensure inflation hits an arbitrary time varying short-term 

inflation target. Hence, real rate rules can implement optimal policy, attaining high 
welfare. This also means that we cannot reject that a central bank follows a real rate 

rule purely based on observed inflation dynamics. We also discuss the benefits of 
smoothing real rate rules. 

Section 3 looks at the impact of monetary shocks and Fisher equation wedges. 
We also examine the implications of following a real rate rule in a simple New 

Keynesian model. Next, Section 4 presents a modified real rate rule designed to 
ensure determinacy even in the presence of the zero lower bound.  

Section 5 discusses how a real rate rule could be implemented in practice. We 
show that it is easy to adapt real rate rules to work with longer bonds, and that 
neither information nor indexation lags challenge the performance of these rules. 
In Section 6 we show that the practical real rate rule of Section 5 provides an 

excellent fit to actual US Federal Reserve behaviour, even when the short-term 
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inflation target is disciplined by data from the Summary of Economic Projections. 

Section 7 examines some other potential challenges to the performance of real 
rate rules. We show they work in fully non-linear models and that they are robust 

to bounded rationality and learning. We also show that, generically, real rate rules 
continue to work even when inflation is determined by something other than 

monetary policy, as under the fiscal theory of the price level. 
Prior literature. Rules like equation (2) have appeared in Adão, Correia & 

Teles (2011), Lubik, Matthes & Mertens (2019) and Holden (2023) amongst other 
places. However, in the prior literature they have chiefly been introduced for 

analytic convenience, rather than as serious proposals. One exception is the work 
of Cochrane (2017; 2023), who briefly discusses rules of this form within the 

context of a wider discussion of rules that hold 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant (i.e. rules with 𝜙𝜙 =
0). Cochrane (2018) further explores rules holding 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant. 

A closely related rule is the “rule III” of Galí (2011) which sets 𝑖𝑖𝑡𝑡 = 𝑖𝑖𝑡𝑡∗ − 𝜙𝜙𝑖𝑖𝑡𝑡−1
∗ +

𝜙𝜙(𝜋𝜋𝑡𝑡 + 𝑟𝑟𝑡𝑡−1), where 𝑖𝑖𝑡𝑡∗ is a nominal rate target. If 𝑖𝑖𝑡𝑡∗ = 𝑟𝑟𝑡𝑡, this collapses to equation 

(2), but Galí did not note the robustness of such rules. The “indexed payment on 
reserve” rules of Hall & Reis (2016) also rely on observable real rates, but use a 

different mechanism to achieve determinacy. They propose that the central bank 
issues an asset (“reserves”) with nominal return from $1 of $(1 + 𝑟𝑟𝑡𝑡)

𝑝𝑝𝑡𝑡+1
𝑝𝑝𝑡𝑡

∗  or 

$(1 + 𝑖𝑖𝑡𝑡)
𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡

∗. Additionally, in older work, Hetzel (1990) proposes using the spread 
between nominal and real bonds to guide monetary policy, and Dowd (1994) 

proposes targeting the price of futures contracts on the price level. This has a 
similar flavour to a real rate rule, as these rules effectively use expected inflation 

as the instrument of monetary policy. 
Forecast targeting has also been proposed by Hall & Mankiw (1994) and 

Svensson (1997), amongst others. Bernanke & Woodford (1997) examine the 
desirability of responding to private sector inflation forecasts, finding that this can 
lead to indeterminacy. The difference is that whereas the Bernanke & Woodford 
(1997) rules set nominal rates to a multiple of expected inflation, real rate rules set 

expected inflation to a multiple of current inflation. Rules of the form 𝑖𝑖𝑡𝑡 =
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + ⋯, are a special case of the Bernanke & Woodford (1997) class, and have 

been used by Bilbiie (2008; 2011) for analytic convenience. By the Fisher equation, 
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following such a rule is equivalent to directly setting the real rate, which has led 

some authors to refer to these rules as “real rate rules” (Beaudry, Preston & Portier 
2022), although they are quite different to the “real rate rules” studied in this 

paper. However, rules setting real rates break under flexible prices and wages (as 
then real rates are exogenous), leading to lower robustness. Our real rate rules do 

not have this problem.  
There is also an established literature looking at rules tracking the efficient or 

“natural” real interest rate (Woodford 2003). This uses rules of the form 𝑖𝑖𝑡𝑡 = 𝑛𝑛𝑡𝑡 +
𝜙𝜙𝜋𝜋𝑡𝑡, where 𝑛𝑛𝑡𝑡 is the natural real rate. While this looks very similar to our equation 

(2) (swap 𝑟𝑟𝑡𝑡 for 𝑛𝑛𝑡𝑡), it is a very different idea. By the Fisher equation, the previous 
natural rate rule implies that 𝜋𝜋𝑡𝑡 = 𝜙𝜙−1(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡) + 𝜙𝜙−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
𝔼𝔼𝑡𝑡 ∑ 𝜙𝜙−𝑘𝑘−1�𝑟𝑟𝑡𝑡+𝑘𝑘 − 𝑛𝑛𝑡𝑡+𝑘𝑘�∞

𝑘𝑘=0 , assuming that 𝜙𝜙 > 1 and that inflation is non-
explosive. However, since 𝑟𝑟𝑡𝑡 is endogenous, this “solution” for 𝜋𝜋𝑡𝑡 does not 

automatically imply uniqueness, unlike under a real rate rule. Nor does it imply 
zero inflation in equilibrium, except under restrictive assumptions on the rest of 

the model, such as the absence of cost-push shocks. Furthermore, while real rates 
are observable through inflation-protected securities, natural real rates must be 

inferred from estimates of shocks under a particular model. For example, the 
natural rate usually depends on shocks to technology and discount factors, neither 

of which are directly observable. 
Money growth rules also generally deliver determinacy (Carlstrom & Fuerst 

2003). However, they translate fluctuations in money demand or velocity into 
fluctuations in inflation, so they do not give the degree of inflation control 

provided by real rate rules. Despite this, money growth rules can perform 
comparably to traditional rules, and even outperform them when the ZLB binds 
frequently (Belongia & Ireland 2022; Billi, Söderström & Walsh 2023). We show 
that real rate rules keep their robust performance even in the presence of the ZLB. 

2 Time-varying short-term inflation targets 
The robust real rate rule of equation (2) ensures zero inflation in all periods.1 

But this is not always desirable. For example, with sticky prices, it is optimal for 

 
1 See Online Appendix A for a discussion of outcomes off the equilibrium path. 
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the central bank to tolerate higher inflation in response to an unexpected increase 

in mark-ups. The traditional solution is for the central bank to respond to output 
gaps in their monetary rule, but any response to other variables risks reducing 

robustness.2 A better solution is for the central bank to adopt a time-varying short-
term inflation target. With this target responding to other endogenous variables or 

shocks, the central bank can produce desirable movements in inflation without 
compromising robustness. With such a target, real rate rules can determinately 

implement any target path for inflation, no matter the rest of the model. This 
implies they can also implement optimal policy, maximizing welfare. It also means 

that any observed inflation and interest rate dynamics are consistent with a real 
rate rule. 

Time-varying short-term inflation targets also solve one of the greatest 
challenges to the real-world uptake of monetary rules. No central bank governor 

wants to give up their ability to respond to unusual circumstances in unusual 
ways. A time-varying short-term inflation target splits the monetary decision in 

two. The governor and board announce the level of inflation they would like to hit 
over the next month(s), while the trading desk can mechanically follow a real rate 

rule to achieve that target. This combines the flexibility benefits of discretionary 
reactions to current circumstances, via changes to the target path of inflation, with 

the determinacy benefits of rigid commitment to a rule.3 
How do these time-varying short-term targets work? To start, let 𝜋𝜋𝑡𝑡

∗ be the 

central bank’s period 𝑡𝑡 inflation target for period 𝑡𝑡 inflation. This can be a function 
of any of the model’s endogenous variables and exogenous shocks.4 For example, 

in order to dampen the output response to mark-up shocks, the central bank could 
set 𝜋𝜋𝑡𝑡

∗ either as a decreasing function of the output gap, or as an increasing 
 

2 Online Appendix C shows that real rate rules keep some robustness even with a response to other 
endogenous variables. 
3 The two-part approach to implementation also helps resolve the concern implicitly raised by Afrouzi et al. 
(2023). Within a period, the central bank would like to move after firms have set prices, so it can punish their 
deviations. But it would also like to move before firms so that it can influence their price setting that period. 
This conflict is resolved by announcing the current period inflation target at the start of the period but setting 
nominal rates via a real rate rule at the end of the period, responding to observed prices. 
4 Ireland (2007) also allows the central bank’s inflation target to respond to other structural shocks. He 

presents evidence that the US Federal Reserve has reacted to mark-up shocks. 
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function of the mark-up shock. The central bank should publish this target each 

period, else the limited information of market participants could lead to additional 
volatility. To help agents form expectations, they may even prefer to announce the 

inflation target one period in advance. Similarly, it would be helpful for the central 
bank to also publish their expectations of the future path of the target. 

With a time-varying inflation target, the real rate rule becomes: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). (3) 

From the Fisher equation (1), this implies, 𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1
∗ � = 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). Again 
with 𝜙𝜙 > 1, there is a unique non-explosive solution for 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗, now with 𝜋𝜋𝑡𝑡 =
𝜋𝜋𝑡𝑡

∗ for all 𝑡𝑡. I.e., at all periods of time, and in all states of the world, realised inflation 
is equal to 𝜋𝜋𝑡𝑡

∗. The central bank can choose an arbitrary path for inflation as the 

unique, determinate equilibrium outcome. 
There are only two constraints on the short-term inflation target. The first is 

that the central bank must be capable of calculating a reasonable approximation to 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ . One way to ensure this is to make 𝜋𝜋𝑡𝑡
∗ only a function of 𝑡𝑡 − 1 dated 

variables. Alternatively, the central bank could respond to variables for which 
there are liquid futures or option markets, or the central bank could form these 

expectations using a forecasting model. Errors in these forecasts will show up as 
monetary policy shocks, increasing the variance of 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗, but we will see that 

this can be dampened with a large 𝜙𝜙. 
The second constraint on the inflation target is that if the monetary rule is 

replaced with the equation 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗, then inflation should still be stable and 

determinate. For example, we cannot set 𝜋𝜋𝑡𝑡
∗ ≔ 2𝜋𝜋𝑡𝑡−1 + 𝜀𝜀∗,𝑡𝑡, for some target shock 

𝜀𝜀∗,𝑡𝑡, as then with 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗, 𝜋𝜋𝑡𝑡 = 2𝜋𝜋𝑡𝑡−1 + 𝜀𝜀∗,𝑡𝑡, which is an explosive process. To 

ensure determinacy, it is sufficient (but certainly not necessary) that 𝜋𝜋𝑡𝑡
∗ is only a 

function of exogenous variables. This is helpful since responding to exogenous 
variables is enough to mimic the outcome of any other monetary policy regime, as 
in a stationary equilibrium, endogenous variables must have a representation as a 
function of the infinite history of the economy’s shocks.5 

This has two important implications. Firstly, it means that appropriately 
designed real rate rules can implement (timeless/unconditional/etc.) optimal 

 
5 We show this formally in Supplemental Appendix K.6 in Holden (2024). 
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policy, and thus attain the highest possible level of welfare. Rules with time 

varying targets can also mimic outcomes under rules responding to additional 
endogenous variables. Secondly, it means that without direct evidence on 𝜋𝜋𝑡𝑡

∗, it is 

impossible to test empirically if a central bank is using a general real rate rule. Any 
dynamics of inflation and interest rates are consistent with a real rate rule like (3), 

for an appropriately chosen 𝜋𝜋𝑡𝑡
∗. Thus, real rate rules are observationally equivalent 

to any other specification for central bank behaviour. 

To see how implementing optimal monetary policy with a real rate rule works, 
suppose that the model contains the New Keynesian Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (4) 
where 𝑥𝑥𝑡𝑡 is the output gap and 𝜔𝜔𝑡𝑡 is a mark-up/cost-push shock.6 And suppose 

that the central bank wants to minimise a discounted weighted combination of the 
variances of inflation and the output gap, 𝔼𝔼0 ∑ 𝛽𝛽𝑡𝑡�𝜋𝜋𝑡𝑡

2 + 𝜆𝜆𝑥𝑥𝑡𝑡
2�∞

𝑡𝑡=0 , where 𝜆𝜆 > 0. 

Then, under the timelessly optimal perspective of Woodford (1999), the central 
bank wants to ensure 𝜋𝜋𝑡𝑡 = −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) in all periods. They can do this by 

setting 𝜋𝜋𝑡𝑡
∗ ≔ −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) and using the rule of equation (3). This is 

determinate as long as 𝛽𝛽 > 0.7 It ensures that 𝜋𝜋𝑡𝑡 = −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) even if the 

central bank’s model of the economy is misspecified, and the true link between 
inflation and the output gap is not given by equation (4). This contrasts with other 

proposals for the implementation of optimal policy,8 which depend on all the 
parameters of the Euler and Phillips curves, and hence may produce strange 

outcomes under misspecification. This is particularly problematic given the 
uncertainty faced by central banks. If the central bank solves for optimal policy 

taking their uncertainty about the economy’s true parameters into account, then 
this still produces a targeting rule that can be determinately implemented with a 

 
6 Throughout this paper, we multiply the mark-up shock by 𝜅𝜅 as the ratio of the response to 𝑥𝑥𝑡𝑡 and the 
response to 𝜔𝜔𝑡𝑡 is not a function of either the (Calvo) price adjustment probability or the (Rotemberg) price 

adjustment cost. See Khan (2005) for derivations. 
7 From substituting 𝜋𝜋𝑡𝑡 = −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) into the Phillips curve, we see that determinacy requires the 
quadratic 𝑞𝑞(𝐴𝐴) = 𝛽𝛽𝜆𝜆𝐴𝐴2 − �𝜅𝜅2 + 𝜆𝜆�1 + 𝛽𝛽��𝐴𝐴 + 𝜆𝜆 to have one root inside the unit circle and one root outside. 
With 𝛽𝛽 > 0, determinacy then follows from the facts that 𝑞𝑞′′(0) = 2𝛽𝛽𝜆𝜆 > 0, 𝑞𝑞′(0) = −�𝜅𝜅2 + 𝜆𝜆�1 + 𝛽𝛽�� < 0, 
𝑞𝑞(0) = 𝜆𝜆 > 0 and 𝑞𝑞(1) = −𝜅𝜅2 < 0. 
8 See, e.g., Svensson & Woodford (2003), Dotsey & Hornstein (2006), Evans & Honkapohja (2006), Evans & 

McGough (2010). 
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real rate rule. However, without knowing the true parameters, the prior literature’s 

proposals are not guaranteed to implement the desired targeting rule. 
If the central bank prefers to announce a target for next period’s inflation, then 

the equivalent optimal policy exercise is to choose one period ahead inflation, 
𝜋𝜋𝑡𝑡+1|𝑡𝑡, to minimize 𝔼𝔼0 ∑ 𝛽𝛽𝑡𝑡�𝜋𝜋𝑡𝑡|𝑡𝑡−1

2 + 𝜆𝜆𝑥𝑥𝑡𝑡
2�∞

𝑡𝑡=0  subject to 𝜋𝜋𝑡𝑡|𝑡𝑡−1 = 𝛽𝛽𝜋𝜋𝑡𝑡+1|𝑡𝑡 + 𝜅𝜅𝑥𝑥𝑡𝑡 +
𝜅𝜅𝜔𝜔𝑡𝑡. This is a purely backwards-looking constraint, so there is no longer any 
difference between discretion, commitment, or timeless policy. The solution is 

𝜋𝜋𝑡𝑡+1|𝑡𝑡 = −𝜅𝜅−1𝜆𝜆𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡�, which can be determinately implemented with 𝛽𝛽 >
0 by setting the period 𝑡𝑡 target for period 𝑡𝑡 + 1 inflation, 𝜋𝜋𝑡𝑡+1|𝑡𝑡

∗ , to −𝜅𝜅−1𝜆𝜆𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 −
𝑥𝑥𝑡𝑡�, and using the rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1|𝑡𝑡

∗ + 𝜙𝜙�𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡|𝑡𝑡−1
∗ �.9 

We have seen that time-varying short-term inflation targets make real rate rules 

into effective tools for implementing optimal policy. One final note is in order 
though: It is important for central banks to communicate the distinction between 

their time-varying short-term inflation target and their constant long-term target 
(of 2% say). Note that central banks already need to communicate carefully if they 

choose not to raise rates despite inflation being above target (due to supply shocks, 
for example). With a time-varying short-term target, a central bank faces an almost 

identical communication challenge. They just need to reassure the public that a 
choice to temporarily allow higher inflation is about current circumstances, not a 

change in long-term stance. This should pose no greater risk to central bank 
credibility. Indeed, the US Federal Reserve already effectively announces a path 

for 𝜋𝜋𝑡𝑡
∗ through the Summary of Economic Projections. This gives monetary policy 

makers’ forecasts for inflation conditional on their beliefs about “appropriate 

monetary policy”.10 Arguably, central bank credibility would be higher under a 
real rate rule, because while no central bank is always close to their long-term 

target, with a real rate rule, realised inflation would always be near their 
previously announced short-term target. 

 
9 Determinacy follows from substituting 𝑥𝑥𝑡𝑡 = 𝜅𝜅−1�𝜋𝜋𝑡𝑡|𝑡𝑡−1 − 𝛽𝛽𝜋𝜋𝑡𝑡+1|𝑡𝑡� into 𝜋𝜋𝑡𝑡+1|𝑡𝑡 = −𝜅𝜅−1𝜆𝜆𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡�, 
leading to the same characteristic quadratic as in footnote 7. It is important that 𝜋𝜋𝑡𝑡 not 𝜋𝜋𝑡𝑡|𝑡𝑡−1 that enters the 
rule, as although inflation will be predetermined in equilibrium, out of equilibrium it might not be. This rule 
is equivalent to the “rule III” of Galí (2011), which sets 𝑖𝑖𝑡𝑡 = 𝑖𝑖𝑡𝑡∗ − 𝜙𝜙𝑖𝑖𝑡𝑡−1

∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 + 𝑟𝑟𝑡𝑡−1) when 𝑖𝑖𝑡𝑡∗ = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1|𝑡𝑡
∗ . 

10 See Supplemental Appendix J.1 in Holden (2024) for more on the Summary of Economic Projections. 
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2.1 Adding interest rate smoothing 
High degrees of interest rate smoothing are often thought to be a good 

description of actual central bank behaviour given the rarity of large interest rate 

changes. However, since the rule (3) can generate arbitrary inflation dynamics 
(and hence arbitrary nominal rate dynamics), we cannot conclude based on 

observed nominal rates that the central bank is actually smoothing rates. 
Nonetheless, interest rate smoothing is worth investigating, as it can be a source of 

added robustness. 
With a fully smoothed real rate rule, the central bank sets interest rates so:11 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = (𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1
∗ − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡

∗� + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗), (5) 

where 𝜃𝜃 > 0 and where 𝜋𝜋𝑡𝑡
∗ is the short-term inflation target, as before. Note: the 

central bank smooths 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡, not just 𝑖𝑖𝑡𝑡. This ensures real rates can still be 
substituted out from the Fisher equation. 

One advantage of full smoothing is that it removes the impact of permanent 
wedges in the Fisher equation. Suppose that due to static convenience yields, risk, 

or liquidity premia (say), the Fisher equation took the form 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈, 
for some constant wedge 𝜈𝜈. Now let 𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ �, then the Fisher 

equation and monetary rule imply 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ = 𝜃𝜃−1(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1). Substituting this 

back into the definition of 𝑒𝑒𝑡𝑡 then implies 𝔼𝔼𝑡𝑡𝑒𝑒𝑡𝑡+1 = (1 + 𝜃𝜃)𝑒𝑒𝑡𝑡, which has the unique 

non-explosive solution 𝑒𝑒𝑡𝑡 = 0 as 𝜃𝜃 > 0. Thus, in equilibrium, 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗. 

This establishes that when 𝜈𝜈 = 0, our smoothed real rate rule produces the 

same equilibrium inflation (and hence the same nominal rates) as our 
unsmoothed real rate rule, equation (3). Moreover, the smoothed rule ensures 

inflation stays at target even when 𝜈𝜈 ≠ 0, unlike the unsmoothed rule. We will see 
in Section 5 that smoothing also ensures inflation remains stationary even when 

there is a non-stationary Fisher equation wedge or monetary shock. 
It is also more robust in one further important respect. Whereas the rule in 

equation (3) required a response to current inflation of 𝜙𝜙 > 1, the fully smoothed 
real rate rule just needs a response to current inflation of 𝜃𝜃 > 0. In practice, it may 
be hard for central banks to commit to responding more than one for one to 
inflation. Even if they manage this, it will be hard for them to convince other 

 
11 We examine partially smoothed real rate rules in Supplemental Appendix K.7 in Holden (2024). 
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economic agents they really will be so aggressive. Since inflation and nominal rates 

are identical for any 𝜙𝜙 > 1, there is no way for these agents to observe 𝜙𝜙. Even with 
𝜙𝜙 < 1, there are equilibria which are observationally equivalent to the equilibria 

with 𝜙𝜙 > 1. It would be far easier for central banks to convince economic agents 
that they at least respond positively to inflation. This is all that is needed for a fully 

smoothed real rate rule. 
This gives a compelling argument for the preferability of smoothing real rate 

rules. In Section 4 we will see another benefit of such rules: smoothing prevents 
the existence of sunspot equilibria in the presence of the zero lower bound.  

3 Monetary shocks and Fisher equation wedges 
With the Fisher equation (1) and the monetary rule of equations (2), (3) or (5), 

inflation is always at its target. For inflation to move from this target, there must 
be a shock to either the Fisher equation or the monetary rule. In this section, we 

examine the consequences of these shocks, including their implications for real 
variables in the three equation New Keynesian (NK) model. We also examine 

what happens if the Fisher equation contains an endogenous wedge, coming from 
time varying risk premia, for example. 

3.1 Monetary policy shocks 
We can add a monetary policy shock, 𝜁𝜁𝑡𝑡, to the rule of equation (2), giving: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. (6) 
One source of monetary policy shocks could be the central bank’s limited 

information. If the central bank does not perfectly observe current inflation, and 
sets interest rates to 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙�̃�𝜋𝑡𝑡, where �̃�𝜋𝑡𝑡 is its signal about inflation, then it will 
end up setting a slightly different level for nominal rates than that dictated by the 
rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, effectively generating monetary policy shocks.12 

 
12 In fact, this kind of limited information is inconsistent with our simple model’s assumptions. Real bonds 
bought at 𝑡𝑡 − 1 give a return in period 𝑡𝑡 which is a function of 𝜋𝜋𝑡𝑡. Hence, 𝜋𝜋𝑡𝑡 must be available to all parties 
in period 𝑡𝑡. (It is not “true” inflation that matters, but whatever inflation measure is used in the real bond 
contract.) Of course, in reality inflation is released with a lag, and real bonds have additional indexation lag. 
We explicitly model these lags in Section 5, and our conclusions remain the same. Schmitt-Grohé & Uribe 
(2007) look at monetary rules responding to lagged information and show that they perform as well as rules 

responding to current information. Lubik, Matthes & Mertens (2019) look at the determinacy consequences 
of a central bank that filters inflation signals in order to retrieve the optimal estimate. The determinacy 
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From combining (6) with the Fisher equation (1) we have: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, (7) 

which has the unique solution 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡, if 𝜙𝜙 > 1 and 𝜁𝜁𝑡𝑡 follows an AR(1) 

process with persistence 𝜌𝜌 ∈ (−1,1). 
A contractionary (positive) monetary policy shock results in a fall in inflation, 

as expected. One way to understand this is to note that the rule of equation (6) is 
actually a special case of the rule with a time-varying target in equation (3). 

Implicitly, equation (6) targets 𝜋𝜋𝑡𝑡
∗ ≔ − 1

𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡, as substituting this into equation (3) 
gives equation (6). Contractionary monetary shocks are equivalent to temporary 

reductions in the inflation target. 
We also see that if the central bank is more aggressive, so 𝜙𝜙 is larger, then 

inflation is less volatile. We will see that this result extends to shocks to the Fisher 
equation, and many other departures from the simple setup of equations (1) and 

(2). Large 𝜙𝜙 squashes shocks, bringing inflation nearer to target. 
In this model, only monetary policy shocks affect inflation. Of course, if there 

is a nominal rigidity in the model, monetary shocks may have an impact on real 
variables. But as long as the central bank follows a rule like this, these real 

disruptions have no feedback to inflation. Causation runs from inflation to real 
variables, not the other way round. We can understand inflation without worrying 

about the rest of the economy. 
This result may be surprising, but in fact an extensive body of empirical 

evidence finds no role for the Phillips curve in forecasting inflation (see e.g. 
Atkeson & Ohanian 2001; Ang, Bekaert & Wei 2007; Stock & Watson 2009; Dotsey, 

Fujita & Stark 2018). For example, Dotsey, Fujita & Stark (2018) find that post-1984, 
Phillips curve based forecasts perform worse than those of a simple IMA(1,1) 
model, both unconditionally and conditional on various measures of the state of 
the economy. This is consistent with causation only running from inflation to the 

output gap, not in the opposite direction.13 Likewise, Miranda-Agrippino & Ricco 
(2021) find that a contractionary monetary policy shock causes an immediate fall 

 
problems they highlight all disappear if the central bank directly responds to its signal. 
13 McLeay & Tenreyro (2020) provide an alternative explanation: optimal policy prescribes a negative 

correlation between inflation and output, making difficult empirical identification of the Phillips curve. 
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in the price level, while impacts on unemployment materialise much more slowly. 

Again, this suggests that causation runs from inflation to unemployment, not the 
other way round. 

3.2 Robust real rate rules in the three equation NK world 
What is the role of the Phillips curve and Euler equation under a real rate rule? 

Suppose in the setup of the previous subsection that 𝜁𝜁𝑡𝑡 is independent of other 
structural shocks, and we have the Phillips curve of equation (4) and the 

discounted/compounded Euler equation: 
𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), (8) 

where 𝑛𝑛𝑡𝑡 is the exogenous natural real rate of interest and 𝑥𝑥𝑡𝑡 is the output gap (as 
before). This form of discounted/compounded Euler equation appears in Bilbiie 

(2019) and (under discounting) in McKay, Nakamura & Steinsson (2017). The 
latter paper shows it provides a good approximation to a heterogeneous agent 

model with incomplete markets.14 We recover the standard Euler equation if 𝛿𝛿 = 1 
and 𝜍𝜍 is the elasticity of intertemporal substitution. This specification also nests the 

two agent, limited asset market participation (“TANK”) model of Bilbiie (2008) 
when 𝛿𝛿 = 1, but 𝜍𝜍 is allowed to be negative. And, it nests the behavioural NK 

model of Gabaix (2020) if 𝛽𝛽 and 𝛿𝛿 are reduced from their values under full 
rationality by cognitive discounting. 

Since 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡, and 𝜁𝜁𝑡𝑡 is AR(1) with persistence 𝜌𝜌 ∈ (−1,1), the Phillips 

curve (4) implies that 𝑥𝑥𝑡𝑡 = − 1
𝜅𝜅

1−𝛽𝛽𝜌𝜌
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 − 𝜔𝜔𝑡𝑡.15 The Phillips curve is determining the 

output gap, given the already determined level of inflation. This is consistent with 
the evidence of Dotsey, Fujita & Stark (2018), as 𝑥𝑥𝑡𝑡 is no help in forecasting 𝜋𝜋𝑡𝑡 here. 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = − 𝜌𝜌
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜋𝜋𝑡𝑡, so once you know 𝜋𝜋𝑡𝑡, you already have all the 

information you need to form the optimal forecast of 𝜋𝜋𝑡𝑡+1. The correlation in 𝜋𝜋𝑡𝑡 

and 𝑥𝑥𝑡𝑡 provides no extra information.16 
This model also enables us to show the robustness of our rule’s determinacy in 

 
14 Somewhat contrary to this, the results of Hagedorn (2023) imply that the aggregate Euler equation does 
not take this form in a two or more agent economy when the government adjusts taxes to maintain non-zero 
debt. Then the lagged real rate also enters the aggregate Euler equation, and the dynamics of the real rate 
may not be stable even when inflation is always zero. But this is real instability, not nominal instability. 
15 We derive a similar expression with a lag-augmented Phillips curve and Euler equation in Appendix B. 
16 Supplemental Appendix K.2 in Holden (2024) generalizes this result to an ARMA(1,1) process for 𝜁𝜁𝑡𝑡. 
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practice. Note that with 𝑥𝑥𝑡𝑡 expressed as a linear combination of exogenous 

variables, there is no need to solve the Euler equation (8) forward, so the degree 
of discounting (𝛿𝛿) cannot have an effect on determinacy. Not needing to solve the 

Euler equation forward also gives robustness to a missing transversality constraint 
on household assets, as under an overlapping generations structure. The only role 

of the Euler equation is to pin down real rates, given inflation and the output gap. 
For example, if 𝜔𝜔𝑡𝑡 is independent across time, then the Euler equation implies 𝑟𝑟𝑡𝑡 =
𝑛𝑛𝑡𝑡 + 1

𝜍𝜍 �1
𝜅𝜅

�1−𝛽𝛽𝜌𝜌��1−𝛿𝛿𝜌𝜌�
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 + 𝜔𝜔𝑡𝑡�. Via the Fisher equation, this in turn implies that 𝑖𝑖𝑡𝑡 =

𝑛𝑛𝑡𝑡 + 1
𝜍𝜍 �1

𝜅𝜅
�1−𝛽𝛽𝜌𝜌��1−𝛿𝛿𝜌𝜌�−𝜅𝜅𝜍𝜍𝜌𝜌

𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 + 𝜔𝜔𝑡𝑡� in equilibrium.17 
The irrelevance of Euler equation parameters for determinacy contrasts with 

the prior literature on determinacy under standard monetary rules. For example, 

with a standard monetary rule, Bilbiie (2019) finds that when 𝜍𝜍 > 0 and 𝛽𝛽 ≤ 1, the 
Taylor principle (𝜙𝜙 > 1) is only sufficient for determinacy in the discounting case 

(𝛿𝛿 ≤ 1), and Bilbiie (2008) finds that when 𝛿𝛿 = 1 and 𝜍𝜍 < 0, the Taylor principle 
(𝜙𝜙 > 1) is neither necessary nor sufficient for determinacy.18 Under our rule (6), 

the Taylor principle is necessary and sufficient for determinacy whether there is 
discounting or compounding, and whether 𝜍𝜍 is positive or negative (at least given 

𝜙𝜙 ≥ 0).19 
Note that even though a nominal rate peg is determinate when 𝛿𝛿 = 0 (say), 

inflation is not “over-determined” under a real rate rule with 𝛿𝛿 = 0. As ever, the 
monetary rule and the Fisher equation pin down inflation, the Phillips curve then 

 
17 For high values of 𝜌𝜌, �1−𝛽𝛽𝜌𝜌��1−𝛿𝛿𝜌𝜌�−𝜅𝜅𝜍𝜍𝜌𝜌

𝜅𝜅𝜍𝜍  is likely to be negative, so positive monetary policy shocks actually 

lower the nominal rate in equilibrium. (The author thanks a referee for this observation.) This is relatively 
common in NK models (Holden 2023; Bilbiie 2022), and should be unsurprising given the equivalence 
between positive monetary shocks and temporary reductions in the inflation target. The arguments of Bilbiie 
(2022) suggest that sunspot driven liquidity traps are more likely when positive monetary shocks have 
negative effects. We look for such sunspot equilibria under real rate rules in Section 4. 
18 For the former result, see equation (40) of Appendix C.1 of Bilbiie (2019). For the latter, see Proposition 7 

of Appendix B.1 of Bilbiie (2008). One might wonder whether including a response to the price level 
improves the robustness of standard monetary rules. In Supplemental Appendix K.3 in Holden (2024) we 
show this is not the case. Under mild parameter restrictions, a small positive response to the price level only 
produces determinacy if 𝜅𝜅𝜍𝜍 > 0. 
19 This is robust to monetary responses to the real rate which are not exactly equal to 1. This is a corollary of 
the more general result given in Online Appendix C. We give an alternative direct proof in Supplemental 

Appendix K.4 in Holden (2024). 
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pins down the output gap, and the Euler equation gives the level of real rates that 

is consistent with these values. 

3.3 Wedges in the Fisher equation 
How do real rate rules perform if the Fisher equation does not hold exactly? In 

this subsection, we show that even endogenous “wedges” in the Fisher equation 

do not challenge the robustness of real rate rules. 
Risk premia are one source of such a wedge in the Fisher equation, but certainly 

not the only one. For example, nominal bonds may supply greater liquidity 
services or convenience yield than real bonds, and so nominal bonds may 

command a premium. Such a premium is documented by Fleckenstein, Longstaff 
& Lustig (2014), based on comparing synthetic treasury bonds constructed from 

TIPS and inflation swaps to actual treasury bonds. On the other hand, TIPS 
provide deflation protection, which instead increases the value of TIPS. A Fisher 

equation wedge could also come from bounded rationality of market participants, 
distorting expectations. We look in more detail at risk premia and bounded 

rationality in Section 7, but for now we present general results that apply 
independently of the source of the wedge. 

Suppose then that the linearized Fisher equation takes the form: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡, 

where 𝜈𝜈𝑡𝑡 is a potentially endogenous wedge term. We assume though that 𝜈𝜈𝑡𝑡 is 
stationary, and that there exists some 𝜇𝜇����0, 𝜇𝜇����1, 𝜇𝜇����2, 𝛾𝛾����0, 𝛾𝛾����1, 𝛾𝛾����2 ≥ 0 such that for any 

stationary solution for 𝜋𝜋𝑡𝑡, |𝔼𝔼𝜈𝜈𝑡𝑡| ≤ 𝜇𝜇����0 + 𝜇𝜇����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝜇𝜇����2 Var 𝜋𝜋𝑡𝑡 and Var 𝜈𝜈𝑡𝑡 ≤ 𝛾𝛾����0 +
𝛾𝛾����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝛾𝛾����2 Var 𝜋𝜋𝑡𝑡, for all 𝑡𝑡 ∈ ℤ. This assumption is extremely mild, as all these 

coefficients may be arbitrarily large. For example, if 𝜈𝜈𝑡𝑡 were to come purely from 
an inflation risk premium, we would expect 𝜇𝜇����2 > 0 and 𝛾𝛾����0 > 0 but all other 

coefficients to be zero. Alternatively, if 𝜈𝜈𝑡𝑡 were to come purely from the liquidity 
services provided by nominal bonds, we would expect 𝜇𝜇����0, 𝛾𝛾����0 and 𝜇𝜇����1 to be positive 

(the latter as the value of liquidity services might vary over the cycle), but all other 
coefficients to be zero. 

Combining the modified Fisher equation with the simple rule in (2) gives: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡. 

Comparing this to the equilibrium condition with a monetary policy shock, (7), 



 

Page 18 of 45 

reveals that exogenous shocks to the Fisher equation act just like monetary shocks, 

only with the opposite sign. In the general case in which 𝜈𝜈𝑡𝑡 is endogenous, we still 
have that: 

𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡 � 𝜙𝜙−𝑘𝑘−1𝜈𝜈𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
+ lim

𝑘𝑘→∞
�𝜙𝜙−𝑘𝑘𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+𝑘𝑘� = 𝔼𝔼𝑡𝑡 � 𝜙𝜙−𝑘𝑘−1𝜈𝜈𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
, 

assuming as ever that we select the stationary equilibrium for inflation.20 Thus, 

with 𝜙𝜙 > 1: 

|𝔼𝔼𝜋𝜋𝑡𝑡| =
|𝔼𝔼𝜈𝜈𝑡𝑡|
𝜙𝜙 − 1 ≤

𝜇𝜇����0 + 𝜇𝜇����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝜇𝜇����2 Var 𝜋𝜋𝑡𝑡
𝜙𝜙 − 1 , 

and:21 

Var 𝜋𝜋𝑡𝑡 = � � 𝜙𝜙−𝑗𝑗−1𝜙𝜙−𝑘𝑘−1 Cov�𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘�
∞

𝑘𝑘=0

∞

𝑗𝑗=0
≤

𝛾𝛾����0 + 𝛾𝛾����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝛾𝛾����2 Var 𝜋𝜋𝑡𝑡
�𝜙𝜙 − 1�2 . 

So, for sufficiently large 𝜙𝜙:22 

|𝔼𝔼𝜋𝜋𝑡𝑡| ≤
��𝜙𝜙 − 1�2 − 𝛾𝛾����2�𝜇𝜇����0 + 𝜇𝜇����2𝛾𝛾����0

�𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� − 𝜇𝜇����2𝛾𝛾����1
= Ο �

1
𝜙𝜙�  as 𝜙𝜙 → ∞, 

Var 𝜋𝜋𝑡𝑡 ≤
�𝜙𝜙 − 1 − 𝜇𝜇����1�𝛾𝛾����0 + 𝜇𝜇����0𝛾𝛾����1

�𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� − 𝜇𝜇����2𝛾𝛾����1
= Ο �

1
𝜙𝜙2�  as 𝜙𝜙 → ∞. 

Hence, as 𝜙𝜙 → ∞, 𝔼𝔼𝜋𝜋𝑡𝑡 → 0 and Var 𝜋𝜋𝑡𝑡 → 0. While the central bank can no longer 
guarantee precisely zero inflation in the presence of an endogenous wedge, if they 

are aggressive enough, they can ensure the mean and variance of inflation are 
arbitrarily close to zero. And, as we already saw, using smoothed rules further 

limits the impact of Fisher equation wedges. Thus, such wedges do not present a 
substantial challenge to the performance of real rate rules.  

Inflation swap real rate rules. If the pricing of nominal bonds is highly 
distorted by the liquidity services they provide (for example), then the central 

bank may reach lower inflation bias and variance for a given 𝜙𝜙 by intervening in 
inflation swap markets rather than nominal bond ones. In our notation, an 

inflation swap is a contract agreed in period 𝑡𝑡 between two parties, A and B, in 
which A promises to make a net payment of Π𝑡𝑡+1 − 𝐾𝐾𝑡𝑡 to 𝐵𝐵 in period 𝑡𝑡 + 1, where 

𝐾𝐾𝑡𝑡 is the negotiated contract rate. Writing Ξ𝑡𝑡+1 for the real stochastic discount 
 

20 Ireland (2015) finds a role for risk premia in explaining US inflation fluctuations, so it is empirically 
plausible that the Fisher equation wedge should appear in the solution for inflation. 
21 As by the Cauchy-Schwarz inequality, the law of total variance and stationarity:  Cov�𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘� ≤
��Var 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗��Var 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘� = ��Var 𝜈𝜈𝑡𝑡+𝑗𝑗 − 𝔼𝔼 Var𝑡𝑡 𝜈𝜈𝑡𝑡+𝑗𝑗��Var 𝜈𝜈𝑡𝑡+𝑘𝑘 − 𝔼𝔼 Var𝑡𝑡 𝜈𝜈𝑡𝑡+𝑘𝑘� ≤ Var 𝜈𝜈𝑡𝑡. 
22 In particular, we need 𝜙𝜙 − 1 > 𝜇𝜇����1, �𝜙𝜙 − 1�2 > 𝛾𝛾����2 and �𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� > 𝜇𝜇����2𝛾𝛾����1. 



 

Page 19 of 45 

factor between periods 𝑡𝑡 and 𝑡𝑡 + 1, this contract rate must solve: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�Π𝑡𝑡+1 − 𝐾𝐾𝑡𝑡� = 0. 

So, from log-linearizing, 𝑘𝑘𝑡𝑡 = log 𝐾𝐾𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, to first order. 

The central bank can then use the inflation swap real rate rule, 𝑘𝑘𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡. 
Combined with the inflation swap pricing equation, this gives 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, just 

like when the central bank intervenes in nominal bond markets. The advantage of 
directly targeting inflation swap contract rates is that inflation swaps are unlikely 

to supply liquidity services, unlike nominal bonds, meaning the inflation swap 
pricing equation may be less distorted than the Fisher equation. One final benefit 

of directly targeting inflation swap contract rates is that inflation swaps do not 
include the deflation protection given by TIPS. This removes an added source of 

distortion in the 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 gap. 

4 The zero lower bound 
All our examples so far have ignored the zero lower bound (ZLB) on nominal 

interest rates. The ZLB is problematic for real rate rules as it prevents the central 

bank from fixing 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 when 𝑖𝑖𝑡𝑡 = 0. This means that at the ZLB, the Euler equation 
again becomes relevant for outcomes, reducing robustness. This section presents a 

simple solution to restore robustness in the presence of the ZLB. In Supplemental 
Appendix H in Holden (2024) we give two other potential solutions: price level 

real rate rules, and perpetuity real rate rules. We also show there that when 
households hold perpetuities, appropriately constructed real rate rules can rule 

out both permanent ZLB traps as well as explosive paths for inflation, answering 
Cochrane (2011). 

4.1 The problems caused by the ZLB for real rate rules 
We can see the problems caused by the ZLB even in the simple set-up used in 

this paper’s introduction. In the presence of the zero lower bound, under the 
introduction’s set-up, we have that: 

max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡� = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
While without the ZLB, we can cancel out the 𝑟𝑟𝑡𝑡 in the monetary rule with the 𝑟𝑟𝑡𝑡 

from the Fisher equation, now this is no longer possible. Instead, we have that 
max�−𝑟𝑟𝑡𝑡, 𝜙𝜙𝜋𝜋𝑡𝑡� = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. Thus, real rates (and hence the Euler equation) 
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potentially matter for inflation dynamics and determinacy. Holden (2023) points 

out that even if 𝑟𝑟𝑡𝑡 is exogenous, with 𝑟𝑟𝑡𝑡 = 0 for 𝑡𝑡 ≠ 1, and even if we assume that 
𝜋𝜋𝑡𝑡 → 0 as 𝑡𝑡 → ∞, still there are multiple solutions for a value of 𝑟𝑟1 (𝑟𝑟1 = 0), and 

no solution for other values of 𝑟𝑟1 (𝑟𝑟1 < 0). 
Holden (2023) shows this multiplicity and non-existence of perfect foresight 

solutions is the rule for NK models with a ZLB, even with a terminal condition on 
inflation ensuring an eventual escape from the ZLB. Additionally, there are further 

solutions converging to a deflationary steady state with interest rates at zero 
(Benhabib, Schmitt-Grohé & Uribe 2001). Furthermore, under rational 

expectations there are always at least as many solutions as under perfect foresight, 
as well as a continuum of further solutions which switch based on a sunspot 

(Holden 2023). 
For example, forward looking NK models without fundamental shocks often 

have absorbing sunspot solutions of the following form (Mertens & Ravn 2014; 
Schmidt 2016; Bilbiie 2022). The economy starts at the ZLB in period 1. While at 

the ZLB, there is a constant probability of 𝑞𝑞 ∈ [0,1] of remaining there in the next 
period. With probability 1 − 𝑞𝑞 though, the economy returns to the intended steady 

state and stays there for ever. As an example, suppose that the model is given by 
the following four equations:23  

𝜋𝜋𝑡𝑡 − 𝜋𝜋∗ = 𝛽𝛽𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋∗� + 𝜅𝜅𝑥𝑥𝑡𝑡, (9) 
𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), (10) 

max�0, 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋∗)� = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 
with 𝜅𝜅𝜍𝜍 ≠ 0, 𝜙𝜙 > 1 and 𝑛𝑛 + 𝜋𝜋∗ > 0 (so there is a steady state with positive nominal 

rates). Then an equilibrium of the form described exists if and only if 
�1−𝛽𝛽𝛽𝛽��1−𝛿𝛿𝛽𝛽�−𝛽𝛽𝜅𝜅𝜍𝜍

𝜅𝜅𝜍𝜍 ≤ 0.24 This holds for 𝑞𝑞 sufficiently large when 𝜅𝜅𝜍𝜍 > 0 and either 

𝛽𝛽 ≤ 1 and 𝛿𝛿 ≥ 1, or 𝛽𝛽 ≥ 1 and 𝛿𝛿 ≤ 1, or 𝛿𝛿 ≥ 0 and 𝛽𝛽 ∈ [1 − 𝜅𝜅𝜍𝜍, 1], or 𝛽𝛽 ≥ 0 and 

 
23 This is the model of Subsection 3.2, but without shocks, and allowing for a non-zero long-run inflation 
target 𝜋𝜋∗ with full indexation of non-resetting firms to this target. 
24 This is proven in Supplemental Appendix K.8 in Holden (2024), which also examines non-absorbing two-
state sunspot solutions. Nakata & Schmidt (2022) look at such equilibria under optimal policy. In line with 
the results of Bilbiie (2022), the existence condition is identical to the condition for positive monetary shocks 
to lower the nominal rate when 𝑞𝑞 = 𝜌𝜌, in the notation of footnote 17. (The author again thanks a referee for 

this observation.) 
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𝛿𝛿 ∈ [1 − 𝜅𝜅𝜍𝜍, 1]. And it holds for 𝑞𝑞 sufficiently small when 𝜅𝜅𝜍𝜍 < 0. Hence for most 

reasonable calibrations of the model (including those aimed at capturing the 
impact of heterogeneity) it holds for at least some 𝑞𝑞, implying that the existence of 

sunspot equilibria is common even under real rate rules. 

4.2 Modified inflation targets 
One of the sources of equilibrium non-existence is that the monetary rule is 

implicitly targeting an infeasible level for inflation when real rates are low. If 

inflation is at target, nominal interest rates should be positive. A modified inflation 
target can ensure this. Furthermore, by introducing some history dependence we 

can rule out sunspot equilibria of the type previously considered; interest rate 
smoothing will do. 

Building on the smoothed rule of equation (5), suppose that from period 1 
onwards, the central bank uses the rule: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + (𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + �𝔼𝔼𝑡𝑡�̌�𝜋𝑡𝑡+1
∗ − 𝔼𝔼𝑡𝑡−1�̌�𝜋𝑡𝑡

∗� + 𝜃𝜃(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡
∗)� , (11) 

where 𝜃𝜃 > 0 and where the modified inflation target, �̌�𝜋𝑡𝑡
∗, is given by: 

�̌�𝜋𝑡𝑡
∗ ≔ max{𝜋𝜋𝑡𝑡

∗, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1} , (12) 
with 𝜋𝜋𝑡𝑡

∗ the original inflation target, and 𝜖𝜖 > 0 some small constant (10 annualized 

bps say). Note that if inflation is at the modified target, then nominal rates must 
be positive, by the Fisher equation.25 We assume that the central bank announces 

the modified inflation target at the start of each period, so agents do not necessarily 
need to understand the rule that produces it. Since it is hard to give sense to 

expectations of the modified target before the rule is introduced, we will 
sometimes also assume that 𝔼𝔼0�̌�𝜋1

∗ = 𝔼𝔼0𝜋𝜋1, or at least that the central bank acts in 

period 1 as if that were true. 
Under this modified rule, 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡
∗) for all 𝑡𝑡 ≥ 1 is an 

equilibrium.26 This means that 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡
∗ for all 𝑡𝑡 > 1,27 and this will also hold for 

 
25 This modified target is higher (in expectation) than necessary to ensure positive nominal rates. It would 
be enough to set �̌�𝜋𝑡𝑡

∗ ≔ 𝜋𝜋𝑡𝑡
∗ + max{0, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡

∗}, which has a lower 𝑡𝑡 − 1 dated conditional 
expectation than max{𝜋𝜋𝑡𝑡

∗, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1}, by Jensen’s inequality. However, the target of equation (13) is likely to 
be easier to communicate, and easier to learn, as it is a constraint on observables, not expectations. 
26 Uniqueness in the absence of the ZLB follows from the results of Subsection 2.1. So, it suffices to establish 
that 𝑖𝑖𝑡𝑡 > 0 for all 𝑡𝑡 ≥ 1 under this equilibrium. This follows as 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝔼𝔼𝑡𝑡�̌�𝜋𝑡𝑡+1

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − �̌�𝜋𝑡𝑡−1
∗ �, i.e., 

�1 + 𝜃𝜃−1�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = �1 + 𝜃𝜃−1�𝔼𝔼𝑡𝑡�̌�𝜋𝑡𝑡+1
∗ , so 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝔼𝔼𝑡𝑡�̌�𝜋𝑡𝑡+1

∗ ≥ 𝜖𝜖 − 𝑟𝑟𝑡𝑡 > −𝑟𝑟𝑡𝑡, implying 𝑖𝑖𝑡𝑡 > 0. 
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𝑡𝑡 = 1 under the initial condition 𝔼𝔼0�̌�𝜋1
∗ = 𝔼𝔼0𝜋𝜋1. Hence, under this monetary rule, 

no matter the form of the rest of the model, there is a closed form solution for 
inflation in terms of observables. The existence of a closed form solution is 

particularly desirable as it is likely to be easier for agents to coordinate on simple 
solutions. Even the existence of a solution is notable, as under the simple rule of 

the previous subsection there could be no solution at all. 
Additionally, under the 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡
∗) solution, 𝜋𝜋𝑡𝑡 is bounded 

below by −𝑟𝑟𝑡𝑡−1.28 This prevents the severe deflations that can accompany shocks 
taking the economy to the ZLB under standard monetary rules. It also removes all 

of the deflationary bias that usually accompanies the ZLB (Hills, Nakata & 
Schmidt 2019). Instead, the definition of �̌�𝜋𝑡𝑡

∗ implies that 𝔼𝔼𝜋𝜋𝑡𝑡 ≥ 𝔼𝔼𝜋𝜋𝑡𝑡
∗,28 so there is 

a mild inflationary bias. 
Moreover, at least in the absence of uncertainty, the 𝜋𝜋𝑡𝑡 ≡ �̌�𝜋𝑡𝑡

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 −
�̌�𝜋𝑡𝑡

∗) solution is unique, assuming that 𝜋𝜋𝑡𝑡 is bounded, and that the economy 
eventually escapes the ZLB for good.29 This is another improvement on the 

performance of the naïve real rate rule of the previous subsection, where there 
were multiple perfect-foresight paths even given these assumptions. 

4.3 Ruling out sunspot equilibria 
The rule of equation (12) also helps rule out sunspot equilibria. The usual 

explanation for the benefit of history dependence with a ZLB is as follows: history 
dependence leads to higher inflation after exiting the ZLB, raising inflation 

expectations even while at the ZLB. However, this channel cannot help to rule out 
sunspot equilibria with a sufficiently persistent ZLB state, as in the fully persistent 

limit, inflation in the non-ZLB state(s) has no impact on inflation in the ZLB 
 

27 Let 𝑡𝑡 > 1. By the previous footnote, 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡−1�̌�𝜋𝑡𝑡
∗, so from the solution for inflation, 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡

∗. 
28 At least for 𝑡𝑡 > 1, but also for 𝑡𝑡 = 1 under the initial condition 𝔼𝔼0�̌�𝜋1

∗ = 𝔼𝔼0𝜋𝜋1. 
29 Strictly, without further assumptions we only have uniqueness conditional on the path of �̌�𝜋𝑡𝑡

∗. This is proven 

in Supplemental Appendix K.9 in Holden (2024). For example, an endogenous 𝜋𝜋𝑡𝑡
∗ could produce multiple 

solutions for �̌�𝜋𝑡𝑡
∗. However, at least when 𝜋𝜋𝑡𝑡

∗ is exogenous, there is unconditional uniqueness for standard 
models. For example, with the rest of the model given by equations (10) and (11), with 𝜋𝜋𝑡𝑡

∗ exogenous and 
𝛽𝛽+𝛿𝛿
𝜅𝜅𝜍𝜍 > − 1

2, there is a unique perfect foresight solution under the additional terminal condition �̌�𝜋𝑡𝑡
∗ − 𝜋𝜋𝑡𝑡

∗ → 0 
as 𝑡𝑡 → ∞ (again proved in Supplemental Appendix K.9 in Holden (2024)). Moreover, with 𝛽𝛽+𝛿𝛿

𝜅𝜅𝜍𝜍 ≥ 0, this 
uniqueness is robust, in the sense that no small, continuous change to the model or its parameters could 

overturn it.  
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state.30 Instead, history dependence helps rule out sunspot equilibria by 

preventing any transition into the ZLB state. History dependence allows the 
central bank to have a weak contemporaneous response to inflation. With the 

monetary rule flatter than the Fisher equation, uniqueness is restored. 
We want to know when it is possible for the economy to make a sunspot driven 

jump to the ZLB. So, we need to look at two or more state sunspot solutions 
without an absorbing “good” state. Supplemental Appendix K.8 in Holden (2024) 

looks at two-state sunspot solutions to the model of Subsection 4.1 with the naïve 
real rate rule. It shows that given mild parameter restrictions,31 a sunspot solution 

only exists when both the “bad” (ZLB) state and the “good” (non-ZLB) state are 
sufficiently persistent. So, to examine whether the rule of equation (12) prevents 

similar sunspot solutions, it suffices to consider the extreme case in which the 
economy remains in its current state with probability one. This avoids the technical 

challenges of solving for sunspot solutions with endogenous state variables. 
Consider then the model of equations (10), (11), (12) and (13), with 𝜋𝜋𝑡𝑡

∗ = 𝜋𝜋∗ 

for all 𝑡𝑡, 𝑛𝑛 + 𝜋𝜋∗ > 𝜖𝜖 > 0, 𝜃𝜃 > 0, 𝜅𝜅𝜍𝜍 > 0 and �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0.32 Suppose 
that in period 0, the economy was away from the ZLB, and was expected to stay 

there with probability one. Thus, 𝑖𝑖0 − 𝑟𝑟0 = 𝔼𝔼0𝜋𝜋1 = 𝔼𝔼0�̌�𝜋1
∗ = �̌�𝜋1

∗ = 𝜋𝜋∗. However, in 
period 1, a “zero probability sunspot shock” hits, so that with probability one, for 

all 𝑡𝑡 ≥ 1, 0 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1. (The expectation drops out of the Fisher equation as 
there is no other uncertainty.) Thus for 𝑡𝑡 ≥ 1, the Phillips curve and Euler equation 

imply that 𝜋𝜋𝑡𝑡 = 𝜋𝜋Z and 𝑥𝑥𝑡𝑡 = 𝑥𝑥Z where �1 − 𝛽𝛽�(𝜋𝜋Z − 𝜋𝜋∗) = 𝜅𝜅𝑥𝑥𝑡𝑡 and (1 − 𝛿𝛿)𝑥𝑥Z =
𝜍𝜍(𝜋𝜋Z + 𝑛𝑛), so: 

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅𝜍𝜍(𝑛𝑛 + 𝜋𝜋∗)

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0. 

This is consistent with equilibrium if and only if the interest rate would be non-

positive for 𝑡𝑡 ≥ 1 were it not for the ZLB. In period 1, this requires: 
 

30 Nie & Roulleau-Pasdeloup (2022) show that the higher post-ZLB inflation channel can help rule out 
sunspots given a fixed persistence of the ZLB state. But with policy fixed, sunspots always exist in their set-
up if the ZLB state is allowed to be sufficiently persistent. 
31 𝜅𝜅𝜍𝜍 > 0, �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0, 𝛽𝛽𝛿𝛿 ≥ 0, 𝜙𝜙 sufficiently large. Note: if 𝜅𝜅𝜍𝜍 > 0, then �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0 
when either 𝛽𝛽 ≤ 1 and 𝛿𝛿 ≥ 1, or 𝛽𝛽 ≥ 1 and 𝛿𝛿 ≤ 1, or 𝛿𝛿 > 0 and 𝛽𝛽 ∈ [1 − 𝜅𝜅𝜍𝜍, 1], or 𝛽𝛽 > 0 and 𝛿𝛿 ∈ [1 − 𝜅𝜅𝜍𝜍, 1]. 
32 The final two assumptions ensure that with the naïve real rate rule, a sunspot solution only exists with 

sufficiently persistent states. The previous footnote gives sufficient conditions for �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0. 
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0 ≥ 𝑟𝑟1 + (𝑖𝑖0 − 𝑟𝑟0) + �𝔼𝔼1�̌�𝜋2
∗ − 𝔼𝔼0�̌�𝜋1

∗� + 𝜃𝜃�𝜋𝜋1 − �̌�𝜋1
∗� 

= max{0, 𝜖𝜖 + 𝜋𝜋Z − 𝜋𝜋∗} + (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗). 
However, if 𝜃𝜃 < 1, then (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗) > 0, so the condition cannot hold. Thus, 
as long as the central bank does not respond too aggressively to inflation, there 

cannot be sunspot solutions of the kind previously described. Furthermore, it 
follows that as long as the economy is currently sufficiently close to the “good” 

steady state, there is no way for the economy to ever jump to the ZLB. Crucial to 
this result is the fact that interest rate smoothing means we only need 𝜃𝜃 to be 

positive. It does not need to be greater than 1, as the state variables ensure the 
response to anticipated inflation deviations is 1 + 𝜃𝜃 > 1, as required by the Taylor 

principle. Thus, the modified inflation target rule delivers robust uniqueness, even 
in the presence of the ZLB. 

5 Practical implementation of real rate rules 
Until recently, central banks concentrated their monetary interventions in 

overnight debt markets. However, with the rise of quantitative easing, many 
central banks have been buying substantial quantities of longer maturity sovereign 

debt. There is no reason then that central banks could not conduct open market 
operations to fix the interest rate on longer maturity bonds, as the Bank of Japan 

did from 2016 to 2023. Using longer maturity bonds is convenient under a real rate 
rule, as in most countries, inflation-protected securities are only issued a few times 

per year, and at long maturities, e.g., five years. As a result, markets in shorter 
maturity inflation-protected securities may be illiquid or even unavailable, and it 

can be difficult to reconstruct the short end of the real yield curve. Using longer 
maturity bonds also lessens the ZLB’s impact, as they are less likely to hit the ZLB. 

Inflation indexation lags further complicate the use of short maturity inflation-
protected securities (see e.g. Gürkaynak, Sack & Wright (2010)). For example, 

with time measured in quarters, 3-month maturity US TIPS have a period 𝑡𝑡 + 1 
realized yield of 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡, not 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 as one might have expected. Additionally, 

there is an information lag as inflation is not observed contemporaneously. By 
using longer maturity bonds, the impact of these indexation and information lags 

are reduced. This section examines the performance of real rate rules when the 
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central bank implements them using multiperiod debt in the presence of 

indexation and information lags. 

5.1 Set-up 
We aim to describe a set-up with many of the frictions that would be 

problematic for a naïve implementation of a real rate rule. The central bank’s 

trading desk would be tasked with maintaining a particular level of the gap 
between nominal and real rates, according to the market for bonds of a certain 

maturity. We let 𝑇𝑇 ≥ 1 be the time to maturity of these bonds, measured in periods. 
The units of time do not need to coincide with the maturity of the bond. For 

example, 𝑇𝑇 may be 60 if periods are months and five-year bonds are used. 
We allow for the possibility that inflation is not observed contemporaneously. 

For example, US CPI is released with a one-month lag. To capture this, while 
keeping to the convention that 𝔼𝔼𝑡𝑡𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡 for all 𝑡𝑡-dated endogenous variables 𝑣𝑣𝑡𝑡, 

we assume that market participants and the central bank use the 𝑡𝑡 − 𝑆𝑆 information 
set in period 𝑡𝑡 (i.e. they know the values of all 𝑡𝑡 − 𝑆𝑆 and earlier dated variables), 

for some 𝑆𝑆 ≥ 0. Since the central bank does not know 𝜋𝜋𝑡𝑡 at 𝑡𝑡, we assume that they 
respond to deviations of 𝜋𝜋𝑡𝑡−𝑆𝑆 from target, rather than to deviations of 𝜋𝜋𝑡𝑡. 

We write 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 for the nominal yield per-period on a 𝑇𝑇-period nominal bond at 
𝑡𝑡, and 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 for the real yield per-period on a 𝑇𝑇-period inflation-protected bond at 

𝑡𝑡. This notation captures the fact that period 𝑡𝑡 nominal and real yields must be fixed 
in period 𝑡𝑡 − 𝑆𝑆: market participants and the central bank only have access to the 

period 𝑡𝑡 − 𝑆𝑆 information set at 𝑡𝑡, and these agents must know period 𝑡𝑡 nominal 
and real rates. 

We allow for a wedge in the Fisher equation to capture inflation risk premia, 
liquidity premia, asymmetric term premia and even departures from full 

information rational expectations amongst market participants. Since only 𝑡𝑡 − 𝑆𝑆 
dated variables are known in period 𝑡𝑡, we denote the period 𝑡𝑡 value of this shock 

by 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆. I.e., risk premia (etc.) will be determined 𝑆𝑆 periods in advance, though 
market participants and the central bank will not act on this, as they use 𝑆𝑆 period 

old data. 
We also allow for the possibility of an indexation lag in the return of the real 

bond. We assume that the lag is 𝐿𝐿 periods, where 𝐿𝐿 ≥ 𝑆𝑆. If periods are months, 
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then 𝐿𝐿 would be 3 for the US (Gürkaynak, Sack & Wright 2010). 

5.2 The generalized Fisher equation and monetary rule 
Given all this, the Fisher equation coming from equating returns between 

nominal and real bonds states that: 

𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 = 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇 � 𝜋𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

𝑇𝑇

𝑘𝑘=1
. 

We assume that 𝑇𝑇 − 𝐿𝐿 ≥ −𝑆𝑆, so that inflation dated 𝑡𝑡 − 𝑆𝑆 or later enters this 

equation. Otherwise, the Fisher equation becomes backward looking and 
determinacy conditions may be quite different. So, for the US, the central bank 

would have to use bonds with maturity of at least two months. 
Supplemental Appendix I in Holden (2024) presents empirical evidence that 

this five-year Fisher equation holds. There, we review some prior evidence, and 
show both that professional forecasts predict breakeven rates, and that breakeven 

rates forecast realised inflation. 
Based upon our previous rule (12), we suppose that from period 1 − 𝑆𝑆 

onwards, the central bank intervenes in 𝑇𝑇-period nominal bond markets to ensure 
that: 

𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 = max �0, 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 + �𝑖𝑖𝑡𝑡−1|𝑡𝑡−1−𝑆𝑆 − 𝑟𝑟𝑡𝑡−1|𝑡𝑡−1−𝑆𝑆 − 𝜈𝜈�̅�𝑡−1|𝑡𝑡−1−𝑆𝑆�

+ 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇 � �̌�𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

∗
𝑇𝑇

𝑘𝑘=1
− 𝔼𝔼𝑡𝑡−1−𝑆𝑆

1
𝑇𝑇 � �̌�𝜋𝑡𝑡−1+𝑘𝑘−𝐿𝐿

∗
𝑇𝑇

𝑘𝑘=1
+ 𝜃𝜃�𝜋𝜋𝑡𝑡−𝑆𝑆 − �̌�𝜋𝑡𝑡−𝑆𝑆

∗ �

+
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡−𝑆𝑆 − �̌�𝜋𝑡𝑡−𝑆𝑆

∗ � − �𝜋𝜋𝑡𝑡−𝐿𝐿 − �̌�𝜋𝑡𝑡−𝐿𝐿
∗ ���, 

where �̌�𝜋𝑡𝑡
∗ is the modified inflation target (to be defined), 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 is the central bank’s 

period 𝑡𝑡 belief about the level of 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆, and 𝜃𝜃 > 0. 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 could also include a 

monetary policy shock component. We stress that the 𝑡𝑡|𝑡𝑡 − 𝑆𝑆 index here does not 
mean that the private sector knows monetary policy shocks 𝑆𝑆 periods in advance, 
as the private sector (and the central bank) uses the 𝑡𝑡 − 𝑆𝑆 information set at 𝑡𝑡. The 
final term here is a response to the change in relative inflation from period 𝑡𝑡 − 𝐿𝐿 to 

𝑡𝑡 − 𝑆𝑆. This ensures that 𝜃𝜃 > 0 is sufficient for determinacy even when 𝑆𝑆 < 𝐿𝐿.33  
Note that while under conventional monetary policy, nominal interest rates are 

 
33 We examine determinacy without this term in Online Appendix F, and show that there is still determinacy 

as long as 𝜃𝜃 > 2
𝑇𝑇, so in the continuous time limit, 𝜃𝜃 > 0 is again sufficient. 
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approximately constant between monetary policy committee meetings, this may 

not be the case here. The rule effectively specifies a period 𝑡𝑡 level for 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆, 
not for 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆. The level of 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 may fluctuate (perhaps in part due to unexpected 

changes in 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆), so the central bank’s trading desk could have to continuously 
tweak the level of 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 to hold 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 at its desired level. While this is a 

departure from current operating procedures, there is no reason why holding 
𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 approximately constant should be any harder than holding 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 

approximately constant. This is thanks to the real-time observability of 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 via 
inflation-protected bonds. 

The central bank could also directly control 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 by promising to freely 
exchange $1 face value of real debt for $ exp�𝑇𝑇�𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆�� face value of 

nominal debt, as suggested by Cochrane (2017; 2018). Alternatively, the central 
bank could buy or sell a long-short portfolio containing $1 face value of nominal 

debt, and −$1 face value of real debt to hold the portfolio’s per-period return fixed 
at $�𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆�.34 Or, the central bank could directly pin down the contract rate 

on inflation swaps, as suggested in Subsection 3.3. 
We define the modified inflation target to ensure that 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 ≥ 𝜖𝜖, where 𝜖𝜖 > 0 is 

a small constant (10 annualized bps say). As in the one period case, the central 
bank should announce the modified inflation target each period, so firms and 

households do not need to understand the precise law of motion of �̌�𝜋𝑡𝑡
∗. The firm 

and household problems are even easier if the underlying target, 𝜋𝜋𝑡𝑡
∗, is chosen one 

period in advance, so �̌�𝜋𝑡𝑡
∗ can be announced in period 𝑡𝑡 − 1. 

We define: 

�̌�𝜋𝑡𝑡
∗ ≔ max{�̌�𝜋𝑡𝑡

�𝑗𝑗�|𝑗𝑗 ∈ {1, … , 𝑇𝑇}}, 
where for 𝑗𝑗 ∈ {1, … , 𝑇𝑇}: 

�̌�𝜋𝑡𝑡
�𝑗𝑗� ≔ 𝜋𝜋𝑡𝑡

∗ + max
⎩�
⎨
�⎧0,

𝑇𝑇
𝑗𝑗 �𝜖𝜖 − 𝑟𝑟𝑡𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿|𝑡𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿−𝑆𝑆 − 𝜈𝜈�̅�𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿|𝑡𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿−𝑆𝑆�

−
1
𝑗𝑗 � �̌�𝜋𝑡𝑡−𝑘𝑘

∗
𝑇𝑇−𝑗𝑗

𝑘𝑘=1
− 𝔼𝔼𝑡𝑡

1
𝑗𝑗 � 𝜋𝜋𝑡𝑡+𝑘𝑘

∗
𝑗𝑗−1

𝑘𝑘=0 ⎭�
⎬
�⎫. 

If 𝑇𝑇 = 1 and 𝐿𝐿 = 𝑆𝑆 = 0, then much as in Subsection 4.2, �̌�𝜋𝑡𝑡
∗ = max�𝜋𝜋𝑡𝑡

∗, 𝜖𝜖 −
𝑟𝑟𝑡𝑡−1|𝑡𝑡−1 − 𝜈𝜈�̅�𝑡−1|𝑡𝑡−1�. More generally, the �̌�𝜋𝑡𝑡

(1) component is enough to ensure that 

 
34 The author thanks Peter Ireland for this suggestion. 
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𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 + 1
𝑇𝑇 ∑ �̌�𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

∗𝑇𝑇
𝑘𝑘=1 ≥ 𝜖𝜖 for all 𝑡𝑡.35 The �̌�𝜋𝑡𝑡

�𝑗𝑗� components for 𝑗𝑗 > 1 help 

to smooth the inflation increases over time. Rather than increasing the inflation 
target just in the final period of a bond that would otherwise violate the constraint, 

instead we smooth this increase over the life of the bond. The particular structure 
here is designed to minimise the risk of self-fulfilling dynamics from the various 

bounds. Note that we do not attempt to ensure that shorter maturity bonds are 
away from the ZLB, thus the higher is 𝑇𝑇, the closer �̌�𝜋𝑡𝑡

∗ should be to 𝜋𝜋𝑡𝑡
∗. 

5.3 Solution and robustness 
Define Δ𝑡𝑡 ≔ �𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡� − �𝜈𝜈𝑡𝑡−1+𝑆𝑆|𝑡𝑡−1 − 𝜈𝜈�̅�𝑡−1+𝑆𝑆|𝑡𝑡−1� and: 

𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡
1
𝑇𝑇 � �𝜋𝜋𝑡𝑡+𝑘𝑘 − �̌�𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇−𝐿𝐿+𝑆𝑆

𝑘𝑘=1
. 

Then combining the multi-period Fisher equation and the monetary rule implies 
that if the ZLB never binds (as our modified target should ensure), then 𝑒𝑒𝑡𝑡 + Δ𝑡𝑡 =
𝑒𝑒𝑡𝑡−1 + 𝜃𝜃(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡

∗). (The final term in the monetary rule has dropped out due to 
cancellation with the first 𝐿𝐿 − 𝑆𝑆 terms of the sums.) Substituting this back into the 

definition of 𝑒𝑒𝑡𝑡 gives the purely forward-looking recurrence: 

𝜃𝜃𝑇𝑇𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 � �𝑒𝑒𝑡𝑡+𝑘𝑘 − 𝑒𝑒𝑡𝑡+𝑘𝑘−1 + Δ𝑡𝑡+𝑘𝑘�
𝑇𝑇−𝐿𝐿+𝑆𝑆

𝑘𝑘=1
. (13) 

Any solution for 𝑒𝑒𝑡𝑡 gives a corresponding solution for 𝜋𝜋𝑡𝑡 as 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡
∗ +

𝜃𝜃−1(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 + Δ𝑡𝑡). Note that since we assume the rule is introduced in period 1 −
𝑆𝑆, equation (14) will hold for all 𝑡𝑡 ≥ 1. 

We start by proving determinacy when Δ𝑡𝑡 is exogenous. We separately 

consider the two cases, 𝑇𝑇 = 𝐿𝐿 − 𝑆𝑆 and 𝑇𝑇 > 𝐿𝐿 − 𝑆𝑆 (recall that we assume 𝑇𝑇 ≥ 𝐿𝐿 −
𝑆𝑆). In the first case, equation (14) states that 𝜃𝜃𝑇𝑇𝑒𝑒𝑡𝑡 = 0, giving a unique solution. In 

the latter case, there is a unique solution if and only if it has a unique solution when 
Δ𝑡𝑡 = 0 for all 𝑡𝑡. In this case, via the substitution 𝑒𝑒𝑡𝑡 = 𝑐𝑐𝜆𝜆𝑡𝑡 we have the characteristic 

polynomial, 𝜃𝜃𝑇𝑇 = 𝜆𝜆𝑇𝑇−𝐿𝐿+𝑆𝑆 − 1, meaning |𝜆𝜆| = (1 + 𝜃𝜃𝑇𝑇)
1

𝑇𝑇−𝐿𝐿+𝑆𝑆 > 1. Therefore, all the 
polynomial’s roots are outside the unit circle, which implies determinacy as 

equation (14) is purely forward looking. Thus, at least when Δ𝑡𝑡 is exogenous, there 
 

35 Strictly, we want to ensure that 0 < 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 = 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇 ∑ �̌�𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

∗𝑇𝑇
𝑘𝑘=1 . If 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 ≠ 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆, then this 

is not guaranteed. However, if the tracking error �𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 − 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆� can be bounded with probability one, then 
we can set 𝜖𝜖 to that bound and ensure 0 < 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆. If the tracking error is not bounded with probability one, 

then we can still make the probability of hitting the ZLB negligible by setting a high enough 𝜖𝜖. 
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is a unique solution for inflation.36 In the special case in which the central bank 

observes 𝜈𝜈𝑡𝑡 so 𝜈𝜈�̅�𝑡 = 𝜈𝜈𝑡𝑡, then 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡
∗ for all 𝑡𝑡 > 1. 

In the general case in which Δ𝑡𝑡 is potentially endogenous, as long as it is 

stationary, the solution must take the form 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 ∑ 𝐴𝐴𝑗𝑗Δ𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=1 . Substituting this 

into (14) then matching terms gives that for 𝑗𝑗 ≤ 𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆, 𝐴𝐴𝑗𝑗 = (1 + 𝜃𝜃𝑇𝑇)−1, while 

for 𝑗𝑗 > 𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆, 𝐴𝐴𝑗𝑗 = (1 + 𝜃𝜃𝑇𝑇)−1𝐴𝐴𝑗𝑗−𝑇𝑇+𝐿𝐿−𝑆𝑆. Thus: 

𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 �(1 + 𝜃𝜃𝑇𝑇)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�

Δ𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
, 

where for all 𝑧𝑧, ⌈𝑧𝑧⌉ denotes the smallest integer greater or equal to 𝑧𝑧. For example, 
in the simple case in which Δ𝑡𝑡 is independent across time (meaning that 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 −
𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 follows a random walk), 𝑒𝑒𝑡𝑡 = 0, so for 𝑡𝑡 > 1, 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡

∗ + 𝜃𝜃−1Δ𝑡𝑡. Or if Δ𝑡𝑡 
follows an AR(1) process with persistence 𝜌𝜌, then 𝑒𝑒𝑡𝑡 = 𝐸𝐸Δ𝑡𝑡 (also AR(1)), where 

𝐸𝐸 ≔ 𝜌𝜌�1 − 𝜌𝜌𝑇𝑇−𝐿𝐿+𝑆𝑆��1 − 𝜌𝜌�−1�1 − 𝜌𝜌𝑇𝑇−𝐿𝐿+𝑆𝑆 + 𝜃𝜃𝑇𝑇�−1, so 𝑥𝑥𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡
∗ = 𝜃𝜃−1�(1 +

𝐸𝐸)Δ𝑡𝑡 − 𝐸𝐸Δ𝑡𝑡−1�. 

Furthermore, under even weaker conditions than those used in Subsection 3.3, 
we have that 𝜋𝜋𝑡𝑡 ≈ �̌�𝜋𝑡𝑡

∗ for large 𝜃𝜃, even when Δ𝑡𝑡 is endogenous (proven in 

Supplemental Appendix K.10 in Holden (2024)). These conditions are very mild, 
as already argued in Subsection 3.3. Thus, with 𝜃𝜃 large, even if the central bank 

imperfectly tracks the risk (etc.) premium 𝜈𝜈𝑡𝑡, and even if their error is endogenous 
and non-stationary (𝐼𝐼(1)), it will still be the case that 𝜋𝜋𝑡𝑡 ≈ �̌�𝜋𝑡𝑡

∗ in all periods. I.e., 

even in the presence of unobservable endogenous, non-stationary wedges in the 
Fisher equation, the central bank can still determinately implement an arbitrary 

path for inflation. The presence of information or indexation lags makes no 
fundamental difference to this. 

6 Empirical test 
Would the behaviour of the US Federal Reserve have been drastically different 

if it were following a real rate rule? Or have nominal rates in the US closely tracked 
what they would have been under a real rate rule? We previously argued that real 

rate rules could explain any observed outcomes, if there is nothing to discipline 
𝜋𝜋𝑡𝑡

∗. Thus, to design a non-trivial empirical test of the explanatory power of real 
 

36 We do not have the indeterminacy issues for rules setting long-rates that were noted by McGough, 

Rudebusch & Williams (2005), due to the presence of the real rate in our rule. 
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rate rules, we need data on the path of 𝜋𝜋𝑡𝑡
∗. Luckily, for the US this is available, via 

the Summary of Economic Projections. Each quarter, Federal Reserve board 
members and regional bank presidents are asked for their projections for the 

economy, conditional on the Fed following what they believe to be “appropriate 
monetary policy”.10 Their projections for inflation thus represent what they believe 

to be the ideal outcome for inflation, given the economy’s state, i.e. they are 
measures of 𝜋𝜋𝑡𝑡

∗. In Supplemental Appendix J in Holden (2024) we document how 

we recover a quarterly time series for 𝜋𝜋𝑡𝑡
∗ from data on these projections at different 

horizons, using a state-space model combined with a time-varying map from 

PCEPI (used in the Summary of Economic Projections) to CPI (used in TIPS). 
Armed with estimates of 𝜋𝜋𝑡𝑡

∗, we can then estimate the practical real rate rule 

introduced in Section 5 on actual quarterly US CPI and TIPS breakeven inflation 
data (Q4 2008 to Q4 2022). We work with five-year US treasuries and TIPS, so 𝑇𝑇 =
20. Using longer bonds helps capture the effects of the Fed’s quantitative easing 
and forward guidance over this period. Since annual yields on five-year US 

treasuries never dropped below 0.19 over our sample,37 we ignore the ZLB. We 
take 𝐿𝐿 = 1 (i.e., three months) and 𝑆𝑆 = 0, since the true CPI release delay of below 

one month is less than half of the length of a period (three months). For simplicity 
we write (e.g.) 𝜈𝜈𝑡𝑡 rather than 𝜈𝜈𝑡𝑡|𝑡𝑡. Thus, we wish to estimate 𝜃𝜃 in: 

𝑦𝑦𝑡𝑡 = 𝜃𝜃𝑥𝑥𝑡𝑡 + 𝜀𝜀𝜈𝜈̅,𝑡𝑡, 
where: 

𝑦𝑦𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
− 𝔼𝔼𝑡𝑡−1

1
𝑇𝑇 ��𝜋𝜋𝑡𝑡−1+𝑘𝑘 − 𝜋𝜋𝑡𝑡−1+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
+ 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1

−
1
𝑇𝑇 �(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ ��, 

𝑥𝑥𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ (i.e., inflation relative to target) and 𝜀𝜀𝜈𝜈̅,𝑡𝑡 ≔ 𝜈𝜈�̅�𝑡 − 𝜈𝜈�̅�𝑡−1. In words, 𝑦𝑦𝑡𝑡 is 

the change in five-year breakeven inflation expectations, relative to target, minus 

5% of the change in inflation, relative to target. Subtracting this change in relative 
inflation cancels the 𝑘𝑘 = 0 terms from the sums in the definition of 𝑦𝑦𝑡𝑡, removing 

any mechanical dependence on 𝜋𝜋𝑡𝑡. We describe the exact empirical counterpart of 
𝑦𝑦𝑡𝑡 in Supplemental Appendix J.5 in Holden (2024). 

We begin by estimating 𝑦𝑦𝑡𝑡 = 𝜃𝜃𝑥𝑥𝑡𝑡 + 𝜀𝜀𝜈𝜈̅,𝑡𝑡 by OLS. This gives 𝜃𝜃 ≈ 0.033 with a 
 

37 Data from https://fred.stlouisfed.org/series/DGS5.  

https://fred.stlouisfed.org/series/DGS5
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heteroskedasticity and autocorrelation (HAC) robust p-value of 0.002 for a test of 

𝜃𝜃 = 0. Thus, the OLS slope is significantly different from 0 at 1%. This means that 
we can reject the hypothesis that the Fed is implementing passive monetary policy 

(𝜃𝜃 ≤ 0) via a real rate rule. This is reassuring as active monetary policy (𝜃𝜃 > 0) is 
needed for determinacy. We plot the data and the OLS fit in Figure 8.38 Note how 

small is the range of the vertical axis, compared to that of the horizontal one. Much 
of the movements in breakeven inflation have been mopped up by differencing, 

both in time, and relative to the target path. 

However, OLS is likely to be biased for two reasons. Firstly, the presence of 

measurement error in 𝜋𝜋𝑡𝑡
∗ leads to attenuation bias. Secondly, aside from any 

measurement error, 𝑥𝑥𝑡𝑡 is still likely to be correlated with the error term. According 
to the model, 𝑥𝑥𝑡𝑡 is linear in Δ𝑡𝑡 = (𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1) − (𝜈𝜈�̅�𝑡 − 𝜈𝜈�̅�𝑡−1) and its lags, and the error 
term is 𝜀𝜀𝜈𝜈̅,𝑡𝑡 = 𝜈𝜈�̅�𝑡 − 𝜈𝜈�̅�𝑡−1. If, as is plausible, Δ𝑡𝑡 and 𝜈𝜈�̅�𝑡 − 𝜈𝜈�̅�𝑡−1 are correlated, then 𝑥𝑥𝑡𝑡 

will be endogenous. 
To reduce these biases, we instrument 𝑥𝑥𝑡𝑡 with the oil supply news shocks of 

Känzig (2021).39 The oil price news shocks have an immediate impact on inflation, 

 
38 See Supplemental Appendix J in Holden (2024) for replication instructions for all these results. 
39 Känzig provides these shocks to download here: https://github.com/dkaenzig/oilsupplynews. We 

aggregate them to quarterly. 

Figure 1: Data and linear fits. The dotted line is the OLS estimate. The dashed line is the monetary 

shock-based estimate. The solid line is the IV estimate. 
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as shown by Känzig (2021). They ought not to be driven by the monetary shock 

(𝜀𝜀𝜈𝜈̅,𝑡𝑡) or changes in 𝜋𝜋𝑡𝑡
∗, as they are constructed using a tight window around OPEC 

announcements, during which the US monetary stance should not have changed. 

As evidence, Känzig documents that the shocks are uncorrelated with standard 
measures of monetary policy surprises, and do not lead to immediate movements 

in the Fed funds rate. 
So, the oil price news shocks should be correlated with 𝑥𝑥𝑡𝑡, but not with 𝜀𝜀𝜈𝜈̅,𝑡𝑡 (the 

monetary shock), as is required to be a valid instrument. This means they must be 
correlated with 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1, the change in the Fisher wedge. If Δ𝑡𝑡 is IID, then 𝑦𝑦𝑡𝑡 =
𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1, so 𝑦𝑦𝑡𝑡 should be correlated with these shocks. We observe a correlation of 
36%, significantly different from 0 at a 1% level. 

A potential challenge to this instrument is that were the central bank really 
following a real rate rule, the Fed’s trading desk might detect the movement in 

𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1 and respond with a similar change in 𝜈𝜈�̅�𝑡 − 𝜈𝜈�̅�𝑡−1, even within the tight 
window used in constructing the shocks. However, given the observed smooth 

path of Fed Treasury holdings, this seems unlikely in practice.40 
The IV estimates give 𝜃𝜃 ≈ 0.062 with a HAC p-value of 0.003 for a test of 𝜃𝜃 =

0.41 Thus, our preferred estimate of 𝜃𝜃 is significantly different from 0 even at a 1% 
level, again rejecting the indeterminacy region.42 The residuals from this 

regression are measures of the monetary policy shock, 𝜀𝜀𝜈𝜈̅,𝑡𝑡. As such, they should 
be correlated with the monetary shocks identified by Bauer & Swanson (2023), 

aggregated to quarterly. This correlation is 14% over the available sample (Q4 2008 
to Q4 2019). That this number is not higher is perhaps unsurprising given that 

nominal rates were near zero for most of the sample, making it hard for the Bauer 
& Swanson high frequency identification method to pick up much of a signal. 

The correlation of the residuals with the Bauer Swanson shocks suggests an 
alternative estimate of 𝜃𝜃 as the value that maximizes the correlation between the 

 
40 See https://fred.stlouisfed.org/series/WSHOTSL.  
41 We also run the OLS and IV regressions without the 1

𝑇𝑇 ��𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗� − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1

∗ �� term on the left-hand 
side. This gives 𝜃𝜃 ≈ 0.089 (OLS) and 𝜃𝜃 ≈ 0.130 (IV) with both HAC p-values for a test of 𝜃𝜃 = 0 below 0.0001. 
Reassuringly, the critical value for determinacy without the extra term is 2

𝑇𝑇 = 0.1, so the IV estimate is high 
enough for determinacy, even without the extra term. (The p-value on a test of 𝜃𝜃 = 0.1 is 0.26.) 
42 The first stage F statistic is 42.17 which is generally considered high enough for reliable inference. 

https://fred.stlouisfed.org/series/WSHOTSL
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residuals and these shocks.43 This gives an almost identical value of 𝜃𝜃 ≈ 0.059, 

albeit with far larger standard errors. That this estimate is so close nonetheless 
supplies further evidence in support of our IV estimate. 

Given our estimate of 𝜃𝜃, we can also examine how much of the variance of 
various rates can be explained by terms other than the direct effect of the monetary 

policy shock 𝜀𝜀𝜈𝜈̅,𝑡𝑡. In particular, we calculate RSS ≔ ∑ �𝑦𝑦𝑡𝑡 − 𝜃𝜃𝑥𝑥𝑡𝑡�2
𝑡𝑡  and then 

evaluate 1 − RSS
TSS, where TSS is the total sum of squares from a rate of interest. The 

IV estimates explain 49.1% of the variance of changes in five-year breakeven 
inflation expectations, 53.3% of the variance of changes in five-year treasury 

yields, 97.4% of the variance of levels of five-year breakeven inflation expectations, 
and 97.5% of the variance of levels of five-year treasury yields. Thus, our monetary 

rule explains almost all the variance in five-year yields. A real rate rule is a 
surprisingly good model of actual Federal Reserve behaviour. 

7 Challenges to real rate rules 
Of course, the world is more complicated than the simple linear models we 

have presented in this paper. While the robustness to the presence of endogenous 
wedges ought to reassure us that real rate rules continue to work under many 

departures from our base assumptions, still we may worry about how real rate 
rules work in non-linear economies, or under bounded rationality. We address 

these particular concerns in the first two subsections below. We then go on to show 
that there is generically a stable equilibrium under a real rate rule even with active 

fiscal policy. 

7.1 Risk premia and non-linear models 
We have focussed on linearized models in the rest of this paper. In this 

subsection we verify that real rate rules still work in fully non-linear models. While 

we have already shown that real rate rules continue to work in the presence of 
endogenous risk premia under mild conditions (in Subsection 3.3), it is still 
reassuring to check things work in the non-linear case.  

 
43 Straightforward algebra shows that this is equivalent to running the regression 𝑚𝑚𝑡𝑡 = 𝑎𝑎𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑦𝑦𝑡𝑡 + 𝜊𝜊𝑡𝑡, where 
𝑚𝑚𝑡𝑡 is the monetary shock series and 𝜊𝜊𝑡𝑡 captures noise in the monetary shock series, and then estimating 𝜃𝜃 by 
− 𝑎𝑎

𝑏𝑏. Standard errors can then be estimated via the delta-method. This estimator is consistent if 𝑚𝑚𝑡𝑡 = 𝜒𝜒𝜀𝜀𝜈𝜈̅,𝑡𝑡 +
𝜊𝜊𝑡𝑡, where the noise 𝜊𝜊𝑡𝑡 is uncorrelated with 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡. 
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Suppose that Ξ𝑡𝑡+1 is the real stochastic discount factor (SDF) between period 

𝑡𝑡 and period 𝑡𝑡 + 1, that 𝐼𝐼𝑡𝑡 is the gross nominal interest rate (so 𝑖𝑖𝑡𝑡 = log 𝐼𝐼𝑡𝑡) and that 
𝑅𝑅𝑡𝑡 is the gross real interest rate (so 𝑟𝑟𝑡𝑡 = log 𝑅𝑅𝑡𝑡). Then the pricing equations for 

one-period nominal and real bonds imply 𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1Π𝑡𝑡+1
−1 = 1 and 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

We suppose that the central bank’s target for period 𝑡𝑡 + 1 gross inflation is Π𝑡𝑡+1|𝑡𝑡
∗ , 

which they announce in period 𝑡𝑡. With this target, the nonlinear version of 
equation (3) is the following rule: 

𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π𝑡𝑡+1|𝑡𝑡
∗ �

Π𝑡𝑡
Π𝑡𝑡|𝑡𝑡−1

∗ �
𝜙𝜙

. 

Combining this rule with the bond pricing equations implies that: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π𝑡𝑡+1|𝑡𝑡
∗

Π𝑡𝑡+1
= �

Π𝑡𝑡|𝑡𝑡−1
∗

Π𝑡𝑡
�

𝜙𝜙

. 

It is easy to see that Π𝑡𝑡 = Π𝑡𝑡|𝑡𝑡−1
∗  is always one solution of this equation, as 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
= 1. Thus, robust real rate rules are always consistent with stable 

inflation, even in fully non-linear models.44 
Furthermore, under mild assumptions,45 there exists a constant 𝑍𝑍 ≥ 1 such 

that for all sufficiently high 𝜙𝜙, 1 ≤ Π𝑡𝑡|𝑡𝑡−1
∗

Π𝑡𝑡
≤ 𝑍𝑍

1
𝜙𝜙−1. This upper bound tends to 1 as 𝜙𝜙 

goes to ∞, thus for large 𝜙𝜙, any solution must have Π𝑡𝑡 ≈ Π𝑡𝑡|𝑡𝑡−1
∗ . This holds even if 

the SDF, Ξ𝑡𝑡, is a complicated function of inflation and its history. Under slightly 
stronger assumptions on the SDF,46 we can even guarantee that Π𝑡𝑡 = Π𝑡𝑡|𝑡𝑡−1

∗  is the 

unique solution for all sufficiently large 𝜙𝜙. We prove these results in Online 
Appendix E. 

7.2 Learning and bounded rationality 
Our general results on Fisher equation wedges also imply substantial 

robustness to departures from full rationality (non-rational expectations equal 
rational expectations plus a wedge). But as before, it is reassuring to see how this 

works in practice. We summarise results here for several prominent models of 
bounded rationality. In all cases, we suppose that the central bank follows the 

 
44 We assume an equilibrium would exist were the monetary rule replaced with the equation Π𝑡𝑡 = Π𝑡𝑡|𝑡𝑡−1

∗ . 
45 Π𝑡𝑡 must be bounded above, as it is in the non-linear NK model. See Online Appendix E.1 for further 
discussion of this. Furthermore, the SDF must have bounded moments of some (positive) order. 
46 This requires the SDF to have a finite upper bound (almost surely), and for the gap between the realized 

SDF and the SDF if Π𝑡𝑡 = Π𝑡𝑡|𝑡𝑡−1
∗  to be bounded by a linear function of Π𝑡𝑡|𝑡𝑡−1

∗

Π𝑡𝑡
. 
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monetary rule of equation (6), 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, where 𝜁𝜁𝑡𝑡 is an AR(1) process 

with persistence 𝜌𝜌 ∈ (−1,1), and where 𝜙𝜙 > 0 at least. Full details and proofs are 
given in Online Appendix D. Evidence on departures from full rationality is 

surveyed in Coibion, Gorodnichenko & Kamdar (2018) and in the handbook 
edited by Bachmann, Topa & Klaauw (2023). 

Adaptive, naïve, and extrapolative expectations. Branch & McGough 
(2009) suppose that aggregate inflation expectations are a linear combination of 

rational expectations and an additional term capturing adaptive, naïve or 
extrapolative expectations. In particular, agents’ period 𝑡𝑡 expectation of period 𝑡𝑡 +
1 inflation is given by 𝛼𝛼𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + (1 − 𝛼𝛼)𝜃𝜃𝜋𝜋𝑡𝑡−1. Here, 𝛼𝛼 ∈ [0,1] gives the weight on 
rational expectations, and 𝜃𝜃 ≥ 0 controls whether the non-rational part is adaptive 

(𝜃𝜃 < 1), naïve (𝜃𝜃 = 1) or extrapolative (𝜃𝜃 > 1). This leads to the behavioural 
Fisher equation 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛼𝛼𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + (1 − 𝛼𝛼)𝜃𝜃𝜋𝜋𝑡𝑡−1. We show that the solution is 

unique and stable as long as 𝜙𝜙 > 𝛼𝛼 + (1 − 𝛼𝛼)𝜃𝜃. (This may be stronger than 𝜙𝜙 > 1 
if 𝜃𝜃 > 1.) Furthermore, as 𝜙𝜙 → ∞, var 𝜋𝜋𝑡𝑡 → 0. This means that sufficiently 

aggressive monetary policy can squash the variance of inflation, even in the 
presence of adaptive, naïve, or extrapolative expectations. 

Diagnostic expectations. Under diagnostic expectations (Bordalo, 
Gennaioli & Shleifer 2018; L’Huillier, Singh & Yoo 2023; Bianchi, Ilut & Saijo 2023), 

agents’ expectations overreact to new information, as measured by changes in 
rational forecasts. As in the previous case, the solution under diagnostic 

expectations is unique and stable as long as 𝜙𝜙 is sufficiently large (𝜙𝜙 > 2.40 would 
do according to the estimates of Bianchi, Ilut & Saijo (2023)). And again, as 𝜙𝜙 →
∞, var 𝜋𝜋𝑡𝑡 → 0. Furthermore, as 𝜙𝜙 → ∞, var��𝜙𝜙 − 𝜌𝜌�𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡� → 0, which means 
that with even moderately high 𝜙𝜙, inflation’s dynamics will be very close to its 

dynamics under rational expectations. 
Finite horizon planning. Woodford (2019) gives a model of limited 

planning horizons. Agents are assumed to optimize over decisions in finitely many 
future periods, using a learned value function to evaluate outcomes at their 

planning horizon. We find that 𝜙𝜙 > 1 is stronger than necessary, and, as before, as 
𝜙𝜙 → ∞, var 𝜋𝜋𝑡𝑡 → 0, and var��𝜙𝜙 − 𝜌𝜌�𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡� → 0 as well. It is reassuring that with 

finite horizon planning, determinacy conditions are weaker than under rational 
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expectations. Given a mix of finite horizon expectations and diagnostic or 

extrapolative ones, it is likely that 𝜙𝜙 not much larger than one would be sufficient. 
Least squares learning.  Under least squares learning (Marcet & 

Sargent 1989; Evans & Honkapohja 2001), agents update their beliefs about the 
laws of motion of endogenous variables via recursive least squares. For simplicity, 

we assume agents can directly observe the monetary shock 𝜁𝜁𝑡𝑡. We suppose that in 
period 𝑡𝑡, agents believe that for all 𝑠𝑠, 𝜋𝜋𝑠𝑠 = 𝑎𝑎𝑡𝑡 + 𝑏𝑏𝑡𝑡𝜁𝜁𝑠𝑠 + 𝜀𝜀𝑠𝑠, and 𝔼𝔼𝑠𝑠−1𝜀𝜀𝑠𝑠 = 0. Allowing 

for a constant seems natural, as they may not know the inflation target (assumed 
to be zero), or the size of the static Fisher equation wedge (also assumed to be 

zero). They estimate the coefficients 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 by recursive least squares, given 
some initial beliefs. We show that if 𝜙𝜙 > 1, then under recursive least squares 

learning, with probability one, 𝑎𝑎𝑡𝑡 converges to 0 and 𝑏𝑏𝑡𝑡 converges to − 1
𝜙𝜙−𝜌𝜌. 

Furthermore, 𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡
𝜙𝜙−𝜌𝜌 converges in probability to zero. Thus, agents succeed in 

learning the rational expectations solution, no matter the initial conditions. This 
guarantee of global stability under least squares learning is an improvement on 

results for standard monetary rules, for which at best local stability can be proven 
(see e.g. Bullard & Mitra (2002)). 

Constant gain learning. If agents believe parameters may be non-stationary, 
then it is no longer reasonable to perform least squares learning. Instead, it is 

natural to assume that they learn with a constant gain coefficient on new 
observations (Evans & Honkapohja 2001). This replaces the decreasing gain of 

recursive least squares with some constant, 𝛾𝛾 > 0. We prove that with 𝜌𝜌 = 0, 𝜙𝜙 >
1 and 𝛾𝛾 sufficiently low, 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 converge in probability to the truth. Thus, even 

though agents are using a constant gain, they still manage to exactly learn the true 
parameters, whatever the initial conditions. It is easy for agents to learn the rational 

expectations equilibrium under a real rate rule! 

7.3 The fiscal theory of the price level and over determinacy 
As long as the linear Fisher equation holds, robust real rate rules can never fail 

to rule out sunspots. However, in an economy in which the price level is 

determinate independent of monetary policy, they may still produce explosive 
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inflation.47 This is true of any monetary rule respecting the Taylor principle, not 

just the real rate rules we examine in this paper. Inflation becomes “over 
determined”, and an explosive solution is all that remains. 

For example, suppose that government debt is all one period and nominal, and 
that real government surpluses are not responsive to government debt levels, 

meaning fiscal policy is “active” in the sense of Leeper (1991). Then the price level 
is pinned down by the government debt valuation equation (see e.g. Cochrane 

(2023)), in line with the fiscal theory of the price level (FTPL). With flexible prices 
and constant real interest rates, to a first order approximation: 

𝜋𝜋𝑡𝑡 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = −𝜀𝜀𝑠𝑠,𝑡𝑡, (14) 
where 𝜀𝜀𝑠𝑠,𝑡𝑡 is a shock to the present value of real primary government surpluses, 

scaled by the value of outstanding real government debt, with 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑠𝑠,𝑡𝑡 = 0.48 
Suppose in this world that the central bank did follow the basic real rate rule 𝑖𝑖𝑡𝑡 =
𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝜁𝜁,𝑡𝑡, where 𝜙𝜙 > 1 and 𝔼𝔼𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 = 0. Then, from the Fisher equation, 
𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1, implying from (15) that 𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝜀𝜀𝑠𝑠,𝑡𝑡. With 

𝜙𝜙 > 1, this is an explosive process. We know from Subsection 3.1 that if there were 
a stationary solution for 𝜋𝜋𝑡𝑡, it must have 𝜋𝜋𝑡𝑡 = − 1

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡. But this is inconsistent with 

equation (15) as long as 𝜀𝜀𝜁𝜁,𝑡𝑡 ≠ 𝜙𝜙𝜀𝜀𝑠𝑠,𝑡𝑡, so only the non-stationary solution is left. 
However, this is a knife edge result. For example, suppose that the government 

issues (infinite maturity) geometric coupon debt, and that both monetary and 
fiscal policy are active (i.e., real primary government surpluses do not respond to 

debt, and the monetary rule satisfies the Taylor principle). Based on results with 
one period debt, researchers have tended to assume that this “active-active” 

combination will inevitably produce explosive inflation. This is incorrect. 
In Online Appendix G.1 we examine the equilibria of a non-linear model with 

geometric coupon debt under flexible prices. We show that under active fiscal 
policy, there are one or more equilibria in which real variables and inflation are 

stable and independent of surpluses, whether or not monetary policy is active. 
 

47 Note: it is certainly not the case though that in any model in which an interest rate peg is determinate, a 
real rate rule would produce explosive inflation. For example, in the New Keynesian model with a 
discounted Euler equation, from Subsection 3.2, if 𝛿𝛿 ∈ �− 1+𝛽𝛽+𝜅𝜅𝜍𝜍

1+𝛽𝛽 , 1−𝛽𝛽−𝜅𝜅𝜍𝜍
1−𝛽𝛽 � then an interest rate peg is 

determinate. We saw that the real rate rule is also determinate (and non-explosive) in this model. 
48 See Cochrane (2023), Subsection 2.5 and following. 



 

Page 38 of 45 

These equilibria feature a growing bubble in the price of government debt which 

is balanced by declining debt quantities. The initial debt price jumps to ensure the 
transversality condition is still satisfied, giving a “Fiscal Theory of the Debt Price”. 

These equilibria exist as long as the geometric decay factor for the bond coupons 
is not precisely equal to zero (the one-period debt case). Under passive monetary 

policy, there are a continuum of such equilibria, contrary to the usual claim that 
the active fiscal, passive monetary, combination ensures unique outcomes. These 

equilibria feature arbitrarily high inflation. 
While the infinite maturity of geometric coupon bonds is important for these 

results, similar bubbly equilibria would exist with finite maturity bonds in the 
presence of small frictions. For example, if households only hold government 

bonds indirectly via mutual funds, and the mutual funds mechanically reinvest 
the principal of maturing bonds, then the same equilibria will exist. Or if 

households are boundedly rational and approximate the value of long finite 
horizon bonds with that of perpetuities or geometric coupon bonds, then again 

there will be bubbly equilibria. 
The geometric coupon results are also not specific to the particular model set-

up we use in Online Appendix G.1. In Online Appendix G.2 we show that these 
results also hold in a linearised model with sticky prices. Then, in Online 

Appendix G.3 we show that generically, any model achieving determinacy via an 
FTPL-type mechanism must admit a stable solution under a real rate rule. There 

are only two main restrictions for this result. Firstly, the potentially explosive 
variables such as bond prices must not feed back to the real economy. Secondly, 

the equations determining the potentially explosive variables must not be too 
forward looking. Both assumptions are satisfied by standard FTPL models under 

geometric coupon debt.49 Therefore, only in knife edge cases will following the 
Taylor principle guarantee explosive inflation. Real rate rules are robust to the risk 

of active fiscal policy, or other sources of over determination. 

 
49 Note that the geometric coupon bond first order condition 𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1� can be rewritten as 
the two equations 𝐸𝐸𝑡𝑡 = 1+𝜔𝜔𝑄𝑄𝑡𝑡

𝑄𝑄𝑡𝑡−1
, and 1 = 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

𝐸𝐸𝑡𝑡+1. Here 𝑄𝑄𝑡𝑡 is potentially explosive, but is determined by a 

backward-looking equation, while 𝐸𝐸𝑡𝑡 is asymptotically stable. 
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8 Conclusion 
This paper’s implications are stark. Under a real rate rule: the central bank can 

always achieve its inflation target, no matter the rest of the economy; any 

movement in inflation must be due to insufficient central bank aggression, or a 
central bank choice to so move inflation; monetary policy works in spite of, not 

because of, real rate movements; causation runs exclusively from inflation to the 
output gap, not the other way round; household and firm decisions, constraints 

and inflation expectations are irrelevant for inflation dynamics; and nothing can 
amplify or dampen the impact of shocks on inflation, except changes in the central 

bank’s own behaviour. With a time-varying short-term inflation target, real rate 
rules can determinately implement optimal monetary policy, or match observed 

dynamics. They continue to work in the presence of the ZLB, bounded rationality, 
endogenous wedges in the Fisher equation, or active fiscal policy. 

To a policy maker, these conclusions may be shocking. However, for readers 
familiar with New Keynesian models, perhaps they are not completely surprising. 

In models in which an aggressive response to inflation produces determinacy, 
with an extremely aggressive response, the variance of inflation can be pushed 

down to near zero. And Rupert & Šustek (2019) argue that even in New Keynesian 
models with a standard monetary rule, monetary policy does not operate via real 

rates. Rather, real rate rules just crystallise the monetary policy transmission 
mechanism that is at work in all New Keynesian models. Monetary policy acts via 

the Fisher equation, and via the Taylor principle’s promise to induce explosive 
inflation should inflation deviate from target. Plausible arguments ruling out the 

explosive and deflationary equilibria include those of Angeletos & Lian (2023), of 
Christiano & Takahashi (2018; 2020) and of our Supplemental Appendix H.1 in 

Holden (2024). 
Real rate rules are not just a mere theoretical curiosity though. We have 

presented a design for the practical implementation of a real rate rule with a time-
varying short-term inflation target. Under this proposal, central bank boards keep 
the crucial role of choosing the desired path of inflation. Only the technical 
decision of how to set rates to hit that path is delegated to the rule. The rule embeds 

no politically sensitive views about the slope of the Phillips curve or the costs of 
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inflation. And the rule can be implemented using assets for which there is already 

a liquid market: either nominal and real long-maturity bonds, or inflation swaps. 
Current Federal Reserve behaviour is remarkably close to this practical rule: the 

rule explains 97.5% of the variance of five-year US treasury yields. 
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